

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 1

Radeon R5xx Acceleration

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 2

Trademarks

AMD, the AMD Arrow logo, Athlon, and combinations thereof, ATI, ATI logo, Radeon, and Crossfire are trademarks of Advanced
Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no
representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the
right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied,
arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's
Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty,
relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right. AMD's products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or
in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe
property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time
without notice.

© 2009 Advanced Micro Devices, Inc. All rights reserved.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 3

1. INTRODUCTION ... 6

1.1 INTRODUCING THE R5XX FAMILY .. 6

1.2 FEATURE HIGHLIGHTS .. 6

1.3 FEATURES IN DETAIL .. 6

1.4 CHANGES FROM R3XX/4XX ... 7

2. TILING.. 9

2.1 OVERVIEW ... 9

2.2 MICRO BLOCKS ... 9

2.3 MACRO BLOCKS .. 9

3. SURFACE FORMATS ... 11

4. TEXTURE MEMORY LAYOUT .. 13

4.1 MACRO - LINEAR / MICRO - LINEAR ... 13

4.2 MACRO - LINEAR / MICRO - TILED.. 13

4.3 MACRO - TILED / MICRO - LINEAR.. 13

4.4 MACRO - TILED / MICRO - TILED .. 14

4.5 MIPMAPS ... 15

4.6 CUBE MAPS ... 15

4.7 3D TEXTURES ... 16

5. COMMAND PROCESSOR .. 18

5.1 OVERVIEW ... 18

5.2 HOST PROGRAMMING MODEL DESCRIPTION .. 18

5.3 PUSH VS PULL MODEL ... 18

5.4 RING BUFFER MANAGEMENT .. 19

5.5 CHIPSET COHERENCY ISSUES .. 21

5.6 INDIRECT BUFFER MANAGEMENT ... 21

5.7 OVERVIEW OF DMA OPERATION ... 22

5.8 RESETTING THE COMMAND PROCESSOR .. 24

5.9 COMMAND STREAM SYNCHRONIZATION .. 24

5.10 STARTING THE INDIRECT STREAMS .. 25

5.11 WRITING HOST DATA TO THE COMMAND STREAM QUEUE ... 26

5.12 WRITING TO THE MICROENGINE RAM ... 27

5.13 READING FROM THE MICROENGINE RAM ... 27

5.14 STARTING A DMA OPERATION .. 28

6. PM4 ... 29

6.1 PACKET TYPES .. 29

6.2 DEFINITION OF TYPE-3 PACKETS ... 33

7. VERTEX SHADERS .. 59

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 4

7.1 INTRODUCTION ... 59

7.2 INPUT ... 59

7.3 VECTOR ORDER AND VECTOR ID’S .. 64

7.4 VAP REGISTERS .. 65

7.5 R3XX-R5XX PROGRAMMABLE VERTEX SHADER DESCRIPTION .. 71

7.6 SETTING-UP AND STARTING THE VAP ... 101

7.7 METHODS OF PASSING VERTEX DATA ... 102

8. FRAGMENT SHADERS .. 103

8.1 INTRODUCTION ... 103

8.2 INSTRUCTIONS .. 103

8.3 INSTRUCTION WORDS .. 104

8.4 ALU INSTRUCTIONS ... 105

8.5 TEXTURE INSTRUCTIONS ... 113

8.6 FLOW CONTROL .. 115

8.7 FLOATING POINT ISSUES ... 121

8.8 WRITING TO US REGISTERS ... 124

9. HIZ ... 126

9.1 INTRODUCTION ... 126

9.2 ENABLING HIZ .. 126

9.3 CONFIGURING HIZ .. 126

9.4 HIZ CLEAR WITH PM4 PACKET .. 128

9.5 EXAMPLE: PUTTING IT ALL TOGETHER ... 128

9.6 STATE CHANGES THAT INVALIDATE HIZ ... 129

10. DRIVER NOTES ... 130

10.1 R5XX CHANGES .. 130

10.2 INTERFACE NOTES ... 132

10.3 REGISTER NOTES ... 133

10.4 FEATURE NOTES ... 138

10.5 BLEND OPTIMIZATION NOTES ... 141

10.6 TEXTURE NOTES .. 141

10.7 GA POINT/LINE/POLYGON SETUP .. 142

10.8 ERRATA ... 143

11. REGISTERS ... 145

11.1 COMMAND PROCESSOR REGISTERS .. 145

11.2 COLOR BUFFER REGISTERS .. 154

11.3 FOG REGISTERS ... 170

11.4 GEOMETRY ASSEMBLY REGISTERS .. 173

11.5 GRAPHICS BACKEND REGISTERS ... 184

11.6 RASTERIZER REGISTERS ... 197

11.7 CLIPPING REGISTERS .. 200

11.8 SETUP UNIT REGISTERS .. 208

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 5

11.9 TEXTURE REGISTERS... 217

11.10 FRAGMENT SHADER REGISTERS ... 228

11.11 VERTEX REGISTERS .. 253

11.12 Z BUFFER REGISTERS ... 278

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 6

1. Introduction

1.1 Introducing the R5xx Family

The R5xx family provides the fastest and most advanced 2D, 3D, and multimedia graphics performance for desktop

PCs in the performance mainstream markets. The R5xx family supports Shader Model 3.0, advanced memory

interface technology, a brand new display controller and a consumer electronics (CE) quality TV (NTSC/PAL)

encoder. The R5xx family represents AMD‟s 2nd generation PCI Express technology product and leverages a brand

new graphics architecture. The R5xx family builds on the R3xx architecture. As such, much of this guide is

applicable to R3xx and R4xx chips as well with some caveats. Where applicable, generational differences are noted.

1.2 Feature Highlights

1.2.1 Shader Technology

 Support for Microsoft® DirectX® 9.0 programmable vertex and pixel shaders in hardware.

 Shader Model 3.0 vertex and pixel shader support.

 Full speed 32-bit floating point processing.

 High dynamic range rendering with floating point blending and anti-aliasing support.

 High performance dynamic branching and flow control.

 Complete feature set also supported in OpenGL® 2.0.

1.2.2 Anti-Aliasing

 2x/4x/6x Anti-Aliasing modes.

 Sparse multi-sample algorithm with gamma correction, programmable sample patterns, and centroid

sampling.

 New Adaptive Anti-Aliasing mode.

 Temporal Anti-Aliasing.

 Lossless Color Compression (up to 6:1) at all resolutions, up to and including widescreen HDTV.

1.2.3 New Ring Bus Memory Controller

 Programmable arbitration logic maximizes memory efficiency, software upgradeable.

 New fully associative texture, color, and Z cache design.

 Hierarchical Z-Buffer with Early Z Test.

 Lossless Z-Buffer Compression (up to 48:1).

 Fast Z-Buffer Clear.

 Z Cache optimized for real-time shadow rendering.

 Optimized for performance at high display resolutions, up to and including widescreen HDTV.

1.3 Features in Detail

1.3.1 2D Acceleration Features

 A highly optimized 128-bit engine, capable of processing multiple pixels/clock.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 7

 Hardware acceleration provided for BitBLT, line drawing, polygon and rectangle fills, bit masking,

monochrome expansion, panning and scrolling, scissoring, and full ROP support (including ROP3).

 Optimized handling of fonts and text using ATI proprietary techniques.

 Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtual Sprites,

Transparent BLT, and Masked BLT.

 Acceleration in 8/15/16/32-bpp modes.

 Support for WIN 2000 & WIN XP GDI extensions: Alpha BLT, Transparent BLT, Gradient Fill.

 Hardware cursor support up to 64x64x32-bpp, with alpha channel for direct support of WIN 2000 & WIN

XP alpha cursor standard.

1.3.2 3D Acceleration Features

 Fully DirectX 9.0 compliant, including full speed 32-bit floating point per component operations.

 Shader Model 3.0 support with programmable vertex shaders (full operand and operation support) allowing

up to 1024 instructions and 256 vectors of constant store. This includes vertex shader loops, branches, and

subroutines, which allow support of the following:

o 1024 vertex shader instruction store.

o 261,888 instructions with a single loop.

o 4+ trillion instructions with nested loops.

o Dynamic flow control.

o 8 full vertex processing units.

 Advanced pixel shaders with the following features:

o New advanced shader design, with ultra-threading sequencer for high efficiency operations.

o Full Pixel Shader 3.0 support.

o Advanced, high performance branching support.

o 32-bit floating point support for high dynamic range computations.

 Full anti-aliasing on render surfaces up to and including 64-bit floating point formats.

 Support for 2xAA, 4xAA and 6xAA subsamples, with little performance loss in most cases.

 Advanced AA quality algorithms, generating visuals that are superior to other solutions with an equivalent

number of samples.

 New adaptive anti-aliasing modes dynamically select between fast multi-sampling and high quality super-

sampling per polygon, delivering the benefits of both techniques.

1.4 Changes from R3xx/4xx

Changes from R3xx to R4xx

 Support for 1, 2, 3 and 4 quad pixel pipes

 Support for 1 to 6 vertex shader pipes

 HDTV resolution support for HiZ

 Support of 16x16 and 32x32 pixel tile sizes (32x32 should now be the preferred amount)

 Vastly redesigned Memory controller, with new client interfaces

 Support for 8b of subpixel precision

 Native support of 4Kx4K raster target

 PS instruction support now at 512 each for Scalar, Vec3 and Texture (1536 total instructions)

 VS native support for Sin/Cos

 TX Component swizzling

 Enhanced texture performance

 MRT and wide pixel performance fixes

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 8

 Fog alpha rounding matches RGB

 Line stipple fixes; SU texture stuffing improvements

 LOD Clamp/bias re-order

 2D support for larger pixels (Pitch at 16b)

 4x AA buffer tiling is changed when memory mapping is not used

Changes from R4xx to R5xx

 New Memory controller

 Support of VS3.0 features, except Vertex fetch

 Support of all PS3.0 features, including extended GPRs and Constants, all branching and predication

 New FP32 US, including most IEEE NANs, INFs behavior corrected (still TRUNC rounding mode)

 Support of new Z range [-2,2], with per pixel clamping in SC

 Support of up to 11 texture sets (10 explicit), or 44 iterators

 Support of color to texture mappings, and texture to color mappings (for performance improvements)

 New IS_IP for better mapping of components from VS to PS

 Color now in FP20 mode, instead of S3.12 mode

 New HiZ compression mode, allows high precision Z values to be stored

 New FP16 render surfaces support, including blending and all backend functions, but not texture filtering

 Fully set associative caches for Texture, Color, and Z

 New more efficient fifos for all MC clients

 New Filter4 mode for Texture unit

 New 1b texture mode for texture unit

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 9

2. Tiling

2.1 Overview

R3xx-R5xx support two types of blocks

 Micro block

 Macro block

Each block type can either be linear or tiled.

2.2 Micro Blocks

A micro block refers to a 32-byte consecutive data in memory. It is aligned to a 32-byte boundary, which means that

the 5 LSBs of a micro-block address are zeros. Micro blocks can be linear or tiled. Linear maps a 1D area of an

image to the block. Tiled maps a 2D area of an image to a block. The following table shows the different type of

micro blocks and the region of the 2D image that maps to it (x X y)

 Micro-linear Micro-tiled

8 bit pixel 32x1 pixels (x=32 , y=1) 8x4 pixels (x=8 , y=4) supported by : tx/cb/hdp

16 bit pixel 16x1 pixels (x=16 , y=1) 4x4 pixels (x=4 , y=4) supported by : tx/cb/zb/hdp

16 bit pixel 16x1 pixels (x=16 , y=1) 8x2 pixels (x=8 , y= 2) supported by: tx/cb/hdp/disp

32 bit pixel 8x1 pixels (x=8 , y=1) 4x2 pixels (x=4 , y=2) supported by: tx/cb/zb/hdp/disp

64 bit pixel 4x1 pixels (x=4 , y=1) 2x2 pixels (x=2 , y=2) supported by: tx/hdp

128 bit pixel 2x1 pixels (x=2, y=1)

2.3 Macro blocks

A macro block refers to a 2K-byte consecutive data in memory. Macro-blocks loosely refer to the size a DRAM

page. How micro tiles are arranged in a macro-tile is controlled by whether the macro-block is linear or tiled. Linear

macro block maps x-order sequential array of micro-blocks to a macro-block. When the end of the current scan is

reached, the macro-block continues with data from the next micro-tile in the next scan. The alignment for Linear

macro-blocks is 32 bytes. An image can generally be more compact using macro-linear, but it is typically slower in

rendering performance. Tiled macro-blocks map a 2D region of micro-blocks into a macro-block. Tiled macro-

blocks are aligned to a 2K-byte boundary, which means that the 11 LSBs of a macro-block address are zeros

There are 64 micro-blocks in a macro-block (2k divided by 32 bytes). In a tiled macro-block these 64 micro-blocks

are arranged as an 8x8. The number of pixels in x and y that map into a tiled macro-block is based on pixel size and

micro-block type. Multiplying the data from the previous table by 8 can do this:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 10

 Macro-tiled

Micro-linear

Macro-tiled

Micro-tiled

8 bit pixel 256x8 64x32

16 bit pixel (8x2) 128x8 64x16

16 bit pixel (4x4) 128x8 32x32

32 bit pixel 64x8 32x16

64 bit pixel 32x8 16x16

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 11

3. Surface Formats

This section describes all of the surface formats used by the R3xx-R5xx texture units and frame buffers. These

formats are first listed in summary, together with a list of features (fog, blend etc.) supported by each format.

8-bit Formats

Format Layout Range Display Blend Fog Dither Filter

C_8 01234567
C0

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

Yes Yes No Yes Yes

C2_4 01234567
C0C1

0.0 to 1.0 Yes No No No Yes

C_3_3_2 01234567
C0C2 C1

0.0 to 1.0 Yes No No No Yes

16-bit Formats

Format Layout Range Display Blend Fog Dither Filter

C_16 89101112131415 01234567
C0

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

No No No No Yes

C_16_MPEG 89101112131415 01234567
C0

-1.0 to +1.0 No No No No Yes

C_16_FP 89101112131415 01234567
C0

-2

16
 to +2

16
 No No No No No

C2_8
C1

89101112131415 01234567
C0

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

Yes Yes No Yes Yes

C_5_6_5
C2

89101112131415 01234567
C0C1

0.0 to 1.0 Yes Yes Yes Yes Yes

C_6_5_5
C2

89101112131415 01234567
C0C1

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

No No No No Yes

C4_4
C3

89101112131415 01234567
C0C1C2

0.0 to 1.0 Yes Yes Yes Yes Yes

C_1_5_5_5
C1

89101112131415 01234567
C0C2C3

0.0 to 1.0 Yes Yes Yes Yes Yes

32-bit Formats

Format Layout Range Display Blend Fog Dither Filter

C4_8 1624 08
C0C1C2C3

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

Yes Yes Yes Yes Yes

C4_8_GAMMA 1624 08
C0C1C2C3

0.0 to 1.0 Yes Yes Yes Yes Yes

C_11_11_10 1624 08
C0C1C2

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

No No No No Yes

C_10_11_11 1624 08
C0C1C2

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

No No No No Yes

C_2_10_10_10 1624 08
C0C1C2C3

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

Yes No No No Yes

C2_16 1624 08
C1 C0

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

No No No No Yes

C2_16_MPEG 1624 08
C1 C0

-1.0 to +1.0 No No No No Yes

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 12

C2_16_FP 1624 08
C1 C0

-2

16
 to +2

16
 No No No No No

C_32_FP 1624 08
C0

-2

127
 to +2

127
 No No No No No

C_AVYU 1624 08
A UYV

0.0 to 1.0 Yes Yes Yes Yes Yes

C_VYUY 1624 08
V Y1 V Y0

0.0 to 1.0 Yes Yes Yes Yes Yes

C_YVYU 1624 08
Y1 V Y0 U

0.0 to 1.0 Yes Yes Yes Yes Yes

64-bit Formats

Format Layout Range Display Blend Fog Dither Filter

C4_16
C3

3248 0164056 824
C2 C1 C0

0.0 to 1.0 (unsigned)

-1.0 to +1.0 (signed)

No No No No Yes

C4_16_FP
C3

3248 0164056 824
C2 C1 C0

-2

16
 to +2

16
 No No No No No

C2_32_FP
C1

3248 0164056 824
C0

-2

127
 to +2

127
 No No No No No

128-bit Formats

Format Layout Range Display Blend Fog Dither Filter

C4_32_FP
C3

6496 03280112 1648
C2 C1 C0

-2

127
 to +2

127
 No No No No No

Depth Formats

Format Layout Range Write Read

W_24 1624 8
DEPTH

0

0 to 2

24
-1 Yes No

W_24_FP 1624 8
DEPTH

0

-2

63
 to +2

63
 Yes Yes

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 13

4. Texture Memory Layout

4.1 Macro - Linear / Micro - Linear

The starting address of an image is aligned to a 32-Byte boundary specified by register TX_OFFSET[31:5]. The

texels that make up the image are stored in row-column order. Each row of an image is aligned to 32 Bytes. The

image is stored contiguously in memory. This is illustrated in the following figure.

T

S

Texel

Image Memory

0 N

0

M

0

ST=1

N

0

S

N

T=0

32B Alligned

32B Alligned

4.2 Macro - Linear / Micro - Tiled

The starting address of an image is aligned to a 32-Byte boundary specified by register TX_OFFSET[31:5].

The Micro-Tiles that make up the image are stored in row-column order. Each row of Micro-Tiles is aligned to

32 Bytes. The image is stored contiguously in memory. This format is very similar to Linear/Linear with the

exception that Micro-Tiles are stored in row-column order, while texels are tiled within each Micro-Tile. This is

illustrated in the following figure.

Texel

Image Memory

0 A

0

B

0

A

0

S
MICRO

A

32B Alligned

32B Alligned

MicroTile

S
MICRO

T
MICRO

= 0

T
MICRO

= 1

S
MICRO

T
MICRO

4.3 Macro - Tiled / Micro - Linear

The starting address of an image is aligned to a 2K-Byte boundary specified by register TX_OFFSET[31:5].

The Macro-Tiles that make up the image are stored in row-column order. Each row of Macro-Tiles is aligned to

2K Bytes. Each image is stored contiguously in memory. This is illustrated in the following figures. Micro-Tiles

are re-ordered within a Macro-Tile to improve dram locality.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 14

T

 8 x 256 x 8b

 8 x 128 x 16b

 8 x 64 x 32b

 8 x 32 x 64b

S

MacroTile : MxN Texels

0

Byte2K-1 Byte0

MxN-1

N-1

M-1

Texel

Image Memory

0 C

0

D

0

C

0

S
MACRO

C

2KB Alligned

2KB Alligned

MacroTile = MxN Texels

S
MACRO

T
MACRO

= 0

T
MACRO

= 1

S
MACRO

T
MACRO

4.4 Macro - Tiled / Micro - Tiled

The starting address of an image is aligned to a 2K-Byte boundary specified by register TX_OFFSET[31:5].

8x8 Micro-Tiles are stored within a Macro-Tile. The Macro-Tiles that make up the image are then stored in row-

column order. Each row of Macro-Tiles is aligned to 2K Bytes. Each image is stored contiguously in memory.

This is illustrated in the following figures. Micro-Tiles are re-ordered within a Macro-Tile to improve dram

locality.

T

S

MacroTile : 8x8 MicroTiles

MicroTile

0

Byte2K-1 Byte0

3F

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 15

MicroTile

Image Memory

0 C

0

D

0

C

0

S
MACRO

C

2KB Alligned

2KB Alligned

MacroTile = 8x8 MicroTiles

S
MACRO

T
MACRO

= 0

T
MACRO

= 1

S
MACRO

T
MACRO

4.5 MipMaps

For a MipMap pyramids, the levels are stored contiguously in memory. The ordering of the images is from

largest to smallest. Each level of a mipmap pyramid must follow the same alignment and padding restrictions as

a planar image. If Macro-Tiled, once image size drops below size of Macro-Tile, the hardware switches to

Macro-Linear to minimize memory use.

Level 0

Level 1

Memory

Level 2

Level 3

* Not Drawn To Scale

MipMaps stored contiguously from largest to smallest.

4.6 Cube Maps

Cube map faces must be power of two in width and height, and must be square. Cube maps can be planar or

mipmapped. All six cube faces must have the same dimensions as Face0.

The faces of a cube map are stored contiguously in memory from Face0 to Face5. If mipmapped, levels 1 thru N

are then stored from largest to smallest. If Macro-Tiled, once image size drops below size of Macro-Tile, the

hardware switches to Macro-Linear to minimize memory use.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 16

Memory

* Not Drawn To Scale

Face0

Face1

Face2

Face3

Face4

Face5

Face0

Face1

Face2

Face3

Face4

Face5

MipLevel 0

MipLevel 1

Cube faces stored contiguously from 0 to 5.

MipMaps stored contiguously from largest to smallest.

4.7 3D Textures

3D textures must be power of two in width, height, and depth, however they can be non-square. 3D textures can

be planar or mipmapped.

The layers of a 3D texture are stored contiguously in memory from Layer0 to LayerM. If mipmapped, levels 1

thru N are then stored from largest to smallest. If Macro-Tiled, once image size drops below size of Macro-Tile,

the hardware switches to Macro-Linear to minimize memory use.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 17

Memory

* Not Drawn To Scale

Layer0

Layer1

Layer2

Layer3

Layer0

Layer1

MipLevel 0

MipLevel 1

Layers stored contiguously from 0 to N.

MipMaps stored contiguously from largest to smallest.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 18

5. Command Processor

5.1 Overview

The Command Processor is a programmable processor that is meant to provide some on-chip intelligence for a

Graphics Controller device. The CP architecture has been approached as a special-purpose computing engine,

targeted at fetching and interpreting a PROMO4 command stream.

The Command Processor takes on several tasks in a typical Graphics Controller:

 Acts as a receiver of command streams from the video and graphics device driver(s) running on the host

CPU. These command streams are either read from system memory using bus-mastering on the PCI or

AGP bus, or directly written to the CP from the host CPU using the PCI or AGP (fast-write) bus. Three

streams are supported – one Ring Buffer and two Indirect Buffers.

 Parses and interprets a command stream, and writes the parsed data to internal “Feature” modules of the

Graphics Controller device; for example, a 3D graphics processor, a 2D graphics processor, a Video

Processor, or an MPEG Decoder. The data writes can be 32, 64, 96, or 128 bits per clock. The 64, 96, and

128 bit writes will occur for “Vector Write Mode”. Vector write mode is valid when the stream (PQ, IQ1,

IQ2) is in Pull Mode. Push mode will only write DWORDs (i.e. Lower 32-bits of the 128-bit data bus will

be valid with a DWORD_Enable = “0001”. The 64 and 96-bit writes will only occur while the alignment of

the data is not on a 128-bit boundary.

 There are two general-purpose DMA engines inside the CP, one for GUI-related tasks, and one intended for

Video Capture tasks. The DMA engines do byte alignment between the source and destination surfaces.

5.2 Host Programming Model Description

This section describes the manner in which the host CPU communicates with the graphics controller chip.

5.3 Push vs Pull Model

The Push Model is also referred to as Programmed I/O (PIO). In this model the host CPU is writing to the graphics

controller chip across either the PCI or AGP bus. That is, the host is “pushing” command information to the

graphics controller. This information is in one of two forms:

1) A sequence of register writes to setup the state of a processing engine on the graphics controller, and

then starting the engine running. Typically, engines are started as a side-effect of writing to a special

“trigger” or “initiator” register.

2) A sequence of Command Packets, which are a “compressed” way of conveying the command

information to the graphics controller, relying on an intelligent processor in the graphics controller to

convert the command packets into register writes to other processing engines in the graphics controller.

It is expected that option (1) above will only be used for debug purposes.

The Pull Model utilizes bus-mastering on the part of the graphics controller, as it actively goes out and reads from an

area of system memory in which the host CPU has previously placed command information. An important part of

the pull model is how the host and the graphics controller manage access to the shared buffer in system memory.

This is discussed in the following section.

The pull model allows more slip between the CPU and the graphics controller than does the push model, assuming

that the command buffer for the push model is limited to on-chip storage.

The push model may have some advantage when the overall system performance is taken into account as it lightens

the bandwidth demand on system memory as compared to the pull model. The push model may be able to make-up

for its limited slip by implementing an on-chip command buffer that “spills-over” into the frame buffer; however,

this of course begins to place a demand on the frame buffer bandwidth to write and read the command buffer.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 19

The Command Processor will support both the push and pull models; however, switching between these two models

must be carefully controlled. It is intended that switching is not done often; most likely the model is chosen at reset

time, and never changed once the system is running. The pull model is the preferred choice for systems that allow

bus-mastering, and whose API allows concurrent processing between the host CPU and the graphics controller,

primarily because of its superior capability for overlapped processing. The push model is available for systems that

are not well-suited to using the pull model.

5.4 Ring Buffer Management

When the Graphics Controller is set to operate in the bus-mastering mode (pull model), the host application, say a

driver, has to allocate a block of system memory as a buffer for the command packets it issues to the Graphics

Controller. The command packets, or simply packets, instruct the Graphics Controller to carry out operations such

as drawing objects on the screen. This memory block is treated as if it is a ring that allows the packets to be placed

into and taken away from the memory in a circular manner, thus the name Ring Buffer.

The Ring Buffer is a shared memory space between two cooperating processors. It is used to implement one-way

communication from the Host processor (the Writer) to the Graphics Controller (the Reader). Each processor must

maintain the state that it believes that the Ring Buffer is in. The state is composed of:

 Buffer Base: The address of the beginning of the buffer.

 Buffer Size: The size of the buffer.

 Write Pointer: The address that the Host is writing to.

 Read Pointer: The address that the Graphics Controller is reading from.

In order for the Ring Buffer to work properly, both processors must maintain a consistent view of this state. The

Buffer Base and Buffer Size are generally initialized when the system is first brought-up, and rarely changed after

that point. It is a simple task to initialize both the Reader‟s and the Writer‟s copies of this state. The Read and

Write Pointers, on the other hand, change quite frequently as the Ring Buffer is in operation. In order to achieve

consistency, when the Writer (the host) updates the Write Pointer, he must send that value to the Reader‟s (the

Graphics Controller‟s) copy of the Write Pointer. And similarly, when the Reader updates the Read Pointer, he must

send that value to the Writer‟s copy of the Read Pointer.

Packets are placed into the memory block, or buffer, from the beginning towards the end, i.e., from lower addresses

toward higher addresses. Once the data placement hits the end, it starts from the beginning again. Meanwhile, the

packets are consumed from the head of the queue in a manner similar to how they were placed.

Figure illustrates how the ring buffer operates when combined with the bus-mastering operation.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 20

P
N

P
2

P
1

free area

Ring Buffer

Server

Graphics

Controller
Host

Ring Buffer

Buffer Size

Write Pointer

Buffer Base

Read Pointer

Execution

Unit
MemoryRegisterLegend:

end of bufferstart of buffer

data flow

Packets Bus

Mastering

Unit

Write Pointer

Buffer Base

Read Pointer

Buffer Size

Read Pointer

Address

C
o

m
m

a
n

d
 P

a
c
k

e
t

B
u

ff
e
r

Driver(s)

P
N-1

Write Pointer Address

Figure: Ring Buffer and its Control Structure

In the figure, packets are placed into the buffer in a counter-clockwise order, forming a packet queue. The first

packet in the queue is denoted by P1 , and the last by Pn . The start of the queue, P1 , is pointed to by the Read

Pointer(s). The memory portion that is not occupied by packets is called the free area, and it is pointed to by the

Write Pointer(s).

Initially, both the read and write pointers may point to the same location of the ring buffer, e.g. the start of the

memory block. The two pointers pointing to the same location of the ring buffer generally implies one of two

situations. One is that the buffer is empty, and the other is that the buffer is full. We want to define this situation as

an empty buffer. To resolve the ambiguity of both pointers being equal, we must prevent the case of a full buffer

from ever happening. It is the Host‟s responsibility to ensure that there is at least one free location in the buffer.

On the host side, the driver places command packets into the free area of the ring buffer, and informs the Graphics

Controller of any changes to the Write Pointer by writing directly to the Write Pointer register inside the Graphics

Controller. The host tracks free-space in the buffer by comparing its Read and Write Pointers, and suspends writing

if the buffer becomes (almost) full.

On the Graphics Controller side, packets are taken away one-by-one from the head of the packet queue, pointed to

by its Read Pointer, through the Host Bus Interface, and placed into the Command Packet Buffer. As the Graphics

Controller updates its copy of the Read Pointer, it uses a bus-mastering write to update the Host‟s copy of the Read

Pointer, residing in a shared memory location. The Graphics Controller has a register that holds the memory address

of where the Host‟s Read Pointer resides, and uses that for the address of the bus-mastering write. The Graphics

Controller tracks free-space in the buffer by comparing its Read and Write Pointers, and suspends reading if the

buffer becomes empty (i.e., Read Pointer == Write Pointer).

To reduce traffic on the system memory bus, the Graphics Controller should not update the Host‟s copy of the Read

Pointer every time it changes on the Graphics Controller side. To facilitate this, we have adopted a concept of a

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 21

block of dwords in the packet queue. The Graphics Controller will update the host‟s copy of the Read Pointer every

time it has consumed a “block‟s-worth” of data from the ring buffer. The other time when the Graphics Controller

will update the Read Pointer is when it thinks that the packet queue is empty. The size of the block is

programmable, to allow the programmer to trade-off the amount of time the system bus spends doing real data

transfer vs the amount of time it spends on the communication overhead of updating read/write pointers. Larger

block sizes tend to reduce communication overhead, at the “expense” of reducing the number of blocks in the queue,

which reduces the amount of “slip” (or de-coupling) between the Host and the Graphics Controller.

To reduce traffic on the system memory bus, the driver may want to minimize the frequency of accesses to its copies

of the Read and Write Pointers. To minimize reads of the Read Pointer, it can check them once, calculate an amount

of free space, and then decrement a local copy of the amount of free space as it adds packets to the queue. When it

sees that the free-space is small (queue nearly full), it can start this procedure over again. (Its copy of the Read

Pointer may have changed since the last time he read it.) The host also has the option of updating the Graphics

Controller‟s Write Pointer on a less-frequent basis than with every write he does to the packet queue, possibly on a

block-basis similar to the Graphics Controller‟s mechanism. However, if the buffer is running close to empty, any

delay in updating the Graphics Controller‟s Write Pointer may add latency to the Graphics Controller‟s response to

this command packet. Also, the host must be careful to update the Graphics Controller‟s copy of the Write Pointer

if it wants the Graphics Controller to read from the queue until it is empty.

When the queue has become (almost) full, the host will have to poll the Read Pointer until space becomes available.

In certain systems (Pentium II for example), this polling will stay within the processor cache, thus avoiding traffic

on the system bus, and the snoop logic of the host CPU will take care of maintaining consistency between the main

memory and the processor cache when the Graphics Controller performs its bus-mastering write of the Read Pointer.

It is important to note that the Read Pointer must reside in PCI space in order for this snoop technique to work.

AGP writes are not snooped.

5.5 Chipset Coherency Issues

The Rage128 product revealed a weakness in some motherboard chipsets in that there is no mechanism to guarantee

that data written by the CPU to memory is actually in a readable state before the Graphics Controller receives an

update to its copy of the Write Pointer. In an effort to alleviate this problem, we‟ve introduced a mechanism into the

Graphics Controller that will delay the actual write to the Write Pointer for some programmable amount of time, in

order to give the chipset time to flush its internal write buffers to memory.

There are two register fields that control this mechanism: PRE_WRITE_TIMER and PRE_WRITE_LIMIT. There

is also a staging register placed “in front of” the actual Write Pointer register of the CP. All host writes go into the

staging register and are held there until one of two events occurs: the down-counter of PRE_WRITE_TIMER has

expired; or the host has written the staging register PRE_WRITE_LIMIT-times, forcing the contents of the staging

register into the actual Write Pointer register. The down-counter is seeded with PRE_WRITE_TIMER every time

the host writes to the Write Pointer register address, and expires when it reaches zero. This implementation does not

guarantee a certain time-delay between the host write to the Write Pointer, and the Graphics Controller read of the

system memory; because the host could flood the Graphics Controller with multiple writes (more than the

PRE_WRITE_LIMIT) in a short amount of time, thus overriding the time-delay imposed by the

PRE_WRITE_TIMER. However, since the normal operation of this system is to increase the Write Pointer by some

significant amount with each write, it is likely that by the time the PRE_WRITE_LIMIT has been reached, the data

has in fact been “pushed” through the chipset‟s write buffer by subsequent writes to the ring buffer in system

memory.

Note that programming the PRE_WRITE_TIMER and PRE_WRITE_LIMIT to zero allows the chip to behave just

as the Rage128 did.

The above solution is based on a time delay, the assumption being that if the chipset is given enough time, the write

buffer will be flushed to memory, and become available for a coherent read.

5.6 Indirect Buffer Management

The Command Processor has the capability to read commands from other locations in memory, outside of the Ring

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 22

Buffer. These locations are known as Indirect Buffer1 and Indirect Buffer2. This is accomplished as follows: there

is a packet in the Primary command stream (being read from the ring buffer) which sets up the Indirect Buffer1

Address and Size registers of the Command Processor. The writing of the Indirect Buffer1 Size register triggers the

Command Processor to begin fetching the new stream from the provided address. The last packet to be parsed from

the Primary stream is the one that sets the Indirect Buffer1 Address and Size registers. The CP then begins fetching

data from Indirect Buffer1. The data stream in Indirect Buffer1 may set up the Indirect Buffer2 Address and Size

registers of the Command Processor. As before, writing of the Indirect Buffer1 Size register triggers the Command

Processor to begin fetching the new stream from the provided address. The last packet to be parsed from the

Indirect Buffer1 stream is the one that sets the Indirect Buffer2 Address and Size registers. The CP fetches the

correct amount of data from Indirect Buffer2 until The Buffer2 Size is exhausted; it then returns to its interpretation

of packets from Indirect Buffer1. The CP fetches the correct amount of data from Indirect Buffer1 until the Buffer1

Size is exhausted; it then returns to its interpretation of packets from the Primary Stream (being read from the ring

buffer).

5.7 Overview of DMA Operation

The DMA engines in the Command Processor fetch commands from the frame buffer memory which tell them what

to do. The command in memory is stored in a structure known as a Descriptor, having a four-doubleword

(DWORD) format as shown below:

Ordinal Name Bit Function

0 SRC_ADDR 31:0 Source address

1 DST_ADDR 31:0 Destination address

2 COMMAND 31:0 Command word. (See description below)

3 (Reserved) 31:0

The COMMAND word has the following format:

31 EOL End Of List Marker

30 INTDIS Interrupt Disable

29 DAIC Destination Address Increment Control

28 SAIC Source Address Increment Control

27 DAS Destination Address Space

26 SAS Source Address Space

25:24 DST_SWAP Destination Endian Swap Control

23:22 SRC_SWAP Source Endian Swap Control

20:0 BYTE_COUNT[20:0] Byte Count of Transfer

There are some constraints on the programming of the Descriptor, as follows: If either the Source or the Destination

is in the register address space, or is programmed to be non-incrementing, then the atomic transfer unit is assumed to

be a DWORD. Namely, the bottom two-bits of the BYTE_COUNT and the Address will be ignored (assumed

“00”).

Note that a BYTE_COUNT of zero will perform no operation.

Multiple Descriptors may be stored contiguously in memory to make up a Descriptor Table (DT) (see Figure). The

last Descriptor in the Descriptor Table must be marked as such so that the DMA engine knows when to stop

consuming commands.

The programmer provides the DMA engine with a pointer to the beginning of the Descriptor Table, and the DMA

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 23

engine fetches one Descriptor at a time, interprets the command to carry out a transfer, and then moves on to the

next Descriptor in the table. As mentioned above, the DMA engine will stop when it reaches the last Descriptor in

the table.

There is a bit called CP_SYNC in the Descriptor Address register (DMA_xxx_TABLE_ADDR). If this bit is set,

the DMA will “lock-out” the microengine from performing any writes on the register backbone while the DMA is

active. This mechanism can be used to synchronize a DMA-driven stream of register writes to the command FIFO.

among other things.

A DMA channel may have its operation aborted by writing a „1‟ to the ABORT_EN bit of the DMA_xxx_STATUS

register. It is important that the programmer then poll the ACTIVE bit of that same register, waiting for a value of

„0‟, before writing a „0‟ to the ABORT_EN bit. Once the ACTIVE bit is „0‟, the programmer is guaranteed to read-

back stable state from all DMA registers.

Descriptor 0

Memory Space

Dword 0

Dword 1

Dword 2

Dword 3

TABLE_ADDR Register

Descriptor 1

Dword 4

Dword 5

Dword 6

Dword 7

Descriptor n (Last)

Dword (n*4)

Dword (n*4)+1

Dword (n*4)+2

Dword (n*4)+3

.

.

.

Figure: Descriptor Table Layout in Memory

An alternate method to writing the DMA_XXX_TABLE_ADDR register to initiate a DMA operation is to write the

descriptors directly to the CP. This saves the fetching of the descriptor table from memory.

Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,

CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and

COMMAND DWORDs of the descriptor table entry described above. Except that the EOL is hard-coded TRUE in

the COMMAND DWORD. Writing to the CP_XXX_COMMAND register initiates a DMA operation using the

descriptor described in all three registers. A table of descriptors can be built from multiple Type-0 packets each

containing the SRC, DST, and COMMAND data.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 24

5.8 Resetting the Command Processor

To support recovery from a power-down state the read pointer (CP_RB_RPTR) is writable. The read pointer is

initialized by writing the writable read pointer (CP_RB_RPTR_WR). Then, when the write pointer

(CP_RB_WPTR) is subsequently written the contents of the writable read pointer (CP_RB_RPTR_WR) are

transferred to the active read pointer (CP_RB_RPTR). As a precaution, an enable bit must be set in the control

register (CP_RB_CNTL) to allow the contents to transfer to the active read pointer (CP_RB_RPTR). Note that the

read pointer still resets to zero to ensure starting at the beginning of the buffer if the host does not initialize the

writable read pointer (CP_RB_RPTR_WR).

Therefore, a certain sequence of actions is required of the host in order to perform a “clean” soft reset of the CP:

1) Write CP_CSQ_CNTL and CP_CSQ_MODE to zero, effectively disabling the CP.

2) Write to the proper RBBM register to assert and then de-assert the Soft Reset signal to the CP.

3) Set the RB_RPTR_WR_ENA bit to enable writing of the RPTR if desired not to start from the

beginning of the buffer.

4) Write the CP_RB_RPTR_WR register if it is desired not to start at the beginning of the buffer.

5) Write CP_RB_WPTR, to make it match the RPTR, causing the ring buffer to appear to be empty.

6) Clear the RB_RPTR_WR_ENA bit if no further writes of the RPTR are desired.

7) Write CP_CSQ_CNTL or CP_CSQ_MODE to set the mode back to whatever you want.

5.9 Command Stream Synchronization

In the RBBM, there is an event engine that can be used to synchronize the sending of transactions to the Register

Backbone based on status signals from its clients. The CP however has a mechanism that can directly provide the

Host with knowledge of command status. This mechanism is the eight “SCRATCH” registers and their associated

functionality.

Associated with the eight “SCRATCH” registers in the CP are a scratch address register and a write mask. When a

scratch register is written, the CP will subsequently write its value to a location equal to what is programmed in the

SCRATCH_ADDR register plus the number (0 to 7) of the scratch register. The writing of the scratch register‟s

value by the CP is qualified by the register‟s write mask (SCRATCH_UMSK).

So, at the end of processing an Indirect Buffer, for example, a Type-0 packet can be inserted that writes a data

pattern to SCRATCH_REG1. The driver software can poll the external location SCRATCH_ADDR+1 and when it

changes to the value that was inserted in the Type-0 packet, the Driver will “know” that the CP has completed

parsing the indirect buffer up to that point. Note that this status only indicates that the CP is done to that point, the

data still may be being used by the rest of the pipeline.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 25

For R5xx an interrupt is added associated with the scratch registers, which is asserted when the scratch register pair

selected is written to memory and is greater than or equal to the pair of values written by the Driver.

The CP can receive sync pulses from the back-end of the pipeline (CBA_CP_SYNC, CBB_CP_SYNC,

CBC_CP_SYNC, and CBD_CP_SYNC). When a pulse from each is received (pulse pair), the CP will write the

targeted scratch register with the corresponding CP_RESYNC_DATA value. The targeted scratch register is

determined by the 3-bit CP_RESYNC_ADDR which is a scratch register offset from the SCRATCH_ADDR base

address.

Because this function uses the SCRATCH_ADDR and SCRATCH_UMSK values, they must be initialized prior to

its use. The CP_RESYNC_ADDR and CP_RESYNC_DATA registers must also be programmed with the target

scratch register offset and the appropriate data respectively before the pulses are received. Both the

CP_RESYNC_ADDR and CP_RESYNC_DATA values are written into 8-deep FIFOs so that multiple

synchronization events can be en-queued in the CP.

If the sync pulses from the CB are asserted before programming the CP_RESYNC_ADDR and

CP_RESYNC_DATA, the logic will still work providing that Dynamic Clocking for the CP is disabled. Receipt of

the sync pulses by the CP does not cause the clocks to be enabled to the CP, so knowledge of these pulses may not

be remembered if Dynamic Clocking is enabled. Writing the CP_RESYNC_ADDR and CP_RESYNC_DATA

registers does enable the clocks to the CP. The “busy” signal to the CG will remain asserted as long as there is

RESYNC data in the ADDR and DATA FIFOs – keeping the clock enabled to the CP.

5.10 Starting the Indirect Streams

A write to the CP_IB_BUFSZ register triggers the Command Processor to start fetching the command stream from

the Indirect1 buffer, instead of from the Primary buffer. The CP will continue to fetch from the Indirect1 buffer,

starting at the address in the CP_IB_BASE register, and continuing until the CP_IB_BUFSZ amount is exhausted.

Then it will switch back to the Primary stream.

A write to the CP_IB2_BUFSZ register triggers the Command Processor to start fetching the command stream from

the Indirect2 buffer, instead of from the Indirect1 buffer. The CP will continue to fetch from the Indirect2 buffer,

starting at the address in the CP_IB2_BASE register, and continuing until the CP_IB2_BUFSZ amount is exhausted.

Then it will switch back to the Indirect1 stream.

Note that there are some important rules to follow when starting an indirect stream. Firstly, the write to the

CP_IB_BUFSZ or CP_IB2_BUFSZ register must be the last register-write of a Type 0 or Type 1 packet. The very

next packet that is delivered to the Command Stream Interpreter is the first packet of the respective indirect buffer.

The second rule is that the respective CP_IB_BASE or CP_IB2_BASE register must have been setup with the

proper value before the appropriate CP_IB_BUFSZ or CP_IB_BUFSZ register is written.

In PIO mode, the BUFSZ register still needs to be written with the size of the indirect buffer. Care must be taken to

write this register before the command queue fills in the CP.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 26

5.11 Writing Host Data to the Command Stream Queue

Either or all of the Primary, Indirect1 and Indirect2 streams can be delivered to the Command Processor via host-

programmed writes to the Graphics Controller device. There is a range of register-space addresses assigned to each

of the three streams, that is, one aperture for the Primary Stream, one for the Indirect1 Stream, and one for the

Indirect2 Stream. The act of writing to a location in the aperture causes that data to be enqueued to the Command

Stream Queue. Note that the actual address of the written data is inconsequential; the data will be enqueued into the

Command Stream Queue in the order in which it was received from the host.

Note that each of the three streams can be in one of three delivery modes, resulting in nine possible combinations.

The three modes are:

1) OFF: The stream is disabled.

2) PUSH: The host is writing the stream data to the Command Processor. (also known as Programmed

I/O, or PIO mode)

3) PULL: The Command Processor is actively fetching the command stream from memory. (also known

as Bus Master, or BM mode)

Note that the BUFSZ register must be written to initiate indirect buffer parsing in the “PUSH” mode.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 27

5.12 Writing to the MicroEngine RAM

In order to change a location in the MicroEngine RAM, first load the CP_ME_RAM_ADDR Register with the

address of the RAM into which data is to be written. Next, the host performs two writes; the first must be to the

CP_ME_RAM_DATAH port, and the second to the CP_ME_RAM_DATAL port. Internally, the Command

Processor maintains a 40-bit holding registers which concatenates the lower 8-bits of the DATAH value to the top of

the 32-bit DATAL value, and at the end of the write of the DATAL value, the 40-bit value is written to the RAM at

the location specified by the RAM Address Register. The RAM Address Register is then auto-incremented to point

to the next location in the RAM. This process of writing two data values may be repeated to write to successive

RAM locations without re-loading the RAM Address Register.

5.13 Reading from the MicroEngine RAM

In order to read a location in the MicroEngine RAM, first load the CP_ME_RAM_RADDR Register with the

address of the RAM from which data is to be read. This write triggers the Command Processor to read the 40-bit

data value at that RAM location and transfer it to an internal 40-bit holding register. Also, the RAM Address

Register is auto-incremented to point to the next location in the RAM. Next, the host performs two read cycles, the

first from the DATAH port, and the second from the DATAL port. At the end of the DATAL cycle, the next

location of the RAM is transferred to the 40-bit holding register, and the RAM Address Register is again auto-

incremented. This process of reading two values may be repeated to read from successive RAM locations without

re-loading the RAM Address Register.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 28

5.14 Starting a DMA Operation

There are two methods to initiate a DMA operation – Descriptor Tables or Direct Descriptor Entry Register Writes.

To program a DMA operation via Descriptor Tables, the programmer has to build the table in the frame buffer first,

being sure to mark the last entry of the list as “End Of List”. Then, the programmer can write the starting address of

the descriptor table into the Descriptor Table Address Queue (DTAQ) through the xxx_DMA_TABLE_ADDR port.

The action of writing the first starting address into the DTAQ will trigger the DMA operation.

The type of transfer operation depends on the DMA_COMMAND DWORD in the Descriptor. It controls such

variables as: the length of the transfer, whether the Source/Destination addresses are in memory-space or register-

space, whether the Source/Destination addresses auto-increment with each transfer, and whether an interrupt is

generated when the entire Descriptor Table has been processed.

The second method - Direct Descriptor Entry Register Writes – involves writing the three DMA Entry registers.

Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,

CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and

COMMAND DWORDs of the descriptor table entry. Except that the EOL is hard-coded TRUE in the COMMAND

DWORD. Writing to the CP_XXX_COMMAND register initiates a DMA operation using the descriptor described

in all three registers. A table of descriptors can be built from multiple Type-0 packets each containing the SRC,

DST, and COMMAND data.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 29

6. PM4

6.1 Packet Types

When programming in the PM4 mode, we do not need to write directly to registers to carry out drawing operations

on the screen. Instead, what we need to do is to prepare data in the format of PM4 Command Packets in the system

memory, and let the hardware (Microengine) to do the rest of the job.

Four types of PM4 command packets are currently defined. They are types 0, 1, 2 and 3 as shown in the following

figure. A PM4 command packet consists of a packet header, identified by field HEADER, and an information body,

identified by IT_BODY, that follows the header. The packet header defines the operations to be carried out by the

PM4 micro-engine, and the information body contains the data to be used by the engine in carrying out the

operation. In the following, we use brackets [.] to denote a 32-bit field (referred to as DWORD) in a packet, and

braces {.} to denote a size-varying field that may consist of a number of DWORDs. If a DWORD is shared by more

than one field, the fields are separated by „|‟. The field that appears on the far left takes the most significant bits, and

the field that appears on the far right takes the least significant bits. For example, DWORD [HI_WORD |

LO_WORD] denotes that HI_WORD is defined on bits 16-31, and LO_WORD on bits 0-15. A C-style notation of

referencing an element of a structure is used to refer to a subfield of a main field. For example,

MAIN_FIELD.SUBFIELD refers to the subfield SUBFIELD of MAIN_FIELD.

Bit position 6
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 5 4 3 2 1 0

00 COUNT a BASE_INDEX

REG_DATA_1

REG_DATA_2

Packet header

IT_BODY
...

REG_DATA_n

Type-0 packet

Type-1 packet

01 Reserved REG_INDEX2 REG_INDEX1

REG_DATA_1

REG_DATA_2

Packet header

Bit position 6
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 5 4 3 2 1 0

IT_BODY

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 30

10 ReservedPacket header

Bit position 6
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 5 4 3 2 1 0

Type-2 packet

11 COUNT IT_OPCODE Reserved

DATA_1

Packet header

Bit position 6
3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 5 4 3 2 1 0

IT_BODY

Type-3 packet

DATA_2

...

Data_n

6.1.1 Type-0 Packet

Functionality

Write N DWORDs in the information body to the N consecutive registers, or to the register, pointed to by the

BASE_INDEX field of the packet header.

Format

Ordinal Field Name

1 [HEADER]

2 [REG_DATA_1]

3 [REG_DATA_2]

 ...

N+1 [REG_DATA_N]

Header Fields

Bit(s) Field Name Description

12:0 BASE_INDEX The BASE_INDEX[12:0] correspond to byte address bits [14:2]. So the

BASE_INDEX is the DWORD Memory-mapped address.

The BASE_INDEX field width supports up to DWORD address: 0x7FFF.

14:13 Reserved Reserved for future expansion of address space.

15 ONE_REG_WR 0:- Write the data to N consecutive registers.

1:- Write all the data to the same register.

29:16 COUNT Count of DWORDs in the information body. Its value should be N-1 if there

are N DWORDs in the information body.

31:30 TYPE Packet identifier. It should be zero.

Note: Symbol „:-‟ reads “defined as.”

Information Body

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 31

Bit(s) Field Name Description

31:0 REG_DATA _x The bits correspond to those defined for the relevant register. Note the suffix x

of REG_DATA_x stands for an integer ranging from 1 to N.

Comment

The use of this packet requires the complete understanding of the registers to be written.

6.1.2 Type-1 Packet

Functionality

Write REG_DATA_1 and REG_DATA_2 in the information body respectively to the registers pointed to by

REG_INDEX1 and REG_INDEX2. Note that this packet cannot address the entire address space. It is recommended

that Type 0 packets be used instead.

Format

Ordinal Field Name

1 [HEADER]

2 [REG_DATA_1]

3 [REG_DATA_2]

Header fields

Bit(s) Field Name Description

10:0 REG_INDEX1 The field points to a memory-mapped register that REG_DATA_1 is written to.

21:11 REG_INDEX2 The field points to a memory-mapped register that REG_DATA_2 is written to.

29:22 Reserved

31:30 TYPE Packet identifier. It should be 1 (one).

Information Body

Bit(s) Field Name Description

31:0 REG_DATA_x The bits correspond to those defined for the relevant register.

6.1.3 Type-2 Packet

Functionality

This is a filler packet. It has only the header, and its content is not important except for bits 30 and 31. It is used to

fill up the trailing space left when the allocated buffer for a packet, or packets, is not fully filled. This allows the

microengine to skip the trailing space and to fetch the next packet.

Format

Ordinal Field Name

1 [HEADER]

Header fields

Bit(s) Field Name Description

29:0 reserved

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 32

31:30 TYPE Packet identifier. It should be 2.

6.1.4 Type-3 Packet

Functionality

Carry out the operation indicated by field IT_OPCODE.

Format

Ordinal Field Name

1 [HEADER]

2 {IT_BODY}

Header fields

Bit(s) Field Name Description

7:0 Reserved This field is undefined, and is set to zero by default.

15:8 IT_OPCODE Operation to be carried out. See section B.2 for details.

29:16 COUNT Number of DWORDs -1 in the information body. It is N-1 if the information body

contains N DWORDs.

31:30 TYPE Packet identifier. It should be 3.

Information Body

The information body IT_BODY will be described extensively in the following section.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 33

6.2 Definition of Type-3 packets

Type-3 packets has a common format in their headers. However, the size of their information body may vary

depending on the value of field IT_OPCODE. The size of the information body is indicated by field COUNT. If the

size of the information is N DWORDs, the value of COUNT is N-1. In the following packet definitions, we will

describe the field IT_BODY for each packet with respect to a given IT_OPCODE, and omit the header. The MSB

of the IT_OPCODE identifies whether this packet requires the GUI_CONTROL field (described later). A 1 in the

MSB of the IT_OPCODE indicates that GUI control is required. A 0 in the MSB of the IT_OPCODE indicates that

the GUI_CONTROL should be omitted.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 34

6.2.1 Summary of packets

Packet Name IT_OPCODE Description

NOP 0x10 Skip N DWORDs to get to the next packet.

PAINT 0x91

Paint a number of rectangles with a colour brush.

BITBLT

0x92

Copy a source rectangle to a destination rectangle.

HOSTDATA_BLT 0x94 Draw a string of large characters on the screen, or copy a

number of bitmaps to the video memory.

POLYLINE 0x95 Draw a polyline (lines connected with their ends).

POLYSCANLINES 0x98 Draw polyscanlines or scanlines.

NEXTCHAR 0x19

Print a character at a given screen location using the

default foreground and background colours.

PAINT_MULTI 0x9A Paint a number of rectangles on the screen with one

colour. The difference between this function and PAINT is

the representation of parameters.

BITBLT_MULTI 0x9B Copy a number of source rectangles to destination

rectangles of the screen respectively.

TRANS_BITBLT 0x9C 2D transparent bitblt operation.

PLY_NEXTSCAN 0x1D Draw polyscanlines using current settings.

SET_SCISSORS 0x1E Set up scissors.

PRED_EXEC 0x20 Predicated execute wrapper for a sequence of packets

COND_EXEC 0x21 Conditional execute wrapper for a sequence of packets

WAIT_SEMAPHORE 0x22 Wait in the CP micro-engine for semaphore to be zero

WAIT_MEM 0x23 Wait in the CP micro-engine for GPU-accessible memory

semaphore to be zero

3D_DRAW_VBUF 0x28 Draw primitives using vertex buffer

3D_DRAW_IMMD 0x29 Draw primitives using immediate vertices in this packet

3D_DRAW_INDX 0x2A Draw primitives using vertex buffer and indices in this

packet

LOAD_PALETTE 0x2C Load a palette for 2D scaling.

3D_LOAD_VBPNTR 0x2F Load pointers to vertex buffers

INDX_BUFFER 0x33 Load Indices Using Indirect Buffer #2

3D_DRAW_VBUF_2 0x34 Same as 3D_DRAW_VBUF, but without

VAP_VTX_FMT

3D_DRAW_IMMD_2 0x35 Same as 3D_DRAW_IMMD, but without

VAP_VTX_FMT

3D_DRAW_INDX_2 0x36 Same as 3D_DRAW_INDX, but without

VAP_VTX_FMT

3D_CLEAR_HIZ 0x37 Clear portion of the Hierarchal Z RAM

3D_DRAW_128 0x39 Draw packet to write to 128-bit VAP data port.

MPEG_INDEX 0x3A MPEG Packet Registers and Index Generation

6.2.2 2D Packets

The information body IT_BODY of 2-D packets may have the following format:

Ordinal Field Name

1 {SETTINGS}

2 {DATA_BLOCK}

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 35

SETTINGS

This field consists of 2 subfields, GUI_CONTROL and SETUP_BODY.

Ordinal Field Name

1 [GUI_CONTROL]

2 {SETUP_BODY}

 SETTINGS.GUI_CONTROL

This field will be used to setup the register DP_GUI_MASTER_CNTL, and it also decides the content of

SETTINGS.SETUP_BODY.

Bit(s) Field Name Description Status

0 SRC_PITCH_OFF The bit controls the pitch and offset of the blitting source.

0:- Use the default pitch and offset, and no datum

[SRC_PITCH_OFFSET] is supplied in SETUP_BODY.

1:- Use the datum [SRC_PITCH_OFFSET] supplied in SETUP_BODY

to set up a new pitch offset.

1 DST_PITCH_OFF The bit controls the pitch and offset of the blitting destination.

0:- Use the default pitch and offset, and no datum

[DST_PITCH_OFFSET] is supplied in SETUP_BODY.

1:- Use the datum [DST_PITCH_OFFSET] supplied in SETUP_BODY.

The pitch may mean the bitmap pitch and the offset may points the off-

screen area of the video memory.

2 SRC_CLIPPING This bit controls the clipping parameters of the blitting source.

0:- Use the default clipping parameters, and no relevant clipping data

supplied in SETUP_BODY.

1:- Use datum [SRC_SC_BOT_RITE] supplied in SETUP_BODY to set

up the bottom and right edges of the clipping rectangle.

3 DST_CLIPPING This bit controls the clipping parameters of the blitting destination.

0:- Use the default clipping parameters, and no relevant clipping data

supplied in SETUP_BODY.

1:- Use data [SC_TOP_LEFT] and [SC_BOTTOM_RIGHT] supplied in

SETUP_BODY to set up a new clipping rectangle.

7:4 BRUSH_TYPE Types of brush used in drawing. The type code determines how to supply

data to the subfield BRUSH_PACKET in SETUP_BODY. See detailed

definition of BRUSH_TYPE in the following.

11:8 DST_TYPE

{Not Used by uCode}

The pixel type of the destination.

0--1 :- (reserved)

2 :- 8 bpp pseudocolor

3 :- 16 bpp aRGB 1555

4 :- 16 bpp RGB 565

5 :- reserved

6 :- 32 bpp aRGB 8888

7 :- 8 bpp RGB 332

8 :- Y8 greyscale

9 :- RGB8 greyscale (8 bit intensity, duplicated for all 3 channels. Green

channel is used on writes)

10 :- (reserved)

11 :- YUV 422 packed (VYUY)

12 :- YUV 422 packed (YVYU)

13 :- (reserved)

7 through 15

not supported in

3D pipe

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 36

14 :- aYUV 444 (8:8:8:8)

15 :- aRGB4444 (intermediate format only. Not understood by the

Display Controller)

Note: choices 7-15 only valid in 3D mode.

13:12 SRC_TYPE

{Not Used by uCode}

The field indicates the pixel type of blitting source.

0:- The source data type is mono opaque, and the fore- and back-ground

colours need to be redefined.

1:- The source data type is mono transparent, and only the foreground

colour needs to be redefined.

2:- Reserved.

3:- The source pixel type is the same as that given in field DST_TYPE.

If bit 27 (SRC_TYPE) is one then the following new sources are

available:

4:- 4bpp source clut translation (May not be supported, value reserved)

5:- 8bpp source clut translation

6:- 32 bpp source clut translation (gamma correction)

7:- 64 bpp Obuffer blit

14 PIX_ORDER

{Not Used by uCode}
The bit decides the order of bits (or pixels) in DWORD to be consumed.

Only applicable to the monochrome mode.

0 :- Bits to be consumed from the Most Significant Bit (MSB) to the Least

Significant Bit (LSB).

1 :- Bits to be consumed from LSB to MSB.

15 COLOR_CONVT

{Not Used by uCode}

Reserved Not supported

in 2D pipe

23:16 WIN31_ROP

{Not Used by uCode}

This field tells the GUI engine how the raster operation to be carried out.

The code of this field follows the ROP3 code defined by Microsoft. See

WIN31 DDK for reference.

26:24 SRC_LOAD

{Not Used by uCode}

The field indicates where the source data come from.

0,1 :- Reserved

2 :- loaded from the video memory (rectangular trajectory)

3 :- loaded through the HOSTDATA registers (linear trajectory)

4 :- loaded through the HOSTDATA registers (linear trajectory & byte-

aligned)

Note that during 3D/Scale Operations (whenever

SCALE_3D_FCN@MISC_3D_STATE_REG is non-zero), this field is

ignored and data is always loaded from the 3D/Scaler pipeline.

27 SRC_TYPE

{Not Used by uCode}

Third bit of SRC_TYPE Compatible 128

code must write

zero to this

register.

28 GMC_CLR_CMP_FCN

_DIS

{Not Used by uCode}

0 :- No change to CLR_CMP_FCN_SRC and CLR_CMP_FCN_DST

1 :- clear CLR_CMP_FCN_DST and CLR_CMP_FCN_SRC to 0

TBD

29 Reserved

{Not Used by uCode}

Reserved Reserved

30 GMC_WR_MSK_DIS

{Not Used by uCode}

0 :- No Change to DP_WR_MSK/CLR_CMP_MSK

1 :- Set DP_WR_MSK/CLR_CMP_MSK to 0xffffffff

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 37

31 BRUSH_FLAG This field indicates whether there is a field BRUSH_Y_X field in the

SETTINGS.SETUP_BODY.

0:- No such a field in SETTINGS.SETUP_BODY.

1:- There is a field in SETTINGS.SETUP_BODY.

 SETTINGS.SETUP_BODY

This field may contain the following subfields. Their presence depends on the bits 0-7 of
SETTINGS.GUI_CONTROL.

Ordinal Field Name Description

1 [SRC_PITCH_OFFSET] Bit 30: Select between untiled(0) and tiled (1)

Bit 31: select between no microtiling(0) and microtiling(1)

Bits 29:22 Pitch in units of 64 bytes, 64 to 16384 bytes across

bits 21:0 Offset in units of 1KB, 0 to 4GB-1K

2 [DST_PITCH_OFFSET] Bit 30: Select between untiled(0) and tiled (1)

Bit 31: select between no microtiling(0) and microtiling(1)

Bits 29:22 Pitch in units of 64 bytes, 64 to 16384 bytes across

bits 21:0 Offset in units of 1KB, 0 to 4GB-1K

3 [SRC_SC_BOT_RITE] The parameters are used to setup the clipping area of the source.

The implied coordinates of the top-left corner of the clipping

rectangle is the same as the source.

[13:0] :- x-coordinate of the right edge of the clipping rectangle (in

number of pixels).

[29:16] :- y-coordinate of the bottom edge of the clipping

rectangle (in number of scanlines).

4 [SC_TOP_LEFT]

[SC_BOT_RITE]

The parameters are used to setup the clipping area of destination.

SC_TOP_LEFT:

[13:0] :- x-coordinate of the left edge of the clipping rectangle (in

number of pixels).

[29:16] :- y-coordinate of the top edge of the clipping rectangle (in

number of scanlines).

SC_BOT_RITE:

[13:0] :- x-coordinate of the right edge of the clipping rectangle (in

number of pixels).

[29:16] :- y-coordinate of the bottom edge of the clipping

rectangle (in number of scanlines).

5 { BRUSH_PACKET } The content of this field is determined by field

SETTINGS.GUI_CONTROL.BRUSH_TYPE. See the following

table for the possible content.

6 [BRUSH_Y_X] [4:0] :- x-coordinate for brush alignment.

[12:8] :- y-coordinate for brush alignment.

[20:16] :- Initial value used for BRUSH_X pointer in drawing

Lines. When POLY_LINE is off, it is reloaded from BRUSH_X

at the end of the line. When POLY_LINE is on, it is reloaded

from the current Brush pointer at the end of the line. Whenever

BRUSH_X is updated, the field should be written with the same

value.

 SETTINGS.SETUP_BODY.BRUSH_PACKET

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 38

Note that all but 6 and 7 are not available for lines, and 6 and 7 are only usable for lines.

BRUSH_TYPE Description of the brush Packet size Packet content

0 A 8 x 8 mono pattern with the foreground

and background colours specified in the

packet. Here the matrix is represented in the

format column-by-row.

4 DWORDs [BKGRD_COLOR]

[FRGRD_COLOR]

[MONO_BMP_1]

[MONO_BMP_2]

1 A 8 x 8 mono pattern with the foreground

colour specified in the packet and the

background colour the same as that of the

area to be painted.

