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1. Introduction 
The Radeon™ X1900, X1800, X1600 and X1300 represent new additions to the legendary 
Radeon™ family of 3D graphics hardware from ATI Technologies Inc. These new products are 
the third generation of DirectX® 9 hardware, now supporting Shader Model 3.0 and other 
advanced features to cover all user demands. From the ultra-high-end through the mainstream 
and value market segments, this new addition to the Radeon family allows developers to easily 
scale performance without sacrificing any application features. 
The Radeon X1800 and X1900 represents the leadership in performance with their very high-
performance 16 and 48 pixel processors correspondingly. The mainstream Radeon X1600 has 
12 ALU pixel shader engines, 8 Z-pipes and 4 back-end pixel pipes that process colors. The 
value market segment solution, the Radeon X1300, has 4 pixel pipes throughout the pixel 
pipeline. The following table summarizes the new hardware configurations. 
 

Card Market Vertex 
Engines 

Pixel 
Engines 

Texture 
Pipes 

Z Pipes Back-end 
Color Pipes 

X1900 Performance 8 48 16 16 16 

X1800 Performance 8 16 16 16 16 

X1600 Mainstream 5 12 4 8 4 

X1300 Value 2 4 4 4 4 

 
One interesting thing to note about the Radeon X1900 and X1600 is the 3:1 ratio of ALU to 
texture pipes in the pixel shader. This represents a current trend of complex shaders to tip the 
performance balance more towards ALU operations. 
The latest Shader Model 3.0 products from ATI pack a lot of functionality and performance-
enabling features. However, these are quite complex chips, and without a good understanding 
of how they work one can be easily make sub-optimal programming choices and deliver sub-
optimal performance. This guide explains the most important features and nuances of the 
latest ATI architecture and how to make the most out of it. The majority of optimizations and 
recommendations described in this document apply to the complete family of Radeon X1xxx 
products. Cases where performance or functionality differs between chipset revisions are 
explicitly mentioned.  
 

2. Vertex Processing 
The following section of this document outlines several key points with respect to performance-
friendly vertex processing on the Radeon X1x00 family of hardware. 
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2.1. Vertex Caching 
Just like previous ATI graphics chips, the Radeon X1x00 family of chips has pre- and post-
vertex processor caches. The pre-vertex processor cache primarily helps reducing vertex fetch 
bandwidth and hides memory access latency. While memory clocks have been somewhat 
increased, the addition of more vertex processors and a higher core clocks puts more burden 
on the vertex fetcher and the pre-vertex processor cache, potentially making vertex fetching a 
bottleneck. Thus, as never before, it is very important to have cache-friendly meshes to get the 
most of the vertex processors. Whenever it makes sense, try to align your vertex structure 
sizes to a multiple of the 32 bytes and use as few streams as possible. Also, reorganize mesh 
indices to maximize vertex re-use in adjacent triangles and reorder vertices in vertex buffers 
for locality of access. We recommend using the ID3DXMesh::Optimize() API from the 
D3DX library as it will perform both of these tasks based on the cache sizes of the underlying 
3D device. 
 

2.2. Vertex Textures 
The Radeon X1900 and all other Shader Model 3.0 Radeon family members (including future 
ATI DirectX® 9 products) do not support vertex texturing. Vertex texturing is a feature that 
would require substantial architectural changes to be implemented at good performance on 
current graphics hardware. All existing hardware implementations of vertex texturing are 
limited in terms of performance and features, to the point of making this feature hardly usable 
in real-time applications. This is the reason why Radeon X1x00 cards do not support vertex 
texturing. It is important not to assume availability of vertex textures upon detecting VS 3.0. 
Always use the CheckDeviceFormat() DirectX® 9 API method with the 
D3DUSAGE_QUERY_VERTEXTEXTURE usage query flag to determine support of vertex 
texturing for a specific surface format. If none of the surfaces expose this query flag, then the 
hardware does not support vertex texturing. 
 