3 DWORDs [FRGRD_COLOR]

[MONO_BMP_1]

[MONO_BMP_2]

2 Reserved not applicable

3 Reserved not applicable

4 Reserved not applicable

5 Reserved not applicable

6 A 32 x 1 mono pattern with the foreground

and background colours specified in the

packet. This pattern corresponds to the PEN

of Win95 DDK. And is only usable for lines.

3 DWORDs [BKGRD_COLOR]

[FRGRD_COLOR]

[MONO_BMP_1]

7 A 32x1 mono pattern with the foreground

colour specified in the packet and the

background colour the same as that of the

area to be painted. This is PEN as well. And

is only usable for lines.

2 DWORDs [FRGRD_COLOR]

[MONO_BMP_1]

8 Removed, see 32x32 in 3D pipe not applicable

9 Removed, see 32x32 in 3D pipe not applicable

10 A 8x8 colour pattern. The pixel type is given

by field

SETTINGS.GUI_CONTROL.

DST_TYPE.

16* N DWORDs,

where N stands

for the number of

bytes per pixel

with exception

that a 24-BPP

pixel is still

represented by 4

bytes.

[COLOR_BMP_1]

[COLOR_BMP_2]

...

[COLOR_BMP_16*N]

11 Reserved not applicable

12 Reserved not applicable

13 Use the colour specified in the packet as the

solid (plain) colour for the brush, i.e. a colour

brush without pattern.

1 DWORD [FRGRD_COLOR]

14 Use the colour specified in the packet as the

solid (plain) colour for the brush, i.e. a colour

brush without pattern.

1 DWORD [FRGRD_COLOR]

15 No brush used. 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 39

Brush packet content

Field Name Description

[FRGRD_COLOR] The foreground colour of the text in the RGBQUAD format.

bits [7:0] :- intensity of Blue;

bits [15:8] :- intensity of Green; and

bits [23:16] :- intensity of Red.

bits [31:25] :- reserved.

[BKGRD_COLOR] The background colour of the text in the RGBQUAD format.

bits [7:0] :- intensity of Blue;

bits [15:8] :- intensity of Green; and

bits [23:16] :- intensity of Red.

bits [31:25] :- reserved.

[MONO_BMP_x] Raster data of monochrome pixels. One bit represents one pixel. If the

number of pixels for the field is less than 32, the pixels take the lower bits.

The remaining bits should be filled with 0‟s.

[COLOR_BMP_x] Raster data of colour pixels. The representation depends on the pixel type.

DATA_BLOCK

The composition of this field depends on the operation code IT_OPCODE given in the header. Section B.2 gives

details of DATA_BLOCK with respect to IT_OPCODE. In the following, the field SETTINGS may appear in the

definition of a packet, but will not be described further.

6.2.2.1 NOP

Functionality

Skip a number of DWORDs to get to the next packet.

Format

Ordinal Field Name

1 [HEADER]

2 {DATA_BLOCK}

DATA_BLOCK

This field may consist of a number of DWORDs, and the content may be anything.

6.2.2.2 PAINT

Functionality

Paint a number of rectangles with a colour brush.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 40

DATA_BLOCK

Ordinal Field Name Description

1 [TOP_1 | LEFT_1] The coordinates of the top-left corner of the 1st rectangle to be painted.

LEFT_1: [15:0]:- x-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

TOP_1: [31:16]:- y-coordinate, ranging from -8192 to 8191. Bits 30 and 31

should be copies of bit 29.

2 [BOTM_1| RITE_1] The coordinates of the bottom-right corner of the 1st rectangle to be painted.

RITE_1: [15:0]:- x-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

BOTM_1: [31:16]:- y-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

...

2n-1 [TOP_n| LEFT_n] The coordinates of the top-left corner of the n-th rectangle to be painted.

2n [BOTM_n| RITE_n] The coordinates of the bottom-right corner of the n-th rectangle to be

painted.

6.2.2.3 HOSTDATA_BLT

Functionality

Copy a number of bit-packed bitmaps to the video memory. It can be used to print a string of large characters on the

screen. In other words, the function supports the LARGEBITGLYPH structure of Windows95 DDK.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [FRGD_COLOUR] Foreground colour in the RGBQUAD format. For mono-to colour expansion

only. The field is ineffective if field SRC_TYPE at

SETTINGS.GUI_CONTROL is set to a type other than mono opaque or

mono transparent (0 or 1).

2 [BKGD_COLOUR] Background colour in the RGBQUAD format. For mono-to colour

expansion only. The field is ineffective if field SRC_TYPE at

SETTINGS.GUI_CONTROL is set to a type other than mono opaque or

mono transparent (0 or 1).

3 {BIGCHAR_1} Data block of the 1st character.

...

m+2 {BIGCHAR _m} Data block of the m-th character.

 DATA_BLOCK.BIGCHAR_x

Ordinal Field Name Description

1 [BaseY | BaseX] The coordinate of the top-left corner of the character‟s bitmap.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 41

BaseX: [15:0] :- x-coordinate.

BaseY: [31:16] :- y-coordinate.

2 [HEIGHT | WIDTH] The geometry of the bitmap.

WIDTH: [15:0] :- width of the bitmap.

HEIGHT: [31:16] :- height of the bitmap.

3 [NUMBER[13:0]] The number of DWORDs in the bitmap. It should be m in this case. The max

value is 0x3FFF.

4 [RASTER_1] The 1st DWORD of the mono bitmap data.

...

m+3 [RASTER_m] The m-th DWORD of the mono bitmap data.

6.2.2.4 POLYLINE

Functionality

Draw a polyline specified by a set of coordinates),(00 yx ,),(11 yx , ...,),(nn yx , where coordinate),(00 yx is the

beginning of the polyline, and coordinate),(nn yx is the end.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [Y0 | X0] The starting coordinate of the polyline.

X0: [15:0] :- x-component of the coordinate. Y0: [31:16]:- y-component.

2 [Y1 | X1] The 2nd coordinate of the polyline. Definition of bits is the same as above.

...

n+1 [Yn | Xn] The ending coordinate of the polyline. Definition of bits is the same as

above.

6.2.2.5 POLYSCANLINES

Functionality

Draw a number of scanlines and polyscanlines. The number can be one. The difference between a scanline and a

polyscanline is that a scanline has only one starting x-coordinate and one ending x-coordinate while a polyscanline

has a number of starting-ending x-coordinate pairs.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 42

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [SCAN_COUNT] The number of scan subpackets identified by SCAN_x, where x denotes the

ordinal number of a SCAN subpacket.

2 { SCAN_1 } The 1st scanline/polyscanline.

...

n+1 { SCAN_n } The n-th scanline/polyscanline.

 DATA_BLOCK.SCAN_x

Ordinal Field Name Description

1 [NUM_LINE[13:0]] The number of line segments in a polyscanline. Maximum is 0x3fff.

2 [HEIGHT | TOP] TOP: [15:0] :- y-coordinate of the polyscanline.

HEIGHT: [31:16] :- The thickness of the line measured in pixels.

3 [END_1 | START_1] START_1: [15:0] :- the starting x-coordinate of the 1st line segment.

END_1: [31:16]:- the ending x-coordinate of the 1st line segment.

...

n+2 [END_n |START_n] START_n: [15:0] :- the starting x-coordinate of the n-th line segment.

END_n: [31:16]:- the ending x-coordinate of the n-th line segment.

6.2.2.6 NEXTCHAR

Functionality

Print a character at a given screen location using the default foreground and background colours.

Format

Ordinal Field Name

1 [HEADER]

2 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [DST_Y | DST_X] The coordinates of the top-left corner of the destination bitmap.

DST_X: [15:0]:- x-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

DST_Y: [31:16]:- y-coordinate, ranging from -8192 to 8191. Bits 30 and 31

should be copies of bit 29.

2 [DST_H | DST_W] The width and height of the destination bitmap, expressed in unsigned

integers.

DST_W: [15:0]:- width. DST_H [31:16]:- height.

3 [BITMAP_DATA_1] The 1st DWORD of the bitmap data.

...

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 43

N+2 [BITMAP_DATA_n] The n-th DWORD of the bitmap data.

6.2.2.7 PAINT_MULTI

Functionality

Paint a number of rectangles on the screen with one colour. The colour used is specified in field SETTINGS while

the location and geometry of the rectangles are specified in field DATA_BLOCK.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [DST_X1 | DST_Y1] The coordinates of the top-left corner of the 1st rectangle.

DST_Y1: [15:0]:- y-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

DST_X1: [31:16]:- x-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

2 [DST_W1 | DST_H1] The width and height of the 1st rectangle, expressed in unsigned integers.

DST_H1: [15:0]:- height.

DST_W1: [31:16]:- width.

...

2n-1 [DST_Xn | DST_Yn] The coordinates of the top-left corner of the n-th rectangle.

DST_Yn: [15:0]:- y-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

DST_Xn: [31:16]:- x-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

2n [DST_Wn | DST_Hn] The width and height of the n-th rectangle, expressed in unsigned integers.

 DST_Hn: [15:0]:- height.

DST_Wn: [31:16]:- width.

6.2.2.8 BITBLT

Functionality

Copy a source rectangle to a destination rectangle of the screen. It is assumed that the geometry of the destination is

identical to its source.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 44

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [SRC_X1 | SRC_Y1] The coordinates of the top-left corner of the 1st source bitmap.

SRC_Y1: [15:0]:- y-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

SRC_X1: [31:16]:- x-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

2 [DST_X1 | DST_Y1] The coordinates of the top-left corner of the 1st destination.

The definition of bits is the same as SRC_X1 and SRC_Y1.

3 [SRC_W1| SRC_H1] The width and height of the 1st source bitmap, expressed in unsigned

integers.

SRC_H1: [13:0]:- height.

SRC_W1: [29:16]:- width.

6.2.2.9 BITBLT_MULTI

Functionality

Copy a number of source rectangles to destination rectangles of the screen respectively. It is assumed that the

geometry of the destination is identical to its source.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [SRC_X1 | SRC_Y1] The coordinates of the top-left corner of the 1st source bitmap.

SRC_Y1: [15:0]:- y-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

SRC_X1: [31:16]:- x-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

2 [DST_X1 | DST_Y1] The coordinates of the top-left corner of the 1st destination.

The definition of bits is the same as SRC_X1 and SRC_Y1.

3 [SRC_W1| SRC_H1] The width and height of the 1st source bitmap, expressed in unsigned

integers.

SRC_H1: [13:0]:- height.

SRC_W1: [29:16]:- width.

...

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 45

3n-1 [SRC_Xn | SRC_Yn] The coordinates of the top-left corner of the n-th source bitmap.

SRC_Yn: [15:0]:- y-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

SRC_Xn: [31:16]:- x-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

3n-2 [DST_Xn | DST_Yn] The coordinates of the top-left corner of the n-th destination.

The definition of bits is the same as SRC_Xn and SRC_Yn.

3n [SRC_Wn| SRC_Hn] The width and height of the n-th source bitmap, expressed in unsigned

integers.

SRC_Hn: [13:0]:- height.

SRC_Wn: [29:16]:- width.

6.2.2.10 TRANS_BITBLT

Functionality

Copy pixels from the source rectangle to the destination with transparency.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

DATA_BLOCK

Ordinal Field Name Description

1 [CLR_CMP_ CNTL] This field decides how the transparent blitting is done. See following for

details.

2 [SRC_REF_CLR] Source reference colour in the RGBQUAD format. This is the colour to be

stripped off from the source.

3 [DST_REF_CLR] Destination reference colour in the RGBQUAD format. This is the colour to

be preserved at the destination.

4 [SRC_X1 | SRC_Y1] The coordinates of the top-left corner of the 1st source bitmap.

SRC_Y1: [15:0]:- y-coordinate, ranging from -8192 to 8191. Bits 14 and 15

should be copies of bit 13.

SRC_X1: [31:16]:- x-coordinate, ranging from -8192 to 8191. Bits 30 and

31 should be copies of bit 29.

5 [DST_X1 | DST_Y1] The coordinates of the top-left corner of the 1st destination.

The definition of bits is the same as SRC_X1 and SRC_Y1.

6 [SRC_W1| SRC_H1] The width and height of the 1st source bitmap, expressed in unsigned

integers.

SRC_H1: [13:0]:- height.

SRC_W1: [29:16]:- width.

 DATA_BLOCK.CLR_CMP_CNTL

This field controls how the source pixels are written to the destination, depending on the source and destination

reference colours and comparison settings. The source pixels may be filtered against the source reference colour,

and the destination pixels with a specific colour may be preserved according to field CLR_CMP_DST.

Bit(s) Bit-Field Name Description

2:0 CLR_CMP_SRC Strip off the source reference colour from the source pixels.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 46

0 :- Do not strip off source pixels. All source pixels are written to the destination.

1 :- Block the blitting source. No source pixel is written to the destination.

2, 3 :- reserved.

4 :- The source pixels whose colour is equal to the reference colour are written to the

destination.

5 :- The source pixels whose colour is NOT equal to the reference colour are written

to the destination.

6 :- Reserved.

7 :- The source pixels whose colour is equal to the reference colour will be XORed

with the foreground colour of a mono bitmap, and then written to the destination.

That is, destPixel = srcPixel XOR foregrndColor if srcPixel is equal to the

foreground colour of a mono bitmap, specifically text. This is referred to as flipping

sometimes.

7:3 Reserved

10:8 CLR_CMP_DST Preserve pixels at the destination.

0 :- Do not preserve the destination pixels. All pixels from the source are written to

the destination.

1 :- Preserve all the destination pixels. No source pixel is written to the destination.

2, 3 :- Reserved.

4 :- The destination pixels whose colour is equal to the reference colour are

preserved. No source pixel is written on top of the pixels.

5 :- The destination pixels whose colour is NOT equal to the reference colour are

preserved.

6, 7 :- Reserved.

23:11 Reserved

25:24 CMP_ENABLE The bits controls what type of operation to be carried out.

0 :- Enable function CLR_CMP_DST.

1 :- Enable function CLR_CMP_SRC

2 :- Enable both CLR_CMP_SRC and CLR_CMP_DST. The final decision is based

on the agreement between decisions made separately.

3 :- Reserved.

31:26 Reserved

6.2.2.11 PLY_NEXTSCAN

Functionality

Draw a number of scanlines or polyscanlines using the current settings.

Format

Ordinal Field Name Description

1 [HEADER] The packet header

2 [HEIGHT | TOP] TOP: [15:0] :- y-coordinate of the scanline/polyscanline.

HEIGHT: [31:16] :- The thickness of the line measured in pixels.

3 [END_1 | START_1] START_1: [15:0] :- the starting x-coordinate of the 1st dash.

END_1: [31:16]:- the ending x-coordinate of the 1st dash.

...

n+2 [END_n |START_n] START_n: [15:0] :- the starting x-coordinate of the 1st dash.

END_n: [31:16]:- the ending x-coordinate of the 1st dash.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 47

6.2.2.12 LOAD_PALETTE

Functionality

Set up the 3D engine scaler and load a palette for a consequent 2D scaling operation.

Format

Ordinal Field Name Description

1 [HEADER] The packet header

2 [SCALE_DATATYPE] 1:- The palette has 16 entries (4 bpp palette).

2:- The palette has 256 entries (8 bpp palette).

3 [COLOR_1] The 1
st

entry of the palette.

Data is in destination format (i.e. ARGB8888, RGB565, RGB555,…)

4 [COLOR_2] The 2
nd

 entry of the palette. Bits are defined as above.

...

n+2 [COLOR_n] The n-th entry of the palette. n = 16 (4bpp) or 256 (8bpp)

6.2.2.13 SET_SCISSORS

Functionality

Set the scissors to the given parameters.

Format

Ordinal Field Name Description

1 [HEADER] The packet header

2 [TOP_LEFT] [13:0] :- x-coordinate of the left edge of the clipping rectangle (in number of

pixels).

[29:16] :- y-coordinate of the top edge of the clipping rectangle (in number

of scanlines).

3 [BOTTOM_RIGHT] [13:0] :- x-coordinate of the right edge of the clipping rectangle (in number

of pixels).

[29:16] :- y-coordinate of the bottom edge of the clipping rectangle (in

number of scanlines).

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 48

6.2.3 3D Packets

6.2.3.1 3D_DRAW_VBUF

Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **

3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

6.2.3.2 3D_DRAW_IMMD

Functionality

Draws a set of primitives using vertices stored in packet.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **

3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

4 to end Vertex data Up to 16,380 DWORDs of vertex data.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 49

6.2.3.3 3D_DRAW_INDX

Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indices in packet. Indices are

either 16-bit or 32-bit.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **

3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

4 to end [indx16 #2 | indx16 #1]

or [indx32]
Up to or 32,760 16-bit indices or 16,380 32-bit indices to vertex data pointed

to by state registers. The INDEX_SIZE field in the VAP_VF_CNTL register

indicates whether the indices are 16-bit or 32-bit. See INDX_BUFFER

packet for support of more indices.

6.2.3.4 3D_DRAW_VBUF_2

Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 50

6.2.3.5 3D_DRAW_IMMD_2

Functionality

Draws a set of primitives using vertices stored in packet.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

3 to end Vertex data Up to 16,381 DWORDs of vertex data

6.2.3.6 3D_DRAW_INDX_2

Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indices in packet.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

3 to end [indx16 #2 | indx16 #1]

or [indx32 #1]
Up to or 32762 16-bit indices or 16,381 32-bit indices to vertex data pointed

to by state registers. The INDEX_SIZE field in the VAP_VF_CNTL register

indicates whether the indices are 16-bit or 32-bit. See INDX_BUFFER

packet for support of more indices.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 51

6.2.3.7 3D_DRAW_128

Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indices in packet. Data/Indices

are written to 128-bit VAP vector data port to take advantage of the 128-bit data path for sending data. The packet

should only be used in bus master mode.

Vector mode operates as follows:

1. Data will be written to the destination register (VAP_POR_DATA_IDX_128) one DWORD at a time until

the source address of the data is aligned to a vector (128 bits).

2. Once aligned, the data will be written 128-bits per clock to the destination register. The CP does grouping

of the data such that it will wait until a full vector is available if the MC is slow in returning the data that

was requested.

3. If the last DWORDs of a packet do not fill a vector, they will still be written in one clock, but the DWORD

write mask will be set accordingly.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

3 to end Data or Indices See other 3D_DRAW packets for details.

6.2.3.8

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 52

6.2.3.9 3D_LOAD_VBPNTR

Functionality

Load the vertex arrays pointers.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 VTX_NUM_ARRAYS Number of arrays

3 VTX_AOS_ATTR01 Control for the first two arrays

4 VTX_AOS_ADDR0 Pointer to first array

5 VTX_AOS_ADDR1 Pointer to second array

6 VTX_AOS_ATTR23 And so on….

7 VTX_AOS_ADDR2

8 VTX_AOS_ADDR3

9 VTX_AOS_ATTR45

10 VTX_AOS_ADDR4

11 VTX_AOS_ADDR5

12 VTX_AOS_ATTR67

13 VTX_AOS_ADDR6

14 VTX_AOS_ADDR7

15 VTX_AOS_ATTR89

16 VTX_AOS_ADDR8

17 VTX_AOS_ADDR9

18 VTX_AOS_ATTR1011

19 VTX_AOS_ADDR10

20 VTX_AOS_ADDR11

6.2.3.10 3D_CLEAR_HIZ

Functionality

Clear HIZ RAM.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 START Start

3 COUNT[13:0] Count[13:0] – Maximum is 0x3FFF.

4 CLEAR_VALUE The value to write into the HIZ RAM.

6.2.3.11 INDX_BUFFER

Functionality

Initiates Indirect Buffer #2 (IB #2) to fetch data that is written to the destination address. The main reason for this

packet is to fetch indices from an index buffer. The packet however can be used to fetch any type of data and write it

to destination address(s) in the chip.

To process an index buffer, first issue a 3D_DRAW_INDX packet with only the VAP_VTX_FMT and

VAP_VF_CNTL DWORDs (i.e. count = 1). Then process an INDX_BUFFER packet to supply the indices that

would have otherwise been in the 3D_DRAW_INDX packet. Note: For a 3D_DRAW_INDX_2 packet, the

VAP_VTX_FMT is not present and the count in the header should be zero.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 53

The maximum size of the Indirect #2 Buffer is 8,192K DWORDs – as determined by the BUFFER_SIZE field. So

the maximum number of indices supported is 8,192K 32-bit or 16,384K 16-bit indices. These maximums may be

further limited by the design of the Vertex Fetcher/Vertex Cache. See the VAP specification for details.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [ONE_REG_WR |

SKIP_COUNT |

DESTINATION]

ONE_REG_WR – Bit 31 (Set for upper-word-aligned buffers)

SKIP_COUNT – Bits 18:16: Number of DWORDs to discard at start of data buffer

DESTINATION Address – Bits 12:0

3 BUFFER_BASE[31:2] Base Address of Buffer – Written to CP_IB2_BASE

4 BUFFER_SIZE[22:0] Size of Buffer in DWORDs – Written to CP_IB2_BUFSZ to initiate the Indirect

Buffer #2. Note that the (BUFFER_SIZE – 1) also overwrites the CNT register in

the micro engine so that the parser will not finish with this packet until all the data

from the IB #2 is transferred. For misaligned data, this number must be increased by

1.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 54

6.2.3.12 MPEG_INDEX

Functionality

Packed register writes for MPEG and Generation of Indices.

Format

Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 [MASK] DWORD write Mask: Bits 15:0 are “present” bits to indicate whether to

write the register:

bit[0] VAP_PVS_CODE_CNTL_0 present

bit[1] VAP_PVS_CODE_CNTL_1 present

bit[2] VAP_PROG_STREAM_CNTL_0 present

bit[3] VAP_PROG_STREAM_CNTL_1 present

bit[4] VAP_PROG_STREAM_CNTL_2 present

bit[5] VAP_PROG_STREAM_CNTL_3 present

bit[6] VAP_OUT_VTX_FMT_0 present

bit[7] VAP_OUT_VTX_FMT_1 present

bit[8] VAP_VTX_NUM_ARRAYS present

bit[9] RS_COUNT present

bit[10] RS_INST_COUNT present

bit[11] TX_ENABLE present

bit[12] US_CODE_ADDR_0 present

bit[13] US_CODE_ADDR_1 present

bit[14] US_CODE_ADDR_2 present

bit[15] US_CODE_ADDR_3 present

bit[16] US_CONFIG present

bit[17] RB3D_DSTCACHE_CTLSTAT present

bit[18] RB3D_COLOROFFSET0 present

bit[19] RB3D_COLORPITCH0 present

Conditional [Register Values] Values to Write into Registers. Only present in packet if corresponding

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 55

3 up to 22 “present” bit is set in the MASK.

Next [VF_CNTL] Written Unconditional to VAP_VF_CNTL register

Next+1 [NUM_INDICES] Number of Index Base Values (0x3FFF Maximum)

Next+2 to

Next+2+

NUM_INDIC

ES

[FIRST_INDEX] First Index of Quad. (0x0000 to 0xFFFC)

For each “First Index”, CP will generate the other 3 indices and output:

FIRST_INDEX

FIRST_INDEX+1

FIRST_INDEX+2

FIRST_INDEX+3

Last Values [DUMMY] Any value is fine. Any number of dummy values are supported.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 56

6.2.4 PRED_EXEC

Functionality

Perform a predicated execution of a sequence of packets (type 0, 2, and type 3) on select devices.

Format

Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 [DEVICE_SELECT |

EXEC_COUNT]

DEVICE_SELECT: [31:24] – bitfield to select one or more device upon

which the subsequent predicated packets will be executed

EXEC_COUNT: [22:0] – total number of DWORDs of subsequent

predicated packets. This count wraps the packets that will be predicated

by the device select.

6.2.4.1 WAIT_SEMAPHORE

Functionality

Wait for a semaphore to be zero before continuing to process the subsequent command stream. There are four

microcode ram slots set aside for use as semaphores. These are at offset 0xFC-0xFF.

Notes

The driver/application executing on the CPU can write non-zero values at any time to semaphore memory. The

application can write a non-zero value to cause the CP micro-engine to pause at the next WAIT_SEMAPHORE

packet in the command stream. This has the affect of pausing all GPU rendering that is queued in the indirect and

ring buffers. The application can then write a zero to the semaphore to allow the micro-engine to proceed.

The application can write to the semaphore memory by a direct (PIO) register write to two registers:

1. Write the semaphore offset (0xFC, 0xFD, 0xFE, or 0xFF) to the CP_ME_RAM_ADDR register.

2. Write the semaphore value (zero or non-zero) to the CP_ME_RAM_DATAL register.

Format

Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 Semaphore offset This is the desired semaphore to test in the wait loop. This can be any one of

0xFC, 0xFD, 0xFE, 0xFF.

3 Semaphore reset Optional. This value, if present, is written to the semaphore offset once the

wait loop has been satisfied (i.e., once the semaphore is zero).

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 57

6.2.5 Miscellaneous Packets

6.2.5.1 COND_EXEC

Functionality

Perform a conditional execution of a sequence of packets (type 0, 2, and type 3) based on a boolean stored in GPU-

accessible video memory.

This packet use the Indirect Buffer #2 (IB2) to read the boolean in memory. Therefore, this packet can not be

initiated from an IB2.

Notes

Care must be taken to make certain that EXEC_COUNT contains the exact number of DWORDs for the subsequent

packets that are to be conditionally executed. The microengine will start parsing the DWORD immediately

following EXEC_COUNT DWORDs. If this is not a packet header, the device will encounter corruption or hang.

Format

Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 TWO This value must be 2

3 EXEC_COUNT EXEC_COUNT: [22:0] – total number of DWORDs of subsequent

conditional packets. This count wraps the packets that will be

conditionally executed.

6.2.5.2 WAIT_MEM

Functionality

Wait for a GPU-accessible memory semaphore to be zero before continuing to process the subsequent command

stream. The semaphore can reside in any GPU-accessible memory (local or non-local). The base address of the

semaphore must be aligned to a DWORD boundary. The semaphore in memory consists of two DWORDs.

This packet has no ability to increment, decrement or otherwise change the contents of the memory semaphore.

The memory semaphore consists of two DWORDs: the actual semaphore and an extra DWORD with a fixed value

of two. The extra DWORD is required and guarantees that the command processor micro-engine can loop properly

in order to repeatedly test the semaphore value as necessary. The semaphore is organized as follows:

Semaphore value

Fixed value of 2

This packet use the Indirect Buffer #2 (IB2) to read the memory semaphore. Therefore, this packet can not be

initiated from an IB2.

Notes

If both ordinal 3 (SEM_LEN) and the DWORD in memory following the semaphore value is not equal to two, the

CP micro-engine will become confused and ultimately hang the hardware.

The driver/application executing on the CPU can write non-zero values at any time to semaphore memory. The

application can write a non-zero value to cause the CP micro-engine to pause at the next WAIT_MEM packet in the

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 58

command stream. This has the affect of pausing all GPU rendering that is queued in the indirect and ring buffers.

The application can then write a zero to the semaphore to allow the micro-engine to proceed.

Format

Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 SEM_ADDR[31:2] Memory semaphore device address (DWORD aligned)

This value is written to the CP_IB2_BASE in order to read the semaphore

3 SEM_LEN Memory semaphore length

This value MUST be 2

This value is written to the CP_IB2_BUFSIZ in order to read the semaphore

the first time

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 59

7. Vertex Shaders

7.1 Introduction

The VAP includes the Vertex Fetcher and Vertex Cache which take commands and vertex data from a command

stream and formats it into vertices and primitives. Typically, the commands are stored in a ring buffer and the

vertex data is stored as a separate array in memory, although there are other possibilities described later. The VAP

begins operation when a command to render a set of primitives is received. Depending on the command, the VAP

will either expect vertex data to be sent, or it will perform the memory accesses to read the vertex data on its own.

The format of the vertex data is described later in this section.

The VAP includes a Programmable Vertex Shader (PVS) Engine which performs programmable operations on

vertices which are then subsequently assembled and clipped. This programmable processing path will also be used

to perform all Fixed-Function vertex processing after driver generation of a shader from fixed-function state

settings.

The VAP includes a Clip Engine which will clip primitives (using the PVS-processed vertices) to the 6 frustum

planes as well as to 6 User-Defined Clip Planes. The VAP includes a Viewport Transform Engine (VTE) which

performs the perspective divide and viewport transformation operations on the vertex data and a Reciprocal Engine

(RCP) which performs an IEEE 23-bit mantissa accurate 1/X function.

7.2 Input

The input to the VAP is a Command Packet which contains two parts: a command to render some set of primitives

(like a list of triangles), and a set of vertex data. As described later, the vertex data may be sent to the VAP or the

Vertex Fetcher may fetch the data. There are a number of different data formats which are possible. Data may be

stored as an array of structures (AOS), a structure of arrays (SOA), or in a strided vertex format. The AOS mode is

what has been used up to DX6. In AOS mode, all of the data for a vertex is stored sequentially as one contiguous

block of memory as shown in Figure. In SOA mode, the data for each parameter (like x or w) is stored as a separate

array. To get all of the data for a vertex, one must look into several different arrays. For example, assume that we

have eight vertices which have the parameters X, Y, W, S, and T. In SOA mode the data would be stored in five

different arrays as shown in Figure. In the strided vertex format, data is stored in several different arrays. Each

array holds a variable number of parameters. For example, the first array might hold the x, y, and z coordinates. A

second array might hold the diffuse color, a third array might hold the S and T coordinates for a texture map. Figur

shows how a strided vertex with x, y, z, w, S, and T might be stored. The holes in the xyz array are not required but

are shown to indicate the flexibility allowed with the strided vertex format.

X0 Y0 W0 S0

T2

X1 Y1 W1 S1

T3

X2 Y2 W2 S2

X3 Y3 W3 S3

T1

T0Base Address 0

dword 0 1 2 3 4

Figure: AOS Vertex Data Storage

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 60

X0 X1 X2 X3

Y0 Y1 Y2 Y3

W0 W1 W2 W3

S0 S1 S2 S3

T0 T1 T2 T3

Base Address 0

Base Address 1

Base Address 2

Base Address 3

Base Address 4

dword 0 1 2 3

Figure: SOA Vertex Data Storage

X0 Y0 Z0 X1 Y1 Z1

W0 W1 W2 W3

S0 T0 S1 T1 S2 T2 S3 T3

Base Address 0

Base Address 1

Base Address 2

dword 0 1 2 3 4 5 6 7

X2 Y2 Z2

8 9 10 11

X3 Y3 Z3

12 13 14 15

Figure: Strided Vertex Data Storage

To represent all of these formats, the Vertex Fetcher architecture allows for a vertex to be described as multiple

arrays of structures. Each array is described with a base address, a count and a stride. The base address points to

the beginning of the array. The count indicates the number of dwords of vertex data in this array. The stride gives

the number of dwords to the next structure in the array of structures. The AOS vertex from Figure with 5 parameters

would be represented with a single array which consists of 5 dwords with a stride of 5 dwords. The SOA vertex

from Figure would be represented with 5 arrays. Each array would have a count of 1 and a stride of 1. The strided

vertex from Figur would be represented with three arrays. The first array would have a count of 3 and a stride of 4.

The second array would have a count of 1 and a stride of 1. The third array would have a count of 2 and a stride of

2. A given implementation of this architecture may have a different maximum number of arrays of structures. If

only AOS is supported, then only one array is required. To support a strided vertex format with three textures, 7

arrays would be required (xyz, w, diffuse, specular, S0T0, S1T1, S2T2.) To support a true SOA mode, each

parameter would require its own array.

The access to vertex data may be immediate or by an index. In immediate mode, the base address of an array of

vertex data is provided. The vertex data should be read in the order in which it is stored to produce the desired

primitives. In indexed mode, a base address to the beginning of the vertex data is provided along with a set of

indices. The indices are used to access vertices in any order.

The vertex indices are clamped between a minimum and maximum state value which is supplied by the driver. This

prevents making requests to illegal or unavailable memory addresses.

Finally, the vertex data can be embedded as part of the command stream, or it can be stored in a separate array. The

figure below shows all of the possible vertex data storage modes along with implementation details for each mode.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 61

The table below describes the parameters that may be in a vertex, as supplied to the graphics controller

device.

NOTE: With the R300 PVS-only vertex processing path and PSC-only input vertex data mapping path, the

TCL (or PVS) input memories have no pre-defined mapping to vertex values. This is completely determined

by the driver FF->PVS conversion process. Due to this fact, the table below is fairly meaningless to the vertex

process. It is retained as a guide to help describe the fixed-function possibilities for vertex data.

Type Param

eter

Description Format Applicable

Interface

(PRE-TNL /

POST-TNL

/ BOTH)**

Position0 XY X0 The x coordinate of the vertex IEEE floating point BOTH

 Y0 The y coordinate of the vertex IEEE floating point BOTH

Position0 Z Z0 The z coordinate of the vertex IEEE floating point BOTH

Position0 W W0 W or RHW (1/Homog W) coordinate of the

vertex

IEEE floating point BOTH

Vertex Blending

Weight(s)

BW0-4 0-4 Blend Weights IEEE floating point PRE-TNL

Per-Vertex Matrix

Select

PVMS Vertex Blending Matrix Selects 8888 packed fixed point PRE-TNL

Vertex Normal 0 Nx0 The x coordinate of the vertex normal IEEE floating point PRE-TNL

 Ny0 The y coordinate of the vertex normal IEEE floating point PRE-TNL

 Nz0 The z coordinate of the vertex normal IEEE floating point PRE-TNL

Point Size Modifier PS Point Size Modifier – Point Sprites – Post-

TCL only

IEEE floating point BOTH

Discrete Fog F Fog value – Post TCL only IEEE floating point POST-TNL

Shininess0 Shine0 Used for GL Material Per-Vertex Support IEEE floating point PRE-TNL

Shininess1 Shine1 Used for GL Material Per-Vertex Support IEEE floating point PRE-TNL

Color 0 ARGB Typically Diffuse color and alpha weight Usually 8888, but can be

three or four separate IEEE

floating point values **

BOTH

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 62

Color 1 ARGB Typically Specular color and fog/alpha weight Usually 8888, but can be

three or four separate IEEE

floating point values **

BOTH

Color 2 ARGB Typically Used for GL Material Per-Vertex

Support

Usually 8888, but can be

three or four separate IEEE

floating point values **

PRE-TNL

Color 3 ARGB Typically Used for GL Material Per-Vertex

Support

Usually 8888, but can be

three or four separate IEEE

floating point values **

PRE-TNL

Color 4 ARGB Typically Used for GL Material Per-Vertex

Support

Usually 8888, but can be

three or four separate IEEE

floating point values **

PRE-TNL

Color 5 ARGB Typically Used for GL Material Per-Vertex

Support

Usually 8888, but can be

three or four separate IEEE

floating point values **

PRE-TNL

Color 6 ARGB Typically Used for GL Material Per-Vertex

Support

Usually 8888, but can be

three or four separate IEEE

floating point values **

PRE-TNL

Color 7 ARGB Typically Used for GL Material Per-Vertex

Support

Usually 8888, but can be

three or four separate IEEE

floating point values **

PRE-TNL

Texture Coordinate

Set 0

S0 The 1st coordinate for texture number 0

(usually the single dimension horizontal

component S)

IEEE floating point BOTH

 T0 The 2nd coordinate for texture number 0

(usually the two dimension vertical

component T)

IEEE floating point BOTH

 R0 The 3rd coordinate for texture number 0

(The 3
rd

 & 4
th
 components can have many

uses)*

IEEE floating point BOTH

 Q0 The 4th coordinate for texture number 0

(The 3
rd

 & 4
th
 components can have many

uses)*

IEEE floating point BOTH

Texture Coordinate S1 The 1st coordinate for texture number 1 IEEE floating point BOTH

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 63

Set 1 (usually the single dimension horizontal

component S)

 T1 The 2nd coordinate for texture number 1

(usually the two dimension vertical

component T)

IEEE floating point BOTH

 R1 The 3rd coordinate for texture number 1

(The 3
rd

 & 4
th
 components can have many

uses)*

IEEE floating point BOTH

 Q1 The 4th coordinate for texture number 1

(The 3
rd

 & 4
th
 components can have many

uses)*

IEEE floating point BOTH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Texture Coordinate

Set 5

S5 The 1st coordinate for texture number 5

(usually the single dimension horizontal

component S)

IEEE floating point BOTH

 T5 The 2nd coordinate for texture number 5

(usually the two dimension vertical

component T)

IEEE floating point BOTH

 R5 The 3rd coordinate for texture number 5

(The 3
rd

 & 4
th
 components can have many

uses)*

IEEE floating point BOTH

 Q5 The 4th coordinate for texture number 5

(The 3
rd

 & 4
th
 components can have many

uses)*

IEEE floating point BOTH

Position1 XY X1 The x coordinate of the vertex for blending IEEE floating point PRE-TNL

 Y1 The y coordinate of the vertex for blending IEEE floating point PRE-TNL

Position1 Z Z1 The z coordinate of the vertex for blending IEEE floating point PRE-TNL

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 64

Position1 W W1 W or RHW (1/Homog W) coordinate of the

vertex for blending

IEEE floating point PRE-TNL

Vertex Normal 1 Nx1 The x coordinate of the vertex normal IEEE floating point PRE-TNL

 Ny1 The y coordinate of the vertex normal IEEE floating point PRE-TNL

 Nz1 The z coordinate of the vertex normal IEEE floating point PRE-TNL

Figure: Vertex Parameters

** The Applicable Interface column is provided to specify which values are inputs to the TCL process and/or the

Raster Process. All of the values can appear in the FVF at the same time, but PRE-TNL values are ignored by the

raster process and POST-TNL values are ignored by the TCL process. In the unlikely circumstance that POST-TNL

values are provided in the FVF as inputs to the TCL process, there will be the ability to pass these values around the

TCL process.

7.3 Vector Order and Vector ID‟s

With the move to a PSC-only and PVS-only Vertex Process, there is no fixed definition of data (or location of data)

in the input vertex memory. Therefore, the destination vector locations in the PSC are fully flexible and map

directly into the corresponding location in the input vertex memory. The PSC also allows for write_mask and

swizzle capabilities to allow for more complex fixed-function and/or shader usage.

The special vector known as the NULL vector is used to keep the pipeline flow the same when there are no vectors

to be processed. It is a sort-of “special” vector that each engine knows to ignore it as far as processing is concerned,

but it is used because we need to send some kind of token down the pipeline for synchronization purposes.

The NULL vector is a vector that is not to undergo vector processing, but which will carry information in its

associated flags, such as endOfPacket . It is used when a vertex has been deleted (for culling, clipping, or other

potential reasons) and there is no valid vertex to be sent with the control information.

For the case of TCL_BYPASS (or when there is no TCL present in the HW), the PSC destination vector locations

shall map directly to the semantically defined locations of the GA input memories. In this mode, the discrete fog

and point size terms can use the write_enable and or swizzle capabilities of PSC to get the terms into the appropriate

channels.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 65

7.4 VAP Registers

7.4.1 VAP Vertex Data Port Registers

The DATA and IDX PORT registers are written with either primitive vertex data or primitive vertex indices after a

“trigger” write has occurred. A “trigger” write is a write to the VAP_VF_CNTL register with a non-zero prim_type.

The correct (expected) number of data words or index words must be written to these registers or undefined

behavior will result.

For R300, there is a new DATA/IDX port register added for 128-bit access. This register is only accessible via a

PM4 Type3 packet and can only be used for indexed TRI_LIST and LINE_LIST. Other than the prim-type

limitations, using this 128-bit register (or PM4 Type 3 packet opcode) is identical to using the standard method.

The PRIM_WALK field in the VAP_VF_CNTL register defines what method of vertex data or indx updates are to

occur.

1 = Indexes (Indices embedded in command stream; vertex data to be fetched from memory)

In this mode, vertex indices are written to the DATA/IDX port registers. Data is fetched using the AOS registers

corresponding to the indices in the input list. The number of indices expected is

VAP_VF_CNTL.NUM_VERTICES – 1. This mode does not use the VAP_VTX_SIZE register. The size of the

vertices is determined by the AOS register setup.

2 = Vertex List (Vertex data to be fetched from memory)

This mode does not require any vertex data or vertex indices written to the DATA/IDX port registers. Data is

fetched using the AOS registers for the indices from 0 to VAP_VF_CNTL.NUM_VERTICES – 1. Identical to

Indexes mode, except indices are internally generated.

3 = Vertex Data (Vertex data embedded in command stream)

In this mode, the vertex data is written to the DATA port registers. The number of DWORDS expected is

VAP_VTX_SIZE.DWORDS_PER_VTX * (VAP_VF_CNTL.NUM_VERTICES – 1). The VAP_VTX_SIZE

register is new to R300. In R100 / R200, this size was derived from the VAP_VTX_FMT_0/1.

7.4.2 VAP Control Register

The PVS_NUM_SLOTS should be set to the minimum of

 the MAX_SLOTS, (POR is 10)

 the INPUT_VTX_MEM_SIZE / INPUT_VECTORS_PER_VTX (POR is 128 / Var)

 the OUPUT_VTX_MEM_SIZE / OUTPUT_VECTORS_PER_VTX (POR is 128 / Var)

These equations assume the input and output vertex data has been packed. If not, use the

MAX_INPUT_VECTOR_USED instead of INPUT_VECTORS_PER_VTX

The PVS_NUM_CNTLRS should be set to the minimum of

 the MAX_CNTLRS, (POR is 6)

 the TEMP_VTX_MEM_SIZE / TEMP_VECTORS_PER_VTX (POR is 128 / Var)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 66

These equations assume the temp vertex data has been packed. If not, use the MAX_TEMP_VECTOR_USED

instead of TEMP_VECTORS_PER_VTX.

When modifying either of PVS_NUM_SLOTS or PVS_NUM_CNTLRS, a flush must be inserted prior to the

update.

The PVS_NUM_FPUS will typically remain constant for a given chip, but can be used for performance testing.

The Shader HW will support up to a max of 32 vectors-per-vertex of input data and 32-vectors-per-vertex of temp

data as long as the NUM_SLOTS and NUM_CNTLRS are set to obey the above-described rules.

New R5xx Fields

The TCL_STATE_OPTIMIZATION bit enables a hardware optimization to improve small batch and

multiple instance performance. The TCL_STATE_OPTIMIZATION is a bit which should be set all the time.

The bit can be reset to return operation to pre-R5xx status.

7.4.3 R300 Edge Flag Support Description

Edge Flags refers to the bits which are provided, generated and/or modified during the primitive process which

affect which edges (lines) or points of a triangle are drawn when in a wireframe or point fill mode. Edge Flags are

not applicable to line or point primitive types, but are applicable to all 3 or more-sided primitives (i.e quad, polygon,

etc). R300 will support edge flags for wireframe rendering as follows :

1. Prim Type initialization of edge flags is done by the vertex fetcher logic. Edge flags are initialized

by the vertex fetcher based on the VAP_VF_CNTL.PRIM_TYPE field. The edge flags values for

points and lines are not used during the triangle fill process, so are irrelevant. The edge flags for all

triangle primitive types are all 3 set. For more complex prim types like quads and polygons, only

the exterior of the primitive is supposed to be drawn, so the vertex fetcher applies the edge flags in a

way which only sets the bits which correspond to an external edge of the supplied primitive.

2. Clipping modification of edge flags is done by the clipping processor according to the OpenGL

specification. Basically, the rule is that edges introduced by clipping (which would lie along a clip

plane) will always have thier corresponding edge flag set and edges which are fragments of initial

edges would retain thier original edge flags. The boundary edges introduced by clipping may be

either always set or never based on the VAP_CLIP_CNTL.BOUNDARY_EDGE_FLAG_ENA bit.

7.4.4 Input Vertex Format Registers

The VAP_VTX_FMT_0 and VAP_VTX_FMT_1 registers were used for 2 reasons on R200:

1. Decoding / Data Conversion / Data Direction of Vertex Stream Data from output of Cache to Vector

ID‟s

2. Computation of Dwords/Vtx for Command Stream load of vertex data.

These registers will no longer exist for R300. They are replaced as follows:

 The Decoding / Data Conversion / Data Direction will be controlled completely by the Programmable

Stream Control logic. R300 will contain the additional functionality of component swizzle and write-

mask specification to ensure full control of input stream.

 The computation of Dwords/Vtx will be replaced by the VAP_VTX_SIZE register which must be

loaded by the driver when using command stream vertex data.

7.4.5 TCL Output Vertex Format Registers

The purpose of these controls is to indicate which vertex data should be transmitted from the PVS output vertex

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 67

memories, and from which vector locations they come. The PVS output vertex memories are not directly mapped to

semantic values to enable the split-vertex mode described later. The RASTER_VTX_FMT_0/1registers define

which values will be transmitted from PVS to CLIP/Setup to GA to Raster.

The locations of the vectors in the PVS output memory must be packed based on the VAP_OUT_VTX_FMT_0/1

register settings. Only the fields which are present in the OVFRs should be packed in the output memory. The

packing order is as follows: Position is always in location 0, Point Size (if present) is next (Point Size consumes an

entire vector in the memory, the X-channel is the value used by the raster), Colors (0-3) are next (if present), and

Textures (0-7) are next (if present). For example if the OVFR specified POS, PNT_SIZE, C0, C2, T1 and T5, these

vectors should be mapped (by the shader output operand offsets) to Output Memory locations 0-5 respectively.

For Points (Sprites) using Tex Gen (GB_ENABLE.TEX#_SOURCE == STUFF), the

VAP_OUT_VTX_FMT_1.TEX# should not be set. This is because, in general, there is no texture coordinate data

transferred from VAP to GA for this case. In the case of point clipping with tex gen, VAP will send these texture

coordinates to the GA even though the OVFR bit is not set, as follows:

OVFR COUNT STUFF TEX DESIRED CHANGED RESULT

0 0 No texture ever

0 >0 Clipper and/or GA creates (stuffs)

texture

>0 0 Normal texture (use vertex/pvs

texture)

>0 >0 Normal texture (use vertex/pvs

texture)

There is also the ability to pack 2 2-dimensional textures into a single 4-component texture for the VAP->GA

interface by only specifying one texture and mapping the raster state to think it is two textures.

7.4.6 Vertex State Control

This vector controls how the per-vertex state is processed. This input method is designed for OpenGL Immediate

Mode and Display List Processing.

UPDATE_USER_COLOR_0/1_ENA are deleted from R300 since they are not needed, only one user color is

required.

The COLOR_#_ASSEMBLY_CNTL change from 2-bit fields on R200 to 1-bit fields on R300 since there is only 1

USER COLOR.

7.4.7 Programmable Input Stream Control Registers

These registers control the post-vertex-cache mapping of input vertex stream data to the vector ids for TCL or SE

input memories. These registers replace the R200 Input Vertex Format Registers. Terminology: A vertex is

composed of multiple (up to 16 for R300) streams. A stream can be composed of multiple elements (where an

element is pos or norm or texcoord). The control data is arranged as 16 sets of element control data. There is not

necessarily a one-for-one mapping of stream to element. The stream control shall be set up in the order that the data

is received (or fetched).

The DataType specifies the number of DWORDS and format for each input element.

The SkipDwords specifies the number of DWORDS to skip (discard from the input stream) after the corresponding

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 68

element has been processed. This allows multiple non-contiguous elements to reside within one stream. NOTE:

There is not support for skipping DWORDS prior to the first element, the assumption is that the driver can

prevent this from occurring.

There are two sets of PSC control registers, the VAP_PROG_STREAM_CNTL_0-7 are identical to the R200

registers of the same name. R300 adds VAP_PROG_STREAM_CNTL_EXT_0-7 which are extensions to the first

set of registers to allow a swizzle and write_mask capability. The expectation is that the EXT registers will not be

updated frequently, but they must be updated at least once to provide default control.

The DstVecLoc specifies the destination vector location (TCL / SE input vector address) for the given element.

The data type of FLOAT_8 has been added to R300 to permit using input vertices greater than 16 vectors. By

making sure that the VAP_CNTL.PVS_NUM_SLOTS and VAP_CNTL.PVS_NUM_CNTLRS are appropriately

sized, it is possible to use up to 32 vectors for the input vertex representation.

7.4.8 PVS State Flush Register

Since the driver is given control over multi-state updates to PVS Code and Constant memories, there is the need for

the driver to be able to force a “flush” of the state data. When this register address is written, the State Block will

force a flush of TCL processing so that both versions of TCL state are available before updates are processed. This

register is write only, and the data that is written is unused.

7.4.9 PVS Vertex Timeout Register

A condition can occur in the HW, in pathological vertex reuse cases, where when many primitives are sent which do

not use any new verts, the HW could hang. The solution for this hang is to wait a programmable number of clocks

when in the condition of primitive buffer full and waiting on vertices. After this number of clocks has passed

without receiving any new vertex data, the accumulated vertex data (less than 4 vertices) will be submitted to the

PVS engines. This register defaults to 0xFFFFFFFF.

7.4.10 VECTOR Indx/Data Update Register Pair

The Vector Indx Data pair is used to update all TCL vector state memories.

There are basically 2 vector memories, the PVS Constant Memory and the PVS Code Memory.

The index register contains the octword offset to write to (or read from) on the subsequent DATA_REG write/read. All

writes/reads must start octword aligned. An internal Dword counter is incremented each time a write or read occurs

to/from the DATA_REG. The Dword counter is reset when the index register is written (or read). When the dword

counter rolls from 3 back to 0, the index register value (octword address) is incremented. (Writes to the DATA_REG_128

register do not use or affect the dword counter. The DATA_REG_128 register is not readable.

The VAP_PVS_VECTOR_DATA_REG_128 register is very similar to the VAP_TCL_VECTOR_DATA_REG, but

allows 128-bit writes into the vector memory. There may be some restrictions when writing to this register (i.e. only 128-

bit aligned, 128-bit updates allowed).

The vertex shader instruction store increased from 256 to 1024 for R5xx VS3.0.

To account for the increased shader instruction store, the Offsets Used to get to the various memories (and elements of

memories) are as follows:

#define VERTEX_SHADER_CONST_VECS 256

#define VERTEX_SHADER_CODE_LINES 1024 // R300 256

#define PVS_CODE_START 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 69

#define PVS_CONST_START 1024 // R300 512

#define UCP_START_OFFSET 1536 // R300 1024

#define POINT_VPORT_SCALE_OFFSET 1542 // R300 1030

#define POINT_GEN_TEX_OFFSET 1543 // R300 1031

7.4.11 State-Vector Engine State Data

The input vector state data required for TCL is listed in the table below. Each entry will consist of 4 single precision

IEEE floating-point vector values. The entire StVe_Vector memory is accessed via an index/data register pair. When

updating multiple DWORDS through this path, the PM4 packet bit which prevents auto-incrementation should be used so

that all words are written to the data register.

UCP0 XYZW User clip plane 0 4 IEEE fp

UCP1 XYZW User clip plane 1 4 IEEE fp

: : :

UCP5 XYZW User clip plane 5 4 IEEE fp

Point Sprite

Viewport Scale /

Misc

XYZW Viewport scaling parameters for Point Sprite Expansion in Clip Coords

X = X-Radius Expansion

Y = Y-Radius Expansion

Z = State Size Multiply Constant

W = Culling Radius Expansion (SQRT(XRadExp ^2 + YradExp ^2)

4 IEEEfp

Point Tex Gen

Corner Values

XYZW Texture values to apply to points when tex gen is on

X = Lower Left Corner S-Value

Y = Lower Left Corner T-Value

Z = Upper Right Corner S-Value

W = Upper Right Corner T-Value

** These values may be updated using the

VAP_PVS_VECTOR_DATA_REG or via the

GA_POINT_S0,T0,S1,T1 Registers. Note that updates using the

VAP_PVS_VECTOR_DATA_REG will not update the GA registers.

4 IEEEfp

VECTOR MEMORY DESCRIPTIONS

There are two vector memories.

The vertex shader instruction store increased from 256 to 1024 for R5xx VS3.0.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 70

The PVS_CODE memory which will be 1024 entries deep and can operate as a ring (similar to R200), is linearly

addressed using offsets 0-1023. Auto-incrementing writes to this memory segment will auto-wrap back to 0 from

1023.

The PVS_CONST memory will be 256+8 entries deep. The first 256 entries of this memory will operate as a ring

(similar to R200/R300), and are linearly addressed using offsets 1024-1535. Auto-incrementing writes to this

memory segment will auto-wrap back to 1024 from 1535.

The last 8 entries of this memory are used for Clipping data which currently includes the User-Clip Planes , Point

Sprite Viewport Scale vector, and Point Sprite Gen Tex Corner values. These entries will be updated starting at

address 1536 through 1543. Since the PVS_CONST will auto-wrap at 1535 for constant updates, the UCP writes

must start with an index update to 1536 or above. Auto-incrementing writes will auto-wrap back to 1536 from 1542

(NOT 1543). This wrap-around probably will never be used, but, note that the wrap-around intentionally excludes

the Point Gen Tex vector since it is considered raster state.

These memories are not double-buffered in the code and constant range of addresses. For the code and const

memories, it is expected that the driver will insert a flush if the currently being-loaded shader code or const overlaps

the immediately preceding shader code or const. Updates to the UCP / PS_VPORT_SCALE / Point Gen Tex values

are double-buffered and therefore no flush is required.

7.4.12 Scalar Indx / Data Registers

These memories and registers no longer exist for R300. The only data in them that is still relevant is the guard band

data which now resides in dedicated registers as described below.

7.4.13 VAP_GB_VERT_CLIP_ADJ

The VAP_GB_* registers will only be single-buffered which means that a VAP_PVS_STATE_FLUSH_REG

write must precede updates to these registers.

7.4.14 Programmable Vertex Shader Control Registers

The VAP_PVS_CNTL register allows control over which instructions in the PVS code store are executed with

respect to the current shader.

The VAP_PVS_CONST_CNTL register allows control over which address ranges in the PVS const store (STVE)

are used with respect to the current shader.

7.4.15 Vertex Blending Control Register

The COLOR2_IS_TEXTURE and COLOR3_IS_TEXTURE bits enable the R5xx VAP VS3.0 to support 10 general

output vectors. For pre-R5xx, VAP supported 4 color vectors and 8 texture vectors to output to the pixel shader.

During new clip vertex generation, the color interpolation supported color clamping and flat shading and the texture

interpolation supported point texture coordinate generation and cylindrical wrap. In order to create general output

vectors, color vectors required point texture coordinate generation and cylindrical wrap processing while texture

vectors required color clamping and flat shading.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 71

7.4.16 Texture to Color Control Registers

The TEX_RGB_SHADE_FUNC_(0-7), TEX_ALPHA_SHADE_FUNC_(0-7), and TEX_RGBA_CLAMP_(0-7)

bits enable the R5xx VAP VS3.0 to support 10 general output vectors. For pre-R5xx, VAP supported 4 colors and 8

textures to output to the pixel shader. During new clip vertex generation, the color interpolation supported color

clamping and flat shading and the texture interpolation supported point texture coordinate generation and cylindrical

wrap. In order to create general output vectors, color vectors required point texture coordinate generation and

cylindrical wrap processing while texture vectors required color clamping and flat shading.

The TEX_RGB_SHADE_FUNC_(0-7), TEX_ALPHA_SHADE_FUNC_(0-7), and TEX_RGBA_CLAMP_(0-7)

bits enable the R5xx VAP VS3.0 to support color type interpolation during clipping on texture vectors. The bits

enable flat shading or color clamping selectively on all 8 texture vectors. These bits only support clipper

functionality of flat shading. The rasterizer has separate register bits to enable flat shading at pixel interpolation.

7.4.17 VAP_VTE_CNTL

This register is used to control the functionality of the VAP Viewport Transform Engine.

7.4.18 GA_COLOR_CONTROL

This register is used by the clipper to control flat shading of all 4 colors and alphas based off of the provoking

vertex.

7.4.19 GA_ROUND_MODE

This register specifies the rouding mode for geometry & color SPFP to FP conversions. Only the RGB and

ALPHA_CLAMP fields are used by VAP.

7.4.20 GA_POINT_S0/T0/S1/T1

These registers are used to control the texture coordinates for texture coordinate generation. These are only used by

VAP for point clipping.

7.4.21 GB_ENABLE

This register is used by VAP to control when and how point textures are generated for clipping.

7.4.22 SU_TEX_WRAP

This register is used by VAP when clipping in order to perform cylindrical wrap clipping calculations.

7.5 R3xx-R5xx Programmable Vertex Shader Description

7.5.1 OVERVIEW

The R300 PVS model is a superset of the R200 PVS model. Differences are noted below.

R200->R300 Notable Shader Model Differences at Shader Definition Level

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 72

1. Constant Store Size Increase from 192 to 256

2. Code Store Size Increase from 128 to 256

3. Ability to increase Input Size from 16 to 32 vectors-per-vertex

4. Ability to increase Temp Register Size from 12 to 32 vectors-per-vertex

5. Increase support from 6 Output Textures to 8

6. Increase support from 2 Output Colors to 4 (4
th

 color only used for 2-sided lighting)

7. Ability to perform flow control instructions of jump, loop and subroutine

R200->R300 Notable Shader Model Differences at Driver Compilation Level

1. Requirement to Manage NUM_SLOTS & NUM_CONTROLLERS based on Input, Output

and Temp Register sizes relative to the respective vectors-per-vertex.

2. Requirement to “pack” output vectors based on OVFR.

3. Discrete Fog resides in one of Color 0-3 alpha.

4. Addition of Alternate Temp Memory. Can be used as additional standard Temp Memory.

5. Addition of Dual-Op Vector/Math Capability along with Alternate Temp Reg Memory

6. Ability to write back into Input Memory from Shader (For HOS Evaluation Shader)

7. Ability to use address register with Input, Output, and Temp registers as src and dest

operands. There is not a current known use for this, but it was simple to add.

The R5xx VS3.0 PVS model is a superset of the R300 PVS VS2.0 model. Differences are noted below:

1. Ability to support dynamic flow control through the use of predication opcodes, predication bit,

predicated writes, and a nested false count maintained in a temporary memory location.

2. Ability to support predication register through predication opcodes, predication bit, and

predicated writes or use CONDITIONAL vector opcodes where sources are conditionally written

or conditionally selected.

3. Code store size increase from 256 to 1024.

4. Temporary memory size increase from 72 to 128 (supports 4 threads and 32 vectors per thread).

5. Input memory size increase from 72 to 128 (supports 4 threads and 32 vectors per thread).

6. Output memory size increase from 72 to 128.

7. Static control flow nested loops and subroutines (4 deep loops and 4 deep subroutines)

8. Ability to access input, temporary, and output memories with inner most loop index.

9. Added new loop repeat type where the fixed-point loop index is not loaded at loop initialization.

FLI is inherited from parent loop.

10. Added new source input modifier (absolute value).

11. Added new instruction modifier saturate to clamp outputs between 0 and 1.

The programmable vertex shader (PVS) is a model which replaces the standard DirectX / OGL vertex processing

pipeline. It replaces only the per-vertex operations (i.e. transformation, lighting, texture coordinate generation,

texture transform, fog), but does not replace any of the primitive operations (i.e. primitive assembly, clipping,

backface culling, 2-sided lighting. The functional model for the PVS HW is as shown in the following diagram. For

R300, 2-sided lighting is achieved by writing up to 4 output colors (both front and back color results) and allowing

the setup engine to select the appropriate color(s) based on the facedness of the triangle.

The general model of the PVS is that all operands are of a vector type (4 floating point values). When there are

scalar operations, generally they emit the scalar result on all 4 channels of the output vector.

The input vertex memory (IVM) represents the data which is provided on a per-vertex basis (i.e. position, normal,

color, etc). This vertex data does not have any semantic attachment from the perspective of the shader HW. All

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 73

vertex attributes are generic. There is a total of 128 vectors of IVM memory where up to 32 vectors (16 is

typical) may be used per vertex. (See description of slot/controller dependencies below).

The constant state memory (CSM) represents the constant values which are used in the shader process (i.e rotation

matrices, light positions, etc). This data also has no semantic attachment from the perspective of the shader HW.

There are 256 vectors of constant memory available.

The temporary register memory (TRM) represents the intermediate storage of temporary values computed during the

shader process. There are a total of 128 vectors of TRM memory where up to 32 vectors (12 is typical) may be

used per vertex. (See description of slot/controller dependencies below).

The alternate temporary register memory (ATRM) was added to R300 to allow both a vector engine operation and a

math engine operation to output unique results simultaneously. The ATRM can be used in the same manner as the

TRM for regular vector operations except there is only a single read port on the ATRM memory, thus only 1 unique

source operand of an instruction may come from ATRM memory. The ATRM memory is the only memory that the

math portion of a dual-math operation can write. There are a total of 20 vectors of ATRM memory where up to

20 vectors (4 is typical) may be used per vertex. (See description of slot/controller dependencies below). (See

description of dual math op for ATRM limitations).

There are 4 address registers arranged as a vector (A0.x,y,z,w) which are signed integer fixed point values. The

address registers can only be used as an offset to the address into the constant memory. The address registers are

loaded using a MOV instruction from any of the IVM, CSM, TRM or ATRM. This special MOV instruction will

perform a floating point to fixed point conversion of the selected source vector. There are two separate MOV

instructions for unique float to fix conversion. One is a truncate to minus infinity (the floor() C function), the other

is a round and truncate to minus infinity (val + 0.5f, followed by floor() C function. The value is clamped between

the range of –256 and 255. When this value is added to the constant address of the current operation, the result is

tested for in the range of 0 to MAX_SHADER_CONST where MAX_SHADER_CONST is determined by the

driver as the maximum constant address provided by the shader declaration. If the resultant address is out of the

range 0 to MAX_SHADER_CONST, (0,0,0,0) is returned on the data path. There is a 2-bit address register select

for each source operand which is used to select between the x,y,z,w components of the address register vector. Only

a single address register (component) may be used for CSM offsets across all of the source operands of a given

instruction. If the address registers are used for offsets to IVM, TRM, ATRM, or OVM, there is no limitation on the

number of address registers which can be used.

The output vertex memory (OVM) represents the data that is computed or passed by the shader program. These

locations have semantics attached since they are passed through the clipping, viewport transform, rasterization

process. The locations in the OVM are as follows:

PVS_OUT_POS The output x,y,z,w position. This output vector must be written to by all

shaders.

PVS_OUT_PT_SIZE The output scalar point sprite size modifier. X-comp only.

PVS_OUT_CLR(0-3) The output r,g,b,a colors. Support for 4.

PVS_OUT_TEX(0-7) The output s,t,r,q textures. Support for 8.

PVS_OUT_FOG The output scalar discrete fog. X-component only.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 74

There are a total of 128 vectors of OUT memory. These values are mapped based on the compression

described below. (See description of slot/controller dependencies below).

For R300, the driver must remap the shader output memory attributes to be “packed” into the first sequential output

vectors based on the OVFR register definition. For example, if the only attributes present in the OVFR are Pos,

Pt_Size, Clr1 and Tex 2, then these values must be written to output vectors 0-3. The order of the vectors, when

present, is as listed above. Note that Fog does not have an associated vector, it can be placed in any of color 0-3

alpha channel. There is a GB_SELECT.FOG_SELECT setting in the raster to control where fog comes from.

Operations are defined generally as

PVS_OP DST_OP.write_mask SRC_OP_A.modifier SRC_OP_B.modifier

 SRC_OP_C.modifier

Different PVS ops have differing numbers of source operands. The number of source operands for each instruction

is specified below with the function descriptions.

One strict limitation of the PVS model is that a single operation may only use one unique address from the IVM,

CSM, or ATRM. One, Two, or Three addresses may be used from the TRM (although 3 unique addresses from the

TRM on a single instruction will take 2 cycles in the HW). More than one source operand may utilize the IVM,

CSM, or ATRM memory as long as they all access the same vector address.

Each source operand has a modifier which can be applied on a per-component basis. There are two basic types of

source operand modification, Swizzle and negation. The swizzle operation is performed first. For each component

x,y,z,w it is possible to define independently which component gets mapped to these components, including a 0.0 or

1.0 value. So for each component you can select from (X, Y, Z, W, 0.0, 1.0). Following the swizzle operation, it is

possible to specify a negation of the value on a per-component basis.

The destination operand has a write mask which allows any or all of the vector components to be updated. This is

particularly useful when performing scalar output operations to pack the result into a single component of a vector

value (since the scalar results are generally emitted on all component channels).

7.5.2 SLOT AND CONTROLLER MANAGEMENT

For R5xx, the input memory size, the temporary memory size, and the output memory size have been increased from

72 to 128 vectors. As stated below, with larger memories, the PVS design can run more efficiently with more

NUM_SLOTS and more NUM_CNTRS.

The R300 PVS design has a degree of flexibility which allows the driver to increase the effective per-vertex sizes of

the IVM, TRM, ATRM, and OVM memories at the expense of reduced performance. There are two variables in this

performance tradeoff for R300: (NOTE: a vertex group is 8 vertices per group for R5xx since 8 vector engines)

a. the number of slots (NUM_SLOTS): the max number of vertex groups that can

reside from the input of vertex data to the IVM to the output of vertex data

from the OVM, and

b. the number of controllers (NUM_CNTLRS): the max number of vertex groups

that are available for vector engine processing at any given time.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 75

The IVM and OVM memory flexibility is affected by NUM_SLOTS, while the TRM and ATRM memory flexibility

is affected by the NUM_CNTLRS. In general, the higher the values for NUM_SLOTS and NUM_CNTLRS, the

more efficient (higher performance) the PVS engine will run. The values for NUM_SLOTS and NUM_CNTLRS

are restricted by the vectors-per-vertex required for the active vertex shader program.

The equations for determining valid values for these terms are as follows:

NUM_SLOTS <= MIN(10, IVM_SIZE / IVM_VEC_PER_VTX, OVM_SIZE /

OVM_VEC_PER_VTX)

 Where IVM_SIZE = 128, OVM_SIZE = 128 and IVM_VEC_PER_VTX and

OVM_VEC_PER_VTX are vertex shader dependent values.

NUM_CNTLRS <= MIN(5, TRM_SIZE / TRM_VEC_PER_VTX, ATRM_SIZE /

ATRM_VEC_PER_VTX)

 Where TRM_SIZE = 128, ATRM_SIZE = 20, and TRM_VEC_PER_VTX and

ATRM_VEC_PER_VTX are vertex shader dependent values.

Note that NUM_SLOTS and NUM_CNTLRS are permitted to be set too low, but there is a performance penalty for

setting them lower.

Note that when changing NUM_SLOTS or NUM_CNTLRS, a flush of the PVS engine is required by writing the

VAP_PVS_STATE_FLUSH_REG.

7.5.3 VS3.0 DYNAMIC FLOW CONTROL USING R5xx PREDICATION LOGIC

VS3.0 dynamic flow control is implemented on R5xx in a manner similar to R400 where vector engine operations

and math engine operations are used to manipulate a predication bit to mask writes to the temporary memory, the

output memory, the input memory, the alternate temporary memory, and the address register. The operations are

designed to use a temporary memory location as a stack counter to keep the count of false branches. For nested

if/else/endif branches, the operations receive as input the stack counter as well as the boolean operation to determine

whether the predication bit is set and whether the stack counter is incremented or decremented. Within the

if/else/endif construct, the ALU operations are predicated which kills the writes if the predication bit is not set.

A possible implementation of nested if/else/endif constructs is as follows:

if (A.x == 0) { TEMP.w = ME_PRED_SET_EQ A.xxxx

 if (A.y > 0) { TEMP.w = VE_PRED_SET_GT_PUSH TEMP.000w, A.000y

 B = C; B = C with pred_enable = 1 and pred_sense =1

 } else { TEMP.w = ME_PRED_SET_INV TEMP.000w

 B = D; B = D with pred_enable = 1 and pred_sense =1

 } TEMP.w = ME_PRED_SET_POP TEMP.000w

} else { TEMP.w = ME_PRED_SET_INV TEMP.000w

 If (A.z >= 0) { TEMP.w = VE_PRED_SET_GTE_PUSH TEMP.000w, A.000z

 B = E; B = E with pred_enable = 1 and pred_sense =1

 } else { TEMP.w = ME_PRED_SET_INV TEMP.000w

 B = F; B = F with pred_enable = 1 and pred_sense =1

 } TEMP.w = ME_PRED_SET_POP TEMP.000w

} TEMP.w = ME_PRED_SET_POP TEMP.000w

First level “if” statements turn in to ME_PRED_SET_EQ, ME_PRED_SET_GT, ME_PRED_SET_GTE, or

ME_PRED_SET_NEQ depending on the boolean expression. The first level “If” statements appropriately initialize

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 76

the predication bit and false branch counter to 0 or 1 depending on the result of the boolean expression. Second

level or deeper “If” statements turn in to VE_PRED_SET_EQ_PUSH, VE_PRED_SET_GT_PUSH,

VE_PRED_SET_GTE_PUSH, or VE_PRED_SET_NEQ_PUSH. These “If” statements require the false branch

counter as an additional input to determine the final status of the predication bit and the output false branch counter.

For these “If” statements, the predication bit will only be set if the input false branch counter is 0 and the boolean

expression is true. “Else” statements turn into ME_PRED_SET_INV, which also require the false branch counter as

an input and only set the predication bit if this counter is 1. If the input false branch counter is 0, the

ME_PRED_SET_INV sets the output false branch counter to 1 for later nesting and resets the predication bit.

“Endif” statements turn into ME_PRED_SET_POP, which decrement and clamp the false branch counter to 0 if

negative.

The ME_PRED_SET_CLR and ME_PRED_SET_RESTORE operations can be used for loop break statements.

The ME_PRED_SET_CLR resets the predication bit and outputs maximum float to set the false branch counter to

an extremely high number to disable successive operations in a breaked loop. The ME_PRED_SET_RESTORE

operation can be used to restore the predication bit and the false branch counter after exiting a breaked loop.

In the R300 architecture, the best performance is achieved by trying to interlace computations so that an operations

source is not the destination of the preceding operation. In the above example, the false branch stack counter stored

in TEMP.w is a very popular source and destination operand, and R5xx performance would be better optimized by

finding other operations to interlace between them.

7.5.4 VS3.0 PREDICATION AND SIMPLE DYNAMIC FLOW CONTROL USING R5xx CONDITIONAL

OPCODES

In a manner similar to R400, R5xx has conditional moves, writes, or muxes to support VS3.0 predication and simple

dynamic flow control. For predication support in VS3.0, a temporary memory vector can be used in place of a

predication bit. VE_COND_WRITE_EQ, VE_COND_WRITE_GT, VE_COND_WRITE_GTE, and

VE_COND_WRITE_NEQ have two input vector source operands where the first source operand is a conditional

component write mask for the writing of the second source vector into the destination vector. An example of VS3.0

predication being supported with a conditional move or write is as follows:

P = pred_set_gt(A.xyzw,Bxyzw); TEMPxyzw = VE_SET_GREATER_THAN(A.xyzw,Bxyzw);

(P) Cxyzw = Dxyzw; Cxyzw = VE_COND_WRITE_NEQ(TEMPxyzw,Dxyzw);

(!P) Cxyzw = Exyzw; Cxyzw = VE_COND_WRITE_EQ(TEMPxyzw,Exyzw);

Conditional mux opcodes include VE_COND_MUX_EQ, VE_COND_MUX_GT, and VE_COND_MUX_GTE

have three input vector source operands where the first source operand is a component mux select selecting between

the second and third source vectors to write the destination vector. The above example can simplified to the

following:

TEMPxyzw = VE_SET_GREATER_THAN(A.xyzw,Bxyzw);

Cxyzw = VE_COND_MUX_EQ(TEMPxyzw,Exyzw,Dxyzw);

The primary limitation of the conditional mux opcodes is that only two of the three source operands can come from

temporary memory since the temporary memory has only two read ports. A possible solution is using the input

memory as a temporary location for one of the three source operands (the input memory can be written by the vector

and math engine). Also, VE_COND_MUX operations could be reverted into two VE_COND_WRITE

opcoderations as above.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 77

7.5.5 PVS FLOW CONTROL CAPABILITY

R300 adds the DX9 support for Vertex Shader Flow control. There are 3 types of flow control instructions: JMP,

LOOP and JSR. Up to 16 total JMP, LOOP, and JSR instructions are allowed for any one shader program.

A JMP is a simple conditional JMP from one instruction to another instruction. Only forward jumps are allowed by

DX9. The hardware is capable of backward jumps, but they are not recommended. There is not actually a

conditional jump in R300, if the Boolean jump bit is not set, the the driver should disable the JMP.

A JSR instruction is a conditional Jump to Subroutine. Similar to the JMP, if the JSR Boolean control is disabled,

the driver should disable the JSR. Upon reaching the activation instruction, (the JSR), a jump is made to the

subroutine label (the jump address). The RET instruction is temporarily “activated” in the HW such that when the

RET instruction is reached, it jumps back to the location specified in the VAP_PVS_FLOW_CNTL_ADDRS#

register.

A LOOP instruction allows a set of instructions to be executed multiple times. Upon reaching the loop start

instruction, the loop count is initialized and the fixed-point loop index register is initialized. The Loop End

instruction address is temporarily “activated” such that when that instruction is reached, the loop count is

decremented, the fixed-point loop index register is incremented (by inc_value) and it jumps back to the location

specified in the VAP_PVS_FLOW_CNTL_ADDRS# register. When loop count is decremented to 0, the

LOOP_END instruction is taken out of the temporarily activated list.

R5xx VS3.0 required the following changes to the PVS flow control capability:

1. Loops and subroutines can be nested up to four levels deep. The official definition is 4 levels of loops and

4 levels of subroutines. The actual R5xx implementation supports 8 total between loops and subroutines

(any combination not to exceed 8). Some special points with regard to loop and subroutine nesting:

o Only the inner-most fixed-point loop index register is accessible for memory addressing.

o The inner-most fixed-point loop index is visible within all nested subroutines.

o The fixed-point loop index is initialized for a loop on the activation address for the loop.

2. R5xx support VS3.0 capability for fixed-point loop index addressing for constant memory, input memory,

output memory and temporary memory. VS3.0 requires support for constant memory, input memory, and

output memory. Address clamping is only provided for constant memory, and therefore shader validation

should verify all fixed-point loop index register addressing is within input, output, or temporary boundaries

for that vertex and loop.

3. R5xx supports VS3.0 capability for the loop repeat construct. The loop repeat is similar to a general loop

except the fixed-point loop index is not initialized at the activation of the loop. The loop repeat inherits the

fixed-point loop index from the above nested loop. Though the init value is not used, the loop step value is

still used for the loop repeat. This enables the possibility for creative dual loop indexing of memories, but

the general VS3.0 functionality would set the step value to 0. Upon loop repeat completion, the original

fixed-point loop index is popped back to its pre-loop repeat value. Loop repeats can be nested and use the

fixed-point loop index under a general loop.

4. R5xx VS3.0 supports 16 flow control instructions. VS3.0 treats flow control instructions in the same

manner as ALU instructions and therefore has a logical maximum of 512 flow control instructions if no

ALU instructions were used. However, the 16 R5xx flow control registers can really equate to

approximately 32 VS3.0 flow control instructions since an R5xx loop instruction includes the loop begin

and the loop end and a R5xx subroutine call includes the call, the subroutine start, and the subroutine

return.

*NOTE: When a loop count is set to 0, the driver must change the loop instruction to a jump instruction to jump

over the loop, since the control flow in the HW is done at the end of the loop.

Details on the language syntax are described below.

Caveats:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 78

When a loop count is changed to 0, the driver must change this loop to be a jump to the end-of-loop label.

Jump Instruction

jump b#, labelname;

1. b# is a boolean flow control constant register signified by "b" and "#" can range

from 0 to 15

2. labelname must be defined downstream and terminated with a ":"

3. There are 16 flow control constant registers of 1bit boolean type

4. Jumps are conditional (the jump will only occur if the value in the specified

boolean flow control constant is '1')

Example
 mul

 mad

 jump b2, end;

 mad

 rcp

end:

 mul

 out

Subroutine Call Instruction

call b#, labelname;

1. b# is a boolean flow control constant register signified by "b" and "#" can range

from 0 to 15

2. labelname must be defined downstream and terminated with a ":"

3. There are 16 flow control constant registers of 1bit boolean type

4. Subroutine calls are conditional (the call will only occur if the value in the

specified flow control constant is non-zero)

5. A subroutine block is defined as the code between the label referenced when called

to the return from subroutine instruction

6. Loop instructions are allowed inside the subroutine block as long as the end of loop

label is also within the same subroutine block

7. Nested subroutines and loops are allowed to a depth of 8 total.

8. A parent fixed-point index is visible through all subroutine nesting.

Example

 call b5 normalize;

Return from Subroutine

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 79

ret;

1. The "ret" instruction is used to indicate the end of a subroutine

Example

normalize:

 dp3 r0.w, r0, r0;

 rsq r0.w r0.w;

 mul r0, r0, r0.w;

 ret;

Loop Instruction

loop i#, labelname;

1. i# is an integer flow control constant register signified by "i" and "#" can range from

0 to 15

2. The 'i' register is comprised of three components i#.c loop count (range 0 to 255), i#.i

initial value (range from 0 to 255), and i#.s step value (range from -128 to 127)

which when referenced as i# is an integer scalar defined by i# = i#.i + n*i#.s where n

is the number of times the loop has been traversed The loop value is clamped to be

in the range (–256 – 255) if it over/underflows.

3. For the "loop" instruction, only the first component (initial value) of the "i" register

is used and the i#.s step value is ignored and treated as '1'

4. labelname must be defined downstream and terminated with a ":"

5. The loop will be traversed i#.c times regardless of the i#.i and i#.s values

6. A zero value i#.c loop count is treated as??? so may not be supported (the driver may

be required to preprocess this case to be a jump to the end-of-loop label)

7. Jump instructions are allowed within a loop block as long as the jump target label is

also within the same loop block

8. Jump Subroutine instructions are allowed within a loop block

9. Nested subroutines and loops are allowed to a depth of 8 total.

Example

mul

mad

loop i13, endloop;

 mad

 mul

endloop:

mul

out

Loop Instruction With Auto-Increment

iloop i#, labelname;

1. i# is an integer flow control constant register signified by "i" and "#" can range from

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 80

0 to 15

2. The 'i' register is comprised of three components i#.c loop count (range 0 to 255), i#.i

initial value (range from 0 to 255), and i#.s step value (range from -128 to 127)

which when referenced as i# is an integer scalar defined by i# = i#.i + n*i#.s where n

is the number of times the loop has been traversed The loop value is clamped to be

in the range (–256 – 255) if it over/underflows.

3. labelname must be defined downstream and terminated with a ":"

4. The loop will be traversed i#.c times regardless of the i#.i and i#.s values

5. A zero value i#.c loop count is treated as??? so may not be supported (the driver may

be required to preprocess this case to be a jump to the end-of-loop label)

6. Jump instructions are allowed within an iloop block as long as the jump target label

is also within the same iloop block

7. Jump Subroutine instructions are allowed within an iloop block

8. Nested subroutines and loops are allowed to a depth of 8 total.

9. With nested loops, only the inner-most fixed-point loop index is accessible for ALU

source operand addressing. The resulting address is not clamped for the input,

output, and temporary memories so shader validation is required to ensure all

addressing using the fixed-point loop index is within the boundaries for that vertex

and loop.

10. A loop repeat construct does not initialize the fixed-point loop index. The loop

repeat inherits the fixed-point loop index from the above nested loop. Though the

init value is not used, the loop step value is still used for the loop repeat. This

enables the possibility for creative dual loop indexing of memories, but the general

VS3.0 functionality would set the step value to 0. Upon loop repeat completion, the

original fixed-point loop index is popped to its pre-loop repeat value.

Example

mul

mad

iloop i5, endloop;

 mul

 mad r0, r0, c[i5]; // faster to use loop counter than a0

 add

endloop:

mul

out

7.5.6 DUAL MATH OP USAGE

The R300 PVS design enables the ability to use both the Vector Engine and the Math Engine on the same clock. An

instruction which combines a Vector Engine and a Math Engine instruction will be termed a Dual-Math Instruction.

A Dual-Math Instruction has the following restrictions:

The Vector Instruction of a Dual-Math Inst must not use more than 2 source operands because the Math Instruction

definition is stored in the 3
rd

 source operand bits of the instruction field.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 81

The Math Instruction of a Dual-Math Inst must have 2 or less source scalar operands which must both come from a

single source vector. Swizzles enable the two scalar operands to come from any components of the single source

vector.

The Vector Instruction of a Dual-Math Inst cannot have the destination operand use the ATRM memory.

The Math Instruction of a Dual-Math Inst can only use the ATRM memory as the destination operand and can only

write to locations 0-3 and cannot use relative addressing (address register).

The combined instructions source operands must conform to the same memory restrictions as a single op (1 unique

src from CSM, IVM, ATRM, 2 unique src from TRM (3 unique src from TRM only allowed for single op Vector

Macro inst)).

7.5.7 VECTOR INSTRUCTIONS

 VE_DOT_PRODUCT: 2 VECTOR SOURCE OPERANDS

OUT.X = ((IN_A.X * IN_B.X) + (IN_A.Y * IN_B.Y)

 + (IN_A.Z * IN_B.Z) + (IN_A.W * IN_B.W));

OUT.Y = OUT.Z = OUT.W = OUT.X

 VE_MULTIPLY: 2 VECTOR SOURCE OPERANDS

OUT.X = IN_A.X * IN_B.X;

OUT.Y = IN_A.Y * IN_B.Y;

OUT.Z = IN_A.Z * IN_B.Z;

OUT.W = IN_A.W * IN_B.W;

 VE_ADD: 2 VECTOR SOURCE OPERANDS

OUT.X = IN_A.X + IN_B.X;

OUT.Y = IN_A.Y + IN_B.Y;

OUT.Z = IN_A.Z + IN_B.Z;

OUT.W = IN_A.W + IN_B.W;

 VE_MULTIPLY_ADD: 3 VECTOR SOURCE OPERANDS (MACRO IF 3 UNIQUE TEMPS)

OUT.X = (IN_A.X * IN_B.X) + IN_C.X;

OUT.Y = (IN_A.Y * IN_B.Y) + IN_C.Y;

OUT.Z = (IN_A.Z * IN_B.Z) + IN_C.Z;

OUT.W = (IN_A.W * IN_B.W) + IN_C.W;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 82

 VE_DISTANCE_VECTOR: 2 VECTOR SOURCE OPERANDS

 OUT.X = 1.0;

 OUT.Y = IN_A.Y * IN_B.Y;

 OUT.Z = IN_A.Z;

 OUT.W = IN_B.W;

 Potentially useful as follows (XX = Don‟t Care, D = Depth)

 IN_A = (XX, D * D, D * D, XX)

 IN_B = (XX, 1 / D, XX, 1 / D)

 OUT = (1.0, D, D*D, 1/D) for light attenuation multiply.

 VE_FRACTION: 1 VECTOR SOURCE OPERAND

 OUT.X = IN_A.X – FLOOR(IN_A.X);

 OUT.Y = IN_A.Y – FLOOR(IN_A.Y);

 OUT.Z = IN_A.Z – FLOOR(IN_A.Z);

 OUT.W = IN_A.W – FLOOR(IN_A.W);

 This function returns the positive difference between a floating point number and the

largest integer number less than the floating point number.

 VE_MAXIMUM: 2 VECTOR SOURCE OPERANDS

 OUT.X = MAX(IN_A.X, IN_B.X);

 OUT.Y = MAX(IN_A.Y, IN_B.Y);

 OUT.Z = MAX(IN_A.Z, IN_B.Z);

 OUT.W = MAX(IN_A.W, IN_B.W);

 VE_MINIMUM: 2 VECTOR SOURCE OPERANDS

 OUT.X = MIN(IN_A.X, IN_B.X);

 OUT.Y = MIN(IN_A.Y, IN_B.Y);

 OUT.Z = MIN(IN_A.Z, IN_B.Z);

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 83

 OUT.W = MIN(IN_A.W, IN_B.W);

 VE_SET_GREATER_THAN_EQUAL: 2 VECTOR SOURCE OPERANDS

 OUT.X = (IN_A.X >= IN_B.X) ? 1.0 : 0.0;

 OUT.Y = (IN_A.Y >= IN_B.Y) ? 1.0 : 0.0;

 OUT.Z = (IN_A.Z >= IN_B.Z) ? 1.0, 0.0;

 OUT.W = (IN_A.W >= IN_B.W) ? 1.0, 0.0;

 VE_SET_LESS_THAN: 2 VECTOR SOURCE OPERANDS

 OUT.X = (IN_A.X < IN_B.X) ? 1.0, 0.0;

 OUT.Y = (IN_A.Y < IN_B.Y) ? 1.0, 0.0;

 OUT.Z = (IN_A.Z < IN_B.Z) ? 1.0, 0.0;

 OUT.W = (IN_A.W < IN_B.W) ? 1.0, 0.0;

 VE_MULTIPLYX2_ADD: 3 VECTOR SOURCE OPERANDS (MACRO IF 3 UNIQUE

TEMPS)

OUT.X = (2.0 * (IN_A.X * IN_B.X)) + IN_C.X;

OUT.Y = (2.0 * (IN_A.Y * IN_B.Y)) + IN_C.Y;

OUT.Z = (2.0 * (IN_A.Z * IN_B.Z)) + IN_C.Z;

OUT.W = (2.0 * (IN_A.W * IN_B.W)) + IN_C.W;

 VE_MULTIPLY_CLAMP: 3 VECTOR SOURCE OPERANDS (NO MACRO -> NO 3

UNIQUE TEMPS)

 IF(C.W < (A.W * B.W)) {

 OUT.X = C.W;

 } ELSE IF(C.X >= (A.X * B.X)) {

 OUT.X = C.X;

 } ELSE {

 OUT.X = A.X * B.X;

 }

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 84

 OUT.Y = OUT.Z = OUT.W = OUT.X;

This function is used for point sprite clamping. May or may not be useful for other

functions.

 VE_FLT2FIX_DX: 1 VECTOR SOURCE OPERAND

 OUT.X = FLOOR(IN_A.X);

 OUT.Y = FLOOR(IN_A.Y);

 OUT.Z = FLOOR(IN_A.Z);

 OUT.W = FLOOR(IN_A.W);

This function is a component-wise float to fixed conversion which returns the largest

integer less than the input value. This function is used to load the address register.

 VE_FLT2FIX_DX_RND: 1 VECTOR SOURCE OPERAND

OUT.X = FLOOR(IN_A.X + 0.5);

 OUT.Y = FLOOR(IN_A.Y + 0.5);

 OUT.Z = FLOOR(IN_A.Z + 0.5);

 OUT.W = FLOOR(IN_A.W + 0.5);

This function is a component-wise float to fixed conversion which returns the nearest

integer to the input value. This function is used to load the address register.

 VE_PRED_SET_EQ_PUSH: 2 VECTOR SOURCE OPERANDS

IF((IN_B.W==0) && (IN_A.W==0)) {

 PREDICATE_BIT = 1;

 OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.W = IN_A.W + 1.0;

}

 OUT.X = OUT.Y = OUT.Z = OUT.W;

 VE_PRED_SET_GT_PUSH: 2 VECTOR SOURCE OPERANDS

IF((IN_B.W>0) && (IN_A.W==0)) {

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 85

 PREDICATE_BIT = 1;

 OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.W = IN_A.W + 1.0;

}

 OUT.X = OUT.Y = OUT.Z = OUT.W;

 VE_PRED_SET_GTE_PUSH: 2 VECTOR SOURCE OPERANDS

IF((IN_B.W>=0) && (IN_A.W==0)) {

 PREDICATE_BIT = 1;

 OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.W = IN_A.W + 1.0;

}

 OUT.X = OUT.Y = OUT.Z = OUT.W;

 VE_PRED_SET_NEQ_PUSH: 2 VECTOR SOURCE OPERANDS

IF((IN_B.W!=0) && (IN_A.W==0)) {

 PREDICATE_BIT = 1;

 OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.W = IN_A.W + 1.0;

}

 OUT.X = OUT.Y = OUT.Z = OUT.W;

 VE_COND_WRITE_EQ4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X==0) ? 1 : 0;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 86

WRITE_ENABLE[1] = (IN_A.Y==0) ? 1 : 0;

WRITE_ENABLE[2] = (IN_A.Z==0) ? 1 : 0;

WRITE_ENABLE[3] = (IN_A.W==0) ? 1 : 0;

OUT = IN_B;

 VE_COND_WRITE_GT4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X>0) ? 1 : 0;

WRITE_ENABLE[1] = (IN_A.Y>0) ? 1 : 0;

WRITE_ENABLE[2] = (IN_A.Z>0) ? 1 : 0;

WRITE_ENABLE[3] = (IN_A.W>0) ? 1 : 0;

 OUT = IN_B;

 VE_COND_WRITE_GTE4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X>=0) ? 1 : 0;

WRITE_ENABLE[1] = (IN_A.Y>=0) ? 1 : 0;

WRITE_ENABLE[2] = (IN_A.Z>=0) ? 1 : 0;

WRITE_ENABLE[3] = (IN_A.W>=0) ? 1 : 0;

 OUT = IN_B;

 VE_COND_WRITE_NEQ4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X!=0) ? 1 : 0;

WRITE_ENABLE[1] = (IN_A.Y!=0) ? 1 : 0;

WRITE_ENABLE[2] = (IN_A.Z!=0) ? 1 : 0;

WRITE_ENABLE[3] = (IN_A.W!=0) ? 1 : 0;

 OUT = IN_B;

 VE_COND_MUX_EQ4 : 3 VECTOR SOURCE OPERANDS

 // only 2 unique input vectors can be from temporary storage

OUT.X = (IN_A.X==0) ? IN_B.X : IN_C.X;

OUT.Y = (IN_A.Y==0) ? IN_B.Y : IN_C.Y;

OUT.Z = (IN_A.Z ==0) ? IN_B.Z : IN_C.Z;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 87

OUT.W = (IN_A.W==0) ? IN_B.W : IN_C.W;

 VE_COND_MUX_GT4 : 3 VECTOR SOURCE OPERANDS

 // only 2 unique input vectors can be from temporary storage

OUT.X = (IN_A.X>0) ? IN_B.X : IN_C.X;

OUT.Y = (IN_A.Y>0) ? IN_B.Y : IN_C.Y;

OUT.Z = (IN_A.Z >0) ? IN_B.Z : IN_C.Z;

OUT.W = (IN_A.W>0) ? IN_B.W : IN_C.W;

 VE_COND_MUX_GTE4 : 3 VECTOR SOURCE OPERANDS

 // only 2 unique input vectors can be from temporary storage

OUT.X = (IN_A.X>=0) ? IN_B.X : IN_C.X;

OUT.Y = (IN_A.Y>=0) ? IN_B.Y : IN_C.Y;

OUT.Z = (IN_A.Z >=0) ? IN_B.Z : IN_C.Z;

OUT.W = (IN_A.W>=0) ? IN_B.W : IN_C.W;

 VE_SET_GREATER_THAN: 2 VECTOR SOURCE OPERANDS

 OUT.X = (IN_A.X > IN_B.X) ? 1.0 : 0.0;

 OUT.Y = (IN_A.Y > IN_B.Y) ? 1.0 : 0.0;

 OUT.Z = (IN_A.Z > IN_B.Z) ? 1.0, 0.0;

 OUT.W = (IN_A.W > IN_B.W) ? 1.0, 0.0;

 VE_SET_EQUAL: 2 VECTOR SOURCE OPERANDS

 OUT.X = (IN_A.X == IN_B.X) ? 1.0 : 0.0;

 OUT.Y = (IN_A.Y== IN_B.Y) ? 1.0 : 0.0;

 OUT.Z = (IN_A.Z == IN_B.Z) ? 1.0, 0.0;

 OUT.W = (IN_A.W == IN_B.W) ? 1.0, 0.0;

 VE_SET_NOT_EQUAL: 2 VECTOR SOURCE OPERANDS

 OUT.X = (IN_A.X != IN_B.X) ? 1.0 : 0.0;

 OUT.Y = (IN_A.Y != IN_B.Y) ? 1.0 : 0.0;

 OUT.Z = (IN_A.Z != IN_B.Z) ? 1.0, 0.0;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 88

 OUT.W = (IN_A.W != IN_B.W) ? 1.0, 0.0;

NOTES

* A Vector Move Instruction can be accomplished via a VE_ADD with other source operand set to (0,0,0,0).

* A 3-Component Dot Product can be accomplished via a VE_DOT_PRODUCT with 4
th

 components forced to 0.0.

7.5.8 SCALAR INSTRUCTIONS

The scalar (math) instructions have changed their src operands somewhat for R300. The general rules are as

follows:

1. Only w channels of src operands are available for math ops

2. For all 1 source operand instructions, the input is IN_A.W (except for ME_EXP_BASEE_FF

because of rule 3 below)

3. All source operands which are powers (e^x, 2^x, x^y, etc) will be on IN_C.W, all source operands

which are bases will be on IN_A.W and all sources which are clamps will be on IN_B.W. As long

as the compiler (driver) replicates the last valid src operand to all unused src operands, the

behavior looks clean as follows:

i. 1 source operand instructions (like e^x), the x would be in IN_C.W, but it can appear as

if in IN_A.W as long as this value is replicated

ii. 2 source operand instructions (like x^y), the base is in the IN_A.W, and the pow is in

IN_C.W, but it can appear as if in IN_B.W as long as this value is replicated.

All of the function definitions below are written with the assumption that the last valid source operand is replicated

to the “unused” source operands. The HW does not always use the source operands specified, sometimes it relies on

the replication. These will be noted in comments below.

 ME_EXP_BASE2_DX: 1 SCALAR SOURCE OPERAND

 OUT.X = 2 ^ FLOOR(IN_A.W);

 IF (IN_A.W > 128.0) {

OUT.Y = 0.0; //NOTE: THIS IS NOT EQUIV TO DX BEHAVIOR

} ELSE {

OUT.Y = FRAC(IN_A.W);

}

 OUT.Z = 2 ^ (IN_A.W);

 OUT.W = 1.0;

 ME_LOG_BASE2_DX: 1 SCALAR SOURCE OPERAND

 IF(IN_A.W == 0.0) {

 OUT.X = MINUS_MAX_FLOAT;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 89

 OUT.Y = 1.0;

 OUT.Z = MINUS_MAX_FLOAT;

 OUT.W = 1.0;

 } ELSE {

OUT.X = Unbiased exponent of ABS(IN_A.W) as float(i.e. 4.0 -> 2.0);

OUT.Y = mantissa of IN_A.W as float (1.0 <= OUT.Y < 2.0);

OUT.Z = LOG2(ABS(IN_A.W));

OUT.W = 1.0;

 }

 ME_EXP_BASEE_FF: 1 SCALAR SOURCE OPERAND

 OUT.X = e ^ (IN_A.W); //NOTE WAS IN_A.X FOR R200 *FROM C.W, IN_A.W if operand

replicate

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 ME_LIGHT_COEFF_DX: 3 SCALAR SOURCE OPERANDS (NO MACRO -> NO 3 UNIQUE

TEMPS)

 This function was a single vector source operand for R200. Now it uses 3 vector source operands

(w components only).

 The 3 operands may be the same vector using different swizzles to emulate R200 behavior.

 OUT.X = 1.0;

 OUT.Y = MAX(IN_B.W, 0.0);

 IF(IN_B.W > 0) {

 IN_C.W = CLAMP(IN_C.W, -128.0, 128.0);

 OUT.Z = (MAX(IN_A.W, 0.0)) ^ IN_C.W;

 } ELSE {

 OUT.Z = 0.0;

 }

 OUT.W = 1.0;

 ME_POWER_FUNC_FF: 2 SCALAR SOURCE OPERANDS (IN ONE VECTOR)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 90

 IF(IN_A.W < 0.0) {

 OUT.X = - (ABS(IN_A.W) ^ IN_B.W); //IN_B.W is from IN_C.W, but same if operand

replicate

 } ELSE {

 OUT.X = IN_A.W ^ IN_B.W;

}

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 Special cases (in order of detection) are (using x^n notation):

 0.0^-n Plus Infinity

 0.0^n 0.0

 x ^ 0.0 1.0

 Inf ^-n 0.0

 Inf ^n -> Inf

 IF (x >1.0 and n == -Inf) 0.0

 IF (x <1.0 and n == -Inf) Inf

 IF (x >1.0 and n == Inf) Inf

 IF (x <1.0 and n == Inf) 0.0

 ME_RECIP_DX: 1 SCALAR SOURCE OPERAND

 OUT.X = 1.0 / IN_A.W

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of MAX_FLOAT.

 ME_RECIP_FF: 1 SCALAR SOURCE OPERAND

 OUT.X = 1.0 / IN_A.W

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of zero.

 ME_RECIP_SQRT_DX: 1 SCALAR SOURCE OPERAND

 OUT.X = 1.0 / SQRT(ABS(IN_A.W))

 OUT.Y = OUT.Z = OUT.W = OUT.X;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 91

 An input of 0.0 yields a result of MAX_FLOAT.

 ME_RECIP_SQRT_FF: 1 SCALAR SOURCE OPERAND

 OUT.X = 1.0 / SQRT(ABS(IN_A.W))

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of zero.

 ME_MULTIPLY: 2 SCALAR SOURCE OPERANDS (IN ONE VECTOR)

 OUT.X = IN_A.W * IN_B.W;

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 ME_EXP_BASE2: 1 SCALAR SOURCE OPERAND

 OUT.X = 2.0 ^ (IN_A.W); //*FROM C.W, IN_A.W if operand replicate

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 ME_LOG_BASE2: 1 SCALAR SOURCE OPERAND

 OUT.X = LOG2(ABS(IN_A.W));

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of MINUS_MAX_FLOAT.

 ME_POWER_FUNC_FF_CLAMP_B: 3 SCALAR SOURCE OPERANDS (NO MACRO)

 IF (IN_A.W < IN_B.W) { //IN_B.W is the clamp value.

 OUT.X = 0.0;

 } ELSE {

 SAME BEHAVIOR AS ME_POWER_FUNC_FF WITH IN_A.W as base and IN_C.W as

power (not IN_B.W).

 }

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 ME_POWER_FUNC_FF_CLAMP_B1: 3 SCALAR SOURCE OPERANDS (NO MACRO)

 IF (IN_A.W < IN_B.W) { //IN_B.W is the clamp value.

 OUT.X = 0.0;

 } ELSE IF (IN_A.W > 1.0) {

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 92

 OUT.X = 1.0;

 } ELSE {

 SAME BEHAVIOR AS ME_POWER_FUNC_FF WITH IN_A.W as base and IN_C.W as

power (not IN_B.W).

 }

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 ME_POWER_FUNC_FF_CLAMP_01: 2 SCALAR SOURCE OPERANDS

 IF (IN_A.W <= 0.0) {

 OUT.X = 0.0;

 } ELSE IF (IN_A.W > 1.0) {

 OUT.X = 1.0;

 } ELSE {

 SAME BEHAVIOR AS ME_POWER_FUNC_FF

 }

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 ME_SIN: 1 SCALAR SOURCE OPERAND

 OUT.X = SIN(IN_A.W);

 OUT.Y = OUT.Z = OUT.W = OUT.X;

The hardware implementation of SIN/COS clamps the input, including nans and infs, to -pi to +pi

before computing the output, so for any inputs outside that range, cos(x) = -1 and sin(x) = 0. Except

for inputs of zero where sin(0) = 0, the minimum value that this function will output is +/-

0x33800000. In other words, the absolute value of the output is clamped to 0x33800000 minimum

except for sin(0) and sin(+/-pi).

 ME_COS: 1 SCALAR SOURCE OPERAND

 OUT.X = COS(IN_A.W);

 OUT.Y = OUT.Z = OUT.W = OUT.X;

The hardware implementation of SIN/COS clamps the input, including nans and infs, to -pi to +pi

before computing the output, so for any inputs outside that range, cos(x) = -1 and sin(x) = 0. Except

for inputs of zero where sin(0) = 0, the minimum value that this function will output is +/-

0x33800000. In other words, the absolute value of the output is clamped to 0x33800000 minimum

except for sin(0) and sin(+/-pi).

 ME_LOG_BASE2_IEEE: 1 SCALAR SOURCE OPERAND

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 93

 OUT.X = LOG2(ABS(IN_A.W));

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of minus infinity.

 ME_RECIP_IEEE: 1 SCALAR SOURCE OPERAND

 OUT.X = 1.0 / IN_A.W

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of infinity.

 ME_RECIP_SQRT_IEEE: 1 SCALAR SOURCE OPERAND

 OUT.X = 1.0 / SQRT(ABS(IN_A.W))

 OUT.Y = OUT.Z = OUT.W = OUT.X;

 An input of 0.0 yields a result of infinity.

 ME_PRED_SET_EQ: 1 SCALAR SOURCE OPERAND

IF(IN_A.W==0) {

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 1;

}

 ME_PRED_SET_GT: 1 SCALAR SOURCE OPERAND

IF(IN_A.W > 0) {

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 1;

}

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 94

 ME_PRED_SET_GTE: 1 SCALAR SOURCE OPERAND

IF(IN_A.W >= 0) {

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 1;

}

 ME_PRED_SET_NEQ: 1 SCALAR SOURCE OPERAND

IF(IN_A.W != 0) {

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 1;

}

 ME_PRED_SET_CLR: 0 SCALAR SOURCE OPERANDS

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = MAX_FLOAT;

 ME_PRED_SET_INV: 1 SCALAR SOURCE OPERAND

IF(IN_A.W==1) {

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 IF(IN_A.W==0) {

 OUT.X = OUT.Y = OUT.Z = OUT.W = 1;

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 95

 } ELSE {

 OUT.X = OUT.Y = OUT.Z = OUT.W = IN_A.W;

 }

 }

 ME_PRED_SET_POP: 1 SCALAR SOURCE OPERAND

OUT.W = IN_A.W – 1.0;

 IF(OUT.W < 0) {

 PREDICATE_BIT = 1;

 OUT.W = 0;

 } ELSE {

 PREDICATE_BIT = 0;

 }

 OUT.X = OUT.Y = OUT.Z = OUT.W;

 ME_PRED_SET_RESTORE: 1 SCALAR SOURCE OPERAND

IF(IN_A.W==0) {

 PREDICATE_BIT = 1;

 OUT.X = OUT.Y = OUT.Z = OUT.W = 0;

} ELSE {

 PREDICATE_BIT = 0;

 OUT.X = OUT.Y = OUT.Z = OUT.W = IN_A.W;

}

7.5.9 PVS INSTRUCTION DEFINITION

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 96

PVS INSTRUCTION

Description of PVS 128-bit Instruction for Vector Memory

Field Name Bit(s) Description

PVS_OP_DST_OPERAND 31:0 Defines the opcode and destination operand.

PVS_SRC_OPERAND_0 63:32 Defines the first source operand for the instruction.

PVS_SRC_OPERAND_1 95:64 Defines the first source operand for the instruction.

PVS_SRC_OPERAND_2 127:96 Defines the first source operand for the instruction.

PVS Source Operand Description

Applies to PVS_SRC_OPERAND_0,1 & 2

Field Name Bit(s) Description

PVS_SRC_REG_TYPE 1:0 Defines the Memory Select (Register Type) for the Source Operand. See

Below.

SPARE_0 2

PVS_SRC_ABS_XYZW 3 If set, Take absolute value of all 4 components of input vector.

PVS_SRC_ADDR_MODE_0 4 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (lsb) to form 2-bit

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using I0 register (loop index)

PVS_SRC_OFFSET 12:5 Vector Offset into selected memory (Register Type)

PVS_SRC_SWIZZLE_X 15:13 X-Component Swizzle Select. See Below

PVS_SRC_SWIZZLE_Y 18:16 Y-Component Swizzle Select. See Below

PVS_SRC_SWIZZLE_Z 21:19 Z-Component Swizzle Select. See Below

PVS_SRC_SWIZZLE_W 24:22 W-Component Swizzle Select. See Below

PVS_SRC_MODIFIER_X 25 If set, Negate X Component of input vector.

PVS_SRC_MODIFIER_Y 26 If set, Negate Y Component of input vector.

PVS_SRC_MODIFIER_Z 27 If set, Negate Z Component of input vector.

PVS_SRC_MODIFIER_W 28 If set, Negate W Component of input vector.

PVS_SRC_ADDR_SEL 30:29 When PVS_SRC_ADDR_MODE is set, this selects which component of the

4-component address register to use.

PVS_SRC_ADDR_MODE_1 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (lsb) to form 2-bit

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using I0 register (loop index)

The memory selects (or register type) valid selections are as follows:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 97

SOURCE REG_TYPES:

 PVS_SRC_REG_TEMPORARY = 0; //Intermediate storage

 PVS_SRC_REG_INPUT = 1; //Input Vertex Storage

 PVS_SRC_REG_CONSTANT = 2; //Constant State Storage

 PVS_SRC_REG_ALT_TEMPORARY = 3; //Alternate Intermediate Storage

The valid swizzle selects are as follows:

 PVS_SRC_SELECT_X = 0; //Select X Component

 PVS_SRC_SELECT_Y = 1; //Select Y Component

 PVS_SRC_SELECT_Z = 2; //Select Z Component

 PVS_SRC_SELECT_W = 3; //Select W Component

 PVS_SRC_SELECT_FORCE_0 = 4; //Force Component to 0.0

 PVS_SRC_SELECT_FORCE_1 = 5; //Force Component to 1.0

For R5xx VS3.0, the PVS_SRC_ABS_XYZW bits enables the absolute value for the four components of the source

vector.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 98

PVS Opcode & Destination Operand Description

Field Name Bit(s) Description

PVS_DST_OPCODE 5:0 Selects the Operation which is to be performed.

PVS_DST_MATH_INST 6 Specifies a Math Engine Operation

PVS_DST_MACRO_INST 7 Specifies a Macro Operation

PVS_DST_REG_TYPE 11:8 Defines the Memory Select (Register Type) for the Dest Operand.

PVS_DST_ADDR_MODE_1 12 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (lsb) to form 2-bit

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using I0 register (loop index)

PVS_DST_OFFSET 19:13 Vector Offset into the Selected Memory

PVS_DST_WE_X 20 Write Enable for X Component

PVS_DST_WE_Y 21 Write Enable for Y Component

PVS_DST_WE_Z 22 Write Enable for Z Component

PVS_DST_WE_W 23 Write Enable for W Component

PVS_DST_VE_SAT 24 Vector engine operation is saturate clamped between 0 and 1 (all

components)

PVS_DST_ME_SAT 25 Math engine operation is saturate clamped between 0 and 1 (all components)

PVS_DST_PRED_ENABLE 26 Operation is predicated – Operation writes if predicate bit matches predicate

sense.

PVS_DST_PRED_SENSE 27 Operation predication sense – If set, operation writes if predicate bit is set. If

reset, operation writes if predicate bit is reset.

PVS_DST_DUAL_MATH_OP 28 Set to describe a dual-math op.

PVS_DST_ADDR_SEL 30:29 When PVS_DST_ADDR_MODE is set, this selects which component of the

4-component address register to use.

PVS_DST_ADDR_MODE_0 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (lsb) to form 2-bit

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using I0 register (loop index)

For R5xx VS3.0, the PVS_DST_VE_SAT and PVS_DST_ME_SAT bits enable a zero to one saturate clamp for all

four component of the output.

For R5xx VS3.0, the PVS_DST_PRED_ENABLE and PVS_DST_PRED_SENSE bits enable predicated writes for

the temporary memory, the output memory, the alternate temporary memory, the address register, and the input

memory. The PVS_DST_PRED_ENABLE enables the feature while PVS_DST_PRED_SENSE determines the

polarity of the predication bit for the write to be enabled. When the predication bit matches the predication sense,

the predicated write is enabled. For dual vector/math engine operations, both operations are predicated.

The PVS_DST_MACRO_INST bit was meant to be used for MACROS such as a vector-matrix multiply, but

currently is only set for the following cases:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 99

 A VE_MULTIPLY_ADD or VE_MULTIPLYX2_ADD instruction with all 3 source operands using

unique PVS_REG_TEMPORARY vector addresses. Since R300 only has two read ports on the temporary

memory, this special case of these instructions is broken up (by the HW) into 2 operations.

 When the MACRO enable bit is set, the opcode (lower 6 bits is remapped as follows:

PVS_MACRO_OP_2CLK_MADD = 0

PVS_MACRO_OP_2CLK_M2X_ADD = 1

The PVS_DST_MATH_INST is used to identify whether the instruction is a Vector Engine instruction or a Math

Engine instruction.

The PVS_DST_OPCODE values are listed below:

VECTOR_NO_OP = 0

VE_DOT_PRODUCT = 1

VE_MULTIPLY = 2

VE_ADD = 3

VE_MULTIPLY_ADD = 4

VE_DISTANCE_VECTOR = 5

VE_FRACTION = 6

VE_MAXIMUM = 7

VE_MINIMUM = 8

VE_SET_GREATER_THAN_EQUAL = 9

VE_SET_LESS_THAN = 10

VE_MULTIPLYX2_ADD = 11

VE_MULTIPLY_CLAMP = 12

VE_FLT2FIX_DX = 13

VE_FLT2FIX_DX_RND = 14

// NEW R5xx OPCODES - below

VE_PRED_SET_EQ_PUSH = 15

VE_PRED_SET_GT_PUSH = 16

VE_PRED_SET_GTE_PUSH = 17

VE_PRED_SET_NEQ_PUSH = 18

VE_COND_WRITE_EQ = 19

VE_COND_WRITE_GT = 20

VE_COND_WRITE_GTE = 21

VE_COND_WRITE_NEQ = 22

VE_COND_MUX_EQ = 23

VE_COND_MUX_GT = 24

VE_COND_MUX_GTE = 25

VE_SET_GREATER_THAN = 26

VE_SET_EQUAL = 27

VE_SET_NOT_EQUAL = 28

MATH_NO_OP = 0

ME_EXP_BASE2_DX = 1

ME_LOG_BASE2_DX = 2

ME_EXP_BASEE_FF = 3

ME_LIGHT_COEFF_DX = 4

ME_POWER_FUNC_FF = 5

ME_RECIP_DX = 6

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 100

ME_RECIP_FF = 7

ME_RECIP_SQRT_DX = 8

ME_RECIP_SQRT_FF = 9

ME_MULTIPLY = 10

ME_EXP_BASE2_FULL_DX = 11

ME_LOG_BASE2_FULL_DX = 12

ME_POWER_FUNC_FF_CLAMP_B = 13

ME_POWER_FUNC_FF_CLAMP_B1 = 14

ME_POWER_FUNC_FF_CLAMP_01 = 15

ME_SIN = 16

ME_COS = 17

// NEW R5xx OPCODES - below

ME_LOG_BASE2_IEEE = 18

ME_RECIP_IEEE = 19

ME_RECIP_SQRT_IEEE = 20

ME_PRED_SET_EQ = 21

ME_PRED_SET_GT = 22

ME_PRED_SET_GTE = 23

ME_PRED_SET_NEQ = 24

ME_PRED_SET_CLR = 25

ME_PRED_SET_INV = 26

ME_PRED_SET_POP = 27

ME_PRED_SET_RESTORE = 28

DEST REG_TYPES:

 PVS_DST_REG_TEMPORARY = 0; //Intermediate storage

 PVS_DST_REG_A0 = 1; //Address Register Storage

 PVS_DST_REG_OUT = 2; //Output Memory. Used for all outputs

 PVS_DST_REG_OUT_REPL_X = 3; //Output Memory & Replicate X to all channels

 PVS_DST_REG_ALT_TEMPORARY = 4; //Alternate Intermediate Storage

 PVS_DST_REG_INPUT = 5; //Output Memory & Replicate X to all channels

The PVS_REG_A0 may only be used as the destination operand register type when using the VE_FLT2FIX_DX or

the VE_FLT2FIX_DX_RND opcodes.

For R300, PVS_REG_OUT_* is replaced by the single PVS_REG_OUT and the PVS_DST_OFFSET field will be

used to place data in the appropriate vectors. This allows the PVS Output Vertex memories to be variable format for

the variable vertex methodology. The PVS_REG_OUT_REPL_X is equivalent to PVS_REG_OUT except that it

forces the X channel to be replicated onto all 4 output channels. This capability is used to allow the mapping of

Point-Sprite and Discrete Fog to any output memory channel from an instruction with a unique x-channel output.

The PVS_DST_DUAL_MATH_OP bit must be set when combining Vector and Math Engine operations.

The PVS_DST_ADDR_MODE and DST_ADDR_SEL are the same as the SRC operand definitions.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 101

Dual Math Instruction (Replaces PVS_SRC_OPERAND_2)

Field Name Bit(s) Description

PVS_SRC_REG_TYPE 1:0 Defines the Memory Select (Register Type) for the Source Operand. See

Below.

PVS_DST_OPCODE_MSB 2 Math Opcode MSB for Dual Math Inst.

PVS_SRC_ABS_XYZW 3 If set, Take absolute value of both components of Dual Math input vector.

PVS_SRC_ADDR_MODE_0 4 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (lsb) to form 2-bit

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using I0 register (loop index)

PVS_SRC_OFFSET 12:5 Vector Offset into selected memory (Register Type)

PVS_SRC_SWIZZLE_X 15:13 X-Component Swizzle Select. See Below

PVS_SRC_SWIZZLE_Y 18:16 Y-Component Swizzle Select. See Below

DUAL_MATH_DST_OFFSET 20:19 Selects Dest Address ATRM 0-3 for Math Inst.

PVS_DST_OPCODE 24:21 Math Opcode for Dual Math Inst.

PVS_SRC_MODIFIER_X 25 If set, Negate X Component of input vector.

PVS_SRC_MODIFIER_Y 26 If set, Negate Y Component of input vector.

PVS_DST_WE_SEL 28:27 Encoded Write Enable for Dual Math Op Inst (0 = X, 1 = Y, 2 = Z, 3 = W)

PVS_SRC_ADDR_SEL 30:29 When PVS_SRC_ADDR_MODE is set, this selects which component of the

4-component address register to use.

PVS_SRC_ADDR_MODE_1 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (lsb) to form 2-bit

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using A0 register

2 = Relative addressing using I0 register (loop index)

The PVS_DST_OPCODE_MSB is the most significant bit of the PVS_DST_OPCODE field to be used for the math

engine for dual ops. This enables math engine operations 16 through 28 to be used during dual ops.

For R5xx VS3.0, a PVS_SRC_ABS_XYZW bits enables the absolute value for the two components of the dual op

math engine source vector.

7.6 Setting-Up and Starting the VAP

The following method of programming is required in order to get the VAP to run.

The format and storage method for vertex data must be conveyed to the VAP by loading the set of Address and

Attribute registers for the Multiple Arrays of Structures paradigm. The Vertex Format register also must be loaded.

After all of the registers have been set-up, the VAP is started by a single write to the Vertex Fetcher Control

Register (VF_CNTL). This register is said to be an “initiator”, or “trigger” register, because of its characteristic of

causing the VAP to begin running. A single primitive or a group of primitives can be processed as a result of the

single trigger; the exact number of primitives being controlled by the NUM_VERTICES field of the Vertex Fetcher

Control Register.

Depending on the data-flow configuration of the VAP (controlled by the VTX_AMODE and VTX_LOCN fields of

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 102

the Vertex Control Register), the VAP may expect an external entity (the host, or Command Processor) to deliver

data for the current operation. It is the responsibility of the external entity to perform the exact number of register

writes in accordance with the value set in the NUM_VERTICES field; otherwise the VAP will hang. For Index

data, the host must write to any dword in the PORT_IDX range; and for parameter data, the host must write to any

dword in the PORT_DATA range.

Once the VAP has completed processing the number of vertices specified in the NUM_VERTICES field, it goes

back to an idle state, waiting for another trigger.

7.7 Methods of Passing Vertex Data

There are three parameters that characterize the passing of vertex data for 3D primitives to the Graphics Controller.

1) Location: Embedded vs. Separate.

In Embedded mode, the vertex information is present directly in the command packet.

In Separate Mode, the command packet contains a pointer to another memory area containing the

vertex information.

2) Addressing Mode: Immediate vs. Indexed.

The vertex information can be expressed as either the vertex data itself (Immediate Mode), or a list of

indices into a buffer of vertices (Indexed Mode).

3) Format: Examples are: StructureOfArrays(SOA), ArrayOfStructures(AOS), Strided Vertex Format.

The format of the vertex data is conveyed to the Setup Engine via the flexible vertex format register, as

well as the address and attribute registers for the Multiple Array of Structures.

The Location and Addressing Mode fields control the “data-flow configuration” of the VAP, specifying what type of

information will be flowing on the register backbone and on the memory backbone while the VAP is processing a

command packet.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 103

8. Fragment Shaders

8.1 Introduction

This section describes the functional behavior of the Universal Shaders of on R5xx.

8.2 Instructions

There are 512 instruction slots. A program can begin execution at any address. In the absence of flow control,

programs will increment the program counter after each instruction. The program counter wraps at 512

automatically, so it is valid to load shader programs which utilize the bottommost and topmost regions of the

instruction store.

Each instruction can be one of four types:

US_INST_TYPE_ALU Arithmetic and Logic Unit instruction

US_INST_TYPE_OUTPUT Output instruction (with ALU functionality)

US_INST_TYPE_FC Flow Control instruction

US_INST_TYPE_TEX Texture instruction

ALU and OUTPUT instructions both have full RGB and Alpha math functionality. The only functional difference

between them is that ALU instructions can set the predicate bits, and OUTPUT instructions can write to the output

registers. There is no way to do both in the same instruction. Internally, the sequencer must treat instructions that

have potential outputs specially for scheduling. The last executed instruction of the shader program must also be an

OUTPUT instruction, even if it's not outputting anything interesting.

The first OUTPUT instruction will reserve space in the output register fifo. This space is limited, therefore issuing

an OUTPUT earlier than necessary may cause threads to stall earlier than necessary. You should not set an ALU

instruction as type OUTPUT unless it is actually writing to an output register, or it is the last instruction of the

program.

Flow control instructions and texture instructions each have their own interpretation of the bits in the instruction

word.

The active shader should reside in the range US_CODE_RANGE.CODE_ADDR to

US_CODE_RANGE.CODE_ADDR + US_CODE_RANGE.CODE_SIZE, inclusive (note that

US_CODE_RANGE.CODE_SIZE is the size of the shader program, minus one). You may setup additional shaders

in advance outside of this range, but the current shader should not attempt to execute code outside of this range.

The shader has an offset, US_CODE_OFFSET.OFFSET_ADDR, associated with it that is added to various

instruction addresses, minimizing the number of registers you may need to update when relocating a shader. Each

pixel starts the shader at instruction US_CODE_ADDR.START_ADDR + US_CODE_OFFSET.OFFSET_ADDR

(instruction addresses are always modulo 512). Execution continues until the program counter reaches

US_CODE_SIZE.END_ADDR + US_CODE_OFFSET.OFFSET_ADDR. It does not matter how many pixels in

the group are active (even none), the program will end after that instruction is executed. The instruction at the end

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 104

address must be an OUTPUT instruction (even if the output mask is zero), and should always wait for the texture

unit semaphore by setting the TEX_SEM_WAIT bit (see below). At the time of termination, the contents of the

output registers are sent to the render targets.

Multiple shaders can be loaded into the instruction memory. Switching between them only requires changing global

registers like US_CODE_ADDR, US_CODE_RANGE, US_CODE_OFFSET, US_PIXSIZE, and US_FC_CTRL.

Updates to shader code outside the currently active program are safe, and do not stall the pipeline. If you intend to

overwrite the active shader, however, the pixel shader pipe must be flushed so that pixels running the old shader get

out before the update. Register writes to US_CODE_ADDR, US_CODE_RANGE, US_CODE_OFFSET, and/or

US_PIXSIZE should flush the pixel shader pipe.

The US instruction and ALU constant registers cannot be written to directly, due to addressing limitations elsewhere

in the pipe. A vector mechanism is provided in the GA block for writing to the US registers. Details on writing the

US registers are provided toward the end of this document.

8.3 Instruction Words

US_INST_TYPE_ALU / US_INST_TYPE_OUTPUT (6 registers):

 US_CMN_INST_*

 US_ALU_RGB_ADDR_*

 US_ALU_ALPHA_ADDR_*

 US_ALU_RGB_INST_*

 US_ALU_ALPHA_INST_*

 US_ALU_RGBA_INST_*

US_INST_TYPE_FC (3 registers):

 US_CMN_INST_*

 US_FC_INST_*

 US_FC_ADDR_*

US_INST_TYPE_TEX (4 registers):

 US_CMN_INST_*

 US_TEX_INST_*

 US_TEX_ADDR_*

 US_TEX_ADDR_DXDY_*

The FC and TEX words overlap with the ALU/OUTPUT words in instruction memory. The unused memory

locations for FC and TEX are ignored by US; they may be left uninitialized, or set to zero, with no ill effect.

However, the driver should take care to write to all registers that are required by each instruction type.

Within US_CMN_INST_*, the fields effective for each instruction type are indicated by *s:

 ALU OUTPUT FC TEX

TYPE * * * *

TEX_SEM_WAIT * * * *

RGB_PRED_SEL * * * *

RGB_PRED_INV * * * *

ALPHA_PRED_SEL * * *

ALPHA_PRED_INV * * *

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 105

WRITE_INACTIVE * * *

LAST * * * *

NOP * *

RGB_WMASK * * *

ALPHA_WMASK * * *

RGB_OMASK * *

ALPHA_OMASK * *

RGB_CLAMP * *

ALPHA_CLAMP * *

ALU_RESULT_SEL * *

ALU_RESULT_OP * *

ALU_WAIT * *

STAT_WE * * *

8.3.1 Synchronization of instruction streams

The US allows you to freely intermix instructions of multiple types. It will process the three types (ALU/Output,

Texture, and FC) in parallel whenever possible. Instructions need to be synchronized when an instruction of one

type depends on the output of another type. The cases where explicit synchronization may be required are:

 TEX instruction dependent on ALU for source register or predicate. Synchronized with the ALU_WAIT

bit.

 FC instruction dependent on ALU for predicate or ALU result. Synchronized with the ALU_WAIT bit.

 ALU instruction dependent on TEX for lookup result. Synchronized using the texture semaphore.

A texture or FC instruction that uses a result computed by a prior ALU instruction should set the ALU_WAIT bit.

This forces processing for the thread to stall until pending ALU instructions are complete. A latency of about 30

cycles is imposed on the thread.

Note that a static FC instruction never needs to set ALU_WAIT since it never depends on a result computed within

the shader. Also, an ALU instruction never needs to set ALU_WAIT -- dependencies amongst ALU instructions are

resolved internally.

The texture semaphore is used to synchronize the output of a texture instruction with a subsequent ALU or texture

instruction that uses that result. Since the latency for a texture fetch is difficult to anticipate in advance, the texture

semaphore mechanism is more complex than ALU_WAIT. The texture semaphore is described in more detail

below.

8.4 ALU Instructions

An ALU instruction actually consists of an RGB vector instruction and an Alpha scalar instruction.

There are only a few operations that only one or the other unit can compute, but in each case there is a special

instruction the other engine can use to copy the result.

8.4.1 Sources

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 106

Each instruction can specify the addresses for 6 different sources – 3 RGB vectors and 3 Alpha scalars. Each source

can either come from one of 128 temporary registers (which can be modified during the shader, and be different for

each pixel), or from one of 256 constant registers (which can only be changed between geometry packets). In

addition, a source can be an inline constant. The loop variable (aL) may be added to any combination of source

addresses, but may not be added to an inline constant.

Each color register (temporary and constant) consists of a 3-component RGB vector and a scalar Alpha value.

Inline constants are unsigned floating-point values with 4 bits of exponent (with bias 7) and 3 bits mantissa. Inline

constants represent finite values only -- there is no representation for NaN or infinity. Inline constants can express

denormal values though. Also, the bit pattern 0x0 represents 2^-10, rather than zero. Example values are shown

below:

 EXPONENT MANTISSA

2^-10 0x0 0x0

2^-9 0x0 0x1

2^-8 0x0 0x2

2^-7 0x1 0x4

2^-6 0x7 0x0

1 0xf 0x0

256 0xf 0x0

480 0xf 0x7

You can obtain negative inline constants and the value zero using the input modifiers and swizzles, described below.

Each source is specified with three fields. Valid encodings of these fields are shown below (for source 0, in this

example):

 ADDR0[7] ADDR0[6:0] ADDR0_CONST ADDR0_REL

register N 0 N 0 0

register N + aL 0 N 0 1

constant N N / 128 N % 128 1 0

constant N + aL N / 128 N % 128 1 1

inline const X 1 X 0 0

Note that inline constants set the MSB of ADDR0 and clear ADDR0_CONST.

8.4.2 Presubtract

Each RGB and Alpha instruction has a presubtract operation, which does some extra math on incoming data from

the first or from the first and second sources. The available operations are:

US_SRCP_OP_BIAS 1 – 2 * src0

US_SRCP_OP_SUB src1 - src0

US_SRCP_OP_ADD src1 + src0

US_SRCP_OP_INV 1 - src0

The RGB presubtract happens on all three components in parallel. The Alpha presubtract is scalar.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 107

If any presubtract result is used in the instruction, and one of the sources being used in a presubtract is written in the

previous instruction, and the previous instruction is an ALU or output instruction, a NOP needs to be inserted

between the two instructions. Do this by setting the NOP flag in the previous instruction, so the NOP does not

consume an instruction slot. This allows the HW the extra cycle necessary to resolve the dependencies involved in

doing this extra math (there are additional cases where NOP may need to be set, noted below).

NOP is never required if the previous instruction is a texture lookup.

8.4.3 Inputs

Each math operation has zero to three inputs. Each input can be configured to select a source and swizzle its

channels. There are fields to configure 6 inputs per instruction: 3 for RGB and 3 for Alpha. An instruction can read

in at most 12 independent colour components (9 RGB components and 3 alpha components).

8.4.3.1 Select

Each input selects from src0, src1, src2, or the presubtract result ("srcp"). One can conceive of the selects

assembling a 4-component vector as seen below. The swizzle selects (see next section) determine which of the four

values are chosen to actually take part in the computations.

 { rgb_addr0->r

src0 ={ rgb_addr0->g

 { rgb_addr0->b

 { alpha_addr0->a

 { rgb_addr1->r

src1 ={ rgb_addr1->g

 { rgb_addr1->b

 { alpha_addr1->a

 { rgb_addr2->r

src2 ={ rgb_addr2->g

 { rgb_addr2->b

 { alpha_addr2->a

 { rgb_srcp_result.r = rgb_srcp_op(rgb_addr0->r, rgb_addr1->r)

srcp ={ rgb_srcp_result.g = rgb_srcp_op(rgb_addr0->g, rgb_addr1->g)

 { rgb_srcp_result.b = rgb_srcp_op(rgb_addr0->b, rgb_addr1->b)

 { alpha_srcp_result.a = alpha_srcp_op(alpha_addr0->a, alpha_addr1->a)

The RGB and alpha units each take three operands, A, B, and C. These operands are selected with the RGB_SEL_x

and ALPHA_SEL_x fields. Note that src0, src1 and src2 are fetched from a combination of the RGB and alpha

source addresses. If the RGB unit swizzles in an alpha component, the alpha component will always come from

alpha_addr*. Similarly, if the alpha unit swizzles in an RGB component, it will always come from rgb_addr*.