2.3. Static Flow Control in Vertex Shaders 
The static flow control is a type of flow control that does not depend on any computations 
performed in the shader. Just like in VS 2.0, VS 3.0 provides 16 boolean constants and 16 
integers for implementing static conditionals and loops. Static flow control can sometimes help 
with shader management and reduce the combinatorial explosion of shaders in some 
applications. Keep in mind that flow control, even if it is static (which automatically guarantees 
the coherency of execution paths in the shader), can still be detrimental to shader 
performance. With flow control – and especially short conditional clauses – the compiler does 
not have as much freedom in scheduling instructions in the most efficient way. To improve the 
performance of shaders utilizing static flow control, the driver might attempt to recompile vertex 
shaders without flow control based on the provided constants. The driver would then cache 
these conditionally compiled shaders to avoid redundant shader recompilation. If you are using 
static flow control in a vertex shader you should pre-cache recompiled variations of that shader 
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in the driver to avoid on-the-fly shader optimization during application runtime. You can do this 
on a very first frame by rendering a dummy triangle with the shader and all the combinations of 
boolean constants that will be used throughout the execution of the application. 
 

2.4. Dynamic Flow Control in Vertex Shaders 
Dynamic flow control in vertex shaders is a new feature in VS 3.0, which allows conditional 
branching within a shader depending on previously computed results. There are several ways 
to implement branched calculations in VS 3.0: using predication and actual dynamic flow 
control instructions. Usually, the majority of interesting computations happen at a per-pixel 
level meaning that vertex shaders are usually only responsible for setting up tangent space 
and other ancillary information. In this typical, limited use of vertex shaders, there is very little 
need for dynamic flow control; consequently, not as much emphasis was placed on dynamic 
flow control efficiency in vertex shaders as was in pixel shaders. 
To make the most out of vertex shaders on Radeon X1x00, it is strongly recommended to 
minimize vertex shader flow control and avoid it completely if possible. Using predication or a 
couple of simple conditional statements with fairly small clauses are the best examples of how 
to use dynamic flow control in vertex shaders. Always keep in mind that dynamic flow control in 
pixel shaders on Radeon X1x00s is much more efficient than in vertex shaders. 
 

2.5. Instancing 
The major performance bottleneck in many graphical applications is the number of submitted 
geometry batches. While vertex throughput has substantially increased over the years, the 
number of batches or draw-primitive calls that can be rendered each frame have remained 
roughly the same. The problem is that the number of batches that can be rendered per frame 
is directly tied to CPU performance and any GPU performance improvements have little impact 
on this bottleneck. To help alleviate this problem, the DirectX® 9 API introduced the ability to 
render instanced geometry with a single draw call. Instead of rendering many similar objects 
one at a time, the application can now specify the common instanced object data in one vertex 
stream and per-instance parameters (e.g. position, color, size, etc.) in another vertex stream; 
those streams are then combined in the vertex shader. The hardware will automatically 
replicate the object vertex data for each of the rendered objects while pairing it with per-
instance data. Check the DirectX® 9 SDK documentation for more information about 
instancing. 
Older ATI DirectX® 9 hardware also supports instancing; however, it requires some special 
API-level tweaks to take advantage of. The ATI Radeon SDK contains examples of how to 
enable instancing on older hardware. On Radeon X1x00 family of video cards, geometry 
instancing is a first class citizen since all Shader Model 3.0 hardware natively supports this 
feature by definition. Also, all Radeon X1x00s have small architectural improvements that can 
sometimes improve rendering performance of very low polygon count instances. Please use 
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instancing whenever it makes sense to make your application less CPU dependent while 
increasing the complexity of the rendered scenes. 
 

3. Texturing 
The new generation of Shader Model 3.0 hardware from ATI includes new texturing 
capabilities in addition to a wide range of previously supported formats. This section explains 
the major texture unit changes compared to the previous generation of ATI video cards. 
 