8.4.3.2 Swizzle

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 108

Each component of each input can specify one of seven values. Each component can select R, G, B, or A from the

selected source, or it can choose 0, 0.5, or 1. The RGB unit has 3 components, so there are three swizzle select fields

per input. The Alpha unit only has 1 swizzle select per input.

The RGB unit always uses the RGB selectors (RGB_SEL_x) and, except for one case noted below, the red

(RED_SWIZ_x), green (GREEN_SWIZ_x), and blue (BLUE_SWIZ_x) swizzle selects. The alpha unit always uses

the alpha selectors (ALPHA_SEL_x) and the alpha (ALPHA_SWIZ_x) swizzle selects.

DP4 is a special case in that it is an RGB operation which operates on 4 components instead of 3. The fourth input

component is configured with the Alpha's select (ALPHA_SEL_x) and swizzle (ALPHA_SWIZ_x). This is the only

case where the Alpha's swizzle has an effect on the RGB computation's input.

8.4.3.3 Input Modifier

Each input has a modifier applied to it. The modifier can be one of:

US_IMOD_OFF No modification

US_IMOD_NEG Negate

US_IMOD_ABS Take absolute value

US_IMOD_NAB Take negative of absolute value

8.4.4 The Operation

Following are the possible math operations the ALU can perform. The three inputs are denoted by A, B, and C.

US_OP_RGB_SOP / US_OP_ALPHA_DP Get results from the other unit's unique ops. In the case

of RGB_SOP, the result is replicated to all three

channels. RGB's unique ops all have scalar results, so

ALPHA_DP simply copies that scalar result to its alpha

destination.

RGB_SOP is only valid if the alpha operation is a

transcendental operation: EX2, LN2, RCP, RSQ, SIN,

COS. ALPHA_DP is only valid if the RGB operation is

a dot product: DP3, DP4, D2A.

US_OP_RGB_MAD / US_OP_ALPHA_MAD A * B + C

US_OP_RGB_MIN / US_OP_ALPHA_MIN A < B ? A : B

Minimum of A and B.

US_OP_RGB_MAX / US_OP_ALPHA_MAX A >= B ? A : B

Maximum of A and B.

US_OP_RGB_CND / US_OP_ALPHA_CND C > 0.5 ? A : B

US_OP_RGB_CMP / US_OP_ALPHA_CMP C >= 0 ? A : B

US_OP_RGB_FRC / US_OP_ALPHA_FRC A - floor(A)

floor(A) is the largest integer value less than or equal to

A.

US_OP_RGB_MDH / US_OP_ALPHA_MDH A * B + C

Where:

 A is forced to topleft.src0 (source select and

swizzles ignored)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 109

 C is forced to topright.src0 (source select and

swizzles ignored)

MDH operates on a quad of pixels at a time; A and C

will be the same value for each pixel within a quad, and

the result will also be the same if B is a constant value.

Used to computes change in horizontal direction

between neighboring pixels. For example, to get the

difference (topright.r0 - topleft.r0)

set:

 src0 = r0 B = -1

Note that input modifiers work on all three inputs.

If src0 is computed in the previous instruction, then a

NOP needs to be inserted between the two instructions.

Do this by setting the NOP flag in the previous

instruction. This is not required if the previous

instruction is a texture lookup.

US_OP_RGB_MDV / US_OP_ALPHA_MDV A * B + C

Where:

 A is forced to topleft.src0 (source select and

swizzles ignored)

 C is forced to bottomleft.src0 (source select and

swizzles ignored)

MDV operates on a quad of pixels at a time; A and C

will be the same value for each pixel within a quad, and

the result will also be the same if B is a constant value.

Used to computes change in vertical direction between

neighboring pixels. For example, to get the difference

(bottomleft.r0 - topleft.r0) set:

 src0 = r0 B = -1

Note that input modifiers work on all three inputs.

If src0 is computed in the previous instruction, then a

NOP needs to be inserted between the two instructions.

Do this by setting the NOP flag in the previous

instruction. This is not required if the previous

instruction is a texture lookup.

US_OP_RGB_DP3 A.r*B.r + A.g*B.g + A.b*B.b

Results are broadcast to all 3 channels.

Use US_OP_ALPHA_DP to get result into Alpha.

US_OP_RGB_DP4 A.r*B.r + A.g*B.g + A.b*B.b + A.a*B.a

Results are broadcast to all 3 channels.

Use US_OP_ALPHA_DP to get result into Alpha.

Note that ".a" actually comes from the alpha instruction's

swizzle and select (see the section on swizzle above).

US_OP_RGB_D2A A.r*B.r + A.g*B.g + C.b

Results are broadcast to all 3 channels.

Use US_OP_ALPHA_DP to get result into Alpha.

US_OP_ALPHA_EX2 2 ^ A

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 110

Use US_OP_RGB_SOP to get result into RGB.

US_OP_ALPHA_LN2 log2(A)

Use US_OP_RGB_SOP to get result into RGB.

US_OP_ALPHA_RCP 1 / A

Use US_OP_RGB_SOP to get result into RGB.

US_OP_ALPHA_RSQ 1 / squareRoot(A)

Use US_OP_RGB_SOP to get result into RGB.

Note that the SM3 specification defines reciprocal

square root as 1 / squareRoot(abs(A)) -- this can be

achieved by using the input modifier for A.

US_OP_ALPHA_SIN sin(A * 2pi)

Use US_OP_RGB_SOP to get result into RGB.

US_OP_ALPHA_COS cos(A * 2pi)

Use US_OP_RGB_SOP to get result into RGB.

8.4.5 Instruction modifiers

Each instruction can have an output modifier applied to its result:

US_OMOD_U1 Multiply by 1

US_OMOD_U2 Multiply by 2

US_OMOD_U4 Multiply by 4

US_OMOD_U8 Multiply by 8

US_OMOD_D2 Divide by 2

US_OMOD_D4 Divide by 4

US_OMOD_D8 Divide by 8

US_OMOD_DISABLED No modification

Each instruction can also be optionally clamped to the range 0 to 1. This happens after the above output modifier.

8.4.5.1 Disabling the output modifier

The multiply/divide output modifiers all convert NaN values into a standardized NaN (0x7fffffff) and squash any

denormal values to plus or minus zero. For most ALU operations this is acceptable, however a MOV instruction

needs to preserve the source exactly. For this, you can disable the output modifier for the MIN, MAX, CMP and

CND instructions. With US_OMOD_DISABLED, the result is not modified at all; the value is neither multiplied

nor divided, and clamping is not applied.

This allows a MOV to be implemented using any of the following instructions, with US_OMOD_DISABLED set:

 MIN(src, src)

 MAX(src, src)

 CND(src, src, 0)

 CMP(src, src, 0)

US_OMOD_DISABLED is not valid with any other ALU operation.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 111

8.4.6 Writemasks

There are a number of writemasks for each instruction:

RGB_WMASK 3 bits; write R,G,B to register destination.

ALPHA_WMASK 1 bit; write A to register destination.

RGB_OMASK bits; write R,G,B to output or to predicate bits.

ALPHA_OMASK 1 bit; write A to output or to predicate bits.

W_OMASK 1 bit; write A to W output.

WRITE_INACTIVE 1 bit; if set, ignores flow control pixel mask when

writing. Affects ALU and texture instructions. If in

doubt, this bit should be cleared.

STAT_WE 4 bits; Mask R,G,B,A to increment sign-count

performance counter.

RGB_PRED_SEL 3 bits; Sets one of six modes that specify which of the 4

predicate bit(s) to AND with the RGB writemask (and

output mask when applicable). One of:

NONE - no predication

RGBA - normal predication

RRRR - replicate R predicate bit

GGGG - replicate G predicate bit

BBBB - replicate B predicate bit

AAAA - replicate A predicate bit

RGB_PRED_INV 1 bit; Inverts selected RGB predicate bit(s). Should be

zero if RGB_PRED_SEL is set to NONE.

ALPHA_PRED_SEL 3 bits; like RGB_PRED_SEL, but used to control

predication for the alpha unit's write mask.

ALPHA_PRED_INV 1 bit; Inverts selected alpha unit predicate bit. Should be

zero if ALPHA_PRED_SEL is set to NONE.

IGNORE_UNCOVERED 1 bit; if set, excludes uncovered pixels (outside triangle

or killed via TEXKILL) from TEX lookups and flow

control decisions. Affects texture and flow control

instructions. If in doubt, this bit should be cleared.

ALU_WMASK 1 bit; if set, update the ALU result. Similar to the

predicate write mask.

Flow control instructions only have one predicate select, using the RGB_PRED_SEL and RGB_PRED_INV fields.

ALU/Output instructions can use different predicate selects for the RGB (vector) computation and the alpha (scalar)

computation. For texture instructions, the RGB results from the texture unit will be influenced by

RGB_PRED_SEL/RGB_PRED_INV, and the alpha result from the texture unit will be influenced by the

ALPHA_PRED_SEL/ALPHA_PRED_INV fields.

8.4.7 Destination

The destination address refers to a temporary register. The loop variable (aL) may optionally be added to the address

before writing. The predicate select in RGB_PRED_SEL, RGB_PRED_INV, ALPHA_PRED_SEL, and

ALPHA_PRED_INV will be applied when writing to the destination.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 112

8.4.8 Output

With OUTPUT instructions, the TARGET field indicates where the result of the instruction should be written.

When in cached write mode (the default mode), the following options are available:

US_RNDR_TGT_A Write to render target A register

US_RNDR_TGT_B Write to render target B register

US_RNDR_TGT_C Write to render target C register

US_RNDR_TGT_D Write to render target D register

The US_OUT_FMT_* registers describe render targets A through D. The results are stored and the final value is

sent out when the program terminates. If a channel in an output target is written more than once, the final value

written is what will be sent out. The RGB and alpha unit may write to different targets in the same instruction.

The output may be predicated using PRED_SEL and PRED_INV.

8.4.9 Setting Predicate Bits

Each instruction may optionally set one or more predicate bits. ALU instructions (as opposed to OUTPUT

instructions) interpret the OMASK fields as a predicate writemask. The TARGET field determines when to set the

bits associated with each channel:

US_PRED_OP_EQUAL Set when channel is zero

US_PRED_OP_LESS Set when channel is negative

US_PRED_OP_GREATER_EQUAL Set when channel is non-negative

US_PRED_OP_NOT_EQUAL Set when channel is non-zero

The enumeration's names are based on the assumption that they will be primarily used after a subtraction of two

values. That's not the only possible use, of course. The RGB and alpha units may use different functions to set the

predicate in the same instruction.

In order to achieve the remaining common comparisons, <= and >, one can simply reverse the order of the values

being subtracted, or reverse both signs, and use the >= and < operations respectively.

You can simultaneously write to the predicate register and a temporary register, and you can perform a predicated

temporary register write if you are also writing the predicate register. However, the old value of the predicate will

only be applied to the temporary register's write mask; it will not be applied to the predicate write mask. In other

words, if the predicate is 0x7, your temporary write mask is 0xf and your predicate write mask is 0xf, you will write

only RGB components to the temporary register, but you will write to all 4 predicate bits.

If the instruction result is clamped, the comparison happens on the post-clamped result. If output modifier is

disabled, denormals may be compared -- denormals are equivalent to zero.

8.4.10 ALU Result

Every instruction has an "ALU result." In order to use it, an ALU instruction must write an ALU result, and a it must

be consumed by the next flow control instruction. The ALU result is preserved across other ALU/texture

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 113

instructions that do not write a new ALU result, but is NOT preserved across flow control instructions; therefore the

ALU result must be consumed by the first flow control statement after it is written.

The ALU result is a single bit. The channel source for the ALU result is selected by the ALU_RESULT_SEL field:

US_ALU_RESULT_SEL_RED

US_ALU_RESULT_SEL_ALPHA

How to interpret the floating point result to set the ALU result bit is specified by the ALU_RESULT_OP field,

which is similar to the interpretation of the TARGET field for setting the predicate bits:

US_ALU_RESULT_OP_EQUAL Set when channel is zero

US_ALU_RESULT_OP_LESS Set when channel is negative

US_ALU_RESULT_OP_GREATER_EQUAL Set when channel is non-negative

US_ALU_RESULT_OP_NOT_EQUAL Set when channel is non-zero

The ALU instruction that updates the ALU result must set the ALU_WMASK bit.

If the instruction result is clamped, the comparison happens on the post-clamped result. If output modifier is

disabled, denormals may be compared -- denormals are equivalent to zero.

8.5 Texture Instructions

Texture instructions are simpler than ALU or flow control instructions. Texture instructions have one destination

temporary address, 1 to 3 source temporary addresses, a sampler ID, and an opcode and control bits specifying how

to lookup the texture. Most texture configuration is handled in the per-sampler configuration.

As with ALU temporary addresses, the loop variable (aL) may be added to any texture temporary address (source

and destination). Texture source addresses allow arbitrary swizzles from RGBA to STRQ coordinate space, and the

RGBA result from the texture unit may also be swizzled. Unlike with ALU instructions, the texture swizzles cannot

be used to select constant inputs (0, 0.5, 1). Texture source addresses always read from the temporary registers; they

cannot read from the constant bank.

Texture instructions feature a texture semaphore mechanism to synchronize texture lookup with instructions using

the result of the lookup. See below for more information.

You may choose to limit which channels of a texture lookup are written by using the write masks RGB_WMASK

and ALPHA_WMASK. These write masks may be predicated; the RGB results from the texture unit are predicated

with RGB_PRED_SEL and RGB_PRED_INV, while the alpha result from the texture unit is predicated with

ALPHA_PRED_SEL and ALPHA_PRED_INV.

Texture instructions have an UNSCALED bit that to control whether the texture coordinates are scaled by the

texture dimensions before lookup. In typical usage, this bit is cleared for normal texture lookups which supply

coordinates in the range [0.0, 1.0], and set for texture lookups which supply coordinates that are prescaled to the

texture dimensions.

8.5.1 Operations

There are currently 7 texture operations available.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 114

US_TEX_INST_NOP Perform no operation. The source addresses are ignored,

and nothing is written to the destination address. A

texture NOP may acquire the texture semaphore, so

NOP can be used for synchronization purposes.

US_TEX_INST_LOOKUP A standard texture lookup. Reads the coordinates from

SRC_ADDR and writes the results of the lookup to

DST_ADDR.

US_TEX_INST_KILL_LT_0 Kill the pixel if any components in SRC_ADDR are less

than zero. Note that the source swizzles are ignored in

this case; if you want to limit which channels are

examined, you may use the write masks in

WMASK_RGB, WMASK_ALPHA, and/or predication.

Nothing is written to the destination address, but the

coverage mask may be updated.

US_TEX_INST_LOOKUP_PROJ Lookup a projected texture. Q is used for the projective

divide.

US_TEX_INST_LOOKUP_LODBIAS Lookup a texture, biasing the LOD that is computed.

US_TEX_INST_LOOKUP_LOD Lookup a texture, using the value specified in the Q

coordinate of the input as an explicit LOD value.

US_TEX_INST_LOOKUP_DXDY Lookup a texture, computing a LOD based on slopes

given. This is the only opcode that uses the DX_ADDR

and DY_ADDR source addresses. These registers

contain the slope values the texture unit should use when

determining the slope.

8.5.2 Semaphore

The semaphore is used to synchronize texture lookups with their subsequent use in the shader program.

Each texture instruction has a bit, TEX_SEM_ACQUIRE, specifying whether it should hold the texture semaphore

until the looked-up data comes back and is written to the destination temporary register. All shader instructions have

another semaphore bit, TEX_SEM_WAIT, that specifies whether to wait on the semaphore so its (dependent) source

data is up to date. You may take advantage of the texture semaphore to perform various independent computations

while waiting on the texture operation to complete.

Hardware disallows more than one ACQUIRE operation at a time, so if you set TEX_SEM_ACQUIRE on a lookup,

you must also set TEX_SEM_WAIT for that instruction. WAIT has no cost if there are no outstanding ACQUIRE

operations. For an instruction with TEX_SEM_WAIT and TEX_SEM_ACQUIRE both set, the wait happens first.

There is only one texture semaphore, however you may use it to protect multiple texture lookups, as long as the

lookups are themselves independent. When a texture instruction sets TEX_SEM_ACQUIRE, the texture unit

ensures that that particular lookup, and all prior lookups, have completed before releasing the semaphore. Therefore,

to protect several texture lookups, you may set TEX_SEM_ACQUIRE only on the last texture lookup, and set

TEX_SEM_WAIT on the first instruction that uses any of the results. This example illustrates the usage:

 INSTRUCTION TEX_SEM_WAIT TEX_SEM_AQUIRE

0: r4 = TEXLD(s0, r1) 0 0

1: r5 = TEXLD(s1, r2) 0 0

2: r6 = TEXLD(s2, r3) 1 1

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 115

3: r1 = r1 + 1 0

4: r2 = r2 + 1 0

5: r3 = r3 + 1 0

6: r4 = r4 + 1 1

In the above example, note that instruction 2 waits for the semaphore to ensure the semaphore is available before

acquiring it.

Remember that the last instruction of the shader program must set TEX_SEM_WAIT, to ensure that the texture unit

is ready to process the next quad. It is invalid to terminate the shader while holding the texture semaphore from a

texture lookup.

8.6 Flow Control

Each flow control instruction is essentially a conditional jump. Various optional stack operations allow all the

different kinds of traditional flow control statements. In particular, flow control instructions allow branch statements

(if/else/endif blocks), loop statements (with an optional loop register, aL), and subroutine calls. Optimizers may be

able to combine these basic types of instructions, and utilize more esoteric flow control modes.

HW supports two flow control modes, "partial" and "full". Partial flow control mode enables twice as many

contexts as full mode, but partial flow control mode has a limited nesting depth of branch statements, and does not

support loops or subroutine calls. Partial flow control mode should be used unless the program requires branch

statements nested more than 6 deep, or the program requires loops or subroutines. If full flow control mode is used,

then your shader must declare at least two temporary registers (the US_PIXSIZE.PIXSIZE field must be greater than

or equal to 1). The US_FC_CTRL register, described below, controls the behaviour of all flow control statements in

a program including whether to use partial or full flow control mode.

See the Fields section below for descriptions of fields that affect the jump condition and the various flow control

stacks. Following that are the values of those fields for the most common types of flow control operations.

8.6.1 Dynamic Flow Control

As the US is a SIMD engine, applying the same instruction to a group of pixels, dynamic flow control must be

implemented with pixel masks. If a pixel wants to take a jump because it failed an IF condition, but its neighbors in

the pixel group don't want to jump, the pixel must be masked off for a time until that branch of the IF statement is

completed. Only if all pixels fail the IF condition would the program counter actually be changed. Conversely, if

some pixels don't want to jump to a subroutine, they must be masked off for the entire subroutine. Only if none of

the pixels want to jump would the call be skipped. A break statement within a loop masks off passing pixels until

the loop is complete, and the program counter is only changed if all pixels want to jump.

These pixel masks are organized into stacks so flow control blocks may be nested. The operations on these stacks

are encoded in the flow control instructions as flags, instead of having one set of opcodes which hard-wire the stack

behavior. This orthogonality allows for more creative control of the shader's behavior, and provides opportunity for

optimizations in shaders that use a lot of flow control.

Jump conditions can be based off of a boolean constant, the result of the previous ALU operation, and/or a predicate

bit. Booleans are constant across all pixels, so dynamic flow control is only achieved with predicates and

conditionals (ALU result). Any ALU instruction can specify whether to write the ALU result and what channel

supplies the data for the result. The ALU result is only valid until another ALU instruction writes to the result, or a

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 116

flow control instruction is encountered. The predicate bits can be set anywhere and are preserved across flow

control instructions, but there are only 4 of them.

Flow control predication cannot be per-channel. One of the replicate swizzles must be used for predication of flow

control instructions (all other types of instructions can be predicated per channel). Flow control instructions use the

RGB_PRED_SEL and RGB_PRED_INV fields to compute the predicate.

8.6.2 The Stacks, and Branch Counters

The HW maintains two separate stacks for flow control.

Address Stack Purely an address stack. No other state is maintained.

Popping the address stack overrides the instruction

address field of the flow control instruction. The address

stack will only be modified if the flow control

instruction decides to jump.

Loop Stack Stores an internal iteration count, loop variable (aL), and

a pixel mask per frame. The only way to access the

iteration count is with the LOOP/ENDLOOP and

REP/ENDREP operations. The only way to alter the aL

variable is with the LOOP/ENDLOOP ops. The only

way to read the aL variable is with relative addressing.

The only way to alter the pixel mask is with the BREAK

or CONTINUE instruction.

Each stack's size is dependent on whether the program is in partial or full flow control mode. Stack overflows and

underflows produce undefined behaviour in the hardware. The stack sizes are:

 PARTIAL FULL

Loop stack n/a 4

Address stack n/a 4

The loop stack is maintained in such a way that an inner REP block will continue to see the loop variable from an

outer LOOP block. Nested LOOP blocks will shadow the loop variable. The loop variable is not valid if you are not

in at least one LOOP block.

In addition to the two stacks, hardware maintains an Active Bit and a Branch Counter for each pixel that indicate

whether the pixel is active and, if it was disabled by a conditional statement (if, else), how long before it can be

reactivated. If the active bit is unset, the pixel is inactive and the branch counter indicates the number of conditional

blocks we must exit before the pixel can be activated again. The maximum value of this counter is dependent on

whether the program is in partial or full flow control mode. The limits (which determine maximum safe nesting

depth) are:

 PARTIAL FULL

Branch counter 0..3 0..31

Maximum depth 4 32

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 117

The branch counter can be incremented and decremented directly by any flow control instruction based on whether

the pixel agrees with the jump decision. Manipulating the branch counter may affect the active bit. Incrementing

the counter on an active pixel will disable the pixel by clearing the active bit, and set the branch counter to zero.

Decrementing the counter of an inactive pixel to a negative value will set the active bit, reactivating the pixel. The

branch counter is ignored in hardware while the active bit is set.

Pixels disabled by looping statements (BREAKLOOP, BREAKREP, and CONTINUE) are also tracked with "loop

inactive" counters, however unlike the branch counter, the loop counters cannot be manipulated directly.

Since only conditional (if, else) and loop statements maintain active pixel masks, to call a function based on a

condition requires the shader to use the branch counters on CALL and RETURN so the pixel active mask will be

updated on the conditional call. If you know ahead of time that *all* calls to a particular subroutine will be

unconditional calls, you can omit the branch counter manipulation on that subroutine's return and on any calls to that

subroutine. The benefit of this is unclear, unless you are nearing the upper limit on the branch counter.

Returns within dynamic branches and/or loops (nested in the subroutine) are not supported. A return can be made

conditional (by incremeneting the branch stack counter on stay), but the hardware does not support returning within

other conditional blocks that might partially mask it. If a branch is entirely static (based on a constant boolean), you

may put a return within a branch (just get the branch counter decrement right). This cannot be done inside loops,

however.

8.6.3 Fields

8.6.3.1 Fields controlling conditions on the jump

JUMP_FUNC 2x2x2 table indicating when to jump

Bit 0 = Jump when (!alu_result && !predicate && !boolean).

Bit 1 = Jump when (!alu_result && !predicate && boolean).

Bit 2 = Jump when (!alu_result && predicate && !boolean).

Bit 3 = Jump when (!alu_result && predicate && boolean).

Bit 4 = Jump when (alu_result && !predicate && !boolean).

Bit 5 = Jump when (alu_result && !predicate && boolean).

Bit 6 = Jump when (alu_result && predicate && !boolean).

Bit 7 = Jump when (alu_result && predicate && boolean).

Common JUMP_FUNC values:

0x00 = Never jump

0x0f = Jump iff alu_result is false.

0x33 = Jump iff predicate is false.

0x55 = Jump iff boolean is false.

0xaa = Jump iff boolean is true.

0xcc = Jump iff predicate is true.

0xf0 = Jump iff alu_result is true.

0xff = Always jump

JUMP_ANY How to treat partially passing groups of pixels

false = Don't jump unless all pixels want to jump.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 118

true = Jump if at least one active pixel wants to jump.

When JUMP_ANY is false, the instruction behaves like a universal quantifier, and will decide jump if there are no

active pixels. When JUMP_ANY is true, the instruction behaves like an existential quantifier, and will never decide

to jump if there are no active pixels. Looping statements may override the jump decision made by the pixels based

on the loop counter.

8.6.3.2 Fields controlling optional stack operation

OP Loop Stack Operations

US_FC_OP_JUMP None

US_FC_OP_LOOP Initialize counter and aL, and push loop stack if stay

US_FC_OP_ENDLOOP Increment counter and aL if jump, else pop loop stack

US_FC_OP_REP Initialize counter, and push loop stack if stay

US_FC_OP_ENDREP Increment counter if jump, else pop loop stack

US_FC_OP_BREAKLOOP Pop loop stack if jump

US_FC_OP_BREAKREP Pop loop stack if jump

US_FC_OP_CONTINUE Disable pixels until end of current loop

You should use US_FC_OP_BREAKLOOP if the innermost looping construct is LOOP, and

US_FC_OP_BREAKREP if the innermost looping construct is REP.

A_OP Address Stack Operations

US_FC_A_OP_NONE = None

US_FC_A_OP_POP = Pop address stack if jump (overrides JUMP_ADDR

given in instruction)

US_FC_A_OP_PUSH = Push address stack if jump

B_OP0 Branch stack Operations if stay

US_FC_B_OP_NONE = None

US_FC_B_OP_DECR = Decrement branch counter for inactive pixels by

amount in B_POP_CNT. Activate pixels which go

negative.

US_FC_B_OP_INCR = Increment branch counter for inactive pixels by 1.

Deactivate pixels which disagree with the jump decision

(by deciding to jump) and set their branch counter to 0.

B_OP1 Branch stack Operations if jump

US_FC_B_OP_NONE = None

US_FC_B_OP_DECR = Decrement branch counter for inactive pixels by

amount in B_POP_CNT. Activate pixels which go

negative.

US_FC_B_OP_INCR = Increment branch counter for inactive pixels by 1.

Deactivate pixels which disagree with the jump decision

(by deciding not to jump) and set their branch counter to

0.

B_POP_CNT Branch Stack Pop Count

How much to decrement the branch counters by when appropriate B_OP* field says to decrement.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 119

B_ELSE Branch Stack Else

false = None

true = Activate pixels whose branch count is zero (pixels

deactivated by the innermost conditional block), and

deactivate all pixels that were active.

Special Cases:

 When the iteration count is zero, LOOP/REP ignore JUMP_FUNC and jump.

 When the iteration count is zero, ENDLOOP/ENDREP ignore JUMP_FUNC and don't jump.

 Any pixels deactivated by B_ELSE "want to jump" regardless of JUMP_FUNC.

 Any pixels deactivated by a branching statement (if, else) will inhibit a decision to jump by a BREAK or

CONTINUE statement.

 Any pixels deactivated by a CONTINUE statement will inhibit a decision to jump by a BREAK statement;

they will not inhibit a decision to jump by another CONTINUE statement.

 Pixels deactivated by other flow control are indifferent to the decision to jump by a BREAK or

CONTINUE statement.

8.6.3.3 Address Fields

BOOL_ADDR Which of 32 constant booleans to use for jump condition

INT_ADDR Which of 32 constant integers to use for loop initialization (the red channel is used for

iteration count, green for aL initialization, and blue for aL increment)

JUMP_ADDR Which instruction to jump to if conditions pass

JUMP_GLOBAL Whether JUMP_ADDR is global, or if OFFSET_ADDR should be added to JUMP_ADDR.

8.6.3.4 Global Configuration

FULL_FC_EN Whether to enable full flow control support.

false = No loops or calls, limited branching. Better performance.

true = All flow control functionality enabled.

8.6.4 Common Flow Control Statements

 JUMP_FUNC JUMP_ANY OP A_OP B_OP0 B_OP1 B_POP_CNT B_ELSE JUMP_ADDR

IF b 0x55 0 JUMP NONE NONE NONE 0 0 ELSE+1

ELSE 0xff 0 JUMP NONE NONE NONE 0 0 ENDIF

ENDIF

IF p 0x33 0 JUMP NONE INCR INCR 0 0 ELSE+1

ELSE 0x00 0 JUMP NONE NONE DECR 1 1 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

IF c 0x0f 0 JUMP NONE INCR INCR 0 0 ELSE+1

ELSE 0x00 0 JUMP NONE NONE DECR 1 1 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

IF b 0x55 0 JUMP NONE NONE NONE 0 0 ENDIF

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 120

ENDIF

IF p 0x33 0 JUMP NONE INCR NONE 0 0 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF+1

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

LOOP 0x00 0 LOOP NONE NONE NONE 0 0 ENDLOOP+1

ENDLOOP 0xff 1 ENDLOOP NONE NONE NONE 0 0 LOOP+1

REP 0x00 0 REP NONE NONE NONE 0 0 ENDREP+1

ENDREP 0xff 1 ENDREP NONE NONE NONE 0 0 REP+1

BREAK 0xff 0 BREAK NONE NONE DECR n 0 END+1

BREAK b 0xaa 0 BREAK NONE NONE DECR n 0 END+1

BREAK p 0xcc 0 BREAK NONE NONE DECR n 0 END+1

BREAK c 0xf0 0 BREAK NONE NONE DECR n 0 END+1

CONTINUE 0xff 0 CONTINUE NONE NONE DECR n 0 END

CONTINUE

b

0xaa 0 CONTINUE NONE NONE DECR n 0 END

CONTINUE
p

0xcc 0 CONTIUNE NONE NONE DECR n 0 END

CONTINUE

c

0xf0 0 CONTINUE NONE NONE DECR n 0 END

CALL 0xff 1 JUMP PUSH NONE INCR 0 0 Subroutine

CALL b 0xaa 1 JUMP PUSH NONE INCR 0 0 Subroutine

CALL p 0xcc 1 JUMP PUSH NONE INCR 0 0 Subroutine

CALL c 0xf0 1 JUMP PUSH NONE INCR 0 0 Subroutine

RETURN 0xff 0 JUMP POP NONE DECR 1 0 0

* n indicates how many branch stack frames the BREAK is inside within the current loop.

* Lines with no fields filled out indicate no FC instruction is necessary in that spot.

8.6.5 Optimizations

Clearly, not all the possible combinations are explored above. The flexibility of the flow control instruction allows

for more creative flow control operations, or (more likely) optimizations.

One of the easiest optimizations makes use of the B_POP_CNT to merge consecutive ENDIF statements:

 JUMP_FUNC JUMP_ANY OP A_OP B_OP0 B_OP1 B_POP_CNT B_ELSE JUMP_ADDR

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF_0+1

[…]

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF_1+1

[…]

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF_2+1

[…]

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

ENDIF 0x00 1 JUMP NONE DECR NONE 1 0 0

Becomes:

 JUMP_FUNC JUMP_ANY OP A_OP B_OP0 B_OP1 B_POP_CNT B_ELSE JUMP_ADDR

IF c 0x0f 0 JUMP NONE INCR NONE 0 0 ENDIF+1

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 121

[…]

IF c 0x0f 0 JUMP NONE INCR DECR 1 0 ENDIF+1

[…]

IF c 0x0f 0 JUMP NONE INCR DECR 2 0 ENDIF+1

[…]

ENDIF

ENDIF

ENDIF 0x00 1 JUMP NONE DECR NONE 3 0 0

8.6.6 LAST Bit

The LAST bit in the US_CMN_INST instruction word allows shaders to terminate before reaching the address

indicated by US_CODE_SIZE.END_ADDR. The LAST bit can be indicated for any instruction type. Any active

pixel for an instruction of any type (FC, ALU, OUTPUT or TEX) marked "last" will be considered "done" for that

instruction and all future instructions that the shader might execute for that thread. Future instructions may or may

not be executed, according to the hardware implementation.

In the R5xx hardware implementation, when all pixels are "done" in a thread and we hit an OUTPUT instruction

that is marked as "last" (and has a texture semaphore wait! -- this is required), we will stop the thread, even if this

isn't the instruction specified by END_ADDR. Also, pixels that are "done" behave the same as pixels considered

"inactive" when encountering flow control instructions, meaning that code that would have been skipped over if all

pixels were "inactive" would also be skipped over if the only pixels marked as "active" were also marked as "done."

8.7 Floating Point Issues

The US is designed to be compliant with the Shader Model 3, which does not officially support IEEE special values

(denormal, infinity, NaN), and allows for leniency in various corner cases.

The US strives to provide a more complete IEEE floating point implementation. US supports the IEEE 32-bit

floating point format, with 23 bits mantissa, 8 bits biased exponent (bias 127), and 1 bit sign. The US also supports

the special IEEE values (denormal, infinity, NaN), but there are some important caveats in the implementation

which are noted below. There is no distinction between an sNaN and a qNaN.

8.7.1 Deviations from IEEE

The most pervasive caveat is that denormals are flushed to an appropriately signed zero throughout US. There is no

gradual underflow, and identities are not preserved for denormal values. This will be apparent in comparison

operations where a denormal is treated as equivalent to zero.

Also pervasive, the internal rounding mode is not configurable and is not exact to the IEEE standard. It could best

be said that rounding is random; operations in and near US round with differing standards and it is infeasible to

specify a uniform rounding mode at this stage of design. Most ALU operations are accurate to within one bit on

each input; transcendental functions have larger tolerances.

The lack of separable multiply and add instructions has consequences on rounding and sign preservation; when

using MAD to perform only a multiply or addition, keep in mind that the other operation may influence the result

despite apparent identities. For example, the obvious instructions to use for moving a value from one register to

another both utilize MAD, either with the additive identity "0 * 0 + r1", or a combination of additive and

multiplicative identities, "r0 * 1 + 0". Neither these instructions will correctly copy -0.0, because the adder cannot

generate -0.0 except with two negative inputs. In this case, a more accurate move instruction would be "-0 * 0 + r1".

(the ideal MOV instruction is described below).

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 122

US only supports comparisons against zero (predication, ALU result, and CMP) and +0.5 (CND), and this has

consequences for implementing a general compare function with special values. It is tempting to implement a

general comparison between values A and B by subtracting the results, but this will not have the desired effect for

special values. In IEEE, an infinite value is equivalent to itself, but NaN is never equivalent to NaN. Yet (infinity -

infinity) = (NaN - NaN) = NaN, and the results are indistinguishable. The limited operator set further complicates

issues, since (A > B) is not equivalent to !(A <= B) when either input is NaN.

The behaviour for CMP and CND is described below. When using the predicate comparison operators, the

following hold for special values:

VALUE X<0 X>=0 X==0 X!=0

+0.0 0 1 1 0

-0.0 0 1 1 0

+Inf 0 1 0 1

-Inf 1 0 0 1

NaN 0 0 0 1

* Denormals compare as equivalent to zero. Note that the only way a denormal may be involved in a comparison

for predicate/alu result is if the output modifier is disabled with US_OMOD_DISABLED.

8.7.2 ALU Non-Transcendental Floating Point

Non-transcendental ALU operations maintain extra precision to represent computations where an intermediate result

exceeds IEEE's finite range. For example, if a MAD generates a result outside the finite range, but the output

modifier brings the value back into range, the ALU will generate a finite value, not infinity.

The ALU accepts denormal values, but denormals are flushed to zero, preserving sign. It is possible for a

multiplicative output modifier to bring a denormal intermediate result into the normal range; in this case, the ALU

will generate a normal nonzero value.

The ALU MAD operation, which many ALU operations are based on, follows standard IEEE rules when handling

special input values, for example:

OPERATION RESULT NOTE

x * NaN NaN X is any value

0.0 * Inf NaN

Inf * Inf Inf

Inf * -Inf -Inf

0.0 * -0.0 -0.0

x + NaN NaN X is any value

Inf + -Inf NaN

Inf + Inf Inf

Inf + -1.0 Inf

0.0 + -0.0 0.0

-0.0 + -0.0 -0.0

Dot products may lose precision in cases where the values to be added differ greatly in magnitude. For example, if

the two largest values to be added cancel exactly, and the next-largest value has a magnitude smaller by a factor of

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 123

2^25 or more, US will emit +0.0 rather than the sum of the two remaining components. IEEE is silent on the

behavior of such fused operations, and it seems unlikely that this condition will manifest very often.

MIN and MAX operations return the second argument if either input is NaN (this is consistent with IEEE and SM3

specifications); infinite values compare as usual. If both inputs are +-0.0, MIN and MAX will return the second

input (consistent with IEEE and the SM3 spec) – as a result, MIN(+0, -0) == -0, and MIN(-0, +0) == +0.

CND and CMP operations return the second argument if either input is NaN; infinite values compare as usual. As

with the predicate compare operators, +0.0 and -0.0 are both "equal" to 0.

MIN, MAX, CND, and CMP are guaranteed to return one of their first two arguments. If you use

US_OMOD_DISABLED as well, then you will get a bit-exact representation of one of the first two arguments.

ALU operations usually enable the output modifier, which in turn standardizes NaN values and flushes denormal

results to zero. A MOV instruction which preserves the source bits may be implemented by setting

US_OMOD_DISABLED for the instruction and using the MAX(src, src) instruction. The output modifier cannot be

disabled for a saturated MOV (MOV with clamping enabled).

8.7.3 ALU Transcendental Floating Point

In US, transcendental operations are EX2, LN2, RCP, RSQ, SIN, and COS (mathematically speaking, one of these

functions does not belong). Transcendentals do not maintain extra internal precision; as a result, if the result of the

transcendental operation exceeds the IEEE finite range, the ALU will generate infinity even if the output modifier

would bring the result back into range. Similarly if the result is denormal, the ALU will generate a pure zero

(preserving sign) even if the output modifier would bring the result back into the normal range.

Special values are computed as shown in the following table:

INPUT EX2 LN2 RCP RSQ SIN COS

+0.0 +1.0 -Inf +Inf +Inf +0.0 +1.0

-0.0 +1.0 -Inf -Inf +Inf * -0.0 +1.0

+Inf +Inf +Inf +0.0 +0.0 NaN NaN

-Inf +0.0 NaN -0.0 NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

* For RSQ, recall that the square root occurs first. IEEE specifies sqrt(-0.0) -> -0.0; the US deviates from this,

however this does not affect SM3 compliance since RSQ is always used with the absolute value input modifier for

SM3 shaders.

8.7.4 Texture Floating Point

Projected and cubemapped texture coordinates are processed in the US block before being sent to the texture unit.

The texture unit does not accept NaN, so NaN coordinates are converted to +infinity before being sent to the texture

unit. As with the ALU, denormal inputs and denormal results are converted to pure zero, preserving sign.

The multiplier used for projection and cubemapping does not follow IEEE rules when handling special values. This

will become apparent only when you attempt to project or cubemap a coordinate that contains an infinite or NaN

component.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 124

You should use caution when generating very large values for use as coordinates in a texture lookup. These values

may generate infinite values when scaled by the texture dimensions, projected, or cubemapped.

8.7.5 Legacy multiply behaviour

By default multiplication by zero is IEEE-compliant for any ALU instruction. To support legacy (SM1.x) shaders

which did not have an IEEE-compliant multiplier, set

US_CONFIG.ZERO_TIMES_ANYTHING_EQUALS_ZERO. Setting this bit will cause the multiplier used by

MAD, dot products, MDH and MDV to treat "+-0 * x == +0" for all values x. Note that IEEE deviates from this

behaviour when x is infinity or NaN. Modern shaders should not set this bit.

8.8 Writing to US Registers

The US configuration, integer constant, and boolean constant registers can be written to directly. However due to

addressing limitations elsewhere in the pipe, the US instruction and ALU constant registers cannot be written

directly; they must be programmed via a vector mechanism provided in the GA block. You write to the vector in

two parts; first, you program the write destination in GA_US_VECTOR_INDEX, then you write data to

GA_US_VECTOR_DATA until you have set all the values of interest.

8.8.1 Writing instructions

To write one or more shader instructions, set GA_US_VECTOR_INDEX.TYPE to GA_US_VECTOR_INST and

GA_US_VECTOR_INDEX.INDEX to the address of the first shader instruction you want to write (from 0 to 511).

Then write each instruction register to GA_US_VECTOR_DATA (usually, a total of 6 writes per instruction), in the

following order:

 ALU/OUTPUT TEX FC

0: US_CMN_INST US_CMN_INST US_CMN_INST

1: US_ALU_RGB_ADDR US_TEX_INST 0

2: US_ALU_ALPHA_ADDR US_TEX_ADDR US_FC_INST

3: US_ALU_RGB_INST US_TEX_ADDR_DXDY US_FC_ADDR

4: US_ALU_ALPHA_INST 0 0

5: US_ALU_RGBA_INST 0 0

A few notes:

 If you are writing an FC or TEX instruction, you may need to pad the vector with zeros; note that a zero

dword must be written in the middle of the FC instruction.

 You can write to multiple instructions without updating the index. After you write 6 values to

GA_US_VECTOR_DATA, the GA will automatically increment the instruction index. The index wraps at

512.

 If the last instruction you write to is a TEX or FC instruction, you do not need to write the last two zero

dwords that are used for padding.

 Similarly, if you do not need to update all instruction registers for the last instruction you write, you do not

need to write the registers that follow it.

 You should always write to GA_US_VECTOR_INDEX before writing a sequence of instructions, to

ensure the GA is setup appropriately.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 125

8.8.2 Writing ALU constants

To write one or more ALU constants, set GA_US_VECTOR_INDEX.TYPE to GA_US_VECTOR_CONST and

GA_US_VECTOR_INDEX.INDEX to the address of the first constant you want to write (from 0 to 255). Then

write each constant register to GA_US_VECTOR_DATA (usually, a total of 4 writes per constant), in the following

order:

0: US_ALU_CONST_R

1: US_ALU_CONST_G

2: US_ALU_CONST_B

3: US_ALU_CONST_A

A few notes:

 You can write to multiple constants without updating the index. After you write 4 values to

GA_US_VECTOR_DATA, the GA will automatically increment the constant index.

 If you do not need to update all components of the last constant you write, you do not need to write the

components that follow it.

 You should always write to GA_US_VECTOR_INDEX before writing a sequence of constants, to ensure

the GA is setup appropriately.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 126

9. HiZ

9.1 Introduction

The R5xx HiZ (Hierarchical Z) unit performs a coarse z occlusion test on a tile of pixels to generate a mask

indicating whether a set of quads within the tile is potentially visible. The Scan Converter (SC) block uses this mask

to determine which quads will be passed on to the Rasterizer (RS) and which will be pruned. In this manner, HiZ

provides an early-out mechanism for dropping quads.

This section presents an overview of the operation of the HiZ unit and a guide on how to program it.

9.2 Enabling HiZ

HiZ operation must be enabled in both the SC and ZB. It is enabled or disabled in the SC by setting the HZ_EN field

in the SC_HYPERZ_EN field to 1 or 0. Similarly, it is enabled or disabled in the ZB by setting the HIZ_ENABLE

field in the ZB_BW_CNTL register to 1 or 0.

9.3 Configuring HiZ

The following registers must be set to configure the HiZ unit for operation.

The ZB_HIZ_PITCH register specifies the pitch of the HiZ buffer in HiZ RAM. The host writes the pitch in pixels.

The register interprets bits [13:4] as the 16 pixel-aligned HIZ_PITCH field. This field is used as pitch_mux in

formula 1 in section 2.2, which calculates the DWORD address in HiZ RAM where z floor updates are written

during z cache line evictions.

The ZB_HIZ_OFFSET register specifies a base offset into HiZ RAM. Bits [16:2] of this register are the DWORD-

aligned HIZ_OFFSET field.

The HZ_MAX field in the SC_HYPERZ_EN register specifies whether the minimum or maximum z in the 8x8 tile

is interpreted as the closest z whose floor is sent to the HiZ unit. The definition of which is the closest depends on

the sense of the z function. For instance, if the z function is LESS, the minimum value is the closest. The

programmer should set this field according to the z comparison function that is set in the ZFUNC field of the

ZB_ZSTENCILCNTL register. Setting SC_HYPERZ_EN.HZ_MAX to 0 sends the floor of the minimum, and

setting it to 1 sends the floor of the maximum.

The HIZ_MIN field of the ZB_BW_CNTL register specifies whether the HiZ unit updates the HiZ RAM with the

floor of the minimum or maximum z value during z cache line evictions. As with the SC_HYPERZ_EN.HZ_MAX

field, this field is also dependant on the z function set in the ZB_ZSTENCILCNTL. Setting HIZ_MIN to 0 updates

HiZ RAM with the floor of the maximum z, and 1 updates with the floor of the minimum.

The following table shows how the SC_HYPERZ_EN.HZ_MAX and ZB_BW_CNTL. HIZ_MIN fields should be

set according to ZFUNC. It also shows what the HiZ RAM should be initially cleared to, and what action the HiZ

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 127

comparison takes. The „Z_MINMAX‟ column corresponds to the SC_HYPERZ_EN.HZ_MAX setting, and the „ZB

write to HiZ(X, Y)‟ corresponds to the ZB_BW_CNTL. HIZ_MIN setting.

ZFUNC HiZ Clear

Value

Z_MINMAX HZ 2
nd

 Level Z Function ZB write to HIZ(X,Y)

0 - Never Don‟t Care Min(Z0, Z1,

Z2)

Prune the Block Don‟t care

1 - Less Floor(Z_Clear) Min(Z0, Z1,

Z2)

If (floor(Z_MINMAX) >

HiZ(X,Y))

 Prune the Block

Else

 Pass the Block

Floor(Maximum(Z))

2 - Less or Equal Floor(Z_Clear) Min(Z0, Z1,

Z2)

If (floor(Z_MINMAX) >

HiZ(X,Y))

 Prune the Block

Else

 Pass the Block

Floor(Maximum(Z))

3 - Equal Don‟t Care Min(Z0, Z1,

Z2)

Pass the Block Don‟t care

4 - Greater or

Equal

Floor(Z_Clear) Max(Z0, Z1,

Z2)

If (floor(Z_MINMAX) <

HiZ(X,Y))

 Prune the Block

Else

 Pass the Block

Floor(Minimum(Z))

5 - Greater Than Floor(Z_Clear) Max(Z0, Z1,

Z2)

If (floor(Z_MINMAX) <

HiZ(X,Y))

 Prune the Block

Else

 Pass the Block

Floor(Minimum(Z))

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 128

6 - Not Equal Don‟t Care Max(Z0, Z1,

Z2)

Pass the Block Don‟t Care

7 - Always Don‟t Care Max(Z0, Z1,

Z2)

Pass the Block Don‟t Care

9.4 HiZ Clear with PM4 Packet

The most efficient manner for a driver to clear HiZ RAM is to use the 3D_CLEAR_HIZ Type-3 PM4 packet. The

3D_CLEAR_HIZ packet is described below.

3D_CLEAR_HIZ

Functionality

Clear HIZ RAM.

Format

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 START Start

3 COUNT[13:0] Count[13:0] – Maximum is 0x3FFF.

4 CLEAR_VALUE The value to write into the HIZ RAM.

9.5 Example: Putting it All Together

Here is a simple example that demonstrates typical steps in setting up the HiZ unit:

// enable z buffering

regwrite (ZB_CNTL, Z_ENABLE, 1);

// set the ZFUNC to LESS

regwrite (ZB_ZSTENCILCNTL, ZFUNC, 1); // 1 = LESS

// enable HiZ in the SC

regwrite (SC_HYPERZ_EN, HZ_EN, 1);

// enable HiZ in the ZB

regwrite (ZB_BW_CNTL, HZ_EN, 1);

// set HZ_MAX in SC_HYPERZ_EN to MIN for ZFUNC=LESS

regwrite (SC_HYPERZ_EN, HZ_MAX, 0);

// set HIZ_MIN in ZB_BW_CNTL to MAX for ZFUNC=LESS

regwrite (ZB_BW_CNTL, HZ_MIN, 0);

// set HIZ_OFFSET to 0

regwrite (ZB_HIZ_OFFSET, HIZ_OFFSET, 0);

// set HIZ_PITCH to 1024

regwrite (ZB_HIZ_PITCH, HIZ_PITCH, 1024 >> 4);

// initialize the HiZ RAM to a clear value of 0xff

// for all the bytes in a 1024x768 area:

// set initial write index. It will auto-increment

// after each write to ZB_HIZ_DWORD

regwrite (ZB_HIZ_WINDEX, HIZ_WINDEX, 0);

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 129

// write floors for one 8x8 tile with each DWORD.

// this example assumes a dual-pipeline configuration.

// since half the screen is owned by the second pipeline,

// and host writes are broadcast to both pipeline RAMS

// at the same address, we write the clear DWORD for

// half of 1024>>3. In a single-pipeline configuration,

// we would write the clear DWORD for 1024>>3.

for (int y = 0; y < (768 >> 3); y++)

{

 for (int x = 0; x < ((1024 >> 3)>1); x++)

 {

 regwrite (ZB_HIZ_DWORD, HIZ_DATA, 0xffffffffL);

 }

}

// read back a DWORD in pipeline 1 at address 0

regwrite (SU_REG_DEST, SELECT, 1);

regwrite (ZB_HIZ_RINDEX, 0);

DWORD dwGetHiZValue = regread (ZB_HIZ_DWORD);

9.6 State Changes That Invalidate HiZ

This section describes the conditions that invalidate HiZ RAM and those that have no effect.

Disabling Z testing or disabling Z writes does not invalidate HiZ RAM, so no special action is required in these

cases. Because both of these states result in no new z data being written to the z buffer, there are no z cache

evictions that update the contents of HiZ RAM. Therefore, HiZ RAM is preserved and can continue to be used after

Z buffering or Z writes are re-enabled.

Certain ZFUNC transitions can invalidate the contents of HiZ RAM. As a general rule, the safest approach when

ZFUNC is changed is to disable HiZ testing until the contents of HiZ RAM are reset, e.g. until the start of the next

frame where HiZ RAM is re-initialised. Having said that, there are transitions where either HiZ does not need to be

disabled, or it may be re-enabled before the end of the frame:

1) HiZ does not need to be turned off when transitioning back and forth between LESS and LESSEQUAL.

HiZ must be disabled when transitioning from either LESS or LESSEQUAL to EQUAL, but may be re-

enabled when transitioning back from EQUAL to LESS or LESSEQUAL.

2) HiZ does not need to be turned off when transitioning back and forth between GREATER and

GREATEREQUAL. HiZ must be disabled when transitioning from either GREATER or

GREATEREQUAL to EQUAL, but may be re-enabled when transitioning back from EQUAL to

GREATER or GREATEREQUAL.

All other transitions invalidate the contents of HiZ RAM with respect to the new sense of the z comparison.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 130

10. Driver notes

10.1 R5xx Changes

10.1.1 PS3.0

R520 TX supports pixel shader model 3.0. Support for 32-bit IEEE input coordinates from the shader and 32-bit

IEEE output colors to the shader. Support for per pixel (or per quad) TEXLDB, TEXLDL, and TEXLDD

instructions.

10.1.2 Filter4

R520 can support limited Filter4 filtering. The kernel is 4x4 symmetric and separable with 16 phases. The kernel

weight precision is S,1.9. There is one global kernel shared by all textures. The kernel is loaded using the global

TX_FILTER4 register. Filter4 can be enabled per texture using the MAG and MIN filter registers. Only one of four

8-bit components can have Filter4 applied at a time. That component is selected using FORMAT2.SEL_FILTER4.

10.1.3 Maximum Image Extents

R520 supports up to 4K texels in width, height, or depth.

10.1.4 Trilinear Interpolation Precision

R520 supports 6-bits of trilinear precision. R420 supported 5-bits.

10.1.5 Image Formats

New image formats over R420 : ATI1N, 10, 10_10, 10_10_10_10, 1, 1_REVERSED

10.1.6 Border Color

Added border color support for FAT formats, specifically 16_16_16_16, 16f_16f_16f_16f, 32f_32f,

32f_32f_32f_32f. Border color is now supported for all image formats.

10.1.7 Non-Square mipmaps with border color

Added mode register FILTER1.BORDER_FIX which when asserted will stop right shifting the texture coordinate

once the image size has been right shifted to one. BORDER_FIX only needs to be asserted when the clamp mode is

a border mode and mipmapping is enabled and the mipmap is non-square. However it should be safe to assert

BORDER_FIX anytime.

10.1.8 POW2FIX2FLT

Added mode register FORMAT2.POW2FIX2FLT which when asserted the TX will divide by pow2 instead of

pow2-1 when doing fix2float conversion of the filtered texture color.

10.1.9 GA_IDLE

R520 has a new status register called GA_IDLE which can be used to get information about back-end hangs. To

read this register, the following procedure may be used:

 Read RBBM_STATUS to make sure the HW is hung. If GA bit is busy, this may indicate a

back-end hang.

 Write 0x32005 to the RBBM_SOFTRESET register. This is to reset GA, CP and VAP.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 131

 Read RBBM_SOFTRESET to make sure the write went through.

 Write 0 to RBBM_SOFTRESET. This is necessary to get VAP to go idle.

 RBBM_STATUS should now show that VAP and CP are idle but GA still busy. If GA is not busy,

then GA_IDLE should be readable at this point.

 If GA was still hung, write 0x200 to GA_SOFTRESET

 Now GA_IDLE can be read. See the register spec for details on what each bit means. Note that a “1”

indicates an idle unit.

10.1.10 HDP surface0 upper bound 64 byte alignment requirement

HDP surface 0 upper bound needs at least 64 byte alignment. This applies only to surface 0 and not to surface 1 to

7, which can be programmed as specified (32 byte aligned).

10.1.11 New Soft resets for CP

CP now has total of 3 soft resets:

CP_SOFT_RESET => as before (for backward compatibility).

CP_SOFT_RESET_NO_DMA => soft reset CP except DMA engine.

CP_SOFT_RESET_DMA => soft reset only DMA engine of CP.

10.1.12 CP STOP_CONTEXT

Once SC/CB informs CP to stop_context, CP will not fetch/process any further read requests from command

buffers.

10.1.13 Updated CP Scratch compare logic

Scratch register interrupt functions as follows:

(a) Driver programs two 32bit registers with timestamp for comparisons with a pair of scratch registers. We can call

this as DRV_REGS

(b) Driver programs PM4 stream with writes to two consecutive scratch registers (paired as 0-1,2-3,4-5,6-7) to be

compared with DRV_REGS.

(c) In due course of time PM4 pkt would get executed , this address/data would sit in the input fifo of CP , ready to

program both the scratch registers.

(d) As soon as CB (color buffer) sends two sets of RESYNC pulses (4 of them from each pipe with mask), CP

allows the FIFO contents to get transferred to scratch registers for further action. (RBBM transactions are stalled at

this time)

(e) SCR_REGS data gets compared with DRV_REGS data for preprogrammed condition of either "equality" or

"non-equality" or "greater than" or "less than " or "greater than or equal" or "less than or equal".

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 132

(f) If the condition is satisfied then an interrupt is generated informing driver/system to wake-up and proceed for the

next command.

(g) The scratch register data gets written to system memory (if umask is set) at premapped address to be read back

by the system/driver.

10.1.14 Host requests (GFX, ISYNC_CNTL, RBBM_GUICNTL, WAIT_UNTIL)

Pre-R5xx, requests made within the aperture range 0x1400 - 0x1EFF and 0x2000 – 0xFFFF were queued. From

R5xx, onwards these requests will not be queued. ISYNC_CNTL, RBBM_GUICNTL and WAIT_UNTIL can be

programmed only for queued requests. As none of the host (PIO) requests are queued, host cannot program above

three registers through PIO.

10.1.15 Double Z

RV530 has two Z pipes, but a single raster pipe. In the past, SU_REGDEST was used to select which raster pipe

you want to select. On RV530, you use FG_ZBREG_DEST. Because the pipe selection happens in the FG, you

must be in Z bottom mode. This mainly applies to occlusion queries where you want to get Z pass data from each

Z unit.

10.1.16 FP16 AA support

R5xx-family chips support FP16 AA. However, there is an issue with the blend optimizations while FP16 AA is

enabled. Because of this, RB3D_BLENDCNTL.DISCARD_SRC_PIXELS must be set to

CB_DISCARD_SRC_DISABLE while FP 16 AA is enabled.

10.1.17 FP16 Blending

FP16 (64bit pixel) blending is added in R5xx parts. FP16 Blend bandwidth is half the rate of 32 bit pixels; i.e. 8

pixels/clk in a 16 pipe system. FP16 blending uses the new 64 bit clear color register and constant color registers.

Setting the FP16 blend equation to multiply by 1.0 is subtly different from disabling blending. A negative zero

(0x8000) will be converted to zero (0x0000) if it is blended but 0x8000 will be drawn if blending is disabled. The

driver should distinguish between FP16 and 16 bit integer formats and never enable blending for 16 bit integer

formats. The CB FP16 implementation supports denorms but does not support NaNs and Infs. Only a 4 component

(ARGB16161616) format is supported. There are no I16 or IA1616 formats.

10.2 Interface Notes

10.2.1 Raster Reset

The proper sequence for a full raster reset is the following:

 Perform a RBBM reset with the GA RBBM client flag set

 Perform a register write to the GA_SOFT_RESET register, with a value of 0x200 or higher

In the above sequence, the first item causes the GA to delete all pending register reads & writes and resets the

RBBM interface. If the GA status is idle, then the RBBM reset is not required. After this reset, the GA is ready to

accept register read and write commands. However, the 3D pipe could be in a hung state, which would prevent it

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 133

from accepting 3D commands or register commands.

The second operations (GA_SOFT_RESET) causes a soft reset of the 3D pipe. This reset causes a loss of all state in

the 3D, except in the GA & SU blocks. Shadow register values are not reset. The 3D pipe should then switch to the

idle state after the reset. It will take 0x200+ cycles for the idle state to be re-asserted (should be less than 0x200 +

64). The value of 0x200 is a suggestion, which should be enough to reset all the pipelines. A larger value can be

used (up to 16b), but should not offer any benefit.

10.2.2 Non-textured, non-colored primitives

The R300 always does at least one 2D texture and one color per primitive. The RS_COUNT has a baseline value of

1, which indicates up to 1 color and 1 texture are to be rasterized. The other registers used to specify the colors and

textures are the VAP_RASTER_VTX_FMT_0 and RASTER_VTX_FMT_1 registers. These registers can be set to

have no color and no texture. So if one wants to specify a non-textured and non-color primitive, one should set the

RASTER_VTX_FMT registers to no color and no texture, and set the RS_COUNT to 0. The raster will still

rasterize the extra colors and textures, but the rasterized values will be wrong. The shader code should then be set to

ignore the texture coordinates and colors and to setup a constant color, or the CB could be disabled so no color

writes occur (to setup the ZB, for example).

10.2.3 Flushing primitives out of the SC

All 3D operations need to be terminated with a register write to the SC, US or some down stream register. Unless

this is done, the SC/RS will never assert idle (which will be reflected as GA_BUSY). The final polygon rendered

should still drain out of the pipe.

10.3 Register Notes

10.3.1 Update to register reads

R520 and follow-on chips now support simultaneous G3D register reads and writes. Coherency of reads and writes

is not guaranteed (reads can occur before writes). However, switching from write/cmd mode to read mode (PIO

through RBBM) does not require idling the G3D pipe anymore. However, this mode is not enabled by default. The

following fields have been added to the GA_ENHANCE register:

 REG_READWRITE 2:2

 REG_NOSTALL 3:3

When the REG_READWRITE field is set, this enables the GA to support simultaneous register reads and writes.

However, simply enabling this mode allows the GA to receive both read and write commands (and to deal with

both), but it still tells the GA to wait for register return before continuing. Consequently, the GA will cause a stall

bubble, of (n) cycles to be injected, where (n) is the latency for register read back. If the register is shadowed, that

value is very small (A few cycles). If not, then it can be hundreds of cycles

When REG_NOSTALL field is set, this enables GA to support mixing the G3D pipe with reads and other activity;

in this mode, the register read is simply part of the pipeline data. This mode would allow for no performance hit at

all, when doing register reads, since the GA will not cause a stall bubble (it will not wait for the register data to

return). It does not permit the GA to have multiple outstanding read requests, but it allows for minimal performance

impact.

10.3.2 Registers that cause stalls

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 134

10.3.2.1 ZB Registers

Unpipelined registers

Writes to these registers causes a stall in the pipe. The stall is on as long as there are any quads in the ZB block.

Once the ZB block is empty the register is updated and the stall is removed. If multiple unpipelined registers are

updated with no quads in the middle, then the first one will cause a stall to drain the ZB, but the following

unpipelined writes will go at full speed…

ZB_FORMAT

ZB_ZCACHE_CTLSTAT

ZB_BW_CNTL

ZB_DEPTHOFFSET

ZB_DEPTHPITCH

ZB_DEPTHCLEARVALUE

ZB_HIZ_OFFSET

ZB_ZPASS_DATA

ZB_ZPASS_ADDR

ZB_DEPTHXY_OFFSET

Pipelined Registers

ZB_CNTL

ZB_ZSTENCILCNTL

ZB_STENCILREFMASK

ZB_HIZ_DWORD

Special register ZTOP

Whenever ZTOP register is switched from 1 to 0 or 0 to 1 a stall occurs at the SC stage of the pipe and it goes away

when all the quads between the SC and CB are drained from the pipe. Then the Zbuffer is moved in the pipe-lined.

Writing to Ztop a value that it currently holds (0 to 0 or 1 to 1) has no performance penalty.

10.3.2.2 CB Registers

Unpipelined registers

Writes to unpipelined registers cause the CB to stall until all previous quads, pipelined registers, and partially

pipelined registers have finished processing. Once an unpipelined register has been written, a write to another

unpipelined register will not cause more stalls as long as there are no intervening quads, pipelined registers, or

partially pipelined registers. The unpipelined CB registers are the following:

RB3D_CCTL

RB3D_COLOR_CLEAR_VALUE

RB3D_COLOROFFSET(0, 1, 2, 3)

RB3D_COLORPITCH(0, 1, 2, 3)

RB3D_DSTCACHE_CTLSTAT

RB3D_AARESOLVE_OFFSET

RB3D_AARESOLVE_PITCH

RB3D_AARESOLVE_CTL

GB_TILE_CONFIG

GB_AA_CONFIG

Partially pipelined registers

Partially pipelined registers are pipelined everywhere in the CB except in one module. That module must stall until

all the quads that it is currently processing have finished. The number of stall cycles should not exceed about 15

cycles. The partially pipelined CB registers are the following:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 135

RB3D_ROPCNTL

RB3D_CLRCMP_FLIPE

RB3D_CLRCMP_CLR

RB3D_CLRCMP_MSK

Pipelined registers

These registers are fully pipelined and may be freely intermixed with quads without causing stalls. The pipelined

registers are the following:

RB3D_BLENDCNTL

RB3D_ABLENDCNTL

RB3D_COLOR_CHANNEL_MASK

RB3D_CONSTANT_COLOR

RB3D_DITHER_CTL

CB register ordering

Because unpipelined registers can stall on preceding pipelined or partially pipelined registers, it is recommended

that all unpipelined registers are written first. Pipelined and partially pipelined registers may be freely intermixed

without penalty.

10.3.2.3 TX Registers

Global registers

Global registers are registers that affect all texture stages. On a write to any global texture register, the US will wait

for the TX to flush completely before passing the register to the TX. This could take on the order of a couple

hundred clocks worst case. Obviously writes to these registers should be minimized. There are two global registers

that cause the TX to flush : TX_INVALTAGS and TX_PERF.

Stage registers

Stage registers are registers that only affect 1 of the 16 possible texture stages. On a write to a Stage register, the US

will wait until that texture stage is inactive in the TX pipe, and only then will it pass the register to the TX. It is

therefore important to rotate through the 16 sets of registers to avoid a register write to a stage that is still being

processed in the TX. Otherwise unnecessary stalls will occur.

10.3.3 Registers that affect performance

10.3.3.1 US_W_FMT

When the W value is not being used (FG_DEPTH_SRC does not select discrete W), then this register should be set

to specify that the source is the US and the format is always 0. Specifying that W comes from the rasterizer causes

stalls inside the US.

10.3.4 Other Registers

10.3.4.1 GB_TILE_CONFIG

The GB_TILE_CONFIG contains multiple raster pipe control fields. Some of these need a soft reset afterwards to

apply the change. All of them require the pipe to be idle before performing the change. As well, in the R5xx, this

register is simply shadowed in the shadow RAM, except for the PIPE_COUNT field, which always indicates the

internal value of this field. This might or might not match the written value, depending on bad_pipes and max_pipes.

All fields after Hard reset will show the default values shown below. The fields all hard reset to the default values.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 136

Soft reset (GA_SOFT_RESET) does not affect this register.

 Here are the fields, with the default values, the reset status and a slight comment:

Fields Possible values Defaults Reset Comments

Enable [0:0] 0: Disable tiling

1: Enable tiling

Enabled (1) If changed, soft

reset should be

applied

The default value of

(1) should never be

changed

Pipe_count [3:1] 0: RV350

3: R300

6: R420 (3 pipes)

7: R420 (4 pipes)

Depends on fuses If changed, soft

reset should be

applied

Should be

programmed with 4P

(7), 3P (6), 2P (3) or

1P (0).

Tile_size [5:4] 0: 8x8 pixels

1: 16x16 pixels

2: 32x32 pixels

1 : 16x16 No reset required R5xx supports 16x16

or 32x32 only.

32x32 should be

used, in 3p or 4p

cases, as performance

testing determines

Super_size [8:6] 0: 1x1 tile

1: two 1x1 A,B tiles

2: one 2x2 tile

3: two 2x2 A,B tiles

0: 1x1 tile Only 1x1 mode

guaranteed – Feature

only used in multi-

chip boards

Only support super

tiling with 1, 2 or 4

pipes (not in 3P

config)

Super_X, Super_Y,

Super_Tile [15:9]

7b ID identifies

unique location of

chip in multi-chip

board

0 No reset required When in single chip,

value should be 0.

Subpixel [16:16] 0: 1/12 subpixel

1: 1/16 subpixel

0: 1/12 Can be changed

whenever pipe is

idle without Reset

Selects the 1/12 or

1/16 subpixel mode

Quads_per_ras

[18:17]

0: 4 quads

1: 8 quads

2: 16 quads

3: 32 quads

0: 4 quads No reset required Reserved for R350 –

Leave at 0 for R300,

RV350

Bb_scan [19:19] 0: Use intercept scan

conv.

1: Use bounding box

scan conv.

0: Intercept No reset required Intercept method is

new and higher

performance.

Bounding box is

traditional & slower,

but “guaranteed” to

work. Should only be

changed if raster

issues come up.

Alt_scan_en[20:20] 0: Do Z type scan

conversion

1: Do S type scan

conversion

0: Z type Can be changed

when pipe idle.

RV350 and R420

support S scan

conversion, which

maintains local

coherence from scan

line to scan line,

instead of Z type

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 137

which “goes back” to

the left on every scan

line

Alt_offset[21:21] 0: Use 1440/1088

offset for SC

1: Use 672/1088

offset for SC

0: 1440/1088 mode Should be

switched when

pipe is idle.

When in mode (1),

allows for a render

target of 4k x 4k,

only for 1/12

subpixel mode. The

X,Y offsets in the GA

are not affected, so

that the viewport

should be loaded with

a value of (672-

1440=-768) to match.

Subprecision [22:22] 0: Uses 4b of sub

pixel precision

1: Uses 8b of sub

pixel precision

0: 4b Should be

changed when

pipe is idle.

Allows for 4 extra

bits of subpixel

precision. All

computations done in

higher precision

when in use. Should

always be enabled.

Alt_tiling [23:23] 0: Use regular tiling

for 3P mode

1: Use alternate

tiling for 3P mode

0: Regular tiling No reset required Empirical testing

needs to be done to

determine which has

higher performance.

Either tiling mode is

possible.

Z_extended[24:24] 0: Use [0,1] Z clamp

range

1: Use [-2,2] Z

range

0: R3xx/R4xx mode Should be

changed when

pipe is idle

Should allow us to

increase guardband.

Per pixel clamping to

[0,1] still occurs in

SC

10.3.4.2 GB_PIPE_SELECT

GB_PIPE_SELECT controls the physical and logical pipe mapping, as well as the total number of active pipes. It

works with GB_TILE_CONFIG to configure the pipelines. It is procedural and not shadowed; if you read the

register back after hard reset, you should get the default values. Changing this register is generally not required, if

the fuses are set correctly (i.e. max_pipes reflects total number of working and desired pipes; bad_pipes indicates

which of the 4 pipes are bad). The MAX_PIPES and BAD_PIPES fields are read-only, and reflect what the SU unit

receives from the fuse unit. The fuse unit can be programmed to alter the max_pipes/bad_pipes, but not contrary to

the actual fuse settings (can never set, through SW, internally max_pipes to higher than the fuse setting).

Fields Possible Values Defaults Reset Comments

PIPE0_ID [1:0] 0, 1, 2, 3 Depends on fuses

– Often 0

Pipe should be

soft reset after

changing

Determines the logical mapping

of physical pipe 0

PIPE1_ID [3:2] 0, 1, 2, 3 Depends on fuses

– Often 1

Pipe should be

soft reset after

changing

Determines the logical mapping

of physical pipe 0

PIPE2_ID [5:4] 0, 1, 2, 3 Depends on fuses

– Often 2

Pipe should be

soft reset after

Determines the logical mapping

of physical pipe 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 138

changing

PIPE3_ID [7:6] 0, 1, 2, 3 Depends on fuses

– Often 3

Pipe should be

soft reset after

changing

Determines the logical mapping

of physical pipe 0

Pipe_mask [11:8] 0 through 16 Depends on fuses

– Max is 4

Pipe should be

soft reset after

changing

Each bit of the mask identifies

if a physical pipe is good (1) or

not (0). A value of 0xf

indicates 4 good pipes.

Max_pipes [13:12]

Read Only

0: 1 good pipe

1: 2 good pipes

2: 3 good pipes

3: 4 sweet pipes

Depends on fuses Read only field Indicates the fuse state for the

number of good pipes.

GB_TILE_CONFIG.pipe_count

should not try to use more than

this number of pipes. HW will

ignore any programming that

tries to override this value.

Bad_pipes [17:14] 0 through 16 Depends on fuses Read only field Returns a (1) for each good

pipe. Matches pipe_mask

format. You cannot enable more

pipes than max_pipes.

Config_pipes

[18:18]

0: Do nothing

1: Force auto-

config

N/A Should be soft

reset after

writing, if fields

are changed

Causes the HW to ignore the

pipe#_ID and pipe_mask fields,

and to generate those values

based on the fuse state.

The GB_PIPE_SELECT configures the pipes to match the desired configuration. SW should not attempt to

configure the pipes in a way that contradicts the max_pipes value, which is programmed through on-die fuses at die

test time. SW will be ignored if it contradicts the fuses. However, the bad_pipes can be programmed to enable a

“marked bad” pipe, but it must then disable a good pipe, since the total number of active pipes must be equal or less

than max_pipes, otherwise the HW will ignore the bad_pipes register.

10.4 Feature Notes

10.4.1 Switching Pipeline configuration / Resetting 3D pipe

The raster pipeline can be switched from single pipe to dual pipe and back through the use of the

GB_TILE_CONFIG register. As well, the GB_TILE_SELECT should be used to select the physical pipes to use.

Switching from one mode to another requires the following sequence:

 The 3D pipe must be idle (WAIT For 3D IDLE)

 The GB_PIPE_SELECT register should then be read, to determine the current max_pipes and bad_pipes.

The SW can then program it with those values or new values.

 The GB_TILE_CONFIG register‟s PIPE_COUNT field should be written with the appropriate value (use

PIO):

o 0x0 for single pipe (RV350)

o 0x3 for dual pipe (R300)

o 0x6 for triple pipe (R420-3P)

o 0x7 for quad pipe (R420)

 The 3D pipe & GUI must be idle again after writing the registers

 The GA_SOFT_RESET register must be written with 0x100 or greater (use PIO)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 139

 Wait for ~1 ms (prevents race conditions between GA_SOFT_RESET And 3d idle status read)

 The 3D pipe & GUI must be idle again to permit any other activity (register or data) (read RBBM status for

GA idle)

 If the fuses are set to limit the number of active pipes to a given level (1,2,3 or 4), then GB_TILE_CONFIG

and GB_PIPE_SELECT settings will not be able to override those values. A hang or other problem could

actually occur if SW tries to enable “bad pipes”.

The above sequence will invalidate the state of the pipe as well as switching it.

For resetting the pipe, the same process as above is followed:

 The 3D pipe must be idle (WAIT for 3D IDLE) or hung

 The RBBM soft reset of GA must be done, if chip is not idle

 The GA_SOFT_RESET register must be written with 0x100 or greater (use PIO)

 Wait for ~1ms

 The 3D pipe & GUI must be idle again to permit any other activity (read RBBM status for GA idle)

10.4.2 Switching vertex data rounding mode

The GA_ROUND_MODE register can be used to select between round to nearest and truncate (round to 0) for both

vertex geometry (X,Y) and color conversions. The default is to truncate. This register should only be changed when

the 3D pipe is idle. Otherwise, switching can occur in the middle of primitives, which could cause visual anomalies.

This register, once set, should never be changed again.

10.4.3 Switching from 1/12
th

 to 1/16
th

 subpixel mode

Switching from 1/12 to 1/16 subpixel mode is done through the use of the GB_TILE_CONFIG register. Normally,

changing this register requires the use of a soft reset afterwards. However, changing the subpixel field does not

require a reset. However, it does require that the 3D pipe be idle. Also, the Z buffer can become incompatible after

switching the subpixel mode. Basically, if Z compression is enabled, the values contained in the Z buffer are

incompatible between subpixel modes, so that the buffer needs to be re-initialized after each switch.

10.4.4 Fastfill and compression in Z

Fast fill and compression only works in micro-tiled mode. The following table shows the valid combinations of fast

fill and rd/wr compression :

Fast FIll RdCompression WrCompression description

0 0 0 no fast-fill or compression, the Z buffer has to be cleared explicitly.

1 0 0 fastfill, Z buffer does not need to be cleared explicitly, The zmask should be

set to 2‟b00 for all for all 4x4 tiles on the drawing window. The zb_clearvalue

will hold the cleared Z value

1 1 1 Same as above , with compression turned on.

1 1 0 Used to decompress , a compressed Z buffer …

Note that all other combinations in the above table are invalid. The emulator is programmed to generate an assert in

these cases. Compression does not work with all 16-bit formats. For 16-bit integer buffering, compression causes a

hung with one or two samples and should not be used.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 140

10.4.5 Z-Top

 It is beneficial for performance to have Z buffer at the top of the pipe, since the quads that do not pass Z buffer do

not have to be sent to the shader. Depending on how many instructions the shader executes, this could gain you a lot

of advantage. There are several cases in which the Z buffer has to be at the bottom:

1- Alpha threshold (afunction) is turned on

2- Shader uses texkill instructions.

3- Chroma key cull enabled.

4- W-buffering

 Cases 1,2 and 3 can kill a pixel before Z buffering . However, if the contents of the Z/stencil buffer will not be

modified, then ztop can remain enabled (1). This implies that the following state is in effect:

1- Z-buffering is disabled or Zwrite-mask is off .

2- Stencil is disabled or stencil-wrmask is off or SFAIL/ZPASS/ZFAIL are all set to KEEP.

 W values are always generated at the bottom of the pipe, so for w-buffering, ztop should be set to 0.

 There is penalty in moving the Z buffer from top to bottom or vice versa. The pipe will be stalled at the sc and all

the quads that are in the pipe between the sc and cb have to be processed before the switch occurs. This is all done in

HW. If the ztop =0 and you write another 0 to it, there is no performance penalty. If it is 1 and you write a 1 to it,

there is no performance penalty. The penalty is only incurred when you switch from top to bottom or bottom to top.

10.4.6 Sub-sample locations

In point sample mode, POS0 defines the X,Y of the upper left pixel of the quad. POS1 defines the X,Y of the upper

right pixel of a quad. POS2 defines the X,Y of the lower left pixel in a quad and POS3 defines the X,Y of the lower

right pixel in a quad. This is done so that in R200 style super-sampling mode, the sample locations for the pixels can

be jittered. Hierarcical Z has to be shut off when the 4 pixels in the quad have different locations in point sample

mode.

In multi-sample mode , samples 0,1,2,3,4,5 of pixels 0,1,2,3 of a quad are defines by pos0,1,2,3,4,5 .., so all pixels in

the quad have the same sub-sample pattern.

There is a quirk when setting the MSPOS0.msbd0_x. The value represents the distance from the left edge of the

pixel quad to the first sample in subpixels. All values less than eight should use the actual value, but „7‟ should be

used for the distance „8‟. The hardware will convert 7 into 8 internally.

It is also important that when using less than 6 multisample positions, the unused samples must be set to the position

of other valid samples.

10.4.7 Dithered Clears

Fast cmask clears of a subsampled buffer will not be dithered.

The ZB doesn‟t do color dithering so ZBCB clears will not be dithered.

When doing clears in 16 bit mode with dithering enabled the driver should examine the clear color value and

determine if it would be affected by dithering. For example a color value of zero when dithered will remain zero for

all dither factors. If the color would not be affected by dithering either fast clears or ZBCB clears can be used,

otherwise a full window rectangle write should be used to clear the buffer. This is only an issue for 16 bit buffers

with some clear color values so hardware support is not provided.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 141

10.4.8 4x AA tiling

R420 introduced a new tiling mode for 4x AA buffers. Each 4x4 block of pixels occupies 8 cache lines of memory

(32 bytes per cache line). When the block is decompressed, the color samples are grouped together. Thus, all 16

sample 0s are in one chunk, all 16 sample 1s are in another, etc. On R300, decompressed blocks where organized

with sample 0s being first, then sample 1s, then 2s then 3s. On R420, groups of 8 cache lines have the top and

bottom halves interchanged when the block address is odd in the x dimension. For example, block (0,0) is organized

just like R300, but block (1,0) would have samples 2 and 3 before samples 0 and 1. Block (2, 0) would be just like

R300 again. Note: This new tiling mode only applies when memory mapping is disabled.

10.4.9 8x8 Z plane compression

Chips based on the RV350 and beyond support a new 8x8 Z plane compression mode specified in the

GB_Z_PEQ_CONFIG register. When compression is not enabled, the Z plane compression mode has to be set to

4x4 in order for the GA and ZB to agree on the Z plane equation format and avoid visual corruption.

10.5 Blend optimization notes

10.5.1 Disabling reads during blending

The destination color is not necessary for some blending operations. The cb has a read enable called

RB3D_BLENDCNTL.READ_ENABLE to control whether the destination color is read or not during blending

operations. Reads must be enabled during blending operations that require the destination color. Failure to do so

will result in incorrect results. Leaving the register enabled when blending is disabled does not have any adverse

affects.

10.5.2 Discarding pixels based upon the source color

There are cases where blend operations do not change the contents of the frame buffer. For example, adding zero to

the frame buffer does not change the frame buffer contents. Although the operations do nothing to the frame buffer,

they still take bandwidth. The cb can discard pixels based on the source color to eliminate some useless blend

operations. The RB3D_BLENDCNTL. DISCARD_SRC_PIXELS register controls the functionality. When to use

this feature is under driver control. The cb will not override this register if it is not safe to use under the current

blending mode.

10.5.3 ZB/CB cache flushes

ZB/CB cache flushes take hundreds of cycles to complete, so they should be avoided if possible. Performing a

cache flush when the cache is already clean only takes a cycle, so there isn‟t any penalty for flushing a cache

multiple times as long as there are no intervening quads.

10.6 Texture Notes

TX_CHROMA_KEY must be the same format as the texture being keyed with any unused msb‟s zero‟d. And

should be AVYU for all YUV formats.

TX_FMT_*_MPEG formats are implicitely signed. However the TX_FORMAT1_*_SIGNED_COMP* bits must

still be explicitely set. It is a bug to use an MPEG format and indicate that the components are unsigned.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 142

10.7 GA Point/Line/Polygon Setup
10.7.1 Wide & Anti-aliased points

All points in the GA are converted to parallelograms that have width and height. “Wide” points are just points with

larger height and width and so are not different than other points. AA points are identical to regular points,

dimension wise. However, AA points do have at least 1 texture coordinate. The AA texture coordinates will be

“stuffed” into the indicated texture coordinates. The values to stuff are loaded from registers. The geometry for the

point (height and width) will be used to compute the screen coordinates of the vertices, based on the incoming V0

vertex.

To compute the geometry, the half height and half width of a point are supplied in a register, or can be supplied per

vertex. Note that the ½ height and ½ width represent 16b values in 1/12 or 1/16 pixel increments (since they are ½

size, the minimum point width and height are 1/6). When supplied per vertex, the ½ height and ½ width are equal.

Per vertex size is always square.

The (min_s, min_t, max_s, max_t) are loaded from registers in the GA. The third dimension for the AA texture will

be stuffed with 0.0, indicating an AA point.

Note: If texture AA/Stipple stuffing is enabled for a set of texture coordinates, but AA points are not, the specified

texture coordinates will be stuffed with (0.0, 0.0, 0.0).

10.7.2 Wide & AA lines geometry

For wide lines, the width is programmed in a register that indicates ½ width of the line (in 16.0/12 or 16.0/16

format).

10.7.3 Anti-Aliased and Stippled lines’ texture

For lines that are stippled and/or anti-aliased, the setup will stuff the indicated texture coordinate with procedural

texture coordinate values. It is to be noted that the pipe must be setup to handle (n+1) texture coordinates in this

mode (where n is the number of replicated texture coordinates). The generated texture coordinate will be 3

dimensions. The S component will be used for Anti-Aliased lines. The (min_s, max_s) values for AA lines are

loaded from registers in the GA. The stipple uses the t coordinate for lines.

The third coordinate will be stuffed with 1.0, which indicates to the texture unit that the texture to be used is for

lines (stipple, AA or AA & Stipple).

Note: If AA/stipple texture stuffing is enabled, but AA lines and stippled lines are disabled, then (0.0, 0.0, 1.0) will

be stuffed in the specified texture(s). Also, if texture stuffing is disabled but line stippling is enabled, then

accumulation of stipple pattern will still be done, even though no texture coordinates will be outputted.

10.7.4 Stipple Polygon

For stippled polygons, the GA unit will stuff the indicated texture coordinate with a 3D texture. The first two

coordinates will be computed based on the screen coordinates of the triangle. The third component of the stuffed

texture will be 2.0, which indicates to the texture unit that the stippled polygon texture should be used.

10.7.5 Texture Stuffing

The GA has the ability to stuff any of the texture coordinates with the following items:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 143

Encoding Texture Coordinate Source

Replicate VAP Supplied texture coordinates

PointTexture Point (S,T) GA supplied texture coordinates

StippleAA Stipple and or AA GA supplied texture coordinates

A texture is active if the VAP FMT_1 register enables that texture and its stuff option is Replicate, or if its stuff

option is other than Replicate.

10.7.6 GA Fog stuffing (R5xx)

The GA supports the stuffing of texture coordinates with the current fog value. A single texture component of a

single texture can be selected. The GB_SELECT register controls the stuffing of the texture. The

FOG_STUFF_TEX selects which texture, while the FOG_STUFF_COMP selects the component. FP20 values of

A0,A1,A2 or A3 can be selected, as well as FP32 values of 1/W and Z. This could also be used as a way to get 1/W

buffering into the pixel shader, which can then be sent instead of Z.

10.8 Errata

10.8.1 Facing bit with Polymode & colors

In R5xx, just as R4xx, when lines are sent from the setup to the rasterizer, the setup‟s facing information is lost,

since no facing information is sent between the SU and SC. This implies that lines will always be treated as

“forward facing” in the scan converter. This facing information is passed to the shader as the “facing bit”, which can

be used as a conditional.

Consequently, in polygon outline mode, where lines have front and back meaning, when rendering a line polygon

(for either front or back), the facing bit will always be marked as front facing, regardless of the facing of the original

triangle. Back / Front culling does occur correctly here (i.e. if the front render is line and front face culling is

enabled, then no front facing lines will get drawn), but the facing bit for rendered lines or points will be always front

facing.

The R5xx contain a work-around for this problem, in the form of a special mode. This mode is enabled by setting

the bits of SU_PERF.PERF3_SEL to all 1‟s (31). When enabled, this will force the sign bits of the components of

the colors to be set to (0) for front facing, or (1) for back facing. All colors in a primitive will get their sign bit

changed, based on the facing of the primitive, or of its provoking vertex (in the case of polymode). If source colors

are positive, then, in the pixel shader, back facing polygons will have negative colors, while front facing polygons

will have positive colors. This mode will work, regardless of PS2 or PS3 mode in the pipe.

10.8.2 PS3 Polymode textures

In the R5xx mode, polymode texture coordinates are not computed correctly when the pipe is in PS3 mode. To fix

this, a polymode_ps3 fix has been implemented. This mode is enabled by setting the GA_PERF.PERF3_SEL[4] bit

to 0x1. This mode should only be set when in PS3 mode. As well, when set and in PS3 mode, colors will not

longer be computed correctly in polymode for polygons, but that is acceptable, since colors are not naturally

available in PS3 mode.

10.8.3 GA Fog stuffing

The GA supports stuffing the fog value (either an FP20 from C0a->C3a, or W or Z) into a texture component. The

limitation for R5xx, is that the GA can only stuff the component of the first active texture. It can only stuff any one

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 144

of the first 2 active components of the first active coordinate set.

10.8.4 Line rendering

When subpixel precision is enabled, there is a possibility that the rendering hardware will determine an incorrect

dominating direction, when the start and end X values of the line have the same 1/12 or 1/16 pixel value, but

different subpixel values. This can cause double pixel hits or missing pixels in continuous line drawing. The work-

around, is to disable subpixel precision rendering when drawing lines.

10.8.5 PS3_VTX_FMT & PS3_TEX_SOURCE

Writes to the PS3_VTX_FMT and PS3_TEX_SOURCE register can cause bad textures or hangs in R5xx chips, if

followed immediately by VF_CNTL writes (i.e. draw command). Following any of these 2 registers with 2 register

writes (to GA or any block below) will always avoid the problem, before the next VF_CNTL.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 145

11. Registers

11.1 Command Processor Registers

CP:CP_CSQ2_STAT · [R] · 32 bits · Access: 8/16/32 · MMReg:0x7fc

DESCRIPTION: (RO) Command Stream Indirect Queue 2 Status

Field Name Bits Default Description

CSQ_WPTR_INDIRECT 9:0 none Current Write Pointer into the Indirect Queue. Default =

0.

CSQ_RPTR_INDIRECT2 19:10 none Current Read Pointer into the Indirect Queue. Default =

0.

CSQ_WPTR_INDIRECT2 29:20 none Current Write Pointer into the Indirect Queue. Default =

0.

CP:CP_CSQ_ADDR · [W] · 32 bits · Access: 8/16/32 · MMReg:0x7f0

DESCRIPTION: (WO) Command Stream Queue Address

Field Name Bits Default Description

CSQ_ADDR 11:2 none Address into the Command Stream Queue which is to be

read from. Used for debug, to read the contents of the

Command Stream Queue.

CP:CP_CSQ_APER_INDIRECT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x1300-0x13fc

DESCRIPTION: IB1 Aperture map in RBBM - PIO

Field Name Bits Default Description

CP_CSQ_APER_INDIRECT

(Access: W)

31:0 none IB1 Aperture

CP:CP_CSQ_APER_INDIRECT2 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x1200-0x12fc

DESCRIPTION: IB2 Aperture map in RBBM - PIO

Field Name Bits Default Description

CP_CSQ_APER_INDIRECT2

(Access: W)

31:0 none IB2 Aperture

CP:CP_CSQ_APER_PRIMARY · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x1000-0x11fc

DESCRIPTION: Primary Aperture map in RBBM - PIO

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 146

CP_CSQ_APER_PRIMARY

(Access: W)

31:0 none Primary Aperture

CP:CP_CSQ_AVAIL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7b8

DESCRIPTION: Command Stream Queue Available Counts

Field Name Bits Default Description

CSQ_CNT_PRIMARY

(Access: R)

9:0 none Count of available dwords in the queue for the Primary

Stream. Read Only.

CSQ_CNT_INDIRECT

(Access: R)

19:10 none Count of available dwords in the queue for the Indirect

Stream. Read Only.

CSQ_CNT_INDIRECT2

(Access: R)

29:20 none Count of available dwords in the queue for the Indirect

Stream. Read Only.

CP:CP_CSQ_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x740

DESCRIPTION: Command Stream Queue Control

Field Name Bits Default Description

CSQ_MODE 31:28 0x0 Command Stream Queue Mode. Controls whether each

command stream is enabled, and whether it is in push

mode (Programmed I/O), or pull mode (Bus-Master).

Encodings are chosen to be compatible with Rage128. 0=

Primary Disabled, Indirect Disabled. 1= Primary PIO,

Indirect Disabled. 2= Primary BM, Indirect Disabled.

3,5,7= Primary PIO, Indirect BM. 4,6,8= Primary BM,

Indirect BM. 9-14= Reserved. 15= Primary PIO, Indirect

PIO Default = 0

CP:CP_CSQ_DATA · [R] · 32 bits · Access: 8/16/32 · MMReg:0x7f4

DESCRIPTION: (RO) Command Stream Queue Data

Field Name Bits Default Description

CSQ_DATA 31:0 none Data from the Command Stream Queue, from location

pointed to by the CP_CSQ_ADDR register. Used for

debug, to read the contents of the Command Stream

Queue.

CP:CP_CSQ_MODE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x744

DESCRIPTION: Alternate Command Stream Queue Control

Field Name Bits Default Description

INDIRECT2_START 6:0 none Start location of Indirect Queue #2 in the command

cache. This value also sets the size in double octwords of

the Indirect Queue #1 cache that will reside in locations

INDIRECT1_START to (INDIRECT2_START - 1). The

Indirect Queue #2 will reside in locations

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 147

INDIRECT2_START to 0x5f. The minimum size of the

Indirect Queues must be at least twice the MAX_FETCH

size as programmed in the CP_RB_CNTL register.

INDIRECT1_START 14:8 none Start location of Indirect Queue #1 in the command

cache. This value is also the size in double octwords of

the Primary Queue cache that will reside in locations 0 to

(INDIRECT1_START - 1). The minimum size of the

Primary Queue cache must be at least twice the

MAX_FETCH size as programmed in the

CP_RB_CNTL register.

CSQ_INDIRECT2_MODE 26 0x0 0=>PIO, 1=>BM

CSQ_INDIRECT2_ENABLE 27 0x0 Enables Indirect Buffer #2. If this bit is set, the

CP_CSQ_MODE register overrides the operation of the

CSQ_MODE variable in the CP_CSQ_CNTL register.

CSQ_INDIRECT1_MODE 28 0x0 0=>PIO, 1=>BM

CSQ_INDIRECT1_ENABLE 29 0x0 Enables Indirect Buffer #1. If this bit is set, the

CP_CSQ_MODE register overrides the operation of the

CSQ_MODE variable in the CP_CSQ_CNTL register.

CSQ_PRIMARY_MODE 30 0x0 0=>PIO, 1=>BM

CSQ_PRIMARY_ENABLE 31 0x0 Enables Primary Buffer. If this bit is set, the

CP_CSQ_MODE register overrides the operation of the

CSQ_MODE variable in the CP_CSQ_CNTL register.

CP:CP_CSQ_STAT · [R] · 32 bits · Access: 8/16/32 · MMReg:0x7f8

DESCRIPTION: (RO) Command Stream Queue Status

Field Name Bits Default Description

CSQ_RPTR_PRIMARY 9:0 none Current Read Pointer into the Primary Queue. Default =

0.

CSQ_WPTR_PRIMARY 19:10 none Current Write Pointer into the Primary Queue. Default =

0.

CSQ_RPTR_INDIRECT 29:20 none Current Read Pointer into the Indirect Queue. Default =

0.

CP:CP_GUI_COMMAND · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x728

DESCRIPTION: Command for PIO GUI DMAs

Field Name Bits Default Description

CP_GUI_COMMAND 31:0 none Command for PIO DMAs to the GUI DMA. Only

DWORD access is allowed to this register.

CP:CP_GUI_DST_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x724

DESCRIPTION: Destination Address for PIO GUI DMAs

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 148

CP_GUI_DST_ADDR 31:0 none Destination address for PIO DMAs to the GUI DMA.

Only DWORD access is allowed to this register.

CP:CP_GUI_SRC_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x720

DESCRIPTION: Source Address for PIO GUI DMAs

Field Name Bits Default Description

CP_GUI_SRC_ADDR 31:0 none Source address for PIO DMAs to the GUI DMA. Only

DWORD access is allowed to this register.

CP:CP_IB2_BASE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x730

DESCRIPTION: Indirect Buffer 2 Base

Field Name Bits Default Description

IB2_BASE 31:2 none Indirect Buffer 2 Base. Address of the beginning of the

indirect buffer. Only DWORD access is allowed to this

register.

CP:CP_IB2_BUFSZ · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x734

DESCRIPTION: Indirect Buffer 2 Size

Field Name Bits Default Description

IB2_BUFSZ 22:0 0x0 Indirect Buffer 2 Size. This size is expressed in dwords.

This field is an initiator to begin fetching commands

from the Indirect Buffer. Only DWORD access is

allowed to this register. Default = 0

CP:CP_IB_BASE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x738

DESCRIPTION: Indirect Buffer Base

Field Name Bits Default Description

IB_BASE 31:2 none Indirect Buffer Base. Address of the beginning of the

indirect buffer. Only DWORD access is allowed to this

register.

CP:CP_IB_BUFSZ · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x73c

DESCRIPTION: Indirect Buffer Size

Field Name Bits Default Description

IB_BUFSZ 22:0 0x0 Indirect Buffer Size. This size is expressed in dwords.

This field is an initiator to begin fetching commands

from the Indirect Buffer. Only DWORD access is

allowed to this register. Default = 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 149

CP:CP_ME_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7d0

DESCRIPTION: Micro Engine Control

Field Name Bits Default Description

ME_STAT

(Access: R)

15:0 none Status of MicroEngine internal registers. This value

depends on the current value of the ME_STATMUX

field. Read Only.

ME_STATMUX 20:16 0x0 Selects which status is to be returned on the ME_STAT

field.

ME_BUSY

(Access: R)

29 none Busy indicator for the MicroEngine. 0 = MicroEngine

not busy. 1 = MicroEngine is active. Read Only.

ME_MODE 30 0x1 Run-Mode of MicroEngine. 0 = Single-Step Mode. 1 =

Free-running Mode. Default = 1

ME_STEP

(Access: W)

31 0x0 Step the MicroEngine by one instruction. Writing a `1` to

this field causes the MicroEngine to step by one

instruction, if and only if the ME_MODE bit is a `0`.

Write Only.

CP:CP_ME_RAM_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7d4

DESCRIPTION: MicroEngine RAM Address

Field Name Bits Default Description

ME_RAM_ADDR

(master with mirrors)

7:0 none MicroEngine RAM Address (Write Mode) Writing this

register puts the RAM access circuitry into `Write Mode`

, which allows the address to auto-increment as data is

written into the RAM.

CP:CP_ME_RAM_DATAH · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7dc

DESCRIPTION: MicroEngine RAM Data High

Field Name Bits Default Description

ME_RAM_DATAH 7:0 none MicroEngine RAM Data High Used to load the

MicroEngine RAM.

CP:CP_ME_RAM_DATAL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7e0

DESCRIPTION: MicroEngine RAM Data Low

Field Name Bits Default Description

ME_RAM_DATAL 31:0 none MicroEngine RAM Data Low Used to load the

MicroEngine RAM.

CP:CP_ME_RAM_RADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7d8

DESCRIPTION: MicroEngine RAM Read Address

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 150

ME_RAM_RADDR

(mirror of

CP_ME_RAM_ADDR:ME_RAM_ADDR)

(Access: W)

7:0 none MicroEngine RAM Address (Read Mode) Writing

this register puts the RAM access circuitry into `Read

Mode` , which allows the address to auto-increment

as data is read from the RAM. Write Only.

CP:CP_RB_BASE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x700

DESCRIPTION: Ring Buffer Base

Field Name Bits Default Description

RB_BASE 31:2 none Ring Buffer Base. Address of the beginning of the ring

buffer.

CP:CP_RB_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x704

DESCRIPTION: Ring Buffer Control

Field Name Bits Default Description

RB_BUFSZ 5:0 0x0 Ring Buffer Size. This size is expressed in log2 of the

actual size. Values 0 and 1 are clamped to an 8 DWORD

ring buffer. A value of 2 to 22 will give a ring buffer:

2^(RB_BUFSZ+1). Values greater than 22 will clamp to

22. Default = 0

RB_BLKSZ 13:8 0x0 Ring Buffer Block Size. This defines the number of

quadwords that the Command Processor will read

between updates to the host`s copy of the Read Pointer.

This size is expressed in log2 of the actual size (in 64-bit

quadwords). For example, for a block of 1024

quadwords, you would program this field to 10(decimal).

Default = 0

BUF_SWAP 17:16 0x0 Endian Swap Control for Ring Buffer and Indirect

Buffer. Only affects the chip behavior if the buffer

resides in system memory. 0 = No swap 1 = 16-bit swap:

0xAABBCCDD becomes 0xBBAADDCC 2 = 32-bit

swap: 0xAABBCCDD becomes 0xDDCCBBAA 3 =

Half-dword swap: 0xAABBCCDD becomes

0xCCDDAABB Default = 0

MAX_FETCH 19:18 0x0 Maximum Fetch Size for any read request that the CP

makes to memory. 0 = 1 double octword. (32 bytes) 1 =

2 double octwords. (64 bytes) 2 = 4 double octwords.

(128 bytes) 3 = 8 double octwords. (256 bytes). Default

= 0

RB_NO_UPDATE 27 0x0 Ring Buffer No Write to Read Pointer 0= Write to Host`s

copy of Read Pointer in system memory. 1= Do not write

to Host`s copy of Read pointer. The purpose of this

control bit is to have a fall-back position if the bus-

mastered write to system memory doesn`t work, in which

case the driver will have to read the Graphics

Controller`s copy of the Read Pointer directly, with some

performance penalty. Default = 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 151

RB_RPTR_WR_ENA 31 0x0 Ring Buffer Read Pointer Write Transfer Enable. When

set the contents of the CP_RB_RPTR_WR register is

transferred to the active read pointer (CP_RB_RPTR)

whenever the CP_RB_WPTR register is written. Default

= 0

CP:CP_RB_RPTR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x710

DESCRIPTION: Ring Buffer Read Pointer Address (RO)

Field Name Bits Default Description

RB_RPTR

(Access: R)

22:0 none Ring Buffer Read Pointer. This is an index (in dwords)

of the current element being read from the ring buffer.

CP:CP_RB_RPTR_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x70c

DESCRIPTION: Ring Buffer Read Pointer Address

Field Name Bits Default Description

RB_RPTR_SWAP 1:0 0x0 Swap control of the reported read pointer address. See

CP_RB_CNTL.BUF_SWAP for the encoding.

RB_RPTR_ADDR 31:2 0x0 Ring Buffer Read Pointer Address. Address of the Host`s

copy of the Read Pointer. CP_RB_RPTR (RO) Ring

Buffer Read Pointer

CP:CP_RB_RPTR_WR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x71c

DESCRIPTION: Writable Ring Buffer Read Pointer Address

Field Name Bits Default Description

RB_RPTR_WR 22:0 0x0 Writable Ring Buffer Read Pointer. Writable for

updating the RB_RPTR after an ACPI.

CP:CP_RB_WPTR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x714

DESCRIPTION: (RO) Ring Buffer Write Pointer

Field Name Bits Default Description

RB_WPTR 22:0 0x0 Ring Buffer Write Pointer. This is an index (in dwords)

of the last known element to be written to the ring buffer

(by the host).

CP:CP_RB_WPTR_DELAY · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x718

DESCRIPTION: Ring Buffer Write Pointer Delay

Field Name Bits Default Description

PRE_WRITE_TIMER 27:0 0x0 Pre-Write Timer. The number of clocks that a write to

the CP_RB_WPTR register will be delayed until actually

taking effect. Default = 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 152

PRE_WRITE_LIMIT 31:28 0x0 Pre-Write Limit. The number of times that the

CP_RB_WPTR register can be written (while the

PRE_WRITE_TIMER has not expired) before the

CP_RB_WPTR register is forced to be updated with the

most recently written value. Default = 0

CP:CP_RESYNC_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x778

DESCRIPTION: Raster Engine Sync Address (WO)

Field Name Bits Default Description

RESYNC_ADDR

(Access: W)

2:0 0x0 Scratch Register Offset Address.

CP:CP_RESYNC_DATA · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x77c

DESCRIPTION: Raster Engine Sync Data (WO)

Field Name Bits Default Description

RESYNC_DATA

(Access: W)

31:0 none Data written to selected Scratch Register when a sync

pulse pair is received from the CBA and CBB.

CP:CP_STAT · [R] · 32 bits · Access: 8/16/32 · MMReg:0x7c0

DESCRIPTION: (RO) Busy Status Signals

Field Name Bits Default Description

MRU_BUSY 0 none Memory Read Unit Busy.

MWU_BUSY 1 none Memory Write Unit Busy.

RSIU_BUSY 2 none Register Backbone Input Interface Busy.

RCIU_BUSY 3 none RBBM Output Interface Busy.

CSF_PRIMARY_BUSY 9 none Primary Command Stream Fetcher Busy.

CSF_INDIRECT_BUSY 10 none Indirect #1 Command Stream Fetcher Busy.

CSQ_PRIMARY_BUSY 11 none Data in Command Queue for Primary Stream.

CSQ_INDIRECT_BUSY 12 none Data in Command Queue for Indirect #1 Stream.

CSI_BUSY 13 none Command Stream Interpreter Busy.

CSF_INDIRECT2_BUSY 14 none Indirect #2 Command Stream Fetcher Busy.

CSQ_INDIRECT2_BUSY 15 none Data in Command Queue for Indirect #2 Stream.

GUIDMA_BUSY 28 none GUI DMA Engine Busy.

VIDDMA_BUSY 29 none VID DMA Engine Busy.

CMDSTRM_BUSY 30 none Command Stream Busy.

CP_BUSY 31 none CP Busy.

CP:CP_VID_COMMAND · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7cc

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 153

DESCRIPTION: Command for PIO VID DMAs

Field Name Bits Default Description

CP_VID_COMMAND 31:0 none Command for PIO DMAs to the VID DMA. Only

DWORD access is allowed to this register.

CP:CP_VID_DST_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7c8

DESCRIPTION: Destination Address for PIO VID DMAs

Field Name Bits Default Description

CP_VID_DST_ADDR 31:0 none Destination address for PIO DMAs to the VID DMA.

Only DWORD access is allowed to this register.

CP:CP_VID_SRC_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7c4

DESCRIPTION: Source Address for PIO VID DMAs

Field Name Bits Default Description

CP_VID_SRC_ADDR 31:0 none Source address for PIO DMAs to the VID DMA. Only

DWORD access is allowed to this register.

CP:CP_VP_ADDR_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x7e8

DESCRIPTION: Virtual vs Physical Address Control - Selects whether the address corresponds to a physical or

virtual address in memory.

Field Name Bits Default Description

SCRATCH_ALT_VP_WR 0 0x0 0=Physical (Default), 1=Virtual

SCRATCH_VP_WR 1 0x0 0=Physical (Default), 1=Virtual

RPTR_VP_UPDATE 2 0x0 0=Physical (Default), 1=Virtual

VIDDMA_VP_WR 3 0x0 0=Physical (Default), 1=Virtual

VIDDMA_VP_RD 4 0x0 0=Physical (Default), 1=Virtual

GUIDMA_VP_WR 5 0x0 0=Physical (Default), 1=Virtual

GUIDMA_VP_RD 6 0x0 0=Physical (Default), 1=Virtual

INDR2_VP_FETCH 7 0x0 0=Physical (Default), 1=Virtual

INDR1_VP_FETCH 8 0x0 0=Physical (Default), 1=Virtual

RING_VP_FETCH 9 0x0 0=Physical (Default), 1=Virtual

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 154

11.2 Color Buffer Registers

CB:RB3D_AARESOLVE_CTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e88

DESCRIPTION: Resolve Buffer Control. Unpipelined

Field Name Bits Default Description

AARESOLVE_MODE 0 0x0 Specifies if the color buffer is in resolve mode. The

cache must be empty before changing this register.

 POSSIBLE VALUES:

 00 - Normal operation.

 01 - Resolve operation.

AARESOLVE_GAMMA 1 none Specifies the gamma and degamma to be applied to the

samples before and after filtering, respectively.

 POSSIBLE VALUES:

 00 - 1.0

 01 - 2.2

AARESOLVE_ALPHA 2 0x0 Controls whether alpha is averaged in the resolve. 0 =>

the resolved alpha value is selected from the sample 0

value. 1=> the resolved alpha value is a filtered (average)

result of of the samples.

 POSSIBLE VALUES:

 00 - Resolved alpha value is taken from sample 0.

 01 - Resolved alpha value is the average of the

samples. The average is not gamma corrected.

CB:RB3D_AARESOLVE_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e80

DESCRIPTION: Resolve buffer destination address. The cache must be empty before changing this register if the

cb is in resolve mode. Unpipelined

Field Name Bits Default Description

AARESOLVE_OFFSET 31:5 none 256-bit aligned 3D resolve destination offset.

CB:RB3D_AARESOLVE_PITCH · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e84

DESCRIPTION: Resolve Buffer Pitch and Tiling Control. The cache must be empty before changing this register if

the cb is in resolve mode. Unpipelined

Field Name Bits Default Description

AARESOLVE_PITCH 13:1 none 3D destination pitch in multiples of 2-pixels.

CB:RB3D_ABLENDCNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e08

DESCRIPTION: Alpha Blend Control for Alpha Channel. Pipelined through the blender.

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 155

COMB_FCN 14:12 none Combine Function , Allows modification of how the

SRCBLEND and DESTBLEND are combined.

 POSSIBLE VALUES:

 00 - Add and Clamp

 01 - Add but no Clamp

 02 - Subtract Dst from Src, and Clamp

 03 - Subtract Dst from Src, and don`t Clamp

 04 - Minimum of Src, Dst (the src and dst blend

functions are forced to D3D_ONE)

 05 - Maximum of Src, Dst (the src and dst blend

functions are forced to D3D_ONE)

 06 - Subtract Src from Dst, and Clamp

 07 - Subtract Src from Dst, and don`t Clamp

SRCBLEND 21:16 none Source Blend Function , Alpha blending function (SRC).

 POSSIBLE VALUES:

 00 - RESERVED

 01 - D3D_ZERO

 02 - D3D_ONE

 03 - D3D_SRCCOLOR

 04 - D3D_INVSRCCOLOR

 05 - D3D_SRCALPHA

 06 - D3D_INVSRCALPHA

 07 - D3D_DESTALPHA

 08 - D3D_INVDESTALPHA

 09 - D3D_DESTCOLOR

 10 - D3D_INVDESTCOLOR

 11 - D3D_SRCALPHASAT

 12 - D3D_BOTHSRCALPHA

 13 - D3D_BOTHINVSRCALPHA

 14 - RESERVED

 15 - RESERVED

 16 - RESERVED

 17 - RESERVED

 18 - RESERVED

 19 - RESERVED

 20 - RESERVED

 21 - RESERVED

 22 - RESERVED

 23 - RESERVED

 24 - RESERVED

 25 - RESERVED

 26 - RESERVED

 27 - RESERVED

 28 - RESERVED

 29 - RESERVED

 30 - RESERVED

 31 - RESERVED

 32 - GL_ZERO

 33 - GL_ONE

 34 - GL_SRC_COLOR

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 156

 35 - GL_ONE_MINUS_SRC_COLOR

 36 - GL_DST_COLOR

 37 - GL_ONE_MINUS_DST_COLOR

 38 - GL_SRC_ALPHA

 39 - GL_ONE_MINUS_SRC_ALPHA

 40 - GL_DST_ALPHA

 41 - GL_ONE_MINUS_DST_ALPHA

 42 - GL_SRC_ALPHA_SATURATE

 43 - GL_CONSTANT_COLOR

 44 - GL_ONE_MINUS_CONSTANT_COLOR

 45 - GL_CONSTANT_ALPHA

 46 - GL_ONE_MINUS_CONSTANT_ALPHA

 47 - RESERVED

 48 - RESERVED

 49 - RESERVED

 50 - RESERVED

 51 - RESERVED

 52 - RESERVED

 53 - RESERVED

 54 - RESERVED

 55 - RESERVED

 56 - RESERVED

 57 - RESERVED

 58 - RESERVED

 59 - RESERVED

 60 - RESERVED

 61 - RESERVED

 62 - RESERVED

 63 - RESERVED

DESTBLEND 29:24 none Destination Blend Function , Alpha blending function

(DST).

 POSSIBLE VALUES:

 00 - RESERVED

 01 - D3D_ZERO

 02 - D3D_ONE

 03 - D3D_SRCCOLOR

 04 - D3D_INVSRCCOLOR

 05 - D3D_SRCALPHA

 06 - D3D_INVSRCALPHA

 07 - D3D_DESTALPHA

 08 - D3D_INVDESTALPHA

 09 - D3D_DESTCOLOR

 10 - D3D_INVDESTCOLOR

 11 - RESERVED

 12 - RESERVED

 13 - RESERVED

 14 - RESERVED

 15 - RESERVED

 16 - RESERVED

 17 - RESERVED

 18 - RESERVED

 19 - RESERVED

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 157

 20 - RESERVED

 21 - RESERVED

 22 - RESERVED

 23 - RESERVED

 24 - RESERVED

 25 - RESERVED

 26 - RESERVED

 27 - RESERVED

 28 - RESERVED

 29 - RESERVED

 30 - RESERVED

 31 - RESERVED

 32 - GL_ZERO

 33 - GL_ONE

 34 - GL_SRC_COLOR

 35 - GL_ONE_MINUS_SRC_COLOR

 36 - GL_DST_COLOR

 37 - GL_ONE_MINUS_DST_COLOR

 38 - GL_SRC_ALPHA

 39 - GL_ONE_MINUS_SRC_ALPHA

 40 - GL_DST_ALPHA

 41 - GL_ONE_MINUS_DST_ALPHA

 42 - RESERVED

 43 - GL_CONSTANT_COLOR

 44 - GL_ONE_MINUS_CONSTANT_COLOR

 45 - GL_CONSTANT_ALPHA

 46 - GL_ONE_MINUS_CONSTANT_ALPHA

 47 - RESERVED

 48 - RESERVED

 49 - RESERVED

 50 - RESERVED

 51 - RESERVED

 52 - RESERVED

 53 - RESERVED

 54 - RESERVED

 55 - RESERVED

 56 - RESERVED

 57 - RESERVED

 58 - RESERVED

 59 - RESERVED

 60 - RESERVED

 61 - RESERVED

 62 - RESERVED

 63 - RESERVED

CB:RB3D_BLENDCNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e04

DESCRIPTION: Alpha Blend Control for Color Channels. Pipelined through the blender.

Field Name Bits Default Description

ALPHA_BLEND_ENABLE 0 0x0 Allow alpha blending with the destination.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 158

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

SEPARATE_ALPHA_ENABLE 1 0x0 Enables use of RB3D_ABLENDCNTL

 POSSIBLE VALUES:

 00 - Disabled (Use RB3D_BLENDCNTL)

 01 - Enabled (Use RB3D_ABLENDCNTL)

READ_ENABLE 2 0x1 When blending is enabled, this enables memory reads.

Memory reads will still occur when this is disabled if

they are for reasons not related to blending.

 POSSIBLE VALUES:

 00 - Disable reads

 01 - Enable reads

DISCARD_SRC_PIXELS 5:3 0x0 Discard pixels when blending is enabled based on the src

color.

 POSSIBLE VALUES:

 00 - Disable

 01 - Discard pixels if src alpha <=

RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD

 02 - Discard pixels if src color <=

RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD

 03 - Discard pixels if src argb <=

RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD

 04 - Discard pixels if src alpha >=

RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD

 05 - Discard pixels if src color >=

RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD

 06 - Discard pixels if src argb >=

RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD

 07 - (reserved)

COMB_FCN 14:12 none Combine Function , Allows modification of how the

SRCBLEND and DESTBLEND are combined.

 POSSIBLE VALUES:

 00 - Add and Clamp

 01 - Add but no Clamp

 02 - Subtract Dst from Src, and Clamp

 03 - Subtract Dst from Src, and don`t Clamp

 04 - Minimum of Src, Dst (the src and dst blend

functions are forced to D3D_ONE)

 05 - Maximum of Src, Dst (the src and dst blend

functions are forced to D3D_ONE)

 06 - Subtract Src from Dst, and Clamp

 07 - Subtract Src from Dst, and don`t Clamp

SRCBLEND 21:16 none Source Blend Function , Alpha blending function (SRC).

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 159

 POSSIBLE VALUES:

 00 - RESERVED

 01 - D3D_ZERO

 02 - D3D_ONE

 03 - D3D_SRCCOLOR

 04 - D3D_INVSRCCOLOR

 05 - D3D_SRCALPHA

 06 - D3D_INVSRCALPHA

 07 - D3D_DESTALPHA

 08 - D3D_INVDESTALPHA

 09 - D3D_DESTCOLOR

 10 - D3D_INVDESTCOLOR

 11 - D3D_SRCALPHASAT

 12 - D3D_BOTHSRCALPHA

 13 - D3D_BOTHINVSRCALPHA

 14 - RESERVED

 15 - RESERVED

 16 - RESERVED

 17 - RESERVED

 18 - RESERVED

 19 - RESERVED

 20 - RESERVED

 21 - RESERVED

 22 - RESERVED

 23 - RESERVED

 24 - RESERVED

 25 - RESERVED

 26 - RESERVED

 27 - RESERVED

 28 - RESERVED

 29 - RESERVED

 30 - RESERVED

 31 - RESERVED

 32 - GL_ZERO

 33 - GL_ONE

 34 - GL_SRC_COLOR

 35 - GL_ONE_MINUS_SRC_COLOR

 36 - GL_DST_COLOR

 37 - GL_ONE_MINUS_DST_COLOR

 38 - GL_SRC_ALPHA

 39 - GL_ONE_MINUS_SRC_ALPHA

 40 - GL_DST_ALPHA

 41 - GL_ONE_MINUS_DST_ALPHA

 42 - GL_SRC_ALPHA_SATURATE

 43 - GL_CONSTANT_COLOR

 44 - GL_ONE_MINUS_CONSTANT_COLOR

 45 - GL_CONSTANT_ALPHA

 46 - GL_ONE_MINUS_CONSTANT_ALPHA

 47 - RESERVED

 48 - RESERVED

 49 - RESERVED

 50 - RESERVED

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 160

 51 - RESERVED

 52 - RESERVED

 53 - RESERVED

 54 - RESERVED

 55 - RESERVED

 56 - RESERVED

 57 - RESERVED

 58 - RESERVED

 59 - RESERVED

 60 - RESERVED

 61 - RESERVED

 62 - RESERVED

 63 - RESERVED

DESTBLEND 29:24 none Destination Blend Function , Alpha blending function

(DST).

 POSSIBLE VALUES:

 00 - RESERVED

 01 - D3D_ZERO

 02 - D3D_ONE

 03 - D3D_SRCCOLOR

 04 - D3D_INVSRCCOLOR

 05 - D3D_SRCALPHA

 06 - D3D_INVSRCALPHA

 07 - D3D_DESTALPHA

 08 - D3D_INVDESTALPHA

 09 - D3D_DESTCOLOR

 10 - D3D_INVDESTCOLOR

 11 - RESERVED

 12 - RESERVED

 13 - RESERVED

 14 - RESERVED

 15 - RESERVED

 16 - RESERVED

 17 - RESERVED

 18 - RESERVED

 19 - RESERVED

 20 - RESERVED

 21 - RESERVED

 22 - RESERVED

 23 - RESERVED

 24 - RESERVED

 25 - RESERVED

 26 - RESERVED

 27 - RESERVED

 28 - RESERVED

 29 - RESERVED

 30 - RESERVED

 31 - RESERVED

 32 - GL_ZERO

 33 - GL_ONE

 34 - GL_SRC_COLOR

 35 - GL_ONE_MINUS_SRC_COLOR

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 161

 36 - GL_DST_COLOR

 37 - GL_ONE_MINUS_DST_COLOR

 38 - GL_SRC_ALPHA

 39 - GL_ONE_MINUS_SRC_ALPHA

 40 - GL_DST_ALPHA

 41 - GL_ONE_MINUS_DST_ALPHA

 42 - RESERVED

 43 - GL_CONSTANT_COLOR

 44 - GL_ONE_MINUS_CONSTANT_COLOR

 45 - GL_CONSTANT_ALPHA

 46 - GL_ONE_MINUS_CONSTANT_ALPHA

 47 - RESERVED

 48 - RESERVED

 49 - RESERVED

 50 - RESERVED

 51 - RESERVED

 52 - RESERVED

 53 - RESERVED

 54 - RESERVED

 55 - RESERVED

 56 - RESERVED

 57 - RESERVED

 58 - RESERVED

 59 - RESERVED

 60 - RESERVED

 61 - RESERVED

 62 - RESERVED

 63 - RESERVED

SRC_ALPHA_0_NO_READ 30 0x0 Enables source alpha zero performance optimization to

skip reads.

 POSSIBLE VALUES:

 00 - Disable source alpha zero performance

optimization to skip reads

 01 - Enable source alpha zero performance

optimization to skip reads

SRC_ALPHA_1_NO_READ 31 0x0 Enables source alpha one performance optimization to

skip reads.

 POSSIBLE VALUES:

 00 - Disable source alpha one performance

optimization to skip reads

 01 - Enable source alpha one performance

optimization to skip reads

CB:RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD · [R/W] · 32 bits · Access: 8/16/32 ·

MMReg:0x4ea4

DESCRIPTION: Discard src pixels greater than or equal to threshold.

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 162

BLUE 7:0 0xFF Blue

GREEN 15:8 0xFF Green

RED 23:16 0xFF Red

ALPHA 31:24 0xFF Alpha

CB:RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD · [R/W] · 32 bits · Access: 8/16/32 ·

MMReg:0x4ea0

DESCRIPTION: Discard src pixels less than or equal to threshold.

Field Name Bits Default Description

BLUE 7:0 0x0 Blue

GREEN 15:8 0x0 Green

RED 23:16 0x0 Red

ALPHA 31:24 0x0 Alpha

CB:RB3D_CCTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e00

DESCRIPTION: Unpipelined.

Field Name Bits Default Description

NUM_MULTIWRITES 6:5 0x0 A quad is replicated and written to this

many buffers.

 POSSIBLE VALUES:

 00 - 1 buffer. This is the only mode

where the cb processes the end of packet

command.

 01 - 2 buffers

 02 - 3 buffers

 03 - 4 buffers

CLRCMP_FLIPE_ENABLE 7 0x0 Enables equivalent of rage128

CMP_EQ_FLIP color compare mode.

This is used to ensure 3D data does not

get chromakeyed away by logic in the

backend.

 POSSIBLE VALUES:

 00 - Disable color compare.

 01 - Enable color compare.

AA_COMPRESSION_ENABLE 9 none Enables AA color compression. Cmask

must also be enabled when aa

compression is enabled. The cache must

be empty before this is changed.

 POSSIBLE VALUES:

 00 - Disable AA compression

 01 - Enable AA compression

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 163

CMASK_ENABLE 10 none Enables use of the cmask ram. The cache

must be empty before this is changed.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

Reserved 11 0x0 Set to 0

INDEPENDENT_COLOR_CHANNEL_MASK_ENABLE 12 0x0 Enables indepedent color channel masks

for the MRTs. Disabling this feature will

cause all the MRTs to use color channel

mask 0.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

WRITE_COMPRESSION_DISABLE 13 none Disables write compression.

 POSSIBLE VALUES:

 00 - Enable write compression

 01 - Disable write compression

INDEPENDENT_COLORFORMAT_ENABLE 14 0x0 Enables independent color format for the

MRTs. Disabling this feature will cause

all the MRTs to use color format 0.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

CB:RB3D_CLRCMP_CLR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e20

DESCRIPTION: Color Compare Color. Stalls the 2d/3d datapath until it is idle.

Field Name Bits Default Description

CLRCMP_CLR 31:0 none Like RB2D_CLRCMP_CLR, but a separate register is

provided to keep 2D and 3D state separate.

CB:RB3D_CLRCMP_FLIPE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e1c

DESCRIPTION: Color Compare Flip. Stalls the 2d/3d datapath until it is idle.

Field Name Bits Default Description

CLRCMP_FLIPE 31:0 none Like RB2D_CLRCMP_FLIPE, but a separate register is

provided to keep 2D and 3D state separate.

CB:RB3D_CLRCMP_MSK · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e24

DESCRIPTION: Color Compare Mask. Stalls the 2d/3d datapath until it is idle.

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 164

CLRCMP_MSK 31:0 none Like RB2D_CLRCMP_CLR, but separate registers

provided to keep 2D and 3D state separate.

CB:RB3D_COLOROFFSET[0-3] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e28-0x4e34

DESCRIPTION: Color Buffer Address Offset of multibuffer 0. Unpipelined.

Field Name Bits Default Description

COLOROFFSET 31:5 none 256-bit aligned 3D destination offset address. The cache

must be empty before this is changed.

CB:RB3D_COLORPITCH[0-3] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e38-0x4e44

DESCRIPTION: Color buffer format and tiling control for all the multibuffers and the pitch of multibuffer 0.

Unpipelined. The cache must be empty before any of the registers are changed.

Field Name Bits Default Description

COLORPITCH 13:1 none 3D destination pitch in multiples of 2-pixels.

COLORTILE 16 none Denotes whether the 3D destination is in macrotiled

format.

 POSSIBLE VALUES:

 00 - 3D destination is not macrotiled

 01 - 3D destination is macrotiled

COLORMICROTILE 18:17 none Denotes whether the 3D destination is in microtiled

format.

 POSSIBLE VALUES:

 00 - 3D destination is no microtiled

 01 - 3D destination is microtiled

 02 - 3D destination is square microtiled. Only

available in 16-bit

 03 - (reserved)

COLORENDIAN 20:19 none Specifies endian control for the color buffer.

 POSSIBLE VALUES:

 00 - No swap

 01 - Word swap (2 bytes in 16-bit)

 02 - Dword swap (4 bytes in a 32-bit)

 03 - Half-Dword swap (2 16-bit in a 32-bit)

COLORFORMAT 24:21 0x6 3D destination color format.

 POSSIBLE VALUES:

 00 - ARGB10101010

 01 - UV1010

 02 - CI8 (2D ONLY)

 03 - ARGB1555

 04 - RGB565

 05 - ARGB2101010

 06 - ARGB8888

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 165

 07 - ARGB32323232

 08 - (Reserved)

 09 - I8

 10 - ARGB16161616

 11 - YUV422 packed (VYUY)

 12 - YUV422 packed (YVYU)

 13 - UV88

 14 - I10

 15 - ARGB4444

CB:RB3D_COLOR_CHANNEL_MASK · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e0c

DESCRIPTION: 3D Color Channel Mask. If all the channels used in the current color format are disabled, then

the cb will discard all the incoming quads. Pipelined through the blender.

Field Name Bits Default Description

BLUE_MASK 0 0x1 mask bit for the blue channel

 POSSIBLE VALUES:

 00 - disable

 01 - enable

GREEN_MASK 1 0x1 mask bit for the green channel

 POSSIBLE VALUES:

 00 - disable

 01 - enable

RED_MASK 2 0x1 mask bit for the red channel

 POSSIBLE VALUES:

 00 - disable

 01 - enable

ALPHA_MASK 3 0x1 mask bit for the alpha channel

 POSSIBLE VALUES:

 00 - disable

 01 - enable

BLUE_MASK1 4 0x1 mask bit for the blue channel of MRT 1

 POSSIBLE VALUES:

 00 - disable

 01 - enable

GREEN_MASK1 5 0x1 mask bit for the green channel of MRT 1

 POSSIBLE VALUES:

 00 - disable

 01 - enable

RED_MASK1 6 0x1 mask bit for the red channel of MRT 1

 POSSIBLE VALUES:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 166

 00 - disable

 01 - enable

ALPHA_MASK1 7 0x1 mask bit for the alpha channel of MRT 1

 POSSIBLE VALUES:

 00 - disable

 01 - enable

BLUE_MASK2 8 0x1 mask bit for the blue channel of MRT 2

 POSSIBLE VALUES:

 00 - disable

 01 - enable

GREEN_MASK2 9 0x1 mask bit for the green channel of MRT 2

 POSSIBLE VALUES:

 00 - disable

 01 - enable

RED_MASK2 10 0x1 mask bit for the red channel of MRT 2

 POSSIBLE VALUES:

 00 - disable

 01 - enable

ALPHA_MASK2 11 0x1 mask bit for the alpha channel of MRT 2

 POSSIBLE VALUES:

 00 - disable

 01 - enable

BLUE_MASK3 12 0x1 mask bit for the blue channel of MRT 3

 POSSIBLE VALUES:

 00 - disable

 01 - enable

GREEN_MASK3 13 0x1 mask bit for the green channel of MRT 3

 POSSIBLE VALUES:

 00 - disable

 01 - enable

RED_MASK3 14 0x1 mask bit for the red channel of MRT 3

 POSSIBLE VALUES:

 00 - disable

 01 - enable

ALPHA_MASK3 15 0x1 mask bit for the alpha channel of MRT 3

 POSSIBLE VALUES:

 00 - disable

 01 - enable

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 167

CB:RB3D_COLOR_CLEAR_VALUE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e14

DESCRIPTION: Clear color that is used when the color mask is set to 00. Unpipelined. Program this register with

a 32-bit value in ARGB8888 or ARGB2101010 formats, ignoring the fields.

Field Name Bits Default Description

BLUE 7:0 none blue clear color

GREEN 15:8 none green clear color

RED 23:16 none red clear color

ALPHA 31:24 none alpha clear color

CB:RB3D_COLOR_CLEAR_VALUE_AR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x46c0

DESCRIPTION: Alpha and red clear color values that are used when the color mask is set to 00 in FP16 per

component mode. Unpipelined.

Field Name Bits Default Description

RED 15:0 none red clear color

ALPHA 31:16 none alpha clear color

CB:RB3D_COLOR_CLEAR_VALUE_GB · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x46c4

DESCRIPTION: Green and blue clear color values that are used when the color mask is set to 00 in FP16 per

component mode. Unpipelined.

Field Name Bits Default Description

BLUE 15:0 none blue clear color

GREEN 31:16 none green clear color

CB:RB3D_CONSTANT_COLOR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e10

DESCRIPTION: Constant color used by the blender. Pipelined through the blender.