3.1. Large Textures 
The Radeon X1x00 hardware quadruples the previous maximum texture size to 4096x4096. 
While it might be tempting to use these huge textures to increase the detail of graphic scenes, 
one should consider the additional memory footprint and its implication on performance. There 
are more sophisticated texture-LOD solutions that you might consider for adding extra details 
to your scenes. Lastly, always use mip-maps to improve performance with large textures. 
 

3.2. New Texture Formats 
The new additions to the Radeon family have several new texture formats and some 
improvements to existing ones. Please see section 9 (Summary of Texture Formats) for more 
information about supported formats. 
 

3.2.1. ATI1N 
The 3Dc technology and the ATI2N normal map compression format in particular was a very 
important milestone in the development of compressed texture formats. The new generation of 
graphics hardware takes texture compression technology further by providing an additional 
single channel format that can be used for storing luminance values, height maps, and many 
other different types of data. This new format is called ATI1N and there is a new Four-CC code 
for accessing it. 
You can use the Four-CC code to check format availability as well as for texture creation as 
shown in a code snippet below.  
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#define FMT_ATI1N ((D3DFORMAT)MAKEFOURCC('A', 'T', 'I', '1')) 
 
// Check support 
if (SUCCEEDED(pD3D->CheckDeviceFormat( 

D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, D3DFMT_X8R8G8B8, 
0, D3DRTYPE_TEXTURE, FMT_ATI1N)) 

{ 
 bSupportsATI1N = true; 
} 
 

 
The internals of the ATI1N format are actually quite simple. It is effectively the alpha block of 
the DXT5 color compression format, which provides 2:1 compression ratio compared to 
D3DFMT_A8 or D3DFMT_L8 formats. The single available channel in this format is red and the 
pixel shader should use appropriate swizzles to replicate that data to any other channels as 
necessary. It is important to take this into consideration whenever you want to use ATI1N as a 
replacement for D3DFMT_A8 or D3DFMT_L8 formats. 

The ATI1N format is supported for volume textures as well as regular 2D textures, and is a 
perfect option for compressing large luminance volumes and other volumes of monochromatic 
data. Each slice of the volume texture is compressed independently as a normal 2D surface 
and all other processing happens transparently. 
 

3.2.2. Depth Textures 
Recent drivers have added a special depth texture format that allows sampling 16-bit depth 
buffer information as a texture on all ATI DirectX® 9 video cards. This is especially useful for 
implementing shadow maps and other techniques that rely on the scene’s depth information. 
Previously, applications had to rely on depth values output from the pixel shader to a high-
precision render target, sometimes using a separate depth rendering pass. This new format 
allows an application to bind a depth texture surface as a depth buffer and later re-use its 
contents as a texture without extra rendering overhead. 
While 16-bit depth textures are very useful, some algorithm implementations might find the 16-
bit precision insufficient. To solve this problem the Radeon X1900, X1600 and X1300 added a 
new, more precise 24-bit depth texture format. Both 16-bit and 24-bit formats are implemented 
as Four-CC codes and application should query their support before trying to use them. An 
application can create a depth texture with one of the available formats and set it both as a 
depth buffer and a texture. It is prohibited to simultaneously render to the depth texture and 
fetch from it as a texture. Because rendering with depth textures is generally somewhat slower 
than with a normal depth buffer, they should not be used as replacement for the primary depth 
buffer. 
When rendering shadow maps, only the depth information is relevant and scene color 
information can be disregarded. To save fill rate you should disable color output using a color 
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write mask. But even with a color write mask disabling the color output, a color buffer of 
matching multisample type to depth texture (D3DMULTISAMPLE_NONE) should still be created 
and bound to the D3D device. For large shadow maps this color buffer could waste a lot of 
space, so it should be created with the smallest renderable surface format available (such as 
D3DFMT_R5G6B5). 

The following sample code shows how to properly detect and use depth textures on ATI 
hardware for rendering shadow maps. 
 
#define FOURCC_DF16  ((D3DFORMAT) MAKEFOURCC('D','F','1','6')) 
#define FOURCC_DF24  ((D3DFORMAT) MAKEFOURCC('D','F','2','4')) 
 
D3DFORMAT fmtDepthTex = D3DFMT_UNKNOWN; 
 
// Check DF24 and DF16 support 
if (bNeedHighPrecision && SUCCEEDED(pD3D->CheckDeviceFormat( 

D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, D3DFMT_A8B8G8R8, 
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE, FOURCC_DF24)) 

{ 
 fmtDepthTex = FOURCC_DF24; 
} 
else if (SUCCEEDED(pD3D->CheckDeviceFormat( 

D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, D3DFMT_A8B8G8R8, 
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE, FOURCC_DF16)) 

{ 
 fmtDepthTex = FOURCC_DF16; 
} 
 
// Try creating a depth texture 
if (fmtDepthTex != D3DFMT_UNKNOWN) 
{ 

pd3dDevice->CreateTexture(DST_WIDTH, DST_HEIGHT, 1,  
D3DUSAGE_DEPTHSTENCIL, fmtDepthTex, D3DPOOL_DEFAULT, 
&pDepthTex, NULL); 

 
 // Get depth texture surface 
 pDepthTex->GetSurfaceLevel(0, &pDepthSurf); 
} 
 
// Create dummy color buffer 
pd3dDevice->CreateRenderTarget(DST_WIDTH, DST_HEIGHT, D3DFMT_R5G6B5,  

D3DMULTISAMPLE_NONE, 0, FALSE, &pColorBuffer, NULL); 
 
// Set dummy color buffer and disable color writes 
pd3dDevice->SetRenderTarget(0, pColorBuffer); 
pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0); 
 
 
// Set depth texture as a depth buffer 
pd3dDevice->SetDepthStencilSurface(pDepthSurf); 
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// Set new viewport for DST 
newViewport.X = 0; 
newViewport.Y = 0; 
newViewport.Width = DST_WIDTH; 
newViewport.Height = DST_HEIGHT; 
newViewport.MinZ = 0.0f; 
newViewport.MaxZ = 1.0f; 
pd3dDevice->SetViewport(&newViewport); 
 
// Render to depth surface 
// ... 
 
// Restore color and depth buffer 
pd3dDevice->SetRenderTarget(0, pOldColorBuffer); 
pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE,  

D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | 
D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA); 

pd3dDevice->SetDepthStencilSurface(pOldZBuffer); 
 
// Restore viewport 
pd3dDevice->SetViewport(&oldViewport); 
 
// Set depth texture for sampling 
pd3dDevice->SetTexture(0, pDepthTex); 
// ... 
 

 

3.3. Border Color Texture Addressing Mode 
DirectX® 9 supports a variety of texture addressing modes that describe how texture 
coordinates outside of the [0, 1] range are processed. Previous generations of ATI DirectX® 9 
hardware did not fully support the border color texture addressing mode and this functionality 
was not exposed through the caps. The new Radeon X1x00 family of cards fully supports 
border texture color and applications can now fully rely on this feature. Always use the caps to 
check the availability of this feature prior to using it. To verify support of the border color 
addressing mode use the D3DPTADDRESSCAPS_BORDER cap bit in the TextureAddressCaps 
field of the D3DCAPS9 structure. 
 

3.4. Floating Point Textures 
Floating point textures appeared in the first generation of DirectX® 9 hardware and 
revolutionized 3D rendering by providing means to implement high dynamic range (HDR) 
imaging and other rendering techniques that require higher precision and range than 
previously available. The Radeon X1x00 family has improved floating point surface support by 
adding blending and multisampling, which will be discussed later; however, floating point 
texture filtering is not supported. This is not a huge concern, and in rare cases where filtering 



 

ATI Technologies Inc. 