Field Name Bits Default Description

BLUE 7:0 none blue constant color (For R520, this field is ignored, use

RB3D_CONSTANT_COLOR_GB__BLUE instead)

GREEN 15:8 none green constant color (For R520, this field is ignored, use

RB3D_CONSTANT_COLOR_GB__GREEN instead)

RED 23:16 none red constant color (For R520, this field is ignored, use

RB3D_CONSTANT_COLOR_AR__RED instead)

ALPHA 31:24 none alpha constant color (For R520, this field is ignored, use

RB3D_CONSTANT_COLOR_AR__ALPHA instead)

CB:RB3D_CONSTANT_COLOR_AR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4ef8

DESCRIPTION: Constant color used by the blender. Pipelined through the blender.

Field Name Bits Default Description

RED 15:0 none red constant color in 0.10 fixed or FP16 format

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 168

ALPHA 31:16 none alpha constant color in 0.10 fixed or FP16 format

CB:RB3D_CONSTANT_COLOR_GB · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4efc

DESCRIPTION: Constant color used by the blender. Pipelined through the blender.

Field Name Bits Default Description

BLUE 15:0 none blue constant color in 0.10 fixed or FP16 format

GREEN 31:16 none green constant color in 0.10 fixed or FP16 format

CB:RB3D_DITHER_CTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e50

DESCRIPTION: Dithering control register. Pipelined through the blender.

Field Name Bits Default Description

DITHER_MODE 1:0 0x0 Dither mode

 POSSIBLE VALUES:

 00 - Truncate

 01 - Round

 02 - LUT dither

 03 - (reserved)

ALPHA_DITHER_MODE 3:2 0x0 POSSIBLE VALUES:

 00 - Truncate

 01 - Round

 02 - LUT dither

 03 - (reserved)

CB:RB3D_DSTCACHE_CTLSTAT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e4c

DESCRIPTION: Destination Color Buffer Cache Control/Status. If the cb is in e2 mode, then a flush or free will

not occur upon a write to this register, but a sync will be immediately sent if one is requested. If both DC_FLUSH

and DC_FREE are zero but DC_FINISH is one, then a sync will be sent immediately -- the cb will not wait for all

the previous operations to complete before sending the sync. Unpipelined except when DC_FINISH and DC_FREE

are both set to zero.

Field Name Bits Default Description

DC_FLUSH 1:0 0x0 Setting this bit flushes dirty data from the 3D Dst Cache.

Unless the DC_FREE bits are also set, the tags in the

cache remain valid. A purge is achieved by setting both

DC_FLUSH and DC_FREE.

 POSSIBLE VALUES:

 00 - No effect

 01 - No effect

 02 - Flushes dirty 3D data

 03 - Flushes dirty 3D data

DC_FREE 3:2 0x0 Setting this bit invalidates the 3D Dst Cache tags. Unless

the DC_FLUSH bit is also set, the cache lines are not

written to memory. A purge is achieved by setting both

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 169

DC_FLUSH and DC_FREE.

 POSSIBLE VALUES:

 00 - No effect

 01 - No effect

 02 - Free 3D tags

 03 - Free 3D tags

DC_FINISH 4 0x0 POSSIBLE VALUES:

 00 - do not send a finish signal to the CP

 01 - send a finish signal to the CP after the end of

operation

CB:RB3D_FIFO_SIZE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4ef4

DESCRIPTION: Sets the fifo sizes

Field Name Bits Default Description

OP_FIFO_SIZE 1:0 0x0 Determines the size of the op fifo

 POSSIBLE VALUES:

 00 - Full size

 01 - 1/2 size

 02 - 1/4 size

 03 - 1/8 size

CB:RB3D_ROPCNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4e18

DESCRIPTION: 3D ROP Control. Stalls the 2d/3d datapath until it is idle.

Field Name Bits Default Description

ROP_ENABLE 2 0x0 POSSIBLE VALUES:

 00 - Disable ROP. (Forces ROP2 to be 0xC).

 01 - Enabled

ROP 11:8 none ROP2 code for 3D fragments. This value is replicated

into 2 nibbles to form the equivalent ROP3 code to

control the ROP3 logic. These are the GDI ROP2 codes.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 170

11.3 Fog Registers

FG:FG_ALPHA_FUNC · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bd4

DESCRIPTION: Alpha Function

Field Name Bits Default Description

AF_VAL 7:0 0x0 Specifies the 8-bit alpha compare value when

AF_EN_8BIT is enabled

AF_FUNC 10:8 0x0 Specifies the alpha compare function.

 POSSIBLE VALUES:

 00 - AF_NEVER

 01 - AF_LESS

 02 - AF_EQUAL

 03 - AF_LE

 04 - AF_GREATER

 05 - AF_NOTEQUAL

 06 - AF_GE

 07 - AF_ALWAYS

AF_EN 11 0x0 Enables/Disables alpha compare function.

 POSSIBLE VALUES:

 00 - Disable alpha function.

 01 - Enable alpha function.

AF_EN_8BIT 12 0x0 Enable 8-bit alpha compare function.

 POSSIBLE VALUES:

 00 - Default 10-bit alpha compare.

 01 - Enable 8-bit alpha compare.

AM_EN 16 0x0 Enables/Disables alpha-to-mask function.

 POSSIBLE VALUES:

 00 - Disable alpha to mask function.

 01 - Enable alpha to mask function.

AM_CFG 17 0x0 Specfies number of sub-pixel samples for alpha-to-mask

function.

 POSSIBLE VALUES:

 00 - 2/4 sub-pixel samples.

 01 - 3/6 sub-pixel samples.

DITH_EN 20 0x0 Enables/Disables RGB Dithering (Not supported in

R520)

 POSSIBLE VALUES:

 00 - Disable Dithering

 01 - Enable Dithering.

ALP_OFF_EN 24 0x0 Alpha offset enable/disable (Not supported in R520)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 171

 POSSIBLE VALUES:

 00 - Disables alpha offset of 2 (default r300 & rv350

behavior)

 01 - Enables offset of 2 on alpha coming in from the

US

DISCARD_ZERO_MASK_QUAD 25 0x0 Enable/Disable discard zero mask coverage quad to ZB

 POSSIBLE VALUES:

 00 - No discard of zero coverage mask quads

 01 - Discard zero coverage mask quads

FP16_ENABLE 28 0x0 Enables/Disables FP16 alpha function

 POSSIBLE VALUES:

 00 - Default 10-bit alpha compare and alpha-to-mask

function

 01 - Enable FP16 alpha compare and alpha-to-mask

function

FG:FG_ALPHA_VALUE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4be0

DESCRIPTION: Alpha Compare Value

Field Name Bits Default Description

AF_VAL 15:0 0x0 Specifies the alpha compare value, 0.10 fixed or FP16

format

FG:FG_DEPTH_SRC · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bd8

DESCRIPTION: Where does depth come from?

Field Name Bits Default Description

DEPTH_SRC 0 0x0 POSSIBLE VALUES:

 00 - Depth comes from scan converter as plane

equation.

 01 - Depth comes from shader as four discrete values.

FG:FG_FOG_BLEND · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bc0

DESCRIPTION: Fog Blending Enable

Field Name Bits Default Description

ENABLE 0 0x0 Enable for fog blending

 POSSIBLE VALUES:

 00 - Disables fog (output matches input color).

 01 - Enables fog.

FN 2:1 0x0 Fog generation function

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 172

 POSSIBLE VALUES:

 00 - Fog function is linear

 01 - Fog function is exponential

 02 - Fog function is exponential squared

 03 - Fog is derived from constant fog factor

FG:FG_FOG_COLOR_B · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bd0

DESCRIPTION: Blue Component of Fog Color

Field Name Bits Default Description

BLUE 9:0 0x0 Blue component of fog color; (0.10) fixed format.

FG:FG_FOG_COLOR_G · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bcc

DESCRIPTION: Green Component of Fog Color

Field Name Bits Default Description

GREEN 9:0 0x0 Green component of fog color; (0.10) fixed format.

FG:FG_FOG_COLOR_R · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bc8

DESCRIPTION: Red Component of Fog Color

Field Name Bits Default Description

RED 9:0 0x0 Red component of fog color; (0.10) fixed format.

FG:FG_FOG_FACTOR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4bc4

DESCRIPTION: Constant Factor for Fog Blending

Field Name Bits Default Description

FACTOR 9:0 0x0 Constant fog factor; fixed (0.10) format.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 173

11.4 Geometry Assembly Registers

GA:GA_COLOR_CONTROL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4278

DESCRIPTION: Specifies per RGB or Alpha shading method.

Field Name Bits Default Description

RGB0_SHADING 1:0 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

ALPHA0_SHADING 3:2 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

RGB1_SHADING 5:4 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

ALPHA1_SHADING 7:6 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

RGB2_SHADING 9:8 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

ALPHA2_SHADING 11:10 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

RGB3_SHADING 13:12 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 174

ALPHA3_SHADING 15:14 0x0 Specifies solid, flat or Gouraud shading.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

PROVOKING_VERTEX 17:16 0x0 Specifies, for flat shaded polygons, which vertex holds

the polygon color.

 POSSIBLE VALUES:

 00 - Provoking is first vertex

 01 - Provoking is second vertex

 02 - Provoking is third vertex

 03 - Provoking is always last vertex

GA:GA_COLOR_CONTROL_PS3 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4258

DESCRIPTION: Specifies color properties and mappings of textures.

Field Name Bits Default Description

TEX0_SHADING_PS3 1:0 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX1_SHADING_PS3 3:2 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX2_SHADING_PS3 5:4 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX3_SHADING_PS3 7:6 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX4_SHADING_PS3 9:8 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 175

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX5_SHADING_PS3 11:10 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX6_SHADING_PS3 13:12 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX7_SHADING_PS3 15:14 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX8_SHADING_PS3 17:16 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX9_SHADING_PS3 19:18 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for each texture.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

TEX10_SHADING_PS3 21:20 0x0 Specifies undefined(0), flat(1) and Gouraud(2/def)

shading for tex10 components.

 POSSIBLE VALUES:

 00 - Solid fill color

 01 - Flat shading

 02 - Gouraud shading

COLOR0_TEX_OVERRIDE 25:22 0x0 Specifies if each color should come from a texture and

which one.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 176

 POSSIBLE VALUES:

 00 - No override

 01 - Stuff texture 0

 02 - Stuff texture 1

 03 - Stuff texture 2

 04 - Stuff texture 3

 05 - Stuff texture 4

 06 - Stuff texture 5

 07 - Stuff texture 6

 08 - Stuff texture 7

 09 - Stuff texture 8/C2

 10 - Stuff texture 9/C3

COLOR1_TEX_OVERRIDE 29:26 0x0 Specifies if each color should come from a texture and

which one.

 POSSIBLE VALUES:

 00 - No override

 01 - Stuff texture 0

 02 - Stuff texture 1

 03 - Stuff texture 2

 04 - Stuff texture 3

 05 - Stuff texture 4

 06 - Stuff texture 5

 07 - Stuff texture 6

 08 - Stuff texture 7

 09 - Stuff texture 8/C2

 10 - Stuff texture 9/C3

GA:GA_ENHANCE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4274

DESCRIPTION: GA Enhancement Register

Field Name Bits Default Description

DEADLOCK_CNTL 0 0x0 TCL/GA Deadlock control.

 POSSIBLE VALUES:

 00 - No effect.

 01 - Prevents TCL interface from deadlocking on GA

side.

FASTSYNC_CNTL 1 0x1 Enables Fast register/primitive switching

 POSSIBLE VALUES:

 00 - No effect.

 01 - Enables high-performance register/primitive

switching.

REG_READWRITE 2 0x0 R520+: When set, GA supports simultaneous register

reads & writes

 POSSIBLE VALUES:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 177

 00 - No effect.

 01 - Enables GA support of simultaneous register

reads and writes.

REG_NOSTALL 3 0x0 POSSIBLE VALUES:

 00 - No effect.

 01 - Enables GA support of no-stall reads for register

read back.

GA:GA_FIFO_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4270

DESCRIPTION: GA Input fifo high water marks

Field Name Bits Default Description

VERTEX_FIFO 2:0 0x0 Number of words remaining in input vertex fifo before

asserting nearly full

INDEX_FIFO 5:3 0x0 Number of words remaining in input primitive fifo

before asserting nearly full

REG_FIFO 13:6 0x0 Number of words remaining in input register fifo before

asserting nearly full

GA:GA_FILL_A · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x422c

DESCRIPTION: Alpha fill color

Field Name Bits Default Description

COLOR_ALPHA 31:0 0x0 FP20 format for alpha fill.

GA:GA_FILL_B · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4228

DESCRIPTION: Blue fill color

Field Name Bits Default Description

COLOR_BLUE 31:0 0x0 FP20 format for blue fill.

GA:GA_FILL_G · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4224

DESCRIPTION: Green fill color

Field Name Bits Default Description

COLOR_GREEN 31:0 0x0 FP20 format for green fill.

GA:GA_FILL_R · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4220

DESCRIPTION: Red fill color

Field Name Bits Default Description

COLOR_RED 31:0 0x0 FP20 format for red fill.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 178

GA:GA_FOG_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4298

DESCRIPTION: Specifies the offset to apply to fog.

Field Name Bits Default Description

VALUE 31:0 0x0 32b SPFP scale value.

GA:GA_FOG_SCALE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4294

DESCRIPTION: Specifies the scale to apply to fog.

Field Name Bits Default Description

VALUE 31:0 0x0 32b SPFP scale value.

GA:GA_IDLE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x425c

DESCRIPTION: Returns idle status of various G3D block, captured when GA_IDLE written or when hard or soft

reset asserted.

Field Name Bits Default Description

PIPE3_Z_IDLE 0 0x0 Idle status of physical pipe 3 Z unit

PIPE2_Z_IDLE 1 0x0 Idle status of physical pipe 2 Z unit

PIPE3_CB_IDLE 2 0x0 Idle status of physical pipe 3 CB unit

PIPE2_CB_IDLE 3 0x0 Idle status of physical pipe 2 CB unit

PIPE3_FG_IDLE 4 0x0 Idle status of physical pipe 3 FG unit

PIPE2_FG_IDLE 5 0x0 Idle status of physical pipe 2 FG unit

PIPE3_US_IDLE 6 0x0 Idle status of physical pipe 3 US unit

PIPE2_US_IDLE 7 0x0 Idle status of physical pipe 2 US unit

PIPE3_SC_IDLE 8 0x0 Idle status of physical pipe 3 SC unit

PIPE2_SC_IDLE 9 0x0 Idle status of physical pipe 2 SC unit

PIPE3_RS_IDLE 10 0x0 Idle status of physical pipe 3 RS unit

PIPE2_RS_IDLE 11 0x0 Idle status of physical pipe 2 RS unit

PIPE1_Z_IDLE 12 0x0 Idle status of physical pipe 1 Z unit

PIPE0_Z_IDLE 13 0x0 Idle status of physical pipe 0 Z unit

PIPE1_CB_IDLE 14 0x0 Idle status of physical pipe 1 CB unit

PIPE0_CB_IDLE 15 0x0 Idle status of physical pipe 0 CB unit

PIPE1_FG_IDLE 16 0x0 Idle status of physical pipe 1 FG unit

PIPE0_FG_IDLE 17 0x0 Idle status of physical pipe 0 FG unit

PIPE1_US_IDLE 18 0x0 Idle status of physical pipe 1 US unit

PIPE0_US_IDLE 19 0x0 Idle status of physical pipe 0 US unit

PIPE1_SC_IDLE 20 0x0 Idle status of physical pipe 1 SC unit

PIPE0_SC_IDLE 21 0x0 Idle status of physical pipe 0 SC unit

PIPE1_RS_IDLE 22 0x0 Idle status of physical pipe 1 RS unit

PIPE0_RS_IDLE 23 0x0 Idle status of physical pipe 0 RS unit

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 179

SU_IDLE 24 0x0 Idle status of SU unit

GA_IDLE 25 0x0 Idle status of GA unit

GA_UNIT2_IDLE 26 0x0 Idle status of GA unit2

GA:GA_LINE_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4234

DESCRIPTION: Line control

Field Name Bits Default Description

WIDTH 15:0 0x0 1/2 width of line, in subpixels (1/12 or 1/16 only, even in

8b subprecision); (16.0) fixed format.

END_TYPE 17:16 0x0 Specifies how ends of lines should be drawn.

 POSSIBLE VALUES:

 00 - Horizontal

 01 - Vertical

 02 - Square (horizontal or vertical depending upon

slope)

 03 - Computed (perpendicular to slope)

SORT 18 0x0 R520+: When enabled, all lines are sorted so that V0 is

vertex with smallest X, or if X equal, smallest Y.

 POSSIBLE VALUES:

 00 - No sorting (default)

 01 - Sort on minX than MinY

GA:GA_LINE_S0 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4264

DESCRIPTION: S Texture Coordinate Value for Vertex 0 of Line (stuff textures -- i.e. AA)

Field Name Bits Default Description

S0 31:0 0x0 S texture coordinate value generated for vertex 0 of an

antialiased line; 32-bit IEEE float format. Typical 0.0.

GA:GA_LINE_S1 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4268

DESCRIPTION: S Texture Coordinate Value for Vertex 1 of Lines (V2 of parallelogram -- stuff textures -- i.e. AA)

Field Name Bits Default Description

S1 31:0 0x0 S texture coordinate value generated for vertex 1 of an

antialiased line; 32-bit IEEE float format. Typical 1.0.

GA:GA_LINE_STIPPLE_CONFIG · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4238

DESCRIPTION: Line Stipple configuration information.

Field Name Bits Default Description

LINE_RESET 1:0 0x0 Specify type of reset to use for stipple accumulation.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 180

 POSSIBLE VALUES:

 00 - No reseting

 01 - Reset per line

 02 - Reset per packet

STIPPLE_SCALE 31:2 0x0 Specifies, in truncated (30b) floating point, scale to apply

to generated texture coordinates.

GA:GA_LINE_STIPPLE_VALUE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4260

DESCRIPTION: Current value of stipple accumulator.

Field Name Bits Default Description

STIPPLE_VALUE 31:0 0x0 24b Integer, measuring stipple accumulation in subpixels

(1/12 or 1/16, even in 8b precision). (note: field is 32b,

but only lower 24b used)

GA:GA_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4290

DESCRIPTION: Specifies x & y offsets for vertex data after conversion to FP.

Field Name Bits Default Description

X_OFFSET 15:0 0x0 Specifies X offset in S15 format (subpixels -- 1/12 or

1/16, even in 8b subprecision).

Y_OFFSET 31:16 0x0 Specifies Y offset in S15 format (subpixels -- 1/12 or

1/16, even in 8b subprecision).

GA:GA_POINT_MINMAX · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4230

DESCRIPTION: Specifies maximum and minimum point & sprite sizes for per vertex size specification.

Field Name Bits Default Description

MIN_SIZE 15:0 0x0 Minimum point & sprite radius (in subsamples) size to

allow.

MAX_SIZE 31:16 0x0 Maximum point & sprite radius (in subsamples) size to

allow.

GA:GA_POINT_S0 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4200

DESCRIPTION: S Texture Coordinate of Vertex 0 for Point texture stuffing (LLC)

Field Name Bits Default Description

S0 31:0 0x0 S texture coordinate of vertex 0 for point; 32-bit IEEE

float format.

GA:GA_POINT_S1 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4208

DESCRIPTION: S Texture Coordinate of Vertex 2 for Point texture stuffing (URC)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 181

Field Name Bits Default Description

S1 31:0 0x0 S texture coordinate of vertex 2 for point; 32-bit IEEE

float format.

GA:GA_POINT_SIZE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x421c

DESCRIPTION: Dimensions for Points

Field Name Bits Default Description

HEIGHT 15:0 0x0 1/2 Height of point; fixed (16.0), subpixel format (1/12

or 1/16, even if in 8b precision).

WIDTH 31:16 0x0 1/2 Width of point; fixed (16.0), subpixel format (1/12 or

1/16, even if in 8b precision)

GA:GA_POINT_T0 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4204

DESCRIPTION: T Texture Coordinate of Vertex 0 for Point texture stuffing (LLC)

Field Name Bits Default Description

T0 31:0 0x0 T texture coordinate of vertex 0 for point; 32-bit IEEE

float format.

GA:GA_POINT_T1 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x420c

DESCRIPTION: T Texture Coordinate of Vertex 2 for Point texture stuffing (URC)

Field Name Bits Default Description

T1 31:0 0x0 T texture coordinate of vertex 2 for point; 32-bit IEEE

float format.

GA:GA_POLY_MODE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4288

DESCRIPTION: Polygon Mode

Field Name Bits Default Description

POLY_MODE 1:0 0x0 Polygon mode enable.

 POSSIBLE VALUES:

 00 - Disable poly mode (render triangles).

 01 - Dual mode (send 2 sets of 3 polys with specified

poly type).

 02 - Reserved

FRONT_PTYPE 6:4 0x0 Specifies how to render front-facing polygons.

 POSSIBLE VALUES:

 00 - Draw points.

 01 - Draw lines.

 02 - Draw triangles.

 03 - Reserved 3 - 7.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 182

BACK_PTYPE 9:7 0x0 Specifies how to render back-facing polygons.

 POSSIBLE VALUES:

 00 - Draw points.

 01 - Draw lines.

 02 - Draw triangles.

 03 - Reserved 3 - 7.

GA:GA_ROUND_MODE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x428c

DESCRIPTION: Specifies the rouding mode for geometry & color SPFP to FP conversions.

Field Name Bits Default Description

GEOMETRY_ROUND 1:0 0x0 Trunc (0) or round to nearest (1) for geometry (XY).

 POSSIBLE VALUES:

 00 - Round to trunc

 01 - Round to nearest

COLOR_ROUND 3:2 0x0 When set, FP32 to FP20 using round to nearest;

otherwise trunc

 POSSIBLE VALUES:

 00 - Round to trunc

 01 - Round to nearest

RGB_CLAMP 4 0x0 Specifies SPFP color clamp range of [0,1] or FP20 for

RGB.

 POSSIBLE VALUES:

 00 - Clamp to [0,1.0] for RGB

 01 - RGB is FP20

ALPHA_CLAMP 5 0x0 Specifies SPFP alpha clamp range of [0,1] or FP20.

 POSSIBLE VALUES:

 00 - Clamp to [0,1.0] for Alpha

 01 - Alpha is FP20

GEOMETRY_MASK 9:6 0x0 4b negative polarity mask for subpixel precision.

Inverted version gets ANDed with subpixel X, Y masks.

GA:GA_SOLID_BA · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4280

DESCRIPTION: Specifies blue & alpha components of fill color -- S312 format -- Backwards comp.

Field Name Bits Default Description

COLOR_ALPHA 15:0 0x0 Component alpha value. (S3.12)

COLOR_BLUE 31:16 0x0 Component blue value. (S3.12)

GA:GA_SOLID_RG · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x427c

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 183

DESCRIPTION: Specifies red & green components of fill color -- S312 format -- Backwards comp.

Field Name Bits Default Description

COLOR_GREEN 15:0 0x0 Component green value (S3.12).

COLOR_RED 31:16 0x0 Component red value (S3.12).

GA:GA_TRIANGLE_STIPPLE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4214

DESCRIPTION: Specifies amount to shift integer position of vertex (screen space) before converting to float for

triangle stipple.

Field Name Bits Default Description

X_SHIFT 3:0 0x0 Amount to shift x position before conversion to SPFP.

Y_SHIFT 19:16 0x0 Amount to shift y position before conversion to SPFP.

GA:GA_US_VECTOR_DATA · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4254

DESCRIPTION: Data register for loading US instructions and constants

Field Name Bits Default Description

DATA 31:0 0x0 32 bit dword

GA:GA_US_VECTOR_INDEX · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4250

DESCRIPTION: Used to load US instructions and constants

Field Name Bits Default Description

INDEX 8:0 0x0 Instruction (TYPE == GA_US_VECTOR_INST) or

constant (TYPE == GA_US_VECTOR_CONST)

number at which to start loading. The GA will then

expect n*6 (instructions) or n*4 (constants) writes to

GA_US_VECTOR_DATA. The GA will self-increment

until this register is written again. For instructions, the

GA expects the dwords in the following order:

US_CMN_INST, US_ALU_RGB_ADDR,

US_ALU_ALPHA_ADDR, US_ALU_ALPHA,

US_RGB_INST, US_ALPHA_INST, US_RGBA_INST.

For constants, the GA expects the dwords in RGBA

order.

TYPE 16 0x0 Specifies if the GA should load instructions or constants.

 POSSIBLE VALUES:

 00 - Load instructions - INDEX is an instruction

index

 01 - Load constants - INDEX is a constant index

CLAMP 17 0x0 POSSIBLE VALUES:

 00 - No clamping of data - Default

 01 - Clamp to [-1.0,1.0] constant data

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 184

11.5 Graphics Backend Registers

GB:GB_AA_CONFIG · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4020

DESCRIPTION: Specifies the graphics pipeline configuration for antialiasing.

Field Name Bits Default Description

AA_ENABLE 0 0x0 Enables antialiasing.

 POSSIBLE VALUES:

 00 - Antialiasing disabled(def)

 01 - Antialiasing enabled

NUM_AA_SUBSAMPLES 2:1 0x0 Specifies the number of subsamples to use while

antialiasing.

 POSSIBLE VALUES:

 00 - 2 subsamples

 01 - 3 subsamples

 02 - 4 subsamples

 03 - 6 subsamples

GB:GB_ENABLE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4008

DESCRIPTION: Specifies top of Raster pipe specific enable controls.

Field Name Bits Default Description

POINT_STUFF_ENABLE 0 0x0 Specifies if points will have stuffed texture coordinates.

 POSSIBLE VALUES:

 00 - Disable point texture stuffing.

 01 - Enable point texture stuffing.

LINE_STUFF_ENABLE 1 0x0 Specifies if lines will have stuffed texture coordinates.

 POSSIBLE VALUES:

 00 - Disable line texture stuffing.

 01 - Enable line texture stuffing.

TRIANGLE_STUFF_ENABLE 2 0x0 Specifies if triangles will have stuffed texture

coordinates.

 POSSIBLE VALUES:

 00 - Disable triangle texture stuffing.

 01 - Enable triangle texture stuffing.

STENCIL_AUTO 5:4 0x0 Specifies if the auto dec/inc stencil mode should be

enabled, and how.

 POSSIBLE VALUES:

 00 - Disable stencil auto inc/dec (def).

 01 - Enable stencil auto inc/dec based on triangle

cw/ccw, force into dzy low bit.

 02 - Force 0 into dzy low bit.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 185

TEX0_SOURCE 17:16 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX1_SOURCE 19:18 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX2_SOURCE 21:20 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX3_SOURCE 23:22 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX4_SOURCE 25:24 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX5_SOURCE 27:26 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX6_SOURCE 29:28 0x0 Specifies the sources of the texture coordinates for each

texture.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 186

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX7_SOURCE 31:30 0x0 Specifies the sources of the texture coordinates for each

texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

GB:GB_FIFO_SIZE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4024

DESCRIPTION: Specifies the sizes of the various FIFO`s in the sc/rs/us. This register must be the first one written

Field Name Bits Default Description

SC_IFIFO_SIZE 1:0 0x0 Size of scan converter input FIFO (XYZ)

 POSSIBLE VALUES:

 00 - 32 words

 01 - 64 words

 02 - 128 words

 03 - 256 words

SC_TZFIFO_SIZE 3:2 0x0 Size of scan converter top-of-pipe Z FIFO

 POSSIBLE VALUES:

 00 - 16 words

 01 - 32 words

 02 - 64 words

 03 - 128 words

SC_BFIFO_SIZE 5:4 0x0 Size of scan converter input FIFO (B)

 POSSIBLE VALUES:

 00 - 32 words

 01 - 64 words

 02 - 128 words

 03 - 256 words

RS_TFIFO_SIZE 7:6 0x0 Size of ras input FIFO (Texture)

 POSSIBLE VALUES:

 00 - 64 words

 01 - 128 words

 02 - 256 words

 03 - 512 words

RS_CFIFO_SIZE 9:8 0x0 Size of ras input FIFO (Color)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 187

 POSSIBLE VALUES:

 00 - 64 words

 01 - 128 words

 02 - 256 words

 03 - 512 words

US_RAM_SIZE 11:10 0x0 Size of us RAM

 POSSIBLE VALUES:

 00 - 64 words

 01 - 128 words

 02 - 256 words

 03 - 512 words

US_OFIFO_SIZE 13:12 0x0 Size of us output FIFO (RGBA)

 POSSIBLE VALUES:

 00 - 16 words

 01 - 32 words

 02 - 64 words

 03 - 128 words

US_WFIFO_SIZE 15:14 0x0 Size of us output FIFO (W)

 POSSIBLE VALUES:

 00 - 16 words

 01 - 32 words

 02 - 64 words

 03 - 128 words

RS_HIGHWATER_COL 18:16 0x0 High water mark for RS colors` fifo -- NOT USED

RS_HIGHWATER_TEX 21:19 0x0 High water mark for RS textures` fifo -- NOT USED

US_OFIFO_HIGHWATER 23:22 0x0 High water mark for US output fifo

 POSSIBLE VALUES:

 00 - 0 words

 01 - 4 words

 02 - 8 words

 03 - 12 words

US_CUBE_FIFO_HIGHWATER 28:24 0x0 High water mark for US cube map fifo

GB:GB_FIFO_SIZE1 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4070

DESCRIPTION: Specifies the sizes of the various FIFO`s in the sc/rs.

Field Name Bits Default Description

SC_HIGHWATER_IFIFO 5:0 0x0 High water mark for SC input fifo

SC_HIGHWATER_BFIFO 11:6 0x0 High water mark for SC input fifo (B)

RS_HIGHWATER_COL 17:12 0x0 High water mark for RS colors` fifo

RS_HIGHWATER_TEX 23:18 0x0 High water mark for RS textures` fifo

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 188

GB:GB_MSPOS0 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4010

DESCRIPTION: Specifies the position of multisamples 0 through 2

Field Name Bits Default Description

MS_X0 3:0 0x0 Specifies the x and y position (in subpixels) of

multisample 0

MS_Y0 7:4 0x0 Specifies the x and y position (in subpixels) of

multisample 0

MS_X1 11:8 0x0 Specifies the x and y position (in subpixels) of

multisample 1

MS_Y1 15:12 0x0 Specifies the x and y position (in subpixels) of

multisample 1

MS_X2 19:16 0x0 Specifies the x and y position (in subpixels) of

multisample 2

MS_Y2 23:20 0x0 Specifies the x and y position (in subpixels) of

multisample 2

MSBD0_Y 27:24 0x0 Specifies the minimum x and y distance (in subpixels)

between the pixel edge and the multisamples. These

values are used in the first (coarse) scan converter

MSBD0_X 31:28 0x0 Specifies the minimum x and y distance (in subpixels)

between the pixel edge and the multisamples. These

values are used in the first (coarse) scan converter

GB:GB_MSPOS1 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4014

DESCRIPTION: Specifies the position of multisamples 3 through 5

Field Name Bits Default Description

MS_X3 3:0 0x0 Specifies the x and y position (in subpixels) of

multisample 3

MS_Y3 7:4 0x0 Specifies the x and y position (in subpixels) of

multisample 3

MS_X4 11:8 0x0 Specifies the x and y position (in subpixels) of

multisample 4

MS_Y4 15:12 0x0 Specifies the x and y position (in subpixels) of

multisample 4

MS_X5 19:16 0x0 Specifies the x and y position (in subpixels) of

multisample 5

MS_Y5 23:20 0x0 Specifies the x and y position (in subpixels) of

multisample 5

MSBD1 27:24 0x0 Specifies the minimum distance (in subpixels) between

the pixel edge and the multisamples. This value is used

in the second (quad) scan converter

GB:GB_PIPE_SELECT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x402c

DESCRIPTION: Selects which of 4 pipes are active.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 189

Field Name Bits Default Description

PIPE0_ID 1:0 0x0 Maps physical pipe 0 to logical pipe ID (def 0).

PIPE1_ID 3:2 0x1 Maps physical pipe 1 to logical pipe ID (def 1).

PIPE2_ID 5:4 0x2 Maps physical pipe 2 to logical pipe ID (def 2).

PIPE3_ID 7:6 0x3 Maps physical pipe 3 to logical pipe ID (def 3).

PIPE_MASK 11:8 0x0 4b mask, indicates which physical pipes are enabled (def

none=0x0) -- B3=P3, B2=P2, B1=P1, B0=P0. -- 1:

enabled, 0: disabled

MAX_PIPE 13:12 0x3 2b, indicates, by the fuses, the max number of allowed

pipes. 0 = 1 pipe ... 3 = 4 pipes -- Read Only

BAD_PIPES 17:14 0xF 4b, indicates, by the fuses, the bad pipes: B3=P3, B2=P2,

B1=P1, B0=P0 -- 1: bad, 0: good -- Read Only

CONFIG_PIPES 18 0x0 If this bit is set when writing this register, the logical

pipe ID values are assigned automatically based on the

values that are read back in the MAX_PIPE and

BAD_PIPES fields. This field is always read back as 0.

 POSSIBLE VALUES:

 00 - Do nothing

 01 - Force self-configuration

GB:GB_SELECT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x401c

DESCRIPTION: Specifies various polygon specific selects (fog, depth, perspective).

Field Name Bits Default Description

FOG_SELECT 2:0 0x0 Specifies source for outgoing (GA to SU) fog value.

 POSSIBLE VALUES:

 00 - Select C0A

 01 - Select C1A

 02 - Select C2A

 03 - Select C3A

 04 - Select 1/(1/W)

 05 - Select Z

DEPTH_SELECT 3 0x0 Specifies source for outgoing (GA/SU & SU/RAS) depth

value.

 POSSIBLE VALUES:

 00 - Select Z

 01 - Select 1/(1/W)

W_SELECT 4 0x0 Specifies source for outgoing (1/W) value, used to

disable perspective correct colors/textures.

 POSSIBLE VALUES:

 00 - Select (1/W)

 01 - Select 1.0

FOG_STUFF_ENABLE 5 0x0 Controls enabling of fog stuffing into texture coordinate.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 190

 POSSIBLE VALUES:

 00 - Disable fog texture stuffing

 01 - Enable fog texture stuffing

FOG_STUFF_TEX 9:6 0x0 Controls which texture gets fog value

FOG_STUFF_COMP 11:10 0x0 Controls which component of texture gets fog value

GB:GB_TILE_CONFIG · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4018

DESCRIPTION: Specifies the graphics pipeline configuration for rasterization

Field Name Bits Default Description

ENABLE 0 0x1 Enables tiling, otherwise all tiles receive all polygons.

 POSSIBLE VALUES:

 00 - Tiling disabled.

 01 - Tiling enabled (def).

PIPE_COUNT 3:1 0x0 Specifies the number of active pipes and contexts (up to

4 pipes, 1 ctx). When this field is written, it is

automatically reduced by hardware so as not to use more

pipes than the number indicated in

GB_PIPE_SELECT.MAX_PIPES or the number of

pipes left unmasked GB_PIPE_SELECT.BAD_PIPES.

The potentially altered value is read back, rather than the

original value written by software.

 POSSIBLE VALUES:

 00 - RV350 (1 pipe, 1 ctx)

 03 - R300 (2 pipes, 1 ctx)

 06 – R420-3P (3 pipes, 1 ctx)

 07 – R420 (4 pipes, 1 ctx)

TILE_SIZE 5:4 0x1 Specifies width & height (square), in pixels (only 16, 32

available).

 POSSIBLE VALUES:

 00 - 8 pixels.

 01 - 16 pixels.

 02 - 32 pixels.

SUPER_SIZE 8:6 0x0 Specifies number of tiles and config in super chip

configuration.

 POSSIBLE VALUES:

 00 - 1x1 tile (one 1x1).

 01 - 2 tiles (two 1x1 : ST-A,B).

 02 - 4 tiles (one 2x2).

 03 - 8 tiles (two 2x2 : ST-A,B).

 04 - 16 tiles (one 4x4).

 05 - 32 tiles (two 4x4 : ST-A,B).

 06 - 64 tiles (one 8x8).

 07 - 128 tiles (two 8x8 : ST-A,B).

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 191

SUPER_X 11:9 0x0 X Location of chip within super tile.

SUPER_Y 14:12 0x0 Y Location of chip within super tile.

SUPER_TILE 15 0x0 Tile location of chip in a multi super tile config (Super

size of 2,8,32 or 128).

 POSSIBLE VALUES:

 00 - ST-A tile.

 01 - ST-B tile.

SUBPIXEL 16 0x0 Specifies the precision of subpixels wrt pixels (12 or 16).

 POSSIBLE VALUES:

 00 - Select 1/12 subpixel precision.

 01 - Select 1/16 subpixel precision.

QUADS_PER_RAS 18:17 0x0 Specifies the number of quads to be sent to each

rasterizer in turn when in RV300B or R300B mode

 POSSIBLE VALUES:

 00 - 4 Quads

 01 - 8 Quads

 02 - 16 Quads

 03 - 32 Quads

BB_SCAN 19 0x0 Specifies whether to use an intercept or bounding box

based calculation for the first (coarse) scan converter

 POSSIBLE VALUES:

 00 - Use intercept based scan converter

 01 - Use bounding box based scan converter

ALT_SCAN_EN 20 0x0 Specifies whether to use an altenate scan pattern for the

coarse scan converter

 POSSIBLE VALUES:

 00 - Use normal left-right scan

 01 - Use alternate left-right-left scan

ALT_OFFSET 21 0x0 Not used -- should be 0

 POSSIBLE VALUES:

 00 - Not used

 01 - Not used

SUBPRECISION 22 0x0 Set to 0

ALT_TILING 23 0x0 Support for 3x2 tiling in 3P mode

 POSSIBLE VALUES:

 00 - Use default tiling in all tiling modes

 01 - Use alternative 3x2 tiling in 3P mode

Z_EXTENDED 24 0x0 Support for extended setup Z range from [0,1] to [-2,2]

with per pixel clamping

 POSSIBLE VALUES:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 192

 00 - Use (24.1) Z format, with vertex clamp to

[1.0,0.0]

 01 - Use (S25.1) format, with vertex clamp to [2.0,-

2.0] and per pixel [1.0,0.0]

GB:GB_Z_PEQ_CONFIG · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4028

DESCRIPTION: Specifies the z plane equation configuration.

Field Name Bits Default Description

Z_PEQ_SIZE 0 0x0 Specifies the z plane equation size.

 POSSIBLE VALUES:

 00 - 4x4 z plane equations (point-sampled or aa)

 01 - 8x8 z plane equations (point-sampled only)

GB:PS3_ENABLE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4118

DESCRIPTION: PS3 mode enable register

Field Name Bits Default Description

PS3_MODE 0 0x0 When reset (default), follows R300/PS2 mode; when set,

allows for new ps3 mode.

 POSSIBLE VALUES:

 00 - Default PS2 mode

 01 - New PS3 mode

GB:PS3_TEX_SOURCE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4120

DESCRIPTION: Specifies source for texture components in PS3 mode

Field Name Bits Default Description

TEX0_SOURCE 1:0 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX1_SOURCE 3:2 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 193

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX2_SOURCE 5:4 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX3_SOURCE 7:6 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX4_SOURCE 9:8 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX5_SOURCE 11:10 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX6_SOURCE 13:12 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX7_SOURCE 15:14 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 194

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX8_SOURCE 17:16 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

TEX9_SOURCE 19:18 0x0 Specifies VAP source, or GA (ST) or GA (STR) stuffing

for each texture.

 POSSIBLE VALUES:

 00 - Replicate VAP source texture coordinates

(S,T,[R,Q]).

 01 - Stuff with source texture coordinates (S,T).

 02 - Stuff with source texture coordinates (S,T,R).

GB:PS3_VTX_FMT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x411c

DESCRIPTION: PS3 vertex format register

Field Name Bits Default Description

TEX_0_COMP_CNT 2:0 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_1_COMP_CNT 5:3 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 195

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_2_COMP_CNT 8:6 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_3_COMP_CNT 11:9 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_4_COMP_CNT 14:12 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_5_COMP_CNT 17:15 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_6_COMP_CNT 20:18 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 196

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_7_COMP_CNT 23:21 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_8_COMP_CNT 26:24 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_9_COMP_CNT 29:27 0x0 How many active components (0,1,2,3,4) are in each

texture.

 POSSIBLE VALUES:

 00 - Not active

 01 - 1 component (VAP/GA), 2 component (GA/SU)

 02 - 2 component (VAP/GA), 2 component (GA/SU)

 03 - 3 component (VAP/GA), 3 component (GA/SU)

 04 - 4 component (VAP/GA), 4 component (GA/SU)

TEX_10_COMP_CNT 31:30 0x0 How many active components (0,2,3,4) are in texture 10.

 POSSIBLE VALUES:

 00 - Not active

 01 - 2 component (GA/SU)

 02 - 3 component (GA/SU)

 03 - 4 component (GA/SU)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 197

11.6 Rasterizer Registers

RS:RS_COUNT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4300

DESCRIPTION: This register specifies the rasterizer input packet configuration

Field Name Bits Default Description

IT_COUNT 6:0 0x0 Specifies the total number of texture address components

contained in the rasterizer input packet (0:32).

IC_COUNT 10:7 0x0 Specifies the total number of colors contained in the

rasterizer input packet (0:4).

W_ADDR 17:12 0x0 Specifies the relative rasterizer input packet location of w

(if w_count==1)

HIRES_EN 18 0x0 Enable high resolution texture coordinate output when q

is equal to 1

RS:RS_INST_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4320-0x435c

DESCRIPTION: This table specifies what happens during each rasterizer instruction

Field Name Bits Default Description

TEX_ID 3:0 0x0 Specifies the index (into the RS_IP table) of the texture

address output during this rasterizer instruction

TEX_CN 4 0x0 Write enable for texture address

 POSSIBLE VALUES:

 00 - No write - texture coordinate not valid

 01 - write - texture valid

TEX_ADDR 11:5 0x0 Specifies the destination address (within the current pixel

stack frame) of the texture address output during this

rasterizer instruction

COL_ID 15:12 0x0 Specifies the index (into the RS_IP table) of the color

output during this rasterizer instruction

COL_CN 17:16 0x0 Write enable for color

 POSSIBLE VALUES:

 00 - No write - color not valid

 01 - write - color valid

 02 - write fbuffer - XY00->RGBA

 03 - write backface - B000->RGBA

COL_ADDR 24:18 0x0 Specifies the destination address (within the current pixel

stack frame) of the color output during this rasterizer

instruction

TEX_ADJ 25 0x0 Specifies whether to sample texture coordinates at the

real or adjusted pixel centers

 POSSIBLE VALUES:

 00 - Sample texture coordinates at real pixel centers

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 198

 01 - Sample texture coordinates at adjusted pixel

centers

W_CN 26 0x0 Specifies that the rasterizer should output w

 POSSIBLE VALUES:

 00 - No write - w not valid

 01 - write - w valid

RS:RS_INST_COUNT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4304

DESCRIPTION: This register specifies the number of rasterizer instructions

Field Name Bits Default Description

INST_COUNT 3:0 0x0 Number of rasterizer instructions (1:16)

TX_OFFSET 7:5 0x0 Indicates range of texture offset to minimize peroidic

errors on texels sampled right on their edges

RS:RS_IP_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4074-0x40b0

DESCRIPTION: This table specifies the source location and format for up to 16 texture addresses (i[0]:i[15]) and

four colors (c[0]:c[3])

Field Name Bits Default Description

TEX_PTR_S 5:0 0x0 Specifies the relative rasterizer input packet location of

each component (S, T, R, and Q) of texture address (i[i]).

The values 62 and 63 select constant inputs for the

component: 62 selects K0 (0.0), and 63 selects K1 (1.0).

TEX_PTR_T 11:6 0x0 Specifies the relative rasterizer input packet location of

each component (S, T, R, and Q) of texture address (i[i]).

The values 62 and 63 select constant inputs for the

component: 62 selects K0 (0.0), and 63 selects K1 (1.0).

TEX_PTR_R 17:12 0x0 Specifies the relative rasterizer input packet location of

each component (S, T, R, and Q) of texture address (i[i]).

The values 62 and 63 select constant inputs for the

component: 62 selects K0 (0.0), and 63 selects K1 (1.0).

TEX_PTR_Q 23:18 0x0 Specifies the relative rasterizer input packet location of

each component (S, T, R, and Q) of texture address (i[i]).

The values 62 and 63 select constant inputs for the

component: 62 selects K0 (0.0), and 63 selects K1 (1.0).

COL_PTR 26:24 0x0 Specifies the relative rasterizer input packet location of

the color (c[i]).

COL_FMT 30:27 0x0 Specifies the format of the color (c[i]).

 POSSIBLE VALUES:

 00 - Four components (R,G,B,A)

 01 - Three components (R,G,B,0)

 02 - Three components (R,G,B,1)

 04 - One component (0,0,0,A)

 05 - Zero components (0,0,0,0)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 199

 06 - Zero components (0,0,0,1)

 08 - One component (1,1,1,A)

 09 - Zero components (1,1,1,0)

 10 - Zero components (1,1,1,1)

OFFSET_EN 31 0x0 Enable application of the TX_OFFSET in

RS_INST_COUNT

 POSSIBLE VALUES:

 00 - Do not apply the TX_OFFSET in

RS_INST_COUNT

 01 - Apply the TX_OFFSET specified by

RS_INST_COUNT

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 200

11.7 Clipping Registers

SC:SC_CLIP_0_A · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43b0

DESCRIPTION: OpenGL Clip rectangles

Field Name Bits Default Description

XS0 12:0 0x0 Left hand edge of clip rectangle

YS0 25:13 0x0 Upper edge of clip rectangle

SC:SC_CLIP_0_B · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43b4

DESCRIPTION: OpenGL Clip rectangles

Field Name Bits Default Description

XS1 12:0 0x0 Right hand edge of clip rectangle

YS1 25:13 0x0 Lower edge of clip rectangle

SC:SC_CLIP_1_A · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43b8

Field Name Bits Default Description

XS0 12:0 0x0

YS0 25:13 0x0

SC:SC_CLIP_1_B · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43bc

Field Name Bits Default Description

XS1 12:0 0x0

YS1 25:13 0x0

SC:SC_CLIP_2_A · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43c0

Field Name Bits Default Description

XS0 12:0 0x0

YS0 25:13 0x0

SC:SC_CLIP_2_B · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43c4

Field Name Bits Default Description

XS1 12:0 0x0

YS1 25:13 0x0

SC:SC_CLIP_3_A · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43c8

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 201

XS0 12:0 0x0

YS0 25:13 0x0

SC:SC_CLIP_3_B · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43cc

Field Name Bits Default Description

XS1 12:0 0x0

YS1 25:13 0x0

SC:SC_CLIP_RULE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43d0

DESCRIPTION: OpenGL Clip boolean function

Field Name Bits Default Description

CLIP_RULE 15:0 0x0 OpenGL Clip boolean function. The `inside` flags for

each of the four clip rectangles form a 4-bit binary

number. The corresponding bit in this 16-bit number

specifies whether the pixel is visible.

SC:SC_EDGERULE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43a8

DESCRIPTION: Edge rules - what happens when an edge falls exactly on a sample point

Field Name Bits Default Description

ER_TRI 4:0 0x0 Edge rules for triangles, points, left-right lines, right-left

lines, upper-bottom lines, bottom-upper lines. For values

0 to 15, bit 0 specifies whether a sample on a horizontal-

bottom edge is in, bit 1 specifies whether a sample on a

horizontal-top edge is in, bit 2 species whether a sample

on a right edge is in, bit 3 specifies whether a sample on

a left edge is in. For values 16 to 31, bit 0 specifies

whether a sample on a vertical-right edge is in, bit 1

specifies whether a sample on a vertical-left edge is in,

bit 2 species whether a sample on a bottom edge is in, bit

3 specifies whether a sample on a top edge is in

 POSSIBLE VALUES:

 00 - L-in,R-in,HT-in,HB-in

 01 - L-in,R-in,HT-in,HB-out

 02 - L-in,R-in,HT-out,HB-in

 03 - L-in,R-in,HT-out,HB-out

 04 - L-in,R-out,HT-in,HB-in

 05 - L-in,R-out,HT-in,HB-out

 06 - L-in,R-out,HT-out,HB-in

 07 - L-in,R-out,HT-out,HB-out

 08 - L-out,R-in,HT-in,HB-in

 09 - L-out,R-in,HT-in,HB-out

 10 - L-out,R-in,HT-out,HB-in

 11 - L-out,R-in,HT-out,HB-out

 12 - L-out,R-out,HT-in,HB-in

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 202

 13 - L-out,R-out,HT-in,HB-out

 14 - L-out,R-out,HT-out,HB-in

 15 - L-out,R-out,HT-out,HB-out

 16 - T-in,B-in,VL-in,VR-in

 17 - T-in,B-in,VL-in,VR-out

 18 - T-in,B-in,VL,VR-in

 19 - T-in,B-in,VL-out,VR-out

 20 - T-out,B-in,VL-in,VR-in

 21 - T-out,B-in,VL-in,VR-out

 22 - T-out,B-in,VL-out,VR-in

 23 - T-out,B-in,VL-out,VR-out

 24 - T-in,B-out,VL-in,VR-in

 25 - T-in,B-out,VL-in,VR-out

 26 - T-in,B-out,VL-out,VR-in

 27 - T-in,B-out,VL-out,VR-out

 28 - T-out,B-out,VL-in,VR-in

 29 - T-out,B-out,VL-in,VR-out

 30 - T-out,B-out,VL-out,VR-in

 31 - T-out,B-out,VL-out,VR-out

ER_POINT 9:5 0x0 Edge rules for triangles, points, left-right lines, right-left

lines, upper-bottom lines, bottom-upper lines. For values

0 to 15, bit 0 specifies whether a sample on a horizontal-

bottom edge is in, bit 1 specifies whether a sample on a

horizontal-top edge is in, bit 2 species whether a sample

on a right edge is in, bit 3 specifies whether a sample on

a left edge is in. For values 16 to 31, bit 0 specifies

whether a sample on a vertical-right edge is in, bit 1

specifies whether a sample on a vertical-left edge is in,

bit 2 species whether a sample on a bottom edge is in, bit

3 specifies whether a sample on a top edge is in

 POSSIBLE VALUES:

 00 - L-in,R-in,HT-in,HB-in

 01 - L-in,R-in,HT-in,HB-out

 02 - L-in,R-in,HT-out,HB-in

 03 - L-in,R-in,HT-out,HB-out

 04 - L-in,R-out,HT-in,HB-in

 05 - L-in,R-out,HT-in,HB-out

 06 - L-in,R-out,HT-out,HB-in

 07 - L-in,R-out,HT-out,HB-out

 08 - L-out,R-in,HT-in,HB-in

 09 - L-out,R-in,HT-in,HB-out

 10 - L-out,R-in,HT-out,HB-in

 11 - L-out,R-in,HT-out,HB-out

 12 - L-out,R-out,HT-in,HB-in

 13 - L-out,R-out,HT-in,HB-out

 14 - L-out,R-out,HT-out,HB-in

 15 - L-out,R-out,HT-out,HB-out

 16 - T-in,B-in,VL-in,VR-in

 17 - T-in,B-in,VL-in,VR-out

 18 - T-in,B-in,VL,VR-in

 19 - T-in,B-in,VL-out,VR-out

 20 - T-out,B-in,VL-in,VR-in

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 203

 21 - T-out,B-in,VL-in,VR-out

 22 - T-out,B-in,VL-out,VR-in

 23 - T-out,B-in,VL-out,VR-out

 24 - T-in,B-out,VL-in,VR-in

 25 - T-in,B-out,VL-in,VR-out

 26 - T-in,B-out,VL-out,VR-in

 27 - T-in,B-out,VL-out,VR-out

 28 - T-out,B-out,VL-in,VR-in

 29 - T-out,B-out,VL-in,VR-out

 30 - T-out,B-out,VL-out,VR-in

 31 - T-out,B-out,VL-out,VR-out

ER_LINE_LR 14:10 0x0 Edge rules for triangles, points, left-right lines, right-left

lines, upper-bottom lines, bottom-upper lines. For values

0 to 15, bit 0 specifies whether a sample on a horizontal-

bottom edge is in, bit 1 specifies whether a sample on a

horizontal-top edge is in, bit 2 species whether a sample

on a right edge is in, bit 3 specifies whether a sample on

a left edge is in. For values 16 to 31, bit 0 specifies

whether a sample on a vertical-right edge is in, bit 1

specifies whether a sample on a vertical-left edge is in,

bit 2 species whether a sample on a bottom edge is in, bit

3 specifies whether a sample on a top edge is in

 POSSIBLE VALUES:

 00 - L-in,R-in,HT-in,HB-in

 01 - L-in,R-in,HT-in,HB-out

 02 - L-in,R-in,HT-out,HB-in

 03 - L-in,R-in,HT-out,HB-out

 04 - L-in,R-out,HT-in,HB-in

 05 - L-in,R-out,HT-in,HB-out

 06 - L-in,R-out,HT-out,HB-in

 07 - L-in,R-out,HT-out,HB-out

 08 - L-out,R-in,HT-in,HB-in

 09 - L-out,R-in,HT-in,HB-out

 10 - L-out,R-in,HT-out,HB-in

 11 - L-out,R-in,HT-out,HB-out

 12 - L-out,R-out,HT-in,HB-in

 13 - L-out,R-out,HT-in,HB-out

 14 - L-out,R-out,HT-out,HB-in

 15 - L-out,R-out,HT-out,HB-out

 16 - T-in,B-in,VL-in,VR-in

 17 - T-in,B-in,VL-in,VR-out

 18 - T-in,B-in,VL,VR-in

 19 - T-in,B-in,VL-out,VR-out

 20 - T-out,B-in,VL-in,VR-in

 21 - T-out,B-in,VL-in,VR-out

 22 - T-out,B-in,VL-out,VR-in

 23 - T-out,B-in,VL-out,VR-out

 24 - T-in,B-out,VL-in,VR-in

 25 - T-in,B-out,VL-in,VR-out

 26 - T-in,B-out,VL-out,VR-in

 27 - T-in,B-out,VL-out,VR-out

 28 - T-out,B-out,VL-in,VR-in

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 204

 29 - T-out,B-out,VL-in,VR-out

 30 - T-out,B-out,VL-out,VR-in

 31 - T-out,B-out,VL-out,VR-out

ER_LINE_RL 19:15 0x0 Edge rules for triangles, points, left-right lines, right-left

lines, upper-bottom lines, bottom-upper lines. For values

0 to 15, bit 0 specifies whether a sample on a horizontal-

bottom edge is in, bit 1 specifies whether a sample on a

horizontal-top edge is in, bit 2 species whether a sample

on a right edge is in, bit 3 specifies whether a sample on

a left edge is in. For values 16 to 31, bit 0 specifies

whether a sample on a vertical-right edge is in, bit 1

specifies whether a sample on a vertical-left edge is in,

bit 2 species whether a sample on a bottom edge is in, bit

3 specifies whether a sample on a top edge is in

 POSSIBLE VALUES:

 00 - L-in,R-in,HT-in,HB-in

 01 - L-in,R-in,HT-in,HB-out

 02 - L-in,R-in,HT-out,HB-in

 03 - L-in,R-in,HT-out,HB-out

 04 - L-in,R-out,HT-in,HB-in

 05 - L-in,R-out,HT-in,HB-out

 06 - L-in,R-out,HT-out,HB-in

 07 - L-in,R-out,HT-out,HB-out

 08 - L-out,R-in,HT-in,HB-in

 09 - L-out,R-in,HT-in,HB-out

 10 - L-out,R-in,HT-out,HB-in

 11 - L-out,R-in,HT-out,HB-out

 12 - L-out,R-out,HT-in,HB-in

 13 - L-out,R-out,HT-in,HB-out

 14 - L-out,R-out,HT-out,HB-in

 15 - L-out,R-out,HT-out,HB-out

 16 - T-in,B-in,VL-in,VR-in

 17 - T-in,B-in,VL-in,VR-out

 18 - T-in,B-in,VL,VR-in

 19 - T-in,B-in,VL-out,VR-out

 20 - T-out,B-in,VL-in,VR-in

 21 - T-out,B-in,VL-in,VR-out

 22 - T-out,B-in,VL-out,VR-in

 23 - T-out,B-in,VL-out,VR-out

 24 - T-in,B-out,VL-in,VR-in

 25 - T-in,B-out,VL-in,VR-out

 26 - T-in,B-out,VL-out,VR-in

 27 - T-in,B-out,VL-out,VR-out

 28 - T-out,B-out,VL-in,VR-in

 29 - T-out,B-out,VL-in,VR-out

 30 - T-out,B-out,VL-out,VR-in

 31 - T-out,B-out,VL-out,VR-out

ER_LINE_TB 24:20 0x0 Edge rules for triangles, points, left-right lines, right-left

lines, upper-bottom lines, bottom-upper lines. For values

0 to 15, bit 0 specifies whether a sample on a horizontal-

bottom edge is in, bit 1 specifies whether a sample on a

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 205

horizontal-top edge is in, bit 2 species whether a sample

on a right edge is in, bit 3 specifies whether a sample on

a left edge is in. For values 16 to 31, bit 0 specifies

whether a sample on a vertical-right edge is in, bit 1

specifies whether a sample on a vertical-left edge is in,

bit 2 species whether a sample on a bottom edge is in, bit

3 specifies whether a sample on a top edge is in

 POSSIBLE VALUES:

 00 - L-in,R-in,HT-in,HB-in

 01 - L-in,R-in,HT-in,HB-out

 02 - L-in,R-in,HT-out,HB-in

 03 - L-in,R-in,HT-out,HB-out

 04 - L-in,R-out,HT-in,HB-in

 05 - L-in,R-out,HT-in,HB-out

 06 - L-in,R-out,HT-out,HB-in

 07 - L-in,R-out,HT-out,HB-out

 08 - L-out,R-in,HT-in,HB-in

 09 - L-out,R-in,HT-in,HB-out

 10 - L-out,R-in,HT-out,HB-in

 11 - L-out,R-in,HT-out,HB-out

 12 - L-out,R-out,HT-in,HB-in

 13 - L-out,R-out,HT-in,HB-out

 14 - L-out,R-out,HT-out,HB-in

 15 - L-out,R-out,HT-out,HB-out

 16 - T-in,B-in,VL-in,VR-in

 17 - T-in,B-in,VL-in,VR-out

 18 - T-in,B-in,VL,VR-in

 19 - T-in,B-in,VL-out,VR-out

 20 - T-out,B-in,VL-in,VR-in

 21 - T-out,B-in,VL-in,VR-out

 22 - T-out,B-in,VL-out,VR-in

 23 - T-out,B-in,VL-out,VR-out

 24 - T-in,B-out,VL-in,VR-in

 25 - T-in,B-out,VL-in,VR-out

 26 - T-in,B-out,VL-out,VR-in

 27 - T-in,B-out,VL-out,VR-out

 28 - T-out,B-out,VL-in,VR-in

 29 - T-out,B-out,VL-in,VR-out

 30 - T-out,B-out,VL-out,VR-in

 31 - T-out,B-out,VL-out,VR-out

ER_LINE_BT 29:25 0x0 Edge rules for triangles, points, left-right lines, right-left

lines, upper-bottom lines, bottom-upper lines. For values

0 to 15, bit 0 specifies whether a sample on a horizontal-

bottom edge is in, bit 1 specifies whether a sample on a

horizontal-top edge is in, bit 2 species whether a sample

on a right edge is in, bit 3 specifies whether a sample on

a left edge is in. For values 16 to 31, bit 0 specifies

whether a sample on a vertical-right edge is in, bit 1

specifies whether a sample on a vertical-left edge is in,

bit 2 species whether a sample on a bottom edge is in, bit

3 specifies whether a sample on a top edge is in

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 206

 POSSIBLE VALUES:

 00 - L-in,R-in,HT-in,HB-in

 01 - L-in,R-in,HT-in,HB-out

 02 - L-in,R-in,HT-out,HB-in

 03 - L-in,R-in,HT-out,HB-out

 04 - L-in,R-out,HT-in,HB-in

 05 - L-in,R-out,HT-in,HB-out

 06 - L-in,R-out,HT-out,HB-in

 07 - L-in,R-out,HT-out,HB-out

 08 - L-out,R-in,HT-in,HB-in

 09 - L-out,R-in,HT-in,HB-out

 10 - L-out,R-in,HT-out,HB-in

 11 - L-out,R-in,HT-out,HB-out

 12 - L-out,R-out,HT-in,HB-in

 13 - L-out,R-out,HT-in,HB-out

 14 - L-out,R-out,HT-out,HB-in

 15 - L-out,R-out,HT-out,HB-out

 16 - T-in,B-in,VL-in,VR-in

 17 - T-in,B-in,VL-in,VR-out

 18 - T-in,B-in,VL,VR-in

 19 - T-in,B-in,VL-out,VR-out

 20 - T-out,B-in,VL-in,VR-in

 21 - T-out,B-in,VL-in,VR-out

 22 - T-out,B-in,VL-out,VR-in

 23 - T-out,B-in,VL-out,VR-out

 24 - T-in,B-out,VL-in,VR-in

 25 - T-in,B-out,VL-in,VR-out

 26 - T-in,B-out,VL-out,VR-in

 27 - T-in,B-out,VL-out,VR-out

 28 - T-out,B-out,VL-in,VR-in

 29 - T-out,B-out,VL-in,VR-out

 30 - T-out,B-out,VL-out,VR-in

 31 - T-out,B-out,VL-out,VR-out

SC:SC_HYPERZ_EN · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43a4

DESCRIPTION: Hierarchical Z Enable

Field Name Bits Default Description

HZ_EN 0 0x0 Enable for hierarchical Z.

 POSSIBLE VALUES:

 00 - Disables Hyper-Z.

 01 - Enables Hyper-Z.

HZ_MAX 1 0x0 Specifies whether to compute min or max z value

 POSSIBLE VALUES:

 00 - HZ block computes minimum z value

 01 - HZ block computes maximum z value

HZ_ADJ 4:2 0x0 Specifies adjustment to get added or subtracted from

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 207

computed z value

 POSSIBLE VALUES:

 00 - Add or Subtract 1/256 << ze

 01 - Add or Subtract 1/128 << ze

 02 - Add or Subtract 1/64 << ze

 03 - Add or Subtract 1/32 << ze

 04 - Add or Subtract 1/16 << ze

 05 - Add or Subtract 1/8 << ze

 06 - Add or Subtract 1/4 << ze

 07 - Add or Subtract 1/2 << ze

HZ_Z0MIN 5 0x0 Specifies whether vertex 0 z contains minimum z value

 POSSIBLE VALUES:

 00 - Vertex 0 does not contain minimum z value

 01 - Vertex 0 does contain minimum z value

HZ_Z0MAX 6 0x0 Specifies whether vertex 0 z contains maximum z value

 POSSIBLE VALUES:

 00 - Vertex 0 does not contain maximum z value

 01 - Vertex 0 does contain maximum z value

SC:SC_SCISSOR0 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43e0

DESCRIPTION: Scissor rectangle specification

Field Name Bits Default Description

XS0 12:0 0x0 Left hand edge of scissor rectangle

YS0 25:13 0x0 Upper edge of scissor rectangle

SC:SC_SCISSOR1 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43e4

DESCRIPTION: Scissor rectangle specification

Field Name Bits Default Description

XS1 12:0 0x0 Right hand edge of scissor rectangle

YS1 25:13 0x0 Lower edge of scissor rectangle

SC:SC_SCREENDOOR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x43e8

DESCRIPTION: Screen door sample mask

Field Name Bits Default Description

SCREENDOOR 23:0 0x0 Screen door sample mask - 1 means sample may be

covered, 0 means sample is not covered

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 208

11.8 Setup Unit Registers

SU:SU_CULL_MODE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42b8

DESCRIPTION: Culling Enables

Field Name Bits Default Description

CULL_FRONT 0 0x0 Enable for front-face culling.