 

 
http://www.ati.com/developer 
Copyright © ATI Technologies Inc. All rights reserved. Page 9 

precision is very important, it can be simulated in pixel shaders. In a wide variety of situations 
like HDR rendering, other less expensive high-quality solutions can be used.  
When trying to emulate floating point filtering, check if any of the 16-bit per channel filterable 
integer formats would provide a good alternative. In many cases where data does not span 
very large numeric range, integer formats with fixed point representation is the best choice and 
in some cases could provide better precision than floating point formats. 
If using floating point textures is your only choice, always step back and check if floating point 
filtering emulation can be optimized. For example, when downsampling textures in half by 
averaging 2x2 texel regions you do not need full bilinear filtering emulation and it is sufficient to 
fetch and average 4 texels. Sometimes, bilinear filtering, whenever it is supported, can be used 
as an optimization primitive for implementing large filter kernels. For instance, a 3x3 filter can 
be implemented using 4 bilinear fetches. If these fetches are emulated in the shader, you will 
end up with 16 point sampled fetches where you really need only 9. 
The following code snippet shows an example of optimized bilinear filtering emulation using 
floating point textures without mip-maps, which takes advantage of texel rounding of point-
sampled filtering. The texel offsets used in the code are slightly smaller than 0.5 to work 
around the incorrect behavior caused by snapping to texels in point sampled filtering. This 
delta from 0.5 value (fudge constant) can be tweaked based on hardware and texture 
dimensions to produce the best results. 
 
 
float2 texWidthHeight = {TEX_WIDTH, TEX_HEIGHT}; 
float4 texOffsets = {-0.5/TEX_WIDTH+fudge, -0.5/TEX_HEIGHT+fudge, 

0.5/TEX_WIDTH-fudge, 0.5/TEX_HEIGHT-fudge}; 
 
float4 tex2D_bilerp(sampler s, float2 texCoord) 
{ 
   float4 offsetCoord = texCoord.xyxy + texOffsets; 
 
   float2 fracCoord = frac(offsetCoord.xy * texWidthHeight); 
   float4 s00 = tex2D(s, offsetCoord.xy); 
   float4 s10 = tex2D(s, offsetCoord.zy); 
   float4 s01 = tex2D(s, offsetCoord.xw); 
   float4 s11 = tex2D(s, offsetCoord.zw); 
 
   s00 = lerp(s00, s10, fracCoord.x); 
   s01 = lerp(s01, s11, fracCoord.x); 
   s00 = lerp(s00, s01, fracCoord.y); 
   return s00; 
} 
 

 
For more ideas and inspiration on how to emulate floating point filtering, please, refer to our 
HDR Texturing whitepaper available as a part of ATI Radeon SDK as well as on the ATI 
developer web site (www.ati.com/developer). 

http://www.ati.com/developer/
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3.5. Fetch-4 
Lately, shadow mapping has become one of the most popular shadow rendering methods. 
Shadow mapping requires special filtering methods to antialias shadows and the most 
frequently used approach is PCF, or percentage-closer-filtering. PCF works as follows. Multiple 
samples containing depth values from the shadow map are fetched and compared to the 
distance to the rendered surface. This comparison produces a binary result for each of the 
tested samples indicating whether they are in shadow or not. The results of comparison are 
combined to produce the shadow intensity at a given point. Using large filter kernel sizes can 
produce really nice soft shadows. 
The Radeon X1900, X1600 and X1300 have a new feature that is conveniently suited to 
accelerate PCF implementations. This feature is called Fetch-4 and with one texture fetch it 
can retrieve 4 neighboring texels (2x2 texel block) from a single-channel texture map. Four 
individual samples of a single-channel texture are swizzled into RGBA channels when they are 
fetched from the texture. The swizzling of 2x2 texel block into 4 channels is illustrated by the 
following diagram. 