 POSSIBLE VALUES:

 00 - Do not cull front-facing triangles.

 01 - Cull front-facing triangles.

CULL_BACK 1 0x0 Enable for back-face culling.

 POSSIBLE VALUES:

 00 - Do not cull back-facing triangles.

 01 - Cull back-facing triangles.

FACE 2 0x0 X-Ored with cross product sign to determine positive

facing

 POSSIBLE VALUES:

 00 - Positive cross product is front (CCW).

 01 - Negative cross product is front (CW).

SU:SU_DEPTH_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42c4

DESCRIPTION: SU Depth Offset value

Field Name Bits Default Description

OFFSET 31:0 0x0 SPFP Floating point applied to depth before conversion

to FXP.

SU:SU_DEPTH_SCALE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42c0

DESCRIPTION: SU Depth Scale value

Field Name Bits Default Description

SCALE 31:0 0x3F800000 SPFP Floating point applied to depth before conversion

to FXP.

SU:SU_POLY_OFFSET_BACK_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42b0

DESCRIPTION: Back-Facing Polygon Offset Offset

Field Name Bits Default Description

OFFSET 31:0 0x0 Specifies polygon offset offset for back-facing polygons;

32b IEEE float format; applied after Z scale & offset (0

to 2^24-1 range)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 209

SU:SU_POLY_OFFSET_BACK_SCALE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42ac

DESCRIPTION: Back-Facing Polygon Offset Scale

Field Name Bits Default Description

SCALE 31:0 0x0 Specifies polygon offset scale for back-facing polygons;

32-bit IEEE float format; applied after Z scale & offset

(0 to 2^24-1 range); slope computed in subpixels (1/12 or

1/16)

SU:SU_POLY_OFFSET_ENABLE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42b4

DESCRIPTION: Enables for polygon offset

Field Name Bits Default Description

FRONT_ENABLE 0 0x0 Enables front facing polygon`s offset.

 POSSIBLE VALUES:

 00 - Disable front offset.

 01 - Enable front offset.

BACK_ENABLE 1 0x0 Enables back facing polygon`s offset.

 POSSIBLE VALUES:

 00 - Disable back offset.

 01 - Enable back offset.

PARA_ENABLE 2 0x0 Forces all parallelograms to have FRONT_FACING for

poly offset -- Need to have FRONT_ENABLE also set to

have Z offset for parallelograms.

 POSSIBLE VALUES:

 00 - Disable front offset for parallelograms.

 01 - Enable front offset for parallelograms.

SU:SU_POLY_OFFSET_FRONT_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42a8

DESCRIPTION: Front-Facing Polygon Offset Offset

Field Name Bits Default Description

OFFSET 31:0 0x0 Specifies polygon offset offset for front-facing polygons;

32b IEEE float format; applied after Z scale & offset (0

to 2^24-1 range)

SU:SU_POLY_OFFSET_FRONT_SCALE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42a4

DESCRIPTION: Front-Facing Polygon Offset Scale

Field Name Bits Default Description

SCALE 31:0 0x0 Specifies polygon offset scale for front-facing polygons;

32b IEEE float format; applied after Z scale & offset (0

to 2^24-1 range); slope computed in subpixels (1/12 or

1/16)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 210

SU:SU_REG_DEST · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42c8

DESCRIPTION: SU Raster pipe destination select for registers

Field Name Bits Default Description

SELECT 3:0 0xF Register read/write destination select: b0: logical pipe0,

b1: logical pipe1, b2: logical pipe2 and b3: logical pipe3

SU:SU_TEX_WRAP · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x42a0

DESCRIPTION: Enables for Cylindrical Wrapping

Field Name Bits Default Description

T0C0 0 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T0C1 1 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T0C2 2 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T0C3 3 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T1C0 4 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T1C1 5 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 211

 01 - Enable cylindrical wrapping.

T1C2 6 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T1C3 7 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T2C0 8 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T2C1 9 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T2C2 10 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T2C3 11 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T3C0 12 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T3C1 13 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 212

T3C2 14 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T3C3 15 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T4C0 16 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T4C1 17 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T4C2 18 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T4C3 19 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T5C0 20 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T5C1 21 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T5C2 22 0x0 tNcM -- Enable texture wrapping on component M

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 213

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T5C3 23 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T6C0 24 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T6C1 25 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T6C2 26 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T6C3 27 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T7C0 28 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T7C1 29 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T7C2 30 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 214

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T7C3 31 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

SU:SU_TEX_WRAP_PS3 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4114

DESCRIPTION: Specifies texture wrapping for new PS3 textures.

Field Name Bits Default Description

T9C0 0 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T9C1 1 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T9C2 2 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T9C3 3 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C0 4 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C1 5 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 215

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C2 6 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C3 7 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

SU:SU_TEX_WRAP_PS3 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4114

DESCRIPTION: Specifies texture wrapping for new PS3 textures.

Field Name Bits Default Description

T9C0 0 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T9C1 1 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T9C2 2 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T9C3 3 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 216

 01 - Enable cylindrical wrapping.

T8C0 4 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C1 5 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C2 6 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

T8C3 7 0x0 tNcM -- Enable texture wrapping on component M

(S,T,R,Q) of texture N.

 POSSIBLE VALUES:

 00 - Disable cylindrical wrapping.

 01 - Enable cylindrical wrapping.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 217

11.9 Texture Registers

TX:TX_BORDER_COLOR_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x45c0-0x45fc

DESCRIPTION: Border Color

Field Name Bits Default Description

BORDER_COLOR 31:0 none Color used for borders. Format is the same as the texture

being bordered.

TX:TX_CHROMA_KEY_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4580-0x45bc

DESCRIPTION: Texture Chroma Key

Field Name Bits Default Description

CHROMA_KEY 31:0 none Color used for chroma key compare. Format is the same

as the texture being keyed.

TX:TX_ENABLE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4104

DESCRIPTION: Texture Enables for Maps 0 to 15

Field Name Bits Default Description

TEX_0_ENABLE 0 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_1_ENABLE 1 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_2_ENABLE 2 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_3_ENABLE 3 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_4_ENABLE 4 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_5_ENABLE 5 none Texture Map Enables.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 218

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_6_ENABLE 6 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_7_ENABLE 7 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_8_ENABLE 8 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_9_ENABLE 9 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_10_ENABLE 10 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_11_ENABLE 11 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_12_ENABLE 12 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_13_ENABLE 13 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TEX_14_ENABLE 14 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 219

 01 - Enable

TEX_15_ENABLE 15 none Texture Map Enables.

 POSSIBLE VALUES:

 00 - Disable, ARGB = 1,0,0,0

 01 - Enable

TX:TX_FILTER0_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4400-0x443c

DESCRIPTION: Texture Filter State

Field Name Bits Default Description

CLAMP_S 2:0 none Clamp mode for texture coordinates

 POSSIBLE VALUES:

 00 - Wrap (repeat)

 01 - Mirror

 02 - Clamp to last texel (0.0 to 1.0)

 03 - MirrorOnce to last texel (-1.0 to 1.0)

 04 - Clamp half way to border color (0.0 to 1.0)

 05 - MirrorOnce half way to border color (-1.0 to 1.0)

 06 - Clamp to border color (0.0 to 1.0)

 07 - MirrorOnce to border color (-1.0 to 1.0)

CLAMP_T 5:3 none Clamp mode for texture coordinates

 POSSIBLE VALUES:

 00 - Wrap (repeat)

 01 - Mirror

 02 - Clamp to last texel (0.0 to 1.0)

 03 - MirrorOnce to last texel (-1.0 to 1.0)

 04 - Clamp half way to border color (0.0 to 1.0)

 05 - MirrorOnce half way to border color (-1.0 to 1.0)

 06 - Clamp to border color (0.0 to 1.0)

 07 - MirrorOnce to border color (-1.0 to 1.0)

CLAMP_R 8:6 none Clamp mode for texture coordinates

 POSSIBLE VALUES:

 00 - Wrap (repeat)

 01 - Mirror

 02 - Clamp to last texel (0.0 to 1.0)

 03 - MirrorOnce to last texel (-1.0 to 1.0)

 04 - Clamp half way to border color (0.0 to 1.0)

 05 - MirrorOnce half way to border color (-1.0 to 1.0)

 06 - Clamp to border color (0.0 to 1.0)

 07 - MirrorOnce to border color (-1.0 to 1.0)

MAG_FILTER 10:9 none Filter used when texture is magnified

 POSSIBLE VALUES:

 00 - Filter4

 01 - Point

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 220

 02 - Linear

 03 - Reserved

MIN_FILTER 12:11 none Filter used when texture is minified

 POSSIBLE VALUES:

 00 - Filter4

 01 - Point

 02 - Linear

 03 - Reserved

MIP_FILTER 14:13 none Filter used between mipmap levels

 POSSIBLE VALUES:

 00 - None

 01 - Point

 02 - Linear

 03 - Reserved

VOL_FILTER 16:15 none Filter used between layers of a volume

 POSSIBLE VALUES:

 00 - None (no filter specifed, select from MIN/MAG

filters)

 01 - Point

 02 - Linear

 03 - Reserved

MAX_MIP_LEVEL 20:17 none LOD index of largest (finest) mipmap to use (0 is

largest). Ranges from 0 to NUM_LEVELS.

Reserved 23:21 none

ID 31:28 none Logical id for this physical texture

TX:TX_FILTER1_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4440-0x447c

DESCRIPTION: Texture Filter State

Field Name Bits Default Description

CHROMA_KEY_MODE 1:0 none Chroma Key Mode

 POSSIBLE VALUES:

 00 - Disable

 01 - ChromaKey (kill pixel if any sample matches

chroma key)

 02 - ChromaKeyBlend (set sample to 0 if it matches

chroma key)

MC_ROUND 2 none Bilinear rounding mode

 POSSIBLE VALUES:

 00 - Normal rounding on all components (+0.5)

 01 - MPEG4 rounding on all components (+0.25)

LOD_BIAS 12:3 none (s4.5). Ranges from -16.0 to 15.99. Mipmap LOD bias

measured in mipmap levels. Added to the signed,

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 221

computed LOD before the LOD is clamped.

Reserved 13 none

MC_COORD_TRUNCATE 14 none MPEG coordinate truncation mode

 POSSIBLE VALUES:

 00 - Dont truncate coordinate fractions.

 01 - Truncate coordinate fractions to 0.0 and 0.5 for

MPEG

TRI_PERF 16:15 none Apply slope and bias to trilerp fraction to reduce the

number of 2-level fetches for trilinear. Should only be

used if MIP_FILTER is LINEAR.

 POSSIBLE VALUES:

 00 - Breakpoint=0/8. lfrac_out = lfrac_in

 01 - Breakpoint=1/8. lfrac_out = clamp(4/3*lfrac_in -

1/6)

 02 - Breakpoint=1/4. lfrac_out = clamp(2*lfrac_in -

1/2)

 03 - Breakpoint=3/8. lfrac_out = clamp(4*lfrac_in -

3/2)

Reserved 19:17 none Set to 0

Reserved 20 none Set to 0

Reserved 21 none Set to 0

MACRO_SWITCH 22 none If enabled, addressing switches to macro-linear when

image width is <= 8 micro-tiles. If disabled, functionality

is same as RV350, switch to macro-linear when image

width is < 8 micro-tiles.

 POSSIBLE VALUES:

 00 - RV350 mode

 01 - Switch from macro-tiled to macro-linear when

(width <= 8 micro-tiles)

Reserved 28:23 none

Reserved 29 none

Reserved 30 none

BORDER_FIX 31 none To fix issues when using non-square mipmaps, with

border_color, and extreme minification.

 POSSIBLE VALUES:

 00 - R3xx R4xx mode

 01 - Stop right shifting coord once mip size is pinned

to one

TX:TX_FILTER4 · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4110

DESCRIPTION: Filter4 Kernel

Field Name Bits Default Description

http://uhw.atitech.ca/bmg/unix_webserver/chips/fudo/fudo_chip/search/search_engine.cgi?chip_name=fudo®_info_file=registerlist.txt&num_of_reg=9648®_name_query=TX&search_mode=OR®_field_query=

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 222

WEIGHT_1 10:0 none (s1.9). Bottom or Right weight of pair.

WEIGHT_0 21:11 none (s1.9). Top or Left weight of pair.

WEIGHT_PAIR 22 none Indicates which pair of weights within phase to load.

 POSSIBLE VALUES:

 00 - Top or Left

 01 - Bottom or Right

PHASE 26:23 none Indicates which of 9 phases to load

DIRECTION 27 none Indicates whether to load the horizontal or vertical

weights

 POSSIBLE VALUES:

 00 - Horizontal

 01 - Vertical

TX:TX_FORMAT0_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4480-0x44bc

DESCRIPTION: Texture Format State

Field Name Bits Default Description

TXWIDTH 10:0 none Image width - 1. The largest image is 4096 texels. When

wrapping or mirroring, must be a power of 2. When

mipmapping, must be a power of 2 or padded to a power

of 2 in memory. Can always be non-square, except for

cube maps which must be square.

TXHEIGHT 21:11 none Image height - 1. The largest image is 4096 texels. When

wrapping or mirroring, must be a power of 2. When

mipmapping, must be a power of 2 or padded to a power

of 2 in memory. Can always be non-square, except for

cube maps which must be square.

TXDEPTH 25:22 none LOG2(depth) of volume texture

NUM_LEVELS 29:26 none Number of mipmap levels minus 1. Ranges from 0 to 12.

Equivalent to LOD index of smallest (coarsest) mipmap

to use.

PROJECTED 30 none Specifies whether texture coords are projected.

 POSSIBLE VALUES:

 00 - Non-Projected

 01 - Projected

TXPITCH_EN 31 none Indicates when TXPITCH should be used instead of

TXWIDTH for image addressing

 POSSIBLE VALUES:

 00 - Use TXWIDTH for image addressing

 01 - Use TXPITCH for image addressing

TX:TX_FORMAT1_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x44c0-0x44fc

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 223

DESCRIPTION: Texture Format State

Field Name Bits Default Description

TXFORMAT 4:0 none Texture Format. Components are numbered right to left.

Parenthesis indicate typical uses of each format.

 POSSIBLE VALUES:

 00 - TX_FMT_8 or TX_FMT_1 (if

TX_FORMAT2.TXFORMAT_MSB is set)

 01 - TX_FMT_16 or TX_FMT_1_REVERSE (if

TX_FORMAT2.TXFORMAT_MSB is set)

 02 - TX_FMT_4_4 or TX_FMT_10 (if

TX_FORMAT2.TXFORMAT_MSB is set)

 03 - TX_FMT_8_8 or TX_FMT_10_10 (if

TX_FORMAT2.TXFORMAT_MSB is set)

 04 - TX_FMT_16_16 or TX_FMT_10_10_10_10 (if

TX_FORMAT2.TXFORMAT_MSB is set)

 05 - TX_FMT_3_3_2 or TX_FMT_ATI1N (if

TX_FORMAT2.TXFORMAT_MSB is set)

 06 - TX_FMT_5_6_5

 07 - TX_FMT_6_5_5

 08 - TX_FMT_11_11_10

 09 - TX_FMT_10_11_11

 10 - TX_FMT_4_4_4_4

 11 - TX_FMT_1_5_5_5

 12 - TX_FMT_8_8_8_8

 13 - TX_FMT_2_10_10_10

 14 - TX_FMT_16_16_16_16

 15 - Reserved

 16 - Reserved

 17 - Reserved

 18 - TX_FMT_Y8

 19 - TX_FMT_AVYU444

 20 - TX_FMT_VYUY422

 21 - TX_FMT_YVYU422

 22 - TX_FMT_16_MPEG

 23 - TX_FMT_16_16_MPEG

 24 - TX_FMT_16f

 25 - TX_FMT_16f_16f

 26 - TX_FMT_16f_16f_16f_16f

 27 - TX_FMT_32f

 28 - TX_FMT_32f_32f

 29 - TX_FMT_32f_32f_32f_32f

 30 - TX_FMT_W24_FP

 31 - TX_FMT_ATI2N

SIGNED_COMP0 5 none Component filter should interpret texel data as signed or

unsigned. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Component filter should interpret texel data as

unsigned

 01 - Component filter should interpret texel data as

signed

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 224

SIGNED_COMP1 6 none Component filter should interpret texel data as signed or

unsigned. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Component filter should interpret texel data as

unsigned

 01 - Component filter should interpret texel data as

signed

SIGNED_COMP2 7 none Component filter should interpret texel data as signed or

unsigned. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Component filter should interpret texel data as

unsigned

 01 - Component filter should interpret texel data as

signed

SIGNED_COMP3 8 none Component filter should interpret texel data as signed or

unsigned. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Component filter should interpret texel data as

unsigned

 01 - Component filter should interpret texel data as

signed

SEL_ALPHA 11:9 none Specifies swizzling for each channel at the input of the

pixel shader. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Select Texture Component0.

 01 - Select Texture Component1.

 02 - Select Texture Component2.

 03 - Select Texture Component3.

 04 - Select the value 0.

 05 - Select the value 1.

SEL_RED 14:12 none Specifies swizzling for each channel at the input of the

pixel shader. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Select Texture Component0.

 01 - Select Texture Component1.

 02 - Select Texture Component2.

 03 - Select Texture Component3.

 04 - Select the value 0.

 05 - Select the value 1.

SEL_GREEN 17:15 none Specifies swizzling for each channel at the input of the

pixel shader. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Select Texture Component0.

 01 - Select Texture Component1.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 225

 02 - Select Texture Component2.

 03 - Select Texture Component3.

 04 - Select the value 0.

 05 - Select the value 1.

SEL_BLUE 20:18 none Specifies swizzling for each channel at the input of the

pixel shader. (Ignored for Y/YUV formats.)

 POSSIBLE VALUES:

 00 - Select Texture Component0.

 01 - Select Texture Component1.

 02 - Select Texture Component2.

 03 - Select Texture Component3.

 04 - Select the value 0.

 05 - Select the value 1.

GAMMA 21 none Optionally remove gamma from texture before passing to

shader. Only apply to 8bit or less components.

 POSSIBLE VALUES:

 00 - Disable gamma removal

 01 - Enable gamma removal

YUV_TO_RGB 23:22 none YUV to RGB conversion mode

 POSSIBLE VALUES:

 00 - Disable YUV to RGB conversion

 01 - Enable YUV to RGB conversion (with clamp)

 02 - Enable YUV to RGB conversion (without

clamp)

SWAP_YUV 24 none POSSIBLE VALUES:

 00 - Disable swap YUV mode

 01 - Enable swap YUV mode (hw inverts upper bit of

U and V)

TEX_COORD_TYPE 26:25 none Specifies coordinate type.

 POSSIBLE VALUES:

 00 - 2D

 01 - 3D

 02 - Cube

 03 - Reserved

CACHE 31:27 none This field is ignored on R520 and RV510.

 POSSIBLE VALUES:

 00 - WHOLE

 01 - Reserved

 02 - HALF_REGION_0

 03 - HALF_REGION_1

 04 - FOURTH_REGION_0

 05 - FOURTH_REGION_1

 06 - FOURTH_REGION_2

 07 - FOURTH_REGION_3

 08 - EIGHTH_REGION_0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 226

 09 - EIGHTH_REGION_1

 10 - EIGHTH_REGION_2

 11 - EIGHTH_REGION_3

 12 - EIGHTH_REGION_4

 13 - EIGHTH_REGION_5

 14 - EIGHTH_REGION_6

 15 - EIGHTH_REGION_7

 16 - SIXTEENTH_REGION_0

 17 - SIXTEENTH_REGION_1

 18 - SIXTEENTH_REGION_2

 19 - SIXTEENTH_REGION_3

 20 - SIXTEENTH_REGION_4

 21 - SIXTEENTH_REGION_5

 22 - SIXTEENTH_REGION_6

 23 - SIXTEENTH_REGION_7

 24 - SIXTEENTH_REGION_8

 25 - SIXTEENTH_REGION_9

 26 - SIXTEENTH_REGION_A

 27 - SIXTEENTH_REGION_B

 28 - SIXTEENTH_REGION_C

 29 - SIXTEENTH_REGION_D

 30 - SIXTEENTH_REGION_E

 31 - SIXTEENTH_REGION_F

TX:TX_FORMAT2_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4500-0x453c

DESCRIPTION: Texture Format State

Field Name Bits Default Description

TXPITCH 13:0 none Used instead of TXWIDTH for image addressing when

TXPITCH_EN is asserted. Pitch is given as number of

texels minus one. Maximum pitch is 16K texels.

TXFORMAT_MSB 14 none Specifies the MSB of the texture format to extend the

number of formats to 64.

TXWIDTH_11 15 none Specifies bit 11 of TXWIDTH to extend the largest

image to 4096 texels.

TXHEIGHT_11 16 none Specifies bit 11 of TXHEIGHT to extend the largest

image to 4096 texels.

POW2FIX2FLT 17 none Optionally divide by 256 instead of 255 during fix2float.

Can only be asserted for 8-bit components.

 POSSIBLE VALUES:

 00 - Divide by pow2-1 for fix2float (default)

 01 - Divide by pow2 for fix2float

SEL_FILTER4 19:18 none If filter4 is enabled, specifies which texture component

to apply filter4 to.

 POSSIBLE VALUES:

 00 - Select Texture Component0.

 01 - Select Texture Component1.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 227

 02 - Select Texture Component2.

 03 - Select Texture Component3.

TX:TX_INVALTAGS · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4100

DESCRIPTION: Invalidate texture cache tags

Field Name Bits Default Description

RESERVED 31:0 none Unused

TX:TX_OFFSET_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4540-0x457c

DESCRIPTION: Texture Offset State

Field Name Bits Default Description

ENDIAN_SWAP 1:0 none Endian Control

 POSSIBLE VALUES:

 00 - No swap

 01 - 16 bit swap

 02 - 32 bit swap

 03 - Half-DWORD swap

MACRO_TILE 2 none Macro Tile Control

 POSSIBLE VALUES:

 00 - 2KB page is linear

 01 - 2KB page is tiled

MICRO_TILE 4:3 none Micro Tile Control

 POSSIBLE VALUES:

 00 - 32 byte cache line is linear

 01 - 32 byte cache line is tiled

 02 - 32 byte cache line is tiled square (only applies to

16-bit texel)

 03 - Reserved

TXOFFSET 31:5 none 32-byte aligned pointer to base map

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 228

11.10 Fragment Shader Registers

US:US_ALU_ALPHA_INST_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0xa800-0xaffc

DESCRIPTION: ALU Alpha Instruction

Field Name Bits Default Description

ALPHA_OP 3:0 0x0 Specifies the opcode for this instruction.

 POSSIBLE VALUES:

 00 - OP_MAD: Result = A*B + C

 01 - OP_DP: Result = dot product from RGB ALU

 02 - OP_MIN: Result = min(A,B)

 03 - OP_MAX: Result = max(A,B)

 04 - reserved

 05 - OP_CND: Result = cnd(A,B,C) = (C>0.5)?A:B

 06 - OP_CMP: Result = cmp(A,B,C) =

(C>=0.0)?A:B

 07 - OP_FRC: Result = A-floor(A)

 08 - OP_EX2: Result = 2^^A

 09 - OP_LN2: Result = log2(A)

 10 - OP_RCP: Result = 1/A

 11 - OP_RSQ: Result = 1/sqrt(A)

 12 - OP_SIN: Result = sin(A*2pi)

 13 - OP_COS: Result = cos(A*2pi)

 14 - OP_MDH: Result = A*B + C; A is always

topleft.src0, C is always topright.src0 (source select and

swizzles ignored). Input modifiers are respected for all

inputs.

 15 - OP_MDV: Result = A*B + C; A is always

topleft.src0, C is always bottomleft.src0 (source select

and swizzles ignored). Input modifiers are respected for

all inputs.

ALPHA_ADDRD 10:4 0x0 Specifies the address of the pixel stack frame register to

which the Alpha result of this instruction is to be written.

ALPHA_ADDRD_REL 11 0x0 Specifies whether the loop register is added to the value

of ALPHA_ADDRD before it is used. This implements

relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify destination address.

 01 - RELATIVE: Add aL to address before write.

ALPHA_SEL_A 13:12 0x0 Specifies the operands for Alpha inputs A and B.

 POSSIBLE VALUES:

 00 - src0

 01 - src1

 02 - src2

 03 - srcp

ALPHA_SWIZ_A 16:14 0x0 Specifies the channel sources for Alpha inputs A and B.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 229

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

ALPHA_MOD_A 18:17 0x0 Specifies the input modifiers for Alpha inputs A and B.

 POSSIBLE VALUES:

 00 - NOP: Do not modify input

 01 - NEG: Negate input

 02 - ABS: Take absolute value of input

 03 - NAB: Take negative absolute value of input

ALPHA_SEL_B 20:19 0x0 Specifies the operands for Alpha inputs A and B.

 POSSIBLE VALUES:

 00 - src0

 01 - src1

 02 - src2

 03 - srcp

ALPHA_SWIZ_B 23:21 0x0 Specifies the channel sources for Alpha inputs A and B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

ALPHA_MOD_B 25:24 0x0 Specifies the input modifiers for Alpha inputs A and B.

 POSSIBLE VALUES:

 00 - NOP: Do not modify input

 01 - NEG: Negate input

 02 - ABS: Take absolute value of input

 03 - NAB: Take negative absolute value of input

OMOD 28:26 0x0 Specifies the output modifier for this instruction.

 POSSIBLE VALUES:

 00 - Result * 1

 01 - Result * 2

 02 - Result * 4

 03 - Result * 8

 04 - Result / 2

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 230

 05 - Result / 4

 06 - Result / 8

 07 - Disable output modifier and clamping (result is

copied exactly; only valid for MIN/MAX/CMP/CND)

TARGET 30:29 0x0 This specifies which (cached) frame buffer target to write

to. For non-output ALU instructions, this specifies how

to compare the results against zero when setting the

predicate bits.

 POSSIBLE VALUES:

 00 - A: Output to render target A. Predicate ==

(ALU)

 01 - B: Output to render target B. Predicate < (ALU)

 02 - C: Output to render target C. Predicate >=

(ALU)

 03 - D: Output to render target D. Predicate != (ALU)

W_OMASK 31 0x0 Specifies whether or not to write the Alpha component of

the result of this instuction to the depth output fifo.

 POSSIBLE VALUES:

 00 - NONE: Do not write output to w.

 01 - A: Write the alpha channel only to w.

US:US_ALU_ALPHA_ADDR_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x9800-0x9ffc

DESCRIPTION: This table specifies the Alpha source addresses and pre-subtract operation for up to 512 ALU

instruction. The ALU expects 6 source operands - three for color (rgb0, rgb1, rgb2) and three for alpha (a0, a1, a2).

The pre-subtract operation creates two more (rgbp and ap).

Field Name Bits Default Description

ADDR0 7:0 0x0 Specifies the identity of source operands a0, a1, and a2.

If the const field is set, this number ranges from 0 to 255

and specifies a location within the constant register bank.

Otherwise: If the most significant bit is cleared, this field

specifies a location within the current pixel stack frame

(ranging from 0 to 127). If the most significant bit is set,

then the lower 7 bits specify an inline unsigned floating-

point constant with 4 bit exponent (bias 7) and 3 bit

mantissa, including denormals but excluding

infinite/NaN.

ADDR0_CONST 8 0x0 Specifies whether the associated address is a constant

register address or a temporary address / inline constant.

 POSSIBLE VALUES:

 00 - TEMPORARY: Address temporary register or

inline constant value.

 01 - CONSTANT: Address constant register.

ADDR0_REL 9 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 231

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address.

 01 - RELATIVE: Add aL before lookup.

ADDR1 17:10 0x0 Specifies the identity of source operands a0, a1, and a2.

If the const field is set, this number ranges from 0 to 255

and specifies a location within the constant register bank.

Otherwise: If the most significant bit is cleared, this field

specifies a location within the current pixel stack frame

(ranging from 0 to 127). If the most significant bit is set,

then the lower 7 bits specify an inline unsigned floating-

point constant with 4 bit exponent (bias 7) and 3 bit

mantissa, including denormals but excluding

infinite/NaN.

ADDR1_CONST 18 0x0 Specifies whether the associated address is a constant

register address or a temporary address / inline constant.

 POSSIBLE VALUES:

 00 - TEMPORARY: Address temporary register or

inline constant value.

 01 - CONSTANT: Address constant register.

ADDR1_REL 19 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address.

 01 - RELATIVE: Add aL before lookup.

ADDR2 27:20 0x0 Specifies the identity of source operands a0, a1, and a2.

If the const field is set, this number ranges from 0 to 255

and specifies a location within the constant register bank.

Otherwise: If the most significant bit is cleared, this field

specifies a location within the current pixel stack frame

(ranging from 0 to 127). If the most significant bit is set,

then the lower 7 bits specify an inline unsigned floating-

point constant with 4 bit exponent (bias 7) and 3 bit

mantissa, including denormals but excluding

infinite/NaN.

ADDR2_CONST 28 0x0 Specifies whether the associated address is a constant

register address or a temporary address / inline constant.

 POSSIBLE VALUES:

 00 - TEMPORARY: Address temporary register or

inline constant value.

 01 - CONSTANT: Address constant register.

ADDR2_REL 29 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 232

 00 - NONE: Do not modify source address.

 01 - RELATIVE: Add aL before lookup.

SRCP_OP 31:30 0x0 Specifies how the pre-subtract value (SRCP) is

computed.

 POSSIBLE VALUES:

 00 - 1.0-2.0*A0

 01 - A1-A0

 02 - A1+A0

 03 - 1.0-A0

US:US_ALU_RGBA_INST_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0xb000-0xb7fc

DESCRIPTION: ALU Shared RGBA Instruction

Field Name Bits Default Description

RGB_OP 3:0 0x0 Specifies the opcode for this instruction.

 POSSIBLE VALUES:

 00 - OP_MAD: Result = A*B + C

 01 - OP_DP3: Result = A.r*B.r + A.g*B.g + A.b*B.b

 02 - OP_DP4: Result = A.r*B.r + A.g*B.g + A.b*B.b

+ A.a*B.a

 03 - OP_D2A: Result = A.r*B.r + A.g*B.g + C.b

 04 - OP_MIN: Result = min(A,B)

 05 - OP_MAX: Result = max(A,B)

 06 - reserved

 07 - OP_CND: Result = cnd(A,B,C) = (C>0.5)?A:B

 08 - OP_CMP: Result = cmp(A,B,C) =

(C>=0.0)?A:B

 09 - OP_FRC: Result = A-floor(A)

 10 - OP_SOP: Result = ex2,ln2,rcp,rsq,sin,cos from

Alpha ALU

 11 - OP_MDH: Result = A*B + C; A is always

topleft.src0, C is always topright.src0 (source select and

swizzles ignored). Input modifiers are respected for all

inputs.

 12 - OP_MDV: Result = A*B + C; A is always

topleft.src0, C is always bottomleft.src0 (source select

and swizzles ignored). Input modifiers are respected for

all inputs.

RGB_ADDRD 10:4 0x0 Specifies the address of the pixel stack frame register to

which the RGB result of this instruction is to be written.

RGB_ADDRD_REL 11 0x0 Specifies whether the loop register is added to the value

of RGB_ADDRD before it is used. This implements

relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify destination address.

 01 - RELATIVE: Add aL to address before write.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 233

RGB_SEL_C 13:12 0x0 Specifies the operands for RGB and Alpha input C.

 POSSIBLE VALUES:

 00 - src0

 01 - src1

 02 - src2

 03 - srcp

RED_SWIZ_C 16:14 0x0 Specifies, per channel, the sources for RGB and Alpha

input C.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

GREEN_SWIZ_C 19:17 0x0 Specifies, per channel, the sources for RGB and Alpha

input C.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

BLUE_SWIZ_C 22:20 0x0 Specifies, per channel, the sources for RGB and Alpha

input C.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

RGB_MOD_C 24:23 0x0 Specifies the input modifiers for RGB and Alpha input

C.

 POSSIBLE VALUES:

 00 - NOP: Do not modify input

 01 - NEG: Negate input

 02 - ABS: Take absolute value of input

 03 - NAB: Take negative absolute value of input

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 234

ALPHA_SEL_C 26:25 0x0 Specifies the operands for RGB and Alpha input C.

 POSSIBLE VALUES:

 00 - src0

 01 - src1

 02 - src2

 03 - srcp

ALPHA_SWIZ_C 29:27 0x0 Specifies, per channel, the sources for RGB and Alpha

input C.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

ALPHA_MOD_C 31:30 0x0 Specifies the input modifiers for RGB and Alpha input

C.

 POSSIBLE VALUES:

 00 - NOP: Do not modify input

 01 - NEG: Negate input

 02 - ABS: Take absolute value of input

 03 - NAB: Take negative absolute value of input

US:US_ALU_RGB_INST_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0xa000-0xa7fc

DESCRIPTION: ALU RGB Instruction

Field Name Bits Default Description

RGB_SEL_A 1:0 0x0 Specifies the operands for RGB inputs A and B.

 POSSIBLE VALUES:

 00 - src0

 01 - src1

 02 - src2

 03 - srcp

RED_SWIZ_A 4:2 0x0 Specifies, per channel, the sources for RGB inputs A and

B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 235

 06 - One

 07 - Unused

GREEN_SWIZ_A 7:5 0x0 Specifies, per channel, the sources for RGB inputs A and

B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

BLUE_SWIZ_A 10:8 0x0 Specifies, per channel, the sources for RGB inputs A and

B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

RGB_MOD_A 12:11 0x0 Specifies the input modifiers for RGB inputs A and B.

 POSSIBLE VALUES:

 00 - NOP: Do not modify input

 01 - NEG: Negate input

 02 - ABS: Take absolute value of input

 03 - NAB: Take negative absolute value of input

RGB_SEL_B 14:13 0x0 Specifies the operands for RGB inputs A and B.

 POSSIBLE VALUES:

 00 - src0

 01 - src1

 02 - src2

 03 - srcp

RED_SWIZ_B 17:15 0x0 Specifies, per channel, the sources for RGB inputs A and

B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 236

 06 - One

 07 - Unused

GREEN_SWIZ_B 20:18 0x0 Specifies, per channel, the sources for RGB inputs A and

B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

BLUE_SWIZ_B 23:21 0x0 Specifies, per channel, the sources for RGB inputs A and

B.

 POSSIBLE VALUES:

 00 - Red

 01 - Green

 02 - Blue

 03 - Alpha

 04 - Zero

 05 - Half

 06 - One

 07 - Unused

RGB_MOD_B 25:24 0x0 Specifies the input modifiers for RGB inputs A and B.

 POSSIBLE VALUES:

 00 - NOP: Do not modify input

 01 - NEG: Negate input

 02 - ABS: Take absolute value of input

 03 - NAB: Take negative absolute value of input

OMOD 28:26 0x0 Specifies the output modifier for this instruction.

 POSSIBLE VALUES:

 00 - Result * 1

 01 - Result * 2

 02 - Result * 4

 03 - Result * 8

 04 - Result / 2

 05 - Result / 4

 06 - Result / 8

 07 - Disable output modifier and clamping (result is

copied exactly; only valid for MIN/MAX/CMP/CND)

TARGET 30:29 0x0 This specifies which (cached) frame buffer target to write

to. For non-output ALU instructions, this specifies how

to compare the results against zero when setting the

predicate bits.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 237

 POSSIBLE VALUES:

 00 - A: Output to render target A. Predicate ==

(ALU)

 01 - B: Output to render target B. Predicate < (ALU)

 02 - C: Output to render target C. Predicate >=

(ALU)

 03 - D: Output to render target D. Predicate != (ALU)

ALU_WMASK 31 0x0 Specifies whether to update the current ALU result.

 POSSIBLE VALUES:

 00 - Do not modify the current ALU result.

 01 - Modify the current ALU result based on the

settings of ALU_RESULT_SEL and

ALU_RESULT_OP.

US:US_ALU_RGB_ADDR_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x9000-0x97fc

DESCRIPTION: This table specifies the RGB source addresses and pre-subtract operation for up to 512 ALU

instructions. The ALU expects 6 source operands - three for color (rgb0, rgb1, rgb2) and three for alpha (a0, a1,

a2). The pre-subtract operation creates two more (rgbp and ap).

Field Name Bits Default Description

ADDR0 7:0 0x0 Specifies the identity of source operands rgb0, rgb1, and

rgb2. If the const field is set, this number ranges from 0

to 255 and specifies a location within the constant

register bank. Otherwise: If the most significant bit is

cleared, this field specifies a location within the current

pixel stack frame (ranging from 0 to 127). If the most

significant bit is set, then the lower 7 bits specify an

inline unsigned floating-point constant with 4 bit

exponent (bias 7) and 3 bit mantissa, including

denormals but excluding infinite/NaN.

ADDR0_CONST 8 0x0 Specifies whether the associated address is a constant

register address or a temporary address / inline constant.

 POSSIBLE VALUES:

 00 - TEMPORARY: Address temporary register or

inline constant value.

 01 - CONSTANT: Address constant register.

ADDR0_REL 9 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address.

 01 - RELATIVE: Add aL before lookup.

ADDR1 17:10 0x0 Specifies the identity of source operands rgb0, rgb1, and

rgb2. If the const field is set, this number ranges from 0

to 255 and specifies a location within the constant

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 238

register bank. Otherwise: If the most significant bit is

cleared, this field specifies a location within the current

pixel stack frame (ranging from 0 to 127). If the most

significant bit is set, then the lower 7 bits specify an

inline unsigned floating-point constant with 4 bit

exponent (bias 7) and 3 bit mantissa, including

denormals but excluding infinite/NaN.

ADDR1_CONST 18 0x0 Specifies whether the associated address is a constant

register address or a temporary address / inline constant.

 POSSIBLE VALUES:

 00 - TEMPORARY: Address temporary register or

inline constant value.

 01 - CONSTANT: Address constant register.

ADDR1_REL 19 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address.

 01 - RELATIVE: Add aL before lookup.

ADDR2 27:20 0x0 Specifies the identity of source operands rgb0, rgb1, and

rgb2. If the const field is set, this number ranges from 0

to 255 and specifies a location within the constant

register bank. Otherwise: If the most significant bit is

cleared, this field specifies a location within the current

pixel stack frame (ranging from 0 to 127). If the most

significant bit is set, then the lower 7 bits specify an

inline unsigned floating-point constant with 4 bit

exponent (bias 7) and 3 bit mantissa, including

denormals but excluding infinite/NaN.

ADDR2_CONST 28 0x0 Specifies whether the associated address is a constant

register address or a temporary address / inline constant.

 POSSIBLE VALUES:

 00 - TEMPORARY: Address temporary register or

inline constant value.

 01 - CONSTANT: Address constant register.

ADDR2_REL 29 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address.

 01 - RELATIVE: Add aL before lookup.

SRCP_OP 31:30 0x0 Specifies how the pre-subtract value (SRCP) is

computed.

 POSSIBLE VALUES:

 00 - 1.0-2.0*RGB0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 239

 01 - RGB1-RGB0

 02 - RGB1+RGB0

 03 - 1.0-RGB0

US:US_CMN_INST_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0xb800-0xbffc

DESCRIPTION: Shared instruction fields for all instruction types

Field Name Bits Default Description

TYPE 1:0 0x0 Specifies the type of instruction. Note that output

instructions write to render targets.

 POSSIBLE VALUES:

 00 - US_INST_TYPE_ALU: This instruction is an

ALU instruction.

 01 - US_INST_TYPE_OUT: This instruction is an

output instruction.

 02 - US_INST_TYPE_FC: This instruction is a flow

control instruction.

 03 - US_INST_TYPE_TEX: This instruction is a

texture instruction.

TEX_SEM_WAIT 2 0x0 Specifies whether to wait for the texture semaphore.

 POSSIBLE VALUES:

 00 - This instruction may issue immediately.

 01 - This instruction will not issue until the texture

semaphore is available.

RGB_PRED_SEL 5:3 0x0 Specifies whether the instruction uses predication. For

ALU/TEX/Output this specifies predication for the RGB

channels only. For FC this specifies the predicate for the

entire instruction.

 POSSIBLE VALUES:

 00 - US_PRED_SEL_NONE: No predication

 01 - US_PRED_SEL_RGBA: Independent Channel

Predication

 02 - US_PRED_SEL_RRRR: R-Replicate

Predication

 03 - US_PRED_SEL_GGGG: G-Replicate

Predication

 04 - US_PRED_SEL_BBBB: B-Replicate

Predication

 05 - US_PRED_SEL_AAAA: A-Replicate

Predication

RGB_PRED_INV 6 0x0 Specifies whether the predicate should be inverted. For

ALU/TEX/Output this specifies predication for the RGB

channels only. For FC this specifies the predicate for the

entire instruction.

 POSSIBLE VALUES:

 00 - Normal predication

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 240

 01 - Invert the value of the predicate

WRITE_INACTIVE 7 0x0 Specifies which pixels to write to.

 POSSIBLE VALUES:

 00 - Only write to channels of active pixels

 01 - Write to channels of all pixels, including inactive

pixels

LAST 8 0x0 Specifies whether this is the last instruction.

 POSSIBLE VALUES:

 00 - Do not terminate the shader after executing this

instruction (unless this instruction is at END_ADDR).

 01 - All active pixels are willing to terminate after

executing this instruction. There is no guarantee that the

shader will actually terminate here. This feature is

provided as a performance optimization for tests where

pixels can conditionally terminate early.

NOP 9 0x0 Specifies whether to insert a NOP instruction after this.

This would get specified in order to meet dependency

requirements for the pre-subtract inputs, and dependency

requirements for src0 of an MDH/MDV instruction.

 POSSIBLE VALUES:

 00 - Do not insert NOP instruction after this one.

 01 - Insert a NOP instruction after this one.

ALU_WAIT 10 0x0 Specifies whether to wait for pending ALU instructions

to complete before issuing this instruction.

 POSSIBLE VALUES:

 00 - Do not wait for pending ALU instructions to

complete before issuing the current instruction.

 01 - Wait for pending ALU instructions to complete

before issuing the current instruction.

RGB_WMASK 13:11 0x0 Specifies which components of the result of the RGB

instruction are written to the pixel stack frame.

 POSSIBLE VALUES:

 00 - NONE: Do not write any output.

 01 - R: Write the red channel only.

 02 - G: Write the green channel only.

 03 - RG: Write the red and green channels.

 04 - B: Write the blue channel only.

 05 - RB: Write the red and blue channels.

 06 - GB: Write the green and blue channels.

 07 - RGB: Write the red, green, and blue channels.

ALPHA_WMASK 14 0x0 Specifies whether the result of the Alpha instruction is

written to the pixel stack frame.

 POSSIBLE VALUES:

 00 - NONE: Do not write register.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 241

 01 - A: Write the alpha channel only.

RGB_OMASK 17:15 0x0 Specifies which components of the result of the RGB

instruction are written to the output fifo if this is an

output instruction, and which predicate bits should be

modified if this is an ALU instruction.

 POSSIBLE VALUES:

 00 - NONE: Do not write any output.

 01 - R: Write the red channel only.

 02 - G: Write the green channel only.

 03 - RG: Write the red and green channels.

 04 - B: Write the blue channel only.

 05 - RB: Write the red and blue channels.

 06 - GB: Write the green and blue channels.

 07 - RGB: Write the red, green, and blue channels.

ALPHA_OMASK 18 0x0 Specifies whether the result of the Alpha instruction is

written to the output fifo if this is an output instruction,

and whether the Alpha predicate bit should be modified

if this is an ALU instruction.

 POSSIBLE VALUES:

 00 - NONE: Do not write output.

 01 - A: Write the alpha channel only.

RGB_CLAMP 19 0x0 Specifies RGB and Alpha clamp mode for this

instruction.

 POSSIBLE VALUES:

 00 - Do not clamp output.

 01 - Clamp output to the range [0,1].

ALPHA_CLAMP 20 0x0 Specifies RGB and Alpha clamp mode for this

instruction.

 POSSIBLE VALUES:

 00 - Do not clamp output.

 01 - Clamp output to the range [0,1].

ALU_RESULT_SEL 21 0x0 Specifies which component of the result of this

instruction should be used as the `ALU result` by a

subsequent flow control instruction.

 POSSIBLE VALUES:

 00 - RED: Use red as ALU result for FC.

 01 - ALPHA: Use alpha as ALU result for FC.

ALPHA_PRED_INV 22 0x0 Specifies whether the predicate should be inverted. For

ALU/TEX/Output this specifies predication for the alpha

channel only. This field has no effect on FC instructions.

 POSSIBLE VALUES:

 00 - Normal predication

 01 - Invert the value of the predicate

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 242

ALU_RESULT_OP 24:23 0x0 Specifies how to compare the ALU result against zero

for the `alu_result` bit in a subsequent flow control

instruction.

 POSSIBLE VALUES:

 00 - Equal to

 01 - Less than

 02 - Greater than or equal to

 03 - Not equal

ALPHA_PRED_SEL 27:25 0x0 Specifies whether the instruction uses predication. For

ALU/TEX/Output this specifies predication for the alpha

channel only. This field has no effect on FC instructions.

 POSSIBLE VALUES:

 00 - US_PRED_SEL_NONE: No predication

 01 - US_PRED_SEL_RGBA: A predication

(identical to US_PRED_SEL_AAAA)

 02 - US_PRED_SEL_RRRR: R Predication

 03 - US_PRED_SEL_GGGG: G Predication

 04 - US_PRED_SEL_BBBB: B Predication

 05 - US_PRED_SEL_AAAA: A Predication

STAT_WE 31:28 0x0 Specifies which components (R,G,B,A) contribute to the

stat count

US:US_CODE_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4630

DESCRIPTION: Code start and end instruction addresses.

Field Name Bits Default Description

START_ADDR 8:0 0x0 Specifies the address of the first instruction to execute in

the shader program. This address is relative to the shader

program offset given in

US_CODE_OFFSET.OFFSET_ADDR.

END_ADDR 24:16 0x0 Specifies the address of the last instruction to execute in

the shader program. This address is relative to the shader

program offset given in

US_CODE_OFFSET.OFFSET_ADDR. Shader program

execution will always terminate after the instruction at

this address is executed.

US:US_CODE_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4638

DESCRIPTION: Offsets used for relative instruction addresses in the shader program, including START_ADDR,

END_ADDR, and any non-global flow control jump addresses.

Field Name Bits Default Description

OFFSET_ADDR 8:0 0x0 Specifies the offset to add to relative instruction

addresses, including START_ADDR, END_ADDR, and

some flow control jump addresses.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 243

US:US_CODE_RANGE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4634

DESCRIPTION: Range of instructions that contains the current shader program.

Field Name Bits Default Description

CODE_ADDR 8:0 0x0 Specifies the start address of the current code window.

This address is an absolute address.

CODE_SIZE 24:16 0x0 Specifies the size of the current code window, minus

one. The last instruction in the code window is given by

CODE_ADDR + CODE_SIZE.

US:US_CONFIG · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4600

DESCRIPTION: Shader Configuration

Field Name Bits Default Description

Reserved 0 0x0 Set to 0

ZERO_TIMES_ANYTHING_EQUALS_ZERO 1 0x0 Control how ALU multiplier behaves when one

argument is zero. This affects the multiplier used in

MAD and dot product calculations.

 POSSIBLE VALUES:

 00 - Default behaviour (0*inf=nan,0*nan=nan)

 01 - Legacy behaviour for shader model 1

(0*anything=0)

US:US_FC_ADDR_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0xa000-0xa7fc

DESCRIPTION: Flow Control Instruction Address Fields

Field Name Bits Default Description

BOOL_ADDR 4:0 0x0 The address of the static boolean register to use in the

jump function.

INT_ADDR 12:8 0x0 The address of the static integer register to use for

loop/rep and endloop/endrep.

JUMP_ADDR 24:16 0x0 The address to jump to if the jump function evaluates to

true.

JUMP_GLOBAL 31 0x0 Specifies whether to interpret JUMP_ADDR as a global

address.

 POSSIBLE VALUES:

 00 - Add the shader program offset in

US_CODE_OFFSET.OFFSET_ADDR when calculating

the destination address of a jump

 01 - Don`t use the shader program offset when

calculating the destination address jump

US:US_FC_BOOL_CONST · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4620

DESCRIPTION: Static Boolean Constants for Flow Control Branching Instructions. Quad-buffered.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 244

Field Name Bits Default Description

KBOOL 31:0 0x0 Specifies the boolean value for constants 0-31.

US:US_FC_CTRL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4624

DESCRIPTION: Flow Control Options. Quad-buffered.

Field Name Bits Default Description

TEST_EN 30 0x0 Specifies whether test mode is enabled. This flag

currently has no effect in hardware.

 POSSIBLE VALUES:

 00 - Normal mode

 01 - Test mode (currently unused)

FULL_FC_EN 31 0x0 Specifies whether full flow control functionality is

enabled.

 POSSIBLE VALUES:

 00 - Use partial flow-control (enables twice the

contexts). Loops and subroutines are not available in

partial flow-control mode, and the nesting depth of

branch statements is limited.

 01 - Use full pixel shader 3.0 flow control, including

loops and subroutines.

US:US_FC_INST_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x9800-0x9ffc

DESCRIPTION: Flow Control Instruction

Field Name Bits Default Description

OP 2:0 0x0 Specifies the type of flow control instruction.

 POSSIBLE VALUES:

 00 - US_FC_OP_JUMP: (if, endif, call, etc)

 01 - US_FC_OP_LOOP: same as jump except

always take the jump if the static counter is 0. If we don`t

take the jump, push initial loop counter and loop register

(aL) values onto the loop stack.

 02 - US_FC_OP_ENDLOOP: same as jump but

decrement the loop counter and increment the loop

register (aL), and don`t take the jump if the loop counter

becomes zero.

 03 - US_FC_OP_REP: same as loop but don`t push

the loop register aL.

 04 - US_FC_OP_ENDREP: same as endloop but

don`t update/pop the loop register aL.

 05 - US_FC_OP_BREAKLOOP: same as jump but

pops the loop stacks if a pixel stops being active.

 06 - US_FC_OP_BREAKREP: same as breakloop

but don`t pop the loop register if it jumps.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 245

 07 - US_FC_OP_CONTINUE: used to disable pixels

that are ready to jump to the ENDLOOP/ENDREP

instruction.

B_ELSE 4 0x0 Specifies whether to perform an else operation on the

active and branch-inactive pixels before executing the

instruction.

 POSSIBLE VALUES:

 00 - Don`t alter the branch state before executing the

instruction.

 01 - Perform an else operation on the branch state

before executing the instruction; pixels in the active state

are moved to the branch inactive state with zero counter,

and vice versa.

JUMP_ANY 5 0x0 If set, jump if any active pixels want to take the jump

(otherwise the instruction jumps only if all active pixels

want to).

 POSSIBLE VALUES:

 00 - Jump if ALL active pixels want to take the jump

(for if and else). If no pixels are active, jump.

 01 - Jump if ANY active pixels want to take the jump

(for call, loop/rep and endrep/endloop). If no pixels are

active, do not jump.

A_OP 7:6 0x0 The address stack operation to perform if we take the

jump.

 POSSIBLE VALUES:

 00 - US_FC_A_OP_NONE: Don`t change the

address stack

 01 - US_FC_A_OP_POP: If we jump, pop the

address stack and use that value for the jump target

 02 - US_FC_A_OP_PUSH: If we jump, push the

current address onto the address stack

JUMP_FUNC 15:8 0x0 A 2x2x2 table of boolean values indicating whether to

take the jump. The table index is indexed by {ALU

Compare Result, Predication Result, Boolean Value

(from the static boolean address in

US_FC_ADDR.BOOL)}. To determine whether to jump,

look at bit ((alu_result<<2) | (predicate<<1) | bool).

B_POP_CNT 20:16 0x0 The amount to decrement the branch counter by if

US_FC_B_OP_DECR operation is performed.

B_OP0 25:24 0x0 The branch state operation to perform if we don`t take

the jump.

 POSSIBLE VALUES:

 00 - US_FC_B_OP_NONE: If we don`t jump, don`t

alter the branch counter for any pixel.

 01 - US_FC_B_OP_DECR: If we don`t jump,

decrement branch counter by B_POP_CNT for inactive

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 246

pixels. Activate pixels with negative counters.

 02 - US_FC_B_OP_INCR: If we don`t jump,

increment branch counter by 1 for inactive pixels.

Deactivate pixels that decided to jump and set their

counter to zero.

B_OP1 27:26 0x0 The branch state operation to perform if we do take the

jump.

 POSSIBLE VALUES:

 00 - US_FC_B_OP_NONE: If we do jump, don`t

alter the branch counter for any pixel.

 01 - US_FC_B_OP_DECR: If we do jump,

decrement branch counter by B_POP_CNT for inactive

pixels. Activate pixels with negative counters.

 02 - US_FC_B_OP_INCR: If we do jump, increment

branch counter by 1 for inactive pixels. Deactivate pixels

that decided not to jump and set their counter to zero.

IGNORE_UNCOVERED 28 0x0 If set, uncovered pixels will not participate in flow

control decisions.

 POSSIBLE VALUES:

 00 - Include uncovered pixels in jump decisions

 01 - Ignore uncovered pixels in making jump

decisions

US:US_FC_INT_CONST_[0-31] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4c00-0x4c7c

DESCRIPTION: Integer Constants used by Flow Control Loop Instructions. Single buffered.

Field Name Bits Default Description

KR 7:0 0x0 Specifies the number of iterations. Unsigned 8-bit integer

in [0, 255].

KG 15:8 0x0 Specifies the initial value of the loop register (aL).

Unsigned 8-bit integer in [0, 255].

KB 23:16 0x0 Specifies the increment used to change the loop register

(aL) on each iteration. Signed 7-bit integer in [-128,

127].

US:US_FORMAT0_[0-15] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4640-0x467c

Field Name Bits Default Description

TXWIDTH 10:0 0x0

TXHEIGHT 21:11 0x0

TXDEPTH 25:22 0x0 POSSIBLE VALUES:

 13 - width > 2048, height <= 2048

 14 - width <= 2048, height > 2048

 15 - width > 2048, height > 2048

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 247

US:US_OUT_FMT_[0-3] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x46a4-0x46b0

Field Name Bits Default Description

OUT_FMT 4:0 0x0 POSSIBLE VALUES:

 00 - C4_8 (S/U)

 01 - C4_10 (U)

 02 - C4_10_GAMMA - (U)

 03 - C_16 - (S/U)

 04 - C2_16 - (S/U)

 05 - C4_16 - (S/U)

 06 - C_16_MPEG - (S)

 07 - C2_16_MPEG - (S)

 08 - C2_4 - (U)

 09 - C_3_3_2 - (U)

 10 - C_6_5_6 - (S/U)

 11 - C_11_11_10 - (S/U)

 12 - C_10_11_11 - (S/U)

 13 - C_2_10_10_10 - (S/U)

 14 - reserved

 15 - UNUSED - Render target is not used

 16 - C_16_FP - (S10E5)

 17 - C2_16_FP - (S10E5)

 18 - C4_16_FP - (S10E5)

 19 - C_32_FP - (S23E8)

 20 - C2_32_FP - (S23E8)

 21 - C4_32_FP - (S23E8)

C0_SEL 9:8 0x0 POSSIBLE VALUES:

 00 - Alpha

 01 - Red

 02 - Green

 03 - Blue

C1_SEL 11:10 0x0 POSSIBLE VALUES:

 00 - Alpha

 01 - Red

 02 - Green

 03 - Blue

C2_SEL 13:12 0x0 POSSIBLE VALUES:

 00 - Alpha

 01 - Red

 02 - Green

 03 - Blue

C3_SEL 15:14 0x0 POSSIBLE VALUES:

 00 - Alpha

 01 - Red

 02 - Green

 03 - Blue

OUT_SIGN 19:16 0x0

ROUND_ADJ 20 0x0 POSSIBLE VALUES:

 00 - Normal rounding

 01 - Modified rounding of fixed-point data

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 248

US:US_PIXSIZE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4604

DESCRIPTION: Shader pixel size. This register specifies the size and partitioning of the current pixel stack frame

Field Name Bits Default Description

PIX_SIZE 6:0 0x0 Specifies the total size of the current pixel stack frame

(1:128)

US:US_TEX_ADDR_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x9800-0x9ffc

DESCRIPTION: Texture addresses and swizzles

Field Name Bits Default Description

SRC_ADDR 6:0 0x0 Specifies the location (within the shader pixel stack

frame) of the texture address for this instruction

SRC_ADDR_REL 7 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address

 01 - RELATIVE: Add aL before lookup.

SRC_S_SWIZ 9:8 0x0 Specify which colour channel of src_addr to use for S

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as S coordinate

 01 - Use G channel as S coordinate

 02 - Use B channel as S coordinate

 03 - Use A channel as S coordinate

SRC_T_SWIZ 11:10 0x0 Specify which colour channel of src_addr to use for T

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as T coordinate

 01 - Use G channel as T coordinate

 02 - Use B channel as T coordinate

 03 - Use A channel as T coordinate

SRC_R_SWIZ 13:12 0x0 Specify which colour channel of src_addr to use for R

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as R coordinate

 01 - Use G channel as R coordinate

 02 - Use B channel as R coordinate

 03 - Use A channel as R coordinate

SRC_Q_SWIZ 15:14 0x0 Specify which colour channel of src_addr to use for Q

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as Q coordinate

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 249

 01 - Use G channel as Q coordinate

 02 - Use B channel as Q coordinate

 03 - Use A channel as Q coordinate

DST_ADDR 22:16 0x0 Specifies the location (within the shader pixel stack

frame) of the returned texture data for this instruction

DST_ADDR_REL 23 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify destination address

 01 - RELATIVE: Add aL before lookup.

DST_R_SWIZ 25:24 0x0 Specify which colour channel of the returned texture data

to write to the red channel of dst_addr

 POSSIBLE VALUES:

 00 - Write R channel to R channel

 01 - Write G channel to R channel

 02 - Write B channel to R channel

 03 - Write A channel to R channel

DST_G_SWIZ 27:26 0x0 Specify which colour channel of the returned texture data

to write to the green channel of dst_addr

 POSSIBLE VALUES:

 00 - Write R channel to G channel

 01 - Write G channel to G channel

 02 - Write B channel to G channel

 03 - Write A channel to G channel

DST_B_SWIZ 29:28 0x0 Specify which colour channel of the returned texture data

to write to the blue channel of dst_addr

 POSSIBLE VALUES:

 00 - Write R channel to B channel

 01 - Write G channel to B channel

 02 - Write B channel to B channel

 03 - Write A channel to B channel

DST_A_SWIZ 31:30 0x0 Specify which colour channel of the returned texture data

to write to the alpha channel of dst_addr

 POSSIBLE VALUES:

 00 - Write R channel to A channel

 01 - Write G channel to A channel

 02 - Write B channel to A channel

 03 - Write A channel to A channel

US:US_TEX_ADDR_DXDY_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0xa000-0xa7fc

DESCRIPTION: Additional texture addresses and swizzles for DX/DY inputs

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 250

DX_ADDR 6:0 0x0 Specifies the location (within the shader pixel stack

frame) of the DX value for this instruction

DX_ADDR_REL 7 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address

 01 - RELATIVE: Add aL before lookup.

DX_S_SWIZ 9:8 0x0 Specify which colour channel of dx_addr to use for S

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as S coordinate

 01 - Use G channel as S coordinate

 02 - Use B channel as S coordinate

 03 - Use A channel as S coordinate

DX_T_SWIZ 11:10 0x0 Specify which colour channel of dx_addr to use for T

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as T coordinate

 01 - Use G channel as T coordinate

 02 - Use B channel as T coordinate

 03 - Use A channel as T coordinate

DX_R_SWIZ 13:12 0x0 Specify which colour channel of dx_addr to use for R

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as R coordinate

 01 - Use G channel as R coordinate

 02 - Use B channel as R coordinate

 03 - Use A channel as R coordinate

DX_Q_SWIZ 15:14 0x0 Specify which colour channel of dx_addr to use for Q

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as Q coordinate

 01 - Use G channel as Q coordinate

 02 - Use B channel as Q coordinate

 03 - Use A channel as Q coordinate

DY_ADDR 22:16 0x0 Specifies the location (within the shader pixel stack

frame) of the DY value for this instruction

DY_ADDR_REL 23 0x0 Specifies whether the loop register is added to the value

of the associated address before it is used. This

implements relative addressing.

 POSSIBLE VALUES:

 00 - NONE: Do not modify source address

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 251

 01 - RELATIVE: Add aL before lookup.

DY_S_SWIZ 25:24 0x0 Specify which colour channel of dy_addr to use for S

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as S coordinate

 01 - Use G channel as S coordinate

 02 - Use B channel as S coordinate

 03 - Use A channel as S coordinate

DY_T_SWIZ 27:26 0x0 Specify which colour channel of dy_addr to use for T

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as T coordinate

 01 - Use G channel as T coordinate

 02 - Use B channel as T coordinate

 03 - Use A channel as T coordinate

DY_R_SWIZ 29:28 0x0 Specify which colour channel of dy_addr to use for R

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as R coordinate

 01 - Use G channel as R coordinate

 02 - Use B channel as R coordinate

 03 - Use A channel as R coordinate

DY_Q_SWIZ 31:30 0x0 Specify which colour channel of dy_addr to use for Q

coordinate

 POSSIBLE VALUES:

 00 - Use R channel as Q coordinate

 01 - Use G channel as Q coordinate

 02 - Use B channel as Q coordinate

 03 - Use A channel as Q coordinate

US:US_TEX_INST_[0-511] · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x9000-0x97fc

DESCRIPTION: Texture Instruction

Field Name Bits Default Description

TEX_ID 19:16 0x0 Specifies the id of the texture map used for this

instruction

INST 24:22 0x0 Specifies the operation taking place for this instruction

 POSSIBLE VALUES:

 00 - NOP: Do nothing

 01 - LD: Do Texture Lookup (S,T,R)

 02 - TEXKILL: Kill pixel if any component is < 0

 03 - PROJ: Do projected texture lookup

(S/Q,T/Q,R/Q)

 04 - LODBIAS: Do texture lookup with lod bias

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 252

 05 - LOD: Do texture lookup with explicit lod

 06 - DXDY: Do texture lookup with lod calculated

from DX and DY

TEX_SEM_ACQUIRE 25 0x0 Whether to hold the texture semaphore until the data is

written to the temporary register.

 POSSIBLE VALUES:

 00 - Don`t hold the texture semaphore

 01 - Hold the texture semaphore until the data is

written to the temporary register.

IGNORE_UNCOVERED 26 0x0 If set, US will not request data for pixels which are

uncovered. Clear this bit for indirect texture lookups.

 POSSIBLE VALUES:

 00 - Fetch texels for uncovered pixels

 01 - Don`t fetch texels for uncovered pixels

UNSCALED 27 0x0 Whether to scale texture coordinates when sending them

to the texture unit.

 POSSIBLE VALUES:

 00 - Scale the S, T, R texture coordinates from

[0.0,1.0] to the dimensions of the target texture

 01 - Use the unscaled S, T, R texture coordates.

US:US_W_FMT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x46b4

DESCRIPTION: Specifies the source and format for the Depth (W) value output by the shader

Field Name Bits Default Description

W_FMT 1:0 0x0 Format for W

 POSSIBLE VALUES:

 00 - W0 - W is always zero

 01 - W24 - 24-bit fixed point

 02 - W24_FP - 24-bit floating point. The floating

point values are a special format that preserve sorting

order when values are compared as integers, allowing

higher precision in W without additional logic in other

blocks.

 03 - Reserved

W_SRC 2 0x0 Source for W

 POSSIBLE VALUES:

 00 - WSRC_US - W comes from shader instruction

 01 - WSRC_RAS - W comes from rasterizer

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 253

11.11 Vertex Registers

VAP:VAP_ALT_NUM_VERTICES · [R/W] · 32 bits · Access: 32 · MMReg:0x2088

DESCRIPTION: Alternate Number of Vertices to allow > 16-bits of Vertex count

Field Name Bits Default Description

NUM_VERTICES 23:0 0x0 24-bit vertex count for command packet. Used instead of

bits 31:16 of VAP_VF_CNTL if

VAP_VF_CNTL.USE_ALT_NUM_VERTS is set.

VAP:VAP_CLIP_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x221c

DESCRIPTION: Control Bits for User Clip Planes and Clipping

Field Name Bits Default Description

UCP_ENA_0 0 0x0 Enable User Clip Plane 0

UCP_ENA_1 1 0x0 Enable User Clip Plane 1

UCP_ENA_2 2 0x0 Enable User Clip Plane 2

UCP_ENA_3 3 0x0 Enable User Clip Plane 3

UCP_ENA_4 4 0x0 Enable User Clip Plane 4

UCP_ENA_5 5 0x0 Enable User Clip Plane 5

PS_UCP_MODE 15:14 0x0 0 = Cull using distance from center of point

1 = Cull using radius-based distance from center of

point

2 = Cull using radius-based distance from center of

point, Expand and Clip on intersection

3 = Always expand and clip as trifan

CLIP_DISABLE 16 0x0 Disables clip code generation and clipping process for

TCL

UCP_CULL_ONLY_ENA 17 0x0 Cull Primitives against UCPS, but don`t clip

BOUNDARY_EDGE_FLAG_ENA 18 0x0 If set, boundary edges are highlighted, else they are not

highlighted

COLOR2_IS_TEXTURE 20 0x0 If set, color2 is used as texture8 by GA (PS3.0

requirement)

COLOR3_IS_TEXTURE 21 0x0 If set, color3 is used as texture9 by GA (PS3.0

requirement)

VAP:VAP_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x2080

DESCRIPTION: Vertex Assembler/Processor Control Register

Field Name Bits Default Description

PVS_NUM_SLOTS 3:0 0x0 Specifies the number of vertex slots to be used in the

VAP PVS process. A slot represents a single vertex

storage location1 across multiple engines (one vertex per

engine). By decreasing the number of slots, there is more

memory for each vertex, but less parallel processing.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 254

Similarly, by increasing the number of slots, there is less

memory per vertex but more vertices being processed in

parallel.

PVS_NUM_CNTLRS 7:4 0x0 Specifies the maximum number of controllers to be

processing in parallel. In general should be set to max

value of TBD. Can be changed for performance analysis.

PVS_NUM_FPUS 11:8 0x0 Specifies the number of Floating Point Units

(Vector/Math Engines) to use when processing vertices.

VAP_NO_RENDER 17 0x0 If set, VAP will not process any draw commands (i.e.

writes to VAP_VF_CNTL, the INDX and DATAPORT

and Immediate mode writes are ignored.

VF_MAX_VTX_NUM 21:18 0x9 This field controls the number of vertices that the vertex

fetcher manages for the TCL and Setup Vertex Storage

memories (and therefore the number of vertices that can

be re-used). This value should be set to 12 for most

operation, This number may be modified for

performance evaluation. The value is the maximum

vertex number used which is one less than the number of

vertices (i.e. a 12 means 13 vertices will be used)

DX_CLIP_SPACE_DEF 22 0x0 Clip space is defined as:

0: -W < X < W, -W < Y < W, -W < Z < W (OpenGL

Definition)

1: -W < X < W, -W < Y < W, 0 < Z < W (DirectX

Definition)

TCL_STATE_OPTIMIZATION 23 0x0 If set, enables the TCL state optimization, and the new

state is used only if there is a change in TCL state,

between VF_CNTL (triggers)

VAP:VAP_CNTL_STATUS · [R/W] · 32 bits · Access: 32 · MMReg:0x2140

DESCRIPTION: Vertex Assemblen/Processor Control Status

Field Name Bits Default Description

VC_SWAP 1:0 0x0 Endian-Swap Control.

0 = No swap 1 = 16-bit swap: 0xAABBCCDD becomes

0xBBAADDCC

2 = 32-bit swap: 0xAABBCCDD becomes

0xDDCCBBAA

3 = Half-dword swap: 0xAABBCCDD becomes

0xCCDDAABB

Default = 0

PVS_BYPASS 8 0x0 The TCL engine is logically or physically removed from

the circuit.

PVS_BUSY

(Access: R)

11 0x0 Transform/Clip/Light (TCL) Engine is Busy. Read-only.

MAX_MPS

(Access: R)

19:16 0x0 Maximum number of MPs fused for this chip. Read-

only.

For A11, fusemask is fixed to 1XXX.

For A12,

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 255

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 000

=> max_mps[3:0] = 1XXX => 8 MPs

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 001

=> max_mps[3:0] = 0110 => 6 MPs

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 010

=> max_mps[3:0] = 0101 => 5 MPs

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 011

=> max_mps[3:0] = 0100 => 4 MPs

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 100

=> max_mps[3:0] = 0011 => 3 MPs

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 101

=> max_mps[3:0] = 0010 => 2 MPs

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 110

=> max_mps[3:0] = 0001 => 1 MP

CG.CC_COMBINEDSTRAPS.MAX_MPS[7:5] = 111

=> max_mps[3:0] = 0000 => 0 MP

Note that max_mps[3:0] = 0111 = 7 MPs is not available

VS_BUSY

(Access: R)

24 0x0 Vertex Store is Busy. Read-only.

RCP_BUSY

(Access: R)

25 0x0 Reciprocal Engine is Busy. Read-only.

VTE_BUSY

(Access: R)

26 0x0 ViewPort Transform Engine is Busy. Read-only.

MIU_BUSY

(Access: R)

27 0x0 Memory Interface Unit is Busy. Read-only.

VC_BUSY

(Access: R)

28 0x0 Vertex Cache is Busy. Read-only.

VF_BUSY

(Access: R)

29 0x0 Vertex Fetcher is Busy. Read-only.

REGPIPE_BUSY

(Access: R)

30 0x0 Register Pipeline is Busy. Read-only.

VAP_BUSY

(Access: R)

31 0x0 VAP Engine is Busy. Read-only.

VAP:VAP_GB_HORZ_CLIP_ADJ · [R/W] · 32 bits · Access: 32 · MMReg:0x2228

DESCRIPTION: Horizontal Guard Band Clip Adjust Register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 32-bit floating point value. Should be set to 1.0 for no

guard band.

VAP:VAP_GB_HORZ_DISC_ADJ · [R/W] · 32 bits · Access: 32 · MMReg:0x222c

DESCRIPTION: Horizontal Guard Band Discard Adjust Register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 32-bit floating point value. Should be set to 1.0 for no

guard band.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 256

VAP:VAP_GB_VERT_CLIP_ADJ · [R/W] · 32 bits · Access: 32 · MMReg:0x2220

DESCRIPTION: Vertical Guard Band Clip Adjust Register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 32-bit floating point value. Should be set to 1.0 for no

guard band.

VAP:VAP_GB_VERT_DISC_ADJ · [R/W] · 32 bits · Access: 32 · MMReg:0x2224

DESCRIPTION: Vertical Guard Band Discard Adjust Register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 32-bit floating point value. Should be set to 1.0 for no

guard band.

VAP:VAP_INDEX_OFFSET · [R/W] · 32 bits · Access: 32 · MMReg:0x208c

DESCRIPTION: Offset Value added to index value in both Indexed and Auto-indexed modes. Disabled by setting

to 0

Field Name Bits Default Description

INDEX_OFFSET 24:0 0x0 25-bit signed 2`s comp offset value

VAP:VAP_OUT_VTX_FMT_0 · [R/W] · 32 bits · Access: 32 · MMReg:0x2090

DESCRIPTION: VAP Out/GA Vertex Format Register 0

Field Name Bits Default Description

VTX_POS_PRESENT 0 0x0 Output the Position Vector

VTX_COLOR_0_PRESENT 1 0x0 Output Color 0 Vector

VTX_COLOR_1_PRESENT 2 0x0 Output Color 1 Vector

VTX_COLOR_2_PRESENT 3 0x0 Output Color 2 Vector

VTX_COLOR_3_PRESENT 4 0x0 Output Color 3 Vector

VTX_PT_SIZE_PRESENT 16 0x0 Output Point Size Vector

VAP:VAP_OUT_VTX_FMT_1 · [R/W] · 32 bits · Access: 32 · MMReg:0x2094

DESCRIPTION: VAP Out/GA Vertex Format Register 1

Field Name Bits Default Description

TEX_0_COMP_CNT 2:0 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 257

TEX_1_COMP_CNT 5:3 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

TEX_2_COMP_CNT 8:6 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

TEX_3_COMP_CNT 11:9 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

TEX_4_COMP_CNT 14:12 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

TEX_5_COMP_CNT 17:15 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

TEX_6_COMP_CNT 20:18 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

TEX_7_COMP_CNT 23:21 0x0 Number of words in texture

0 = Not Present

1 = 1 component

2 = 2 components

3 = 3 components

4 = 4 components

VAP:VAP_PORT_DATA[0-15] · [W] · 32 bits · Access: 32 · MMReg:0x2000-0x203c

DESCRIPTION: Setup Engine Data Port 0 through 15.

Field Name Bits Default Description

DATAPORT0

(master with mirrors)

31:0 0x0 1st of 16 consecutive dwords for writing vertex data

information.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 258

Write-only.

VAP:VAP_PORT_DATA_IDX_128 · [W] · 32 bits · Access: 32 · MMReg:0x20b8

DESCRIPTION: 128-bit Data Port for Indexed Primitives.

Field Name Bits Default Description

DATA_IDX_PORT_128 31:0 0x0 128-bit Data Port for Indexed Primitives.

Write-only.

VAP:VAP_PORT_IDX[0-15] · [W] · 32 bits · Access: 32 · MMReg:0x2040-0x207c

DESCRIPTION: Setup Engine Index Port 0 through 15.

Field Name Bits Default Description

IDXPORT0

(master with mirrors)

31:0 0x0 1st of 16 consecutive dwords for writing vertex index

information, in the format of:

15:0 Index 0

31:16 Index 1

Write-only.

VAP:VAP_PROG_STREAM_CNTL_[0-7] · [R/W] · 32 bits · Access: 32 · MMReg:0x2150-0x216c

DESCRIPTION: Programmable Stream Control Word 0

Field Name Bits Default Description

DATA_TYPE_0 3:0 0x0 The data type for element 0

0 = FLOAT_1 (Single IEEE Float)

1 = FLOAT_2 (2 IEEE floats)

2 = FLOAT_3 (3 IEEE Floats)

3 = FLOAT_4 (4 IEEE Floats)

4 = BYTE * (1 DWORD w 4 8-bit fixed point values)

(X = [7:0], Y = [15:8], Z = [23:16], W = [31:24])

5 = D3DCOLOR * (Same as BYTE except has X->Z,Z-

>X swap for D3D color def)

(Z = [7:0], Y = [15:8], X = [23:16], W = [31:24])

6 = SHORT_2 * (1 DWORD with 2 16-bit fixed point

values)

(X = [15:0], Y = [31:16], Z = 0.0, W = 1.0)

7 = SHORT_4 * (2 DWORDS with 4(2 per dword) 16-

bit fixed point values)

(X = DW0 [15:0], Y = DW0 [31:16], Z = DW1 [15:0],

W = DW1 [31:16])

8 = VECTOR_3_TTT * (1 DWORD with 3 10-bit fixed

point values)

(X = [9:0], Y = [19:10], Z = [29:20], W = 1.0)

9 = VECTOR_3_EET * (1 DWORD with 2 11-bit and 1

10-bit fixed point values)

(X = [10:0], Y = [21:11], Z = [31:22], W = 1.0)

10 = FLOAT_8 (8 IEEE Floats)

Sames as 2 FLOAT_4 but must use consecutive

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 259

DST_VEC_LOC. Used to allow > 16 PSC for OGL path.

11 = FLT16_2 (1 DWORD with 2 16-bit floating point

values (SE5M10 exp bias of 15, supports denormalized

numbers))

(X = [15:0], Y = [31:16], Z = 0.0, W = 1.0)

12 = FLT16_4 (2 DWORDS with 4(2 per dword) 16-bit

floating point values (SE5M10 exp bias of 15, supports

denormalized numbers)))

(X = DW0 [15:0], Y = DW0 [31:16], Z = DW1 [15:0],

W = DW1 [31:16])

* These data types use the SIGNED and NORMALIZE

flags described below.

SKIP_DWORDS_0 7:4 0x0 The number of DWORDS to skip (discard) after

processing the current element.

DST_VEC_LOC_0 12:8 0x0 The vector address in the input memory to write this

element

LAST_VEC_0 13 0x0 If set, indicates the last vector of the current vertex

stream

SIGNED_0 14 0x0 Determines whether fixed point data types are unsigned

(0) or 2`s complement signed (1) data types. See

NORMALIZE for complete description of affect

NORMALIZE_0 15 0x0 Determines whether the fixed to floating point

conversion will normalize the value (i.e. fixed point

value is all fractional bits) or not (i.e. fixed point value is

all integer bits).

This table describes the fixed to float conversion results

SIGNED NORMALIZE FLT RANGE

0 0 0.0 - (2^n - 1) (i.e. 8-bit -> 0.0 - 255.0)

0 1 0.0 - 1.0

1 0 -2^(n-1) - (2^(n-1) - 1) (i.e. 8-bit -> -128.0 - 127.0)

1 1 -1.0 - 1.0

where n is the number of bits in the associated fixed

point value

For signed, normalize conversion, since the fixed point

range is not evenly distributed around 0, there are 3

different methods supported by R300. See the

VAP_PSC_SGN_NORM_CNTL description for details.

DATA_TYPE_1 19:16 0x0 Similar to DATA_TYPE_0

SKIP_DWORDS_1 23:20 0x0 See SKIP_DWORDS_0

DST_VEC_LOC_1 28:24 0x0 See DST_VEC_LOC_0

LAST_VEC_1 29 0x0 See LAST_VEC_0

SIGNED_1 30 0x0 See SIGNED_0

NORMALIZE_1 31 0x0 See NORMALIZE_0

VAP:VAP_PROG_STREAM_CNTL_EXT_[0-7] · [R/W] · 32 bits · Access: 32 · MMReg:0x21e0-0x21fc

DESCRIPTION: Programmable Stream Control Extension Word 0

Field Name Bits Default Description

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 260

SWIZZLE_SELECT_X_0 2:0 0x0 X-Component Swizzle Select

0 = SELECT_X

1 = SELECT_Y

2 = SELECT_Z

3 = SELECT_W

4 = SELECT_FP_ZERO (Floating Point 0.0)

5 = SELECT_FP_ONE (Floating Point 1.0)

6,7 RESERVED

SWIZZLE_SELECT_Y_0 5:3 0x0 Y-Component Swizzle Select (See Above)

SWIZZLE_SELECT_Z_0 8:6 0x0 Z-Component Swizzle Select (See Above)

SWIZZLE_SELECT_W_0 11:9 0x0 W-Component Swizzle Select (See Above)

WRITE_ENA_0 15:12 0x0 4-bit write enable.

Bit 0 maps to X

Bit 1 maps to Y

Bit 2 maps to Z

Bit 3 maps to W

SWIZZLE_SELECT_X_1 18:16 0x0 See SWIZZLE_SELECT_X_0

SWIZZLE_SELECT_Y_1 21:19 0x0 See SWIZZLE_SELECT_Y_0

SWIZZLE_SELECT_Z_1 24:22 0x0 See SWIZZLE_SELECT_Z_0

SWIZZLE_SELECT_W_1 27:25 0x0 See SWIZZLE_SELECT_W_0

WRITE_ENA_1 31:28 0x0 See WRITE_ENA_0

VAP:VAP_PSC_SGN_NORM_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x21dc

DESCRIPTION: Programmable Stream Control Signed Normalize Control

Field Name Bits Default Description

SGN_NORM_METHOD_0 1:0 0x0 There are 3 methods of normalizing signed numbers:

0: SGN_NORM_ZERO : value / (2^(n-1)-1), so -

128/127 will be less that -1.0, -127/127 will yeild -1.0,

0/127 will yield 0, and 127/127 will yield 1.0 for 8-bit

numbers.

1: SGN_NORM_ZERO_CLAMP_MINUS_ONE: Same

as SGN_NORM_ZERO except -128/127 will yield -1.0

for 8-bit numbers.

2: SGN_NORM_NO_ZERO: (2 * value + 1)/2^n, so -

128 will yield -255/255 = -1.0, 127 will yield 255/255 =

1.0, but 0 will yield 1/255 != 0.

SGN_NORM_METHOD_1 3:2 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_2 5:4 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_3 7:6 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_4 9:8 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_5 11:10 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_6 13:12 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_7 15:14 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_8 17:16 0x0 See SGN_NORM_METHOD_0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 261

SGN_NORM_METHOD_9 19:18 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_10 21:20 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_11 23:22 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_12 25:24 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_13 27:26 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_14 29:28 0x0 See SGN_NORM_METHOD_0

SGN_NORM_METHOD_15 31:30 0x0 See SGN_NORM_METHOD_0

VAP:VAP_PVS_CODE_CNTL_0 · [R/W] · 32 bits · Access: 32 · MMReg:0x22d0

DESCRIPTION: Programmable Vertex Shader Code Control Register 0

Field Name Bits Default Description

PVS_FIRST_INST 9:0 0x0 First Instruction to Execute in PVS.

PVS_XYZW_VALID_INST 19:10 0x0 The PVS Instruction which updates the clip coordinate

position for the last time. This value is used to lower the

processing priority while trivial clip and back-face

culling decisions are made. This field must be set to valid

instruction.

PVS_LAST_INST 29:20 0x0 Last Instruction (Inclusive) for the PVS to execute.

VAP:VAP_PVS_CODE_CNTL_1 · [R/W] · 32 bits · Access: 32 · MMReg:0x22d8

DESCRIPTION: Programmable Vertex Shader Code Control Register 1

Field Name Bits Default Description

PVS_LAST_VTX_SRC_INST 9:0 0x0 The PVS Instruction which uses the Input Vertex

Memory for the last time. This value is used to free up

the Input Vertex Slots ASAP. This field must be set to a

valid instruction.

VAP:VAP_PVS_CONST_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x22d4

DESCRIPTION: Programmable Vertex Shader Constant Control Register

Field Name Bits Default Description

PVS_CONST_BASE_OFFSET 7:0 0x0 Vector Offset into PVS constant memory to the start of

the constants for the current shader

PVS_MAX_CONST_ADDR 23:16 0x0 The maximum constant address which should be

generated by the shader (Inst Const Addr + Addr

Register). If the address which is generated by the shader

is outside the range of 0 to PVS_MAX_CONST_ADDR,

then (0,0,0,0) is returned as the source operand data.

VAP:VAP_PVS_FLOW_CNTL_ADDRS_[0-15] · [R/W] · 32 bits · Access: 32 · MMReg:0x2230-0x226c

DESCRIPTION: Programmable Vertex Shader Flow Control Addresses Register 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 262

Field Name Bits Default Description

PVS_FC_ACT_ADRS_0 7:0 0x0 This field defines the last PVS instruction to execute

prior to the control flow redirection.

JUMP - The last instruction executed prior to the jump

LOOP - The last instruction executed prior to the loop

(init loop counter/inc)

JSR - The last instruction executed prior to the jump to

the subroutine.

PVS_FC_LOOP_CNT_JMP_INST_0 15:8 0x0 This field has multiple definitions as follows:

JUMP - The instruction address to jump to.

LOOP - The loop count. *Note loop count of 0 must be

replaced by a jump.

JSR - The instruction address to jump to (first inst of

subroutine).

PVS_FC_LAST_INST_0 23:16 0x0 This field has multiple definitions as follows:

JUMP - Not Applicable

LOOP - The last instruction of the loop.

JSR - The last instruction of the subroutine.

PVS_FC_RTN_INST_0 31:24 0x0 This field has multiple definitions as follows:

JUMP - Not Applicable

LOOP - First Instruction of Loop (Typically

ACT_ADRS + 1)

JSR - First Instruction After JSR (Typically

ACT_ADRS + 1)

VAP:VAP_PVS_FLOW_CNTL_ADDRS_LW_[0-15] · [R/W] · 32 bits · Access: 32 · MMReg:0x2500-

0x2578

DESCRIPTION: For VS3.0 - To support more PVS instructions, increase the address range - Programmable

Vertex Shader Flow Control Lower Word Addresses Register 0

Field Name Bits Default Description

PVS_FC_ACT_ADRS_0 15:0 0x0 This field defines the last PVS instruction to execute

prior to the control flow redirection.

JUMP - The last instruction executed prior to the jump

LOOP - The last instruction executed prior to the loop

(init loop counter/inc)

JSR - The last instruction executed prior to the jump to

the subroutine.

(Addrss_Range:1K=[9:0];512=[8:0];256=[7:0])

PVS_FC_LOOP_CNT_JMP_INST_0 31:16 0x0 This field has multiple definitions as follows:

JUMP - The instruction address to jump to.

LOOP - The loop count. *Note loop count of 0 must be

replaced by a jump.

JSR - The instruction address to jump to (first inst of

subroutine).

(Addrss_Range:1K=[24:15];512=[23:15];256=[22:15])

VAP:VAP_PVS_FLOW_CNTL_ADDRS_UW_[0-15] · [R/W] · 32 bits · Access: 32 · MMReg:0x2504-

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 263

0x257c

DESCRIPTION: For VS3.0 - To support more PVS instructions, increase the address range - Programmable

Vertex Shader Flow Control Upper Word Addresses Register 0

Field Name Bits Default Description

PVS_FC_LAST_INST_0 15:0 0x0 This field has multiple definitions as follows:

JUMP - Not Applicable

LOOP - The last instruction of the loop.

JSR - The last instruction of the subroutine.

(Addrss_Range:1K=[9:0];512=[8:0];256=[7:0])

PVS_FC_RTN_INST_0 31:16 0x0 This field has multiple definitions as follows:

JUMP - Not Applicable

LOOP - First Instruction of Loop (Typically

ACT_ADRS + 1)

JSR - First Instruction After JSR (Typically ACT_ADRS

+ 1).

(Addrss_Range:1K=[24:15];512=[23:15];256=[22:15])

VAP:VAP_PVS_FLOW_CNTL_LOOP_INDEX_[0-15] · [R/W] · 32 bits · Access: 32 · MMReg:0x2290-

0x22cc

DESCRIPTION: Programmable Vertex Shader Flow Control Loop Index Register 0

Field Name Bits Default Description

PVS_FC_LOOP_INIT_VAL_0 7:0 0x0 This field stores the automatic loop index register init

value. This is an 8-bit unsigned value 0-255. This field

is only used if the corresponding control flow

instruction is a loop.

PVS_FC_LOOP_STEP_VAL_0 15:8 0x0 This field stores the automatic loop index register step

value. This is an 8-bit 2`s comp signed value -128-127.

This field is only used if the corresponding control

flow instruction is a loop.

PVS_FC_LOOP_REPEAT_NO_FLI_0 31 0x0 When this field is set, the automatic loop index register

init value is not used at loop activation. The intial loop

index is inherited from outer loop. The loop index

register step value is used at the end of each loop

iteration ; after loop completion, the outer loop index

register is restored

VAP:VAP_PVS_FLOW_CNTL_OPC · [R/W] · 32 bits · Access: 32 · MMReg:0x22dc

DESCRIPTION: Programmable Vertex Shader Flow Control Opcode Register

Field Name Bits Default Description

PVS_FC_OPC_0 1:0 0x0 This opcode field determines what type of control flow

instruction to execute.

0 = NO_OP

1 = JUMP

2 = LOOP

3 = JSR (Jump to Subroutine)

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 264

PVS_FC_OPC_1 3:2 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_2 5:4 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_3 7:6 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_4 9:8 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_5 11:10 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_6 13:12 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_7 15:14 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_8 17:16 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_9 19:18 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_10 21:20 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_11 23:22 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_12 25:24 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_13 27:26 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_14 29:28 0x0 See PVS_FC_OPC_0.

PVS_FC_OPC_15 31:30 0x0 See PVS_FC_OPC_0.

VAP:VAP_PVS_STATE_FLUSH_REG · [R/W] · 32 bits · Access: 32 · MMReg:0x2284

Field Name Bits Default Description

DATA_REGISTER

(Access: W)

31:0 0x0 This register is used to force a flush of the PVS block

when single-buffered updates are performed. The multi-

state control of PVS Code and Const memories by the

driver is primarily for more flexible PVS state control

and for performance testing. When this register address

is written, the State Block will force a flush of PVS

processing so that both versions of PVS state are

available before updates are processed. This register is

write only, and the data that is written is unused.

VAP:VAP_PVS_VECTOR_DATA_REG · [R/W] · 32 bits · Access: 32 · MMReg:0x2204

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 32-bit data to write to Vector Memory. Used for PVS

code and Constant updates.

VAP:VAP_PVS_VECTOR_DATA_REG_128 · [W] · 32 bits · Access: 32 · MMReg:0x2208

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 128-bit data path to write to Vector Memory. Used for

PVS code and Constant updates.

VAP:VAP_PVS_VECTOR_INDX_REG · [R/W] · 32 bits · Access: 32 · MMReg:0x2200

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 265

Field Name Bits Default Description

OCTWORD_OFFSET 10:0 0x0 Octword offset to begin writing.

VAP:VAP_PVS_VTX_TIMEOUT_REG · [R/W] · 32 bits · Access: 32 · MMReg:0x2288

Field Name Bits Default Description

CLK_COUNT 31:0 0xFFFFFFFF This register is used to define the number of core clocks

to wait for a vertex to be received by the VAP input

controller (while the primitive path is backed up) before

forcing any accumulated vertices to be submitted to the

vertex processing path.

VAP:VAP_TEX_TO_COLOR_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x2218

DESCRIPTION: For VS3.0 color2texture - flat shading on textures - limitation: only first 8 vectors can have

clipping with wrap shortest or point sprite generated textures

Field Name Bits Default Description

TEX_RGB_SHADE_FUNC_0 0 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_0 1 0x0

Default = 0

TEX_RGBA_CLAMP_0 2 0x0

Default = 0

TEX_RGB_SHADE_FUNC_1 4 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_1 5 0x0

Default = 0

TEX_RGBA_CLAMP_1 6 0x0

Default = 0

TEX_RGB_SHADE_FUNC_2 8 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_2 9 0x0

Default = 0

TEX_RGBA_CLAMP_2 10 0x0

Default = 0

TEX_RGB_SHADE_FUNC_3 12 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_3 13 0x0

Default = 0

TEX_RGBA_CLAMP_3 14 0x0

Default = 0

TEX_RGB_SHADE_FUNC_4 16 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_4 17 0x0

Default = 0

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 266

TEX_RGBA_CLAMP_4 18 0x0

Default = 0

TEX_RGB_SHADE_FUNC_5 20 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_5 21 0x0

Default = 0

TEX_RGBA_CLAMP_5 22 0x0

Default = 0

TEX_RGB_SHADE_FUNC_6 24 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_6 25 0x0

Default = 0

TEX_RGBA_CLAMP_6 26 0x0

Default = 0

TEX_RGB_SHADE_FUNC_7 28 0x0

Default = 0

TEX_ALPHA_SHADE_FUNC_7 29 0x0

Default = 0

TEX_RGBA_CLAMP_7 30 0x0

Default = 0

VAP:VAP_VF_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x2084

DESCRIPTION: Vertex Fetcher Control

Field Name Bits Default Description

PRIM_TYPE 3:0 0x0 Primitive Type

0 : None (will not trigger Setup Engine to run)

1 : Point List

2 : Line List

3 : Line Strip

4 : Triangle List

5 : Triangle Fan

6 : Triangle Strip

7 : Triangle with wFlags (aka, Rage128 `Type-2`

triangles) *

8-11 : Unused

12 : Line Loop

13 : Quad List

14 : Quad Strip

15 : Polygon

*Encoding 7 indicates whether a 16-bit word of wFlags

is present in the stream of indices arriving when the

VTX_AMODE is programmed as a `0`. The Setup

Engine just steps over the wFlags word; ignoring it.

0 = Stream contains just indices, as:

[Index1, Index0]

[Index3, Index2]

[Index5, Index4]

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 267

etc...

1 = Stream contains indices and wFlags:

[Index1, Index0]

[wFlags,Index 2]

[Index4, Index3]

[wFlags, Index5]

etc...

PRIM_WALK 5:4 0x0 Method of Passing Vertex Data.

0 : State-Based Vertex Data. (Vertex data and tokens

embedded in command stream.)

1 = Indexes (Indices embedded in command stream;

vertex data to be fetched from memory.)

2 = Vertex List (Vertex data to be fetched from

memory.)

3 = Vertex Data (Vertex data embedded in command

stream.)

RSVD_PREV_USED 10:6 0x0 Reserved bits

INDEX_SIZE 11 0x0 When set, vertex indices are 32-bits/indx, otherwise, 16-

bits/indx.

VTX_REUSE_DIS 12 0x0 When set, vertex reuse is disabled. DO NOT SET unless

PRIM_WALK is Indexes.

DUAL_INDEX_MODE 13 0x0 When set, the incoming index is treated as two separate

indices. Bits 23-16 are used as the index for AOS 0

(These are 0 for 16-bit indices) Bits 15-0 are used as the

index for AOS 1-15. This mode was added specifically

for HOS usage

USE_ALT_NUM_VERTS 14 0x0 When set, the number of vertices in the command packet

is taken from VAP_ALT_NUM_VERTICES register

instead of bits 31:16 of VAP_VF_CNTL

NUM_VERTICES 31:16 0x0 Number of vertices in the command packet.

VAP:VAP_VF_MAX_VTX_INDX · [R/W] · 32 bits · Access: 32 · MMReg:0x2134

DESCRIPTION: Maximum Vertex Indx Clamp

Field Name Bits Default Description

MAX_INDX 23:0 0xFFFFFF If index to be fetched is larger than this value, the fetch

indx is set to MAX_INDX

VAP:VAP_VF_MIN_VTX_INDX · [R/W] · 32 bits · Access: 32 · MMReg:0x2138

DESCRIPTION: Minimum Vertex Indx Clamp

Field Name Bits Default Description

MIN_INDX 23:0 0x0 If index to be fetched is smaller than this value, the fetch

indx is set to MIN_INDX

VAP:VAP_VPORT_XOFFSET · [R/W] · 32 bits · Access: 32 · MMReg:0x1d9c, MMReg:0x209c

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 268

DESCRIPTION: Viewport Transform X Offset

Field Name Bits Default Description

VPORT_XOFFSET 31:0 0x0 Viewport Offset for X coordinates. An IEEE float.

VAP:VAP_VPORT_XSCALE · [R/W] · 32 bits · Access: 32 · MMReg:0x1d98, MMReg:0x2098

DESCRIPTION: Viewport Transform X Scale Factor

Field Name Bits Default Description

VPORT_XSCALE 31:0 0x0 Viewport Scale Factor for X coordinates. An IEEE float.

VAP:VAP_VPORT_YOFFSET · [R/W] · 32 bits · Access: 32 · MMReg:0x1da4, MMReg:0x20a4

DESCRIPTION: Viewport Transform Y Offset

Field Name Bits Default Description

VPORT_YOFFSET 31:0 0x0 Viewport Offset for Y coordinates. An IEEE float.

VAP:VAP_VPORT_YSCALE · [R/W] · 32 bits · Access: 32 · MMReg:0x1da0, MMReg:0x20a0

DESCRIPTION: Viewport Transform Y Scale Factor

Field Name Bits Default Description

VPORT_YSCALE 31:0 0x0 Viewport Scale Factor for Y coordinates. An IEEE float.

VAP:VAP_VPORT_ZOFFSET · [R/W] · 32 bits · Access: 32 · MMReg:0x1dac, MMReg:0x20ac

DESCRIPTION: Viewport Transform Z Offset

Field Name Bits Default Description

VPORT_ZOFFSET 31:0 0x0 Viewport Offset for Z coordinates. An IEEE float.

VAP:VAP_VPORT_ZSCALE · [R/W] · 32 bits · Access: 32 · MMReg:0x1da8, MMReg:0x20a8

DESCRIPTION: Viewport Transform Z Scale Factor

Field Name Bits Default Description

VPORT_ZSCALE 31:0 0x0 Viewport Scale Factor for Z coordinates. An IEEE float.

VAP:VAP_VTE_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x20b0

DESCRIPTION: Viewport Transform Engine Control

Field Name Bits Default Description

VPORT_X_SCALE_ENA 0 0x0 Viewport Transform Scale Enable for X component

VPORT_X_OFFSET_ENA 1 0x0 Viewport Transform Offset Enable for X component

VPORT_Y_SCALE_ENA 2 0x0 Viewport Transform Scale Enable for Y component

VPORT_Y_OFFSET_ENA 3 0x0 Viewport Transform Offset Enable for Y component

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 269

VPORT_Z_SCALE_ENA 4 0x0 Viewport Transform Scale Enable for Z component

VPORT_Z_OFFSET_ENA 5 0x0 Viewport Transform Offset Enable for Z component

VTX_XY_FMT 8 0x0 Indicates that the incoming X, Y have already been

multiplied by 1/W0.

If OFF, the Setup Engine will bultiply the X, Y

coordinates by 1/W0.,

VTX_Z_FMT 9 0x0 Indicates that the incoming Z has already been multiplied

by 1/W0.

If OFF, the Setup Engine will multiply the Z coordinate

by 1/W0.

VTX_W0_FMT 10 0x0 Indicates that the incoming W0 is not 1/W0.

If ON, the Setup Engine will perform the reciprocal to

get 1/W0.

SERIAL_PROC_ENA 11 0x0 If set, x,y,z viewport transform are performed serially

through a single pipeline instead of in parallel. Used to

mimic RL300 design.

VAP:VAP_VTX_AOS_ADDR[0-15] · [R/W] · 32 bits · Access: 32 · MMReg:0x20c8-0x2120

DESCRIPTION: Array-of-Structures Address 0

Field Name Bits Default Description

VTX_AOS_ADDR0 31:2 0x0 Base Address of the Array of Structures.

VAP:VAP_VTX_AOS_ATTR[01-1415] · [R/W] · 32 bits · Access: 32 · MMReg:0x20c4-0x2118

DESCRIPTION: Array-of-Structures Attributes 0 & 1

Field Name Bits Default Description

VTX_AOS_COUNT0 6:0 0x0 Number of dwords in this structure.

VTX_AOS_STRIDE0 14:8 0x0 Number of dwords from one array element to the next.

VTX_AOS_COUNT1 22:16 0x0 Number of dwords in this structure.

VTX_AOS_STRIDE1 30:24 0x0 Number of dwords from one array element to the next.

VAP:VAP_VTX_NUM_ARRAYS · [R/W] · 32 bits · Access: 32 · MMReg:0x20c0

DESCRIPTION: Vertex Array of Structures Control

Field Name Bits Default Description

VTX_NUM_ARRAYS 4:0 0x0 The number of arrays required to represent the current

vertex type.

Each Array is described by the following three fields:

VTX_AOS_ADDR, VTX_AOS_COUNT,

VTX_AOS_STRIDE.

VC_FORCE_PREFETCH 5 0x0 Force Vertex Data Pre-fetching. If this bit is set, then a

256-bit word will always be fetched, regardless of which

dwords are needed. Typically useful when

VAP_VF_CNTL.PRIM_WALK is set to Vertex List

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 270

(Auto-incremented indices).

VC_DIS_CACHE_INVLD

(Access: R)

6 0x0 If set, the vertex cache is not invalidated between draw

packets. This allows vertex cache hits to occur from

packet to packet. This must be set with caution with

respect to multiple contexts in the driver.

AOS_0_FETCH_SIZE 16 0x0 Granule Size to Fetch for AOS 0.

0 = 128-bit granule size

1 = 256-bit granule size

This allows the driver to program the fetch size based on

DWORDS/VTX/AOS combined with AGP vs. LOC

Memory. The general belief is that the granule size

should always be 256-bits for LOC memory and AGP8X

data, but should be 128-bit for AGP2X/4X data if the

DWORDS/VTX/AOS is less than TBD (128?) bits.

AOS_1_FETCH_SIZE 17 0x0 See AOS_0_FETCH_SIZE

AOS_2_FETCH_SIZE 18 0x0 See AOS_0_FETCH_SIZE

AOS_3_FETCH_SIZE 19 0x0 See AOS_0_FETCH_SIZE

AOS_4_FETCH_SIZE 20 0x0 See AOS_0_FETCH_SIZE

AOS_5_FETCH_SIZE 21 0x0 See AOS_0_FETCH_SIZE

AOS_6_FETCH_SIZE 22 0x0 See AOS_0_FETCH_SIZE

AOS_7_FETCH_SIZE 23 0x0 See AOS_0_FETCH_SIZE

AOS_8_FETCH_SIZE 24 0x0 See AOS_0_FETCH_SIZE

AOS_9_FETCH_SIZE 25 0x0 See AOS_0_FETCH_SIZE

AOS_10_FETCH_SIZE 26 0x0 See AOS_0_FETCH_SIZE

AOS_11_FETCH_SIZE 27 0x0 See AOS_0_FETCH_SIZE

AOS_12_FETCH_SIZE 28 0x0 See AOS_0_FETCH_SIZE

AOS_13_FETCH_SIZE 29 0x0 See AOS_0_FETCH_SIZE

AOS_14_FETCH_SIZE 30 0x0 See AOS_0_FETCH_SIZE

AOS_15_FETCH_SIZE 31 0x0 See AOS_0_FETCH_SIZE

VAP:VAP_VTX_SIZE · [R/W] · 32 bits · Access: 32 · MMReg:0x20b4

DESCRIPTION: Vertex Size Specification Register

Field Name Bits Default Description

DWORDS_PER_VTX 6:0 0x0 This field specifies the number of DWORDS per vertex

to expect when VAP_VF_CNTL.PRIM_WALK is set to

Vertex Data (vertex data embedded in command stream).

This field is not used for any other PRIM_WALK

settings. This field replaces the usage of the

VAP_VTX_FMT_0/1 for this purpose in prior

implementations.

VAP:VAP_VTX_STATE_CNTL · [R/W] · 32 bits · Access: 32 · MMReg:0x2180

DESCRIPTION: VAP Vertex State Control Register

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 271

Field Name Bits Default Description

COLOR_0_ASSEMBLY_CNTL 1:0 0x0 0 : Select Color 0

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_1_ASSEMBLY_CNTL 3:2 0x0 0 : Select Color 1

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_2_ASSEMBLY_CNTL 5:4 0x0 0 : Select Color 2

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_3_ASSEMBLY_CNTL 7:6 0x0 0 : Select Color 3

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_4_ASSEMBLY_CNTL 9:8 0x0 0 : Select Color 4

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_5_ASSEMBLY_CNTL 11:10 0x0 0 : Select Color 5

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_6_ASSEMBLY_CNTL 13:12 0x0 0 : Select Color 6

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

COLOR_7_ASSEMBLY_CNTL 15:14 0x0 0 : Select Color 7

1 : Select User Color 0

2 : Select User Color 1

3 : Reserved

UPDATE_USER_COLOR_0_ENA 16 0x0 0 : User Color 0 State is NOT updated when User Color

0 is written.

1 : User Color 1 State IS updated when User Color 0 is

written.

Reserved 18 0x0 Set to 0

VAP:VAP_VTX_ST_BLND_WT_[0-3] · [R/W] · 32 bits · Access: 32 · MMReg:0x2430-0x243c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 BLND_WT_0

VAP:VAP_VTX_ST_CLR_[0-7]_A · [R/W] · 32 bits · Access: 32 · MMReg:0x232c-0x239c

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 272

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 CLR_0_A

VAP:VAP_VTX_ST_CLR_[0-7]_B · [R/W] · 32 bits · Access: 32 · MMReg:0x2328-0x2398

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 CLR_0_B

VAP:VAP_VTX_ST_CLR_[0-7]_G · [R/W] · 32 bits · Access: 32 · MMReg:0x2324-0x2394

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 CLR_0_G

VAP:VAP_VTX_ST_CLR_[0-7]_PKD · [W] · 32 bits · Access: 32 · MMReg:0x2470-0x248c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 CLR_0_PKD

VAP:VAP_VTX_ST_CLR_[0-7]_R · [R/W] · 32 bits · Access: 32 · MMReg:0x2320-0x2390

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 CLR_0_R

VAP:VAP_VTX_ST_DISC_FOG · [R/W] · 32 bits · Access: 32 · MMReg:0x2424

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 DISC_FOG

VAP:VAP_VTX_ST_EDGE_FLAGS · [R/W] · 32 bits · Access: 32 · MMReg:0x245c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 0 0x0 EDGE_FLAGS

VAP:VAP_VTX_ST_END_OF_PKT · [W] · 32 bits · Access: 32 · MMReg:0x24ac

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 273

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 END_OF_PKT

VAP:VAP_VTX_ST_NORM_0_PKD · [W] · 32 bits · Access: 32 · MMReg:0x2498

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_0_PKD

VAP:VAP_VTX_ST_NORM_0_X · [R/W] · 32 bits · Access: 32 · MMReg:0x2310

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_0_X

VAP:VAP_VTX_ST_NORM_0_Y · [R/W] · 32 bits · Access: 32 · MMReg:0x2314

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_0_Y

VAP:VAP_VTX_ST_NORM_0_Z · [R/W] · 32 bits · Access: 32 · MMReg:0x2318

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_0_Z

VAP:VAP_VTX_ST_NORM_1_X · [R/W] · 32 bits · Access: 32 · MMReg:0x2450

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_1_X

VAP:VAP_VTX_ST_NORM_1_Y · [R/W] · 32 bits · Access: 32 · MMReg:0x2454

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_1_Y

VAP:VAP_VTX_ST_NORM_1_Z · [R/W] · 32 bits · Access: 32 · MMReg:0x2458

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 274

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 NORM_1_Z

VAP:VAP_VTX_ST_PNT_SPRT_SZ · [R/W] · 32 bits · Access: 32 · MMReg:0x2420

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 PNT_SPRT_SZ

VAP:VAP_VTX_ST_POS_0_W_4 · [R/W] · 32 bits · Access: 32 · MMReg:0x230c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_W

VAP:VAP_VTX_ST_POS_0_X_2 · [W] · 32 bits · Access: 32 · MMReg:0x2490

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_X_2

VAP:VAP_VTX_ST_POS_0_X_3 · [W] · 32 bits · Access: 32 · MMReg:0x24a0

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_X_3

VAP:VAP_VTX_ST_POS_0_X_4 · [R/W] · 32 bits · Access: 32 · MMReg:0x2300

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_X

VAP:VAP_VTX_ST_POS_0_Y_2 · [W] · 32 bits · Access: 32 · MMReg:0x2494

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_Y_2

VAP:VAP_VTX_ST_POS_0_Y_3 · [W] · 32 bits · Access: 32 · MMReg:0x24a4

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 275

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_Y_3

VAP:VAP_VTX_ST_POS_0_Y_4 · [R/W] · 32 bits · Access: 32 · MMReg:0x2304

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_Y

VAP:VAP_VTX_ST_POS_0_Z_3 · [W] · 32 bits · Access: 32 · MMReg:0x24a8

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_Z_3

VAP:VAP_VTX_ST_POS_0_Z_4 · [R/W] · 32 bits · Access: 32 · MMReg:0x2308

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_0_Z

VAP:VAP_VTX_ST_POS_1_W · [R/W] · 32 bits · Access: 32 · MMReg:0x244c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_1_W

VAP:VAP_VTX_ST_POS_1_X · [R/W] · 32 bits · Access: 32 · MMReg:0x2440

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_1_X

VAP:VAP_VTX_ST_POS_1_Y · [R/W] · 32 bits · Access: 32 · MMReg:0x2444

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_1_Y

VAP:VAP_VTX_ST_POS_1_Z · [R/W] · 32 bits · Access: 32 · MMReg:0x2448

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 276

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 POS_1_Z

VAP:VAP_VTX_ST_PVMS · [R/W] · 32 bits · Access: 32 · MMReg:0x231c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 PVMS

VAP:VAP_VTX_ST_SHININESS_0 · [R/W] · 32 bits · Access: 32 · MMReg:0x2428

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 SHININESS_0

VAP:VAP_VTX_ST_SHININESS_1 · [R/W] · 32 bits · Access: 32 · MMReg:0x242c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 SHININESS_1

VAP:VAP_VTX_ST_TEX_[0-7]_Q · [R/W] · 32 bits · Access: 32 · MMReg:0x23ac-0x241c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 TEX_0_Q

VAP:VAP_VTX_ST_TEX_[0-7]_R · [R/W] · 32 bits · Access: 32 · MMReg:0x23a8-0x2418

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 TEX_0_R

VAP:VAP_VTX_ST_TEX_[0-7]_S · [R/W] · 32 bits · Access: 32 · MMReg:0x23a0-0x2410

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 TEX_0_S

VAP:VAP_VTX_ST_TEX_[0-7]_T · [R/W] · 32 bits · Access: 32 · MMReg:0x23a4-0x2414

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 277

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 TEX_0_T

VAP:VAP_VTX_ST_USR_CLR_A · [R/W] · 32 bits · Access: 32 · MMReg:0x246c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 USR_CLR_A

VAP:VAP_VTX_ST_USR_CLR_B · [R/W] · 32 bits · Access: 32 · MMReg:0x2468

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 USR_CLR_B

VAP:VAP_VTX_ST_USR_CLR_G · [R/W] · 32 bits · Access: 32 · MMReg:0x2464

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 USR_CLR_G

VAP:VAP_VTX_ST_USR_CLR_PKD · [W] · 32 bits · Access: 32 · MMReg:0x249c

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 USR_CLR_PKD

VAP:VAP_VTX_ST_USR_CLR_R · [R/W] · 32 bits · Access: 32 · MMReg:0x2460

DESCRIPTION: Data register

Field Name Bits Default Description

DATA_REGISTER 31:0 0x0 USR_CLR_R

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 278

11.12 Z Buffer Registers

ZB:ZB_BW_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f1c

DESCRIPTION: Z Buffer Band-Width Control

Field Name Bits
Defa

ult
Description

HIZ_ENABLE 0 0x0 Enables hierarchical Z.

 POSSIBLE VALUES:

 00 - Hierarchical Z Disabled

 01 - Hierarchical Z Enabled

HIZ_MIN 1 0x0 POSSIBLE VALUES:

 00 - Update Hierarchical Z with Max value

 01 - Update Hierarchical Z with Min value

FAST_FILL 2 0x0 POSSIBLE VALUES:

 00 - Fast Fill Disabled

 01 - Fast Fill Enabled (ZB_DEPTHCLEARVALUE)

RD_COMP_ENABLE 3 0x0 Enables reading of compressed Z data from memory to the

cache.

 POSSIBLE VALUES:

 00 - Z Read Compression Disabled

 01 - Z Read Compression Enabled

WR_COMP_ENABLE 4 0x0 Enables writing of compressed Z data from cache to memory,

 POSSIBLE VALUES:

 00 - Z Write Compression Disabled

 01 - Z Write Compression Enabled

ZB_CB_CLEAR 5 0x0 This bit is set when the Z buffer is used to help the CB in

clearing a region. Part of the region is cleared by the color

buffer and part will be cleared by the Z buffer. Since the Z

buffer does not have any write masks in the cache, full micro-

tiles need to be written. If a partial micro-tile is touched, then

the un-touched part will be unknowns. The cache will operate

in write-allocate mode and quads will be accumulated in the

cache and then evicted to main memory. The color value is

supplied through the ZB_DEPTHCLEARVALUE register.

 POSSIBLE VALUES:

 00 - Z unit cache controller does RMW

 01 - Z unit cache controller does cache-line granular Write

only

FORCE_COMPRESSED_STENCIL_V

ALUE

6 0x0 Enabling this bit will force all the compressed stencil values

to be equal to

old_stencil_value&~ZB_STENCILREFMASK.stencilwritem

ask |

ZB_STENCILREFMASK.stencilref&ZB_STENCILREFMA

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 279

SK.stencilwritemask. This should be enabled during stencil

clears to avoid needless decompression.

 POSSIBLE VALUES:

 00 - Do not force the compressed stencil value.

 01 - Force the compressed stencil value.

ZEQUAL_OPTIMIZE_DISABLE 7 0x0 By default this is 0 (enabled). When NEWZ=OLDZ, then

writes do not occur to save BW.

 POSSIBLE VALUES:

 00 - Enable not updating the Z buffer if NewZ=OldZ

 01 - Disable above feature (in case there is a bug)

SEQUAL_OPTIMIZE_DISABLE 8 0x0 By default this is 0 (enabled). When

NEW_STENCIL=OLD_STENCIL, then writes do not occur

to save BW.

 POSSIBLE VALUES:

 00 - Enable not updating the Stencil buffer if NewS=OldS

 01 - Disable above feature (in case there is a bug)

BMASK_DISABLE 10 0x0 Controls whether bytemasking is used or not.

 POSSIBLE VALUES:

 00 - Enable bytemasking

 01 - Disable bytemasking

HIZ_EQUAL_REJECT_ENABLE 11 0x0 Enables hiz rejects when the z function is equals.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

HIZ_FP_EXP_BITS 14:

12

0x0 Number of exponent bits to use for the hiz floating point

format. Values 0 to 5 are legal. 0 will disable the floating

point hiz encoding.

HIZ_FP_INVERT 15 0x0 Determines whether leading zeros or ones are eliminated.

 POSSIBLE VALUES:

 00 - Count leading 1s

 01 - Count leading 0s

TILE_OVERWRITE_RECOMPRESSI

ON_DISABLE

16 0x0 The zb tries to detect single plane equations that completely

overwrite a compressed tile. This allows the tile to jump from

the decompressed state to the fully compressed state.

 POSSIBLE VALUES:

 00 - Enable tile overwrite recompression

 01 - Disable tile overwrite recompression

CONTIGUOUS_6XAA_SAMPLES_DI

SABLE

17 0x0 This disables storing samples contiguously in 6xaa.

 POSSIBLE VALUES:

 00 - Enable contiguous samples

 01 - Disable contiguous samples

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 280

PEQ_PACKING_ENABLE 18 0x0 Enables packing of the plane equations to eliminate wasted

peq slots.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

COVERED_PTR_MASKING_ENABL

E

19 0x0 Enables discarding of pointers from pixels that are going to be

covered. This reduces the apparent number of plane equations

in use.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

ZB:ZB_CNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f00

DESCRIPTION: Z Buffer Control

Field Name Bits Default Description

STENCIL_ENABLE 0 0x0 Enables stenciling.

 POSSIBLE VALUES:

 00 - Disabled

 01 - Enabled

Z_ENABLE 1 0x0 Enables Z functions.

 POSSIBLE VALUES:

 00 - Disabled

 01 - Enabled

ZWRITEENABLE 2 0x0 Enables writing of the Z buffer.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

ZSIGNED_COMPARE 3 0x0 Enable signed Z buffer comparison , for W-buffering.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

STENCIL_FRONT_BACK 4 0x0 When STENCIL_ENABLE is set, setting

STENCIL_FRONT_BACK bit to one specifies that

stencilfunc/stencilfail/stencilzpass/stencilzfail registers are

used if the quad is generated from front faced primitive

and

stencilfunc_bf/stencilfail_bf/stencilzpass_bf/stencilzfail_bf

are used if the quad is generated from a back faced

primitive. If the STENCIL_FRONT_BACK is not set,

then stencilfunc/stencilfail/stencilzpass/stencilzfail

registers determine the operation independent of the

front/back face state of the quad.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 281

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

ZSIGNED_MAGNITUDE 5 0x0 Specifies the signed number type to use for the Z buffer

comparison. This only has an effect when

ZSIGNED_COMPARE is enabled.

 POSSIBLE VALUES:

 00 - Twos complement

 01 - Signed magnitude

STENCIL_REFMASK_FRONT_BACK 6 0x0 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

ZB:ZB_DEPTHCLEARVALUE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f28

DESCRIPTION: Z Buffer Clear Value

Field Name Bits Default Description

DEPTHCLEARVALUE 31:0 0x0 When a block has a Z Mask value of 0, all Z values in

that block are cleared to this value. In 24bpp, the stencil

value is also updated regardless of whether it is enabled

or not.

ZB:ZB_DEPTHOFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f20

DESCRIPTION: Z Buffer Address Offset

Field Name Bits Default Description

DEPTHOFFSET 31:5 0x0 2K aligned Z buffer address offset for macro tiles.

ZB:ZB_DEPTHPITCH · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f24

DESCRIPTION: Z Buffer Pitch and Endian Control

Field Name Bits Default Description

DEPTHPITCH 13:2 0x0 Z buffer pitch in multiples of 4 pixels.

DEPTHMACROTILE 16 0x0 Specifies whether Z buffer is macro-tiled. macro-tiles are

2K aligned

 POSSIBLE VALUES:

 00 - macro tiling disabled

 01 - macro tiling enabled

DEPTHMICROTILE 18:17 0x0 Specifies whether Z buffer is micro-tiled. micro-tiles is

32 bytes

 POSSIBLE VALUES:

 00 - 32 byte cache line is linear

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 282

 01 - 32 byte cache line is tiled

 02 - 32 byte cache line is tiled square (only applies to

16-bit pixels)

 03 - Reserved

DEPTHENDIAN 20:19 0x0 Specifies endian control for the Z buffer.

 POSSIBLE VALUES:

 00 - No swap

 01 - Word swap

 02 - Dword swap

 03 - Half Dword swap

ZB:ZB_DEPTHXY_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f60

DESCRIPTION: Depth buffer X and Y coordinate offset

Field Name Bits Default Description

DEPTHX_OFFSET 11:1 0x0 X coordinate offset. multiple of 32 . Bits 4:0 have to be

zero

DEPTHY_OFFSET 27:17 0x0 Y coordinate offset. multiple of 32 . Bits 4:0 have to be

zero

ZB:ZB_FIFO_SIZE · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4fd0

DESCRIPTION: Sets the fifo sizes

Field Name Bits Default Description

OP_FIFO_SIZE 1:0 0x0 Determines the size of the op fifo

 POSSIBLE VALUES:

 00 - Full size

 01 - 1/2 size

 02 - 1/4 size

 03 - 1/8 size

ZB:ZB_FORMAT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f10

DESCRIPTION: Format of the Data in the Z buffer

Field Name Bits Default Description

DEPTHFORMAT 3:0 0x0 Specifies the format of the Z buffer.

 POSSIBLE VALUES:

 00 - 16-bit Integer Z

 01 - 16-bit compressed 13E3

 02 - 24-bit Integer Z, 8 bit Stencil (LSBs)

 03 - RESERVED

 04 - RESERVED

 05 - RESERVED

 06 - RESERVED

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 283

 07 - RESERVED

 08 - RESERVED

 09 - RESERVED

 10 - RESERVED

 11 - RESERVED

 12 - RESERVED

 13 - RESERVED

 14 - RESERVED

 15 - RESERVED

INVERT 4 0x0 POSSIBLE VALUES:

 00 - in 13E3 format , count leading 1`s

 01 - in 13E3 format , count leading 0`s.

PEQ8 5 0x0 This bit is unused

ZB:ZB_HIZ_DWORD · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f4c

DESCRIPTION: Hierarchical Z Data

Field Name Bits Default Description

HIZ_DWORD 31:0 0x0 This DWORD contains 8-bit values for 4 blocks..

Reading this register causes a read from the address

pointed to by RDINDEX. Writing to this register causes

a write to the address pointed to by WRINDEX.

ZB:ZB_HIZ_OFFSET · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f44

DESCRIPTION: Hierarchical Z Memory Offset

Field Name Bits Default Description

HIZ_OFFSET 17:2 0x0 DWORD offset into HiZ RAM.

ZB:ZB_HIZ_PITCH · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f54

DESCRIPTION: Hierarchical Z Pitch

Field Name Bits Default Description

HIZ_PITCH 13:4 0x0 Pitch used in HiZ address computation.

ZB:ZB_HIZ_RDINDEX · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f50

DESCRIPTION: Hierarchical Z Read Index

Field Name Bits Default Description

HIZ_RDINDEX 17:2 0x0 Read index into HiZ RAM.

ZB:ZB_HIZ_WRINDEX · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f48

DESCRIPTION: Hierarchical Z Write Index

Field Name Bits Default Description

http://uhw.atitech.ca/bmg/unix_webserver/chips/fudo/fudo_chip/search/search_engine.cgi?chip_name=fudo®_info_file=registerlist.txt&num_of_reg=9648®_name_query=ZB_&search_mode=OR®_field_query=

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 284

HIZ_WRINDEX 17:2 0x0 Self-incrementing write index into the HiZ RAM.

Starting write index must start on a DWORD boundary.

Each time ZB_HIZ_DWORD is written, this index will

autoincrement. HIZ_OFFSET and HIZ_PITCH are not

used to compute read/write address to HIZ ram, when it

is accessed through WRINDEX and DWORD

ZB:ZB_STENCILREFMASK · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f08

DESCRIPTION: Stencil Reference Value and Mask

Field Name Bits Default Description

STENCILREF 7:0 0x0 Specifies the reference stencil value.

STENCILMASK 15:8 0x0 This value is ANDed with both the reference and the

current stencil value prior to the stencil test.

STENCILWRITEMASK 23:16 0x0 Specifies the write mask for the stencil planes.

ZB:ZB_STENCILREFMASK_BF · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4fd4

DESCRIPTION: Stencil Reference Value and Mask for backfacing quads

Field Name Bits Default Description

STENCILREF 7:0 0x0 Specifies the reference stencil value.

STENCILMASK 15:8 0x0 This value is ANDed with both the reference and the

current stencil value prior to the stencil test.

STENCILWRITEMASK 23:16 0x0 Specifies the write mask for the stencil planes.

ZB:ZB_ZCACHE_CTLSTAT · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f18

DESCRIPTION: Z Buffer Cache Control/Status

Field Name Bits Default Description

ZC_FLUSH 0 0x0 Setting this bit flushes the dirty data from the Z cache.

Unless ZC_FREE bit is also set, the tags in the cache

remain valid. A purge is achieved by setting both

ZC_FLUSH and ZC_FREE. This is a sticky bit and it

clears itself at the end of the operation.

 POSSIBLE VALUES:

 00 - No effect

 01 - Flush and Free Z cache lines

ZC_FREE 1 0x0 Setting this bit invalidates the Z cache tags. Unless

ZC_FLUSH bit is also set, the cachelines are not written

to memory. A purge is achieved by setting both

ZC_FLUSH and ZC_FREE. This is a sticky bit that

clears itself at the end of the operation.

 POSSIBLE VALUES:

 00 - No effect

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 285

 01 - Free Z cache lines (invalidate)

ZC_BUSY 31 0x0 This bit is unused ...

 POSSIBLE VALUES:

 00 - Idle

 01 - Busy

ZB:ZB_ZPASS_ADDR · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f5c

DESCRIPTION: Z Buffer Z Pass Counter Address

Field Name Bits Default Description

ZPASS_ADDR 31:2 0x0 Writing this location with a DWORD address causes the

value in ZB_ZPASS_DATA to be written to main

memory at the location pointed to by this address.

NOTE: R300 has 2 pixel pipes. Broadcasting this address

causes both pipes to write their ZPASS value to the same

address. There is no guarantee which pipe will write last.

So when writing to this register, the GA needs to be

programmed to send the write command to pipe 0. Then

a different address needs to be written to pipe 1. Then

both pipes should be enabled for further register writes.

ZB:ZB_ZPASS_DATA · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f58

DESCRIPTION: Z Buffer Z Pass Counter Data

Field Name Bits Default Description

ZPASS_DATA 31:0 0x0 Contains the number of Z passed pixels since the last

write to this location. Writing this location resets the

count to the value written.

ZB:ZB_ZSTENCILCNTL · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f04

DESCRIPTION: Z and Stencil Function Control

Field Name Bits Default Description

ZFUNC 2:0 0x0 Specifies the Z function.

 POSSIBLE VALUES:

 00 - Never

 01 - Less

 02 - Less or Equal

 03 - Equal

 04 - Greater or Equal

 05 - Greater Than

 06 - Not Equal

 07 - Always

STENCILFUNC 5:3 0x0 Specifies the stencil function.

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 286

 POSSIBLE VALUES:

 00 - Never

 01 - Less

 02 - Less or Equal

 03 - Equal

 04 - Greater or Equal

 05 - Greater

 06 - Not Equal

 07 - Always

STENCILFAIL 8:6 0x0 Specifies the stencil value to be written if the stencil test

fails.

 POSSIBLE VALUES:

 00 - Keep: New value = Old value

 01 - Zero: New value = 0

 02 - Replace: New value = STENCILREF

 03 - Increment: New value++ (clamp)

 04 - Decrement: New value-- (clamp)

 05 - Invert new value: New value = !Old value

 06 - Increment: New value++ (wrap)

 07 - Decrement: New value-- (wrap)

STENCILZPASS 11:9 0x0 Same encoding as STENCILFAIL. Specifies the stencil

value to be written if the stencil test passes and the Z test

passes (or is not enabled).

STENCILZFAIL 14:12 0x0 Same encoding as STENCILFAIL. Specifies the stencil

value to be written if the stencil test passes and the Z test

fails.

STENCILFUNC_BF 17:15 0x0 Same encoding as STENCILFUNC. Specifies the stencil

function for back faced quads , if

STENCIL_FRONT_BACK = 1.

STENCILFAIL_BF 20:18 0x0 Same encoding as STENCILFAIL. Specifies the stencil

value to be written if the stencil test fails for back faced

quads, if STENCIL_FRONT_BACK = 1

STENCILZPASS_BF 23:21 0x0 Same encoding as STENCILFAIL. Specifies the stencil

value to be written if the stencil test passes and the Z test

passes (or is not enabled) for back faced quads, if

STENCIL_FRONT_BACK = 1

STENCILZFAIL_BF 26:24 0x0 Same encoding as STENCILFAIL. Specifies the stencil

value to be written if the stencil test passes and the Z test

fails for back faced quads, if STENCIL_FRONT_BACK

= 1

ZERO_OUTPUT_MASK 27 0x0 Zeroes the zb coverage mask output. This does not affect

the updating of the depth or stencil values.

 POSSIBLE VALUES:

 00 - Disable

 01 - Enable

Revision 1.4 October 13, 2009

© 2008 Advanced Micro Devices, Inc.
Proprietary 287

ZB:ZB_ZTOP · [R/W] · 32 bits · Access: 8/16/32 · MMReg:0x4f14

Field Name Bits Default Description

ZTOP 0 0x0 POSSIBLE VALUES:

 00 - Z is at the bottom of the pipe, after the fog unit.

 01 - Z is at the top of the pipe, after the scan unit.