 
Fetch-4 is controlled on a per sampler basis and can be enabled by sending special “magic” 
tokens to the driver using the D3DTSS_MIPMAPLODBIAS texture sampler state. The 
application should submit these “magic” tokens to the API only on hardware that supports 
Fetch-4 functionality. Note that point sampling filtering must also be enabled for Fetch-4 to be 
triggered. Fetch-4 is supported on all ATI hardware that supports the DF24 format, so you 
should check for DF24 format support before using Fetch-4. The following code shows how to 
detect, enable and disable Fetch-4 operation. 

B G 

A R 
(R, G, B, A) 
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#define FETCH4_ENABLE ((DWORD)MAKEFOURCC('G', 'E', 'T', '4')) 
#define FETCH4_DISABLE ((DWORD)MAKEFOURCC('G', 'E', 'T', '1')) 
 
#define FOURCC_DF24  ((D3DFORMAT) MAKEFOURCC('D','F','2','4')) 
 
BOOL bFetch4Supported = FALSE; 
 
// Check for DF24 support 
if (SUCCEEDED(pD3D->CheckDeviceFormat( 

D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, D3DFMT_X8R8G8B8, 
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE, FOURCC_DF24)) 

{ 
 bFetch4Supported = TRUE; 
} 
 
if (bFetch4Supported) 
{ 

// Enable Fetch-4 on sampler 0 
pd3dDevice->SetSamplerState(0,  
 D3DSAMP_MIPMAPLODBIAS, FETCH4_ENABLE); 

 
// Set point sampling filtering (required for Fetch-4 to work) 
pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT); 
pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT); 
 
// ... 

 
// Disable Fetch-4 on sampler 0 
pd3dDevice->SetSamplerState(0,  
 D3DSAMP_MIPMAPLODBIAS, FETCH4_DISABLE); 

} 
 

 
This approach works extremely well for PCF implementations with regular grid positioning of 
the filter taps and, for example, allows implementing a 4x4 PCF kernel with only 4 texture 
fetches. To get better results, PCF implementations sometimes use jittered sample locations or 
otherwise more sophisticated sample distribution in the filter kernel. Fetch-4 can also help in 
those cases as well. It is possible to achieve similar visual results by using fewer Fetch-4 
jittered samples than point-sampled taps. For example, instead of 16 point-sampled jittered 
samples you might get away with 8 to 12 jittered Fetch-4 fetches, while maintaining the same 
or better visual quality. 
Fetch-4 works not only on DST (depth-stencil textures) formats (like DF24), but with all other 
single-channel formats as well; therefore, this feature can be used for implementing various 
filter kernels that operate on single-channel textures. 
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4. Pixel Shader 
The Radeon X1x00 series of chips incorporate extremely sophisticated high-performance pixel 
shader engines completely redesigned to support all Shader Model 3.0 features without 
sacrificing performance. This section covers the architecture of the pixel processor as well as 
tips and techniques to unleash the raw pixel processing power of the Radeon X1x00 family of 
graphics hardware. 
 

4.1. Radeon X1xxx Pixel Shader Architecture 
The Radeon X1x00 family of chips has a brand new pixel shader engine designed to support 
all the new pixel shader features while maintaining the high, predictable performance 
characteristics of previous generation hardware. As was the case in previous generation pixel 
shader engines, the Radeon X1x00 cards support only a single precision mode – high 
precision. To fully match the requirements of Shader Model 3.0 the hardware was upgraded to 
provide an IEEE 32-bit equivalent floating point implementation. The section of this document 
on floating point rules explains the intricacies of the floating point implementation in pixel 
shaders. 
As with previous ATI hardware generations, the Radeon X1x00 pixel engine can 
simultaneously execute a texture and an ALU instruction each clock. Each ALU instruction can 
be a full 4D vector or a combination of a 3D vector and a scalar. Also, in the addition to the 
main ALU, there is a mini-ALU that can execute a subset of ALU instructions. The following 
diagram illustrates the ALU block architecture. 
 

 

ALU 

1 x FP32 3 x FP32 

1 x FP32 3 x FP32 

mini-ALU 

full ALU 

 
The major redesign of the pixel shader engine comes from the fact that the shader pipe now 
fully supports flow control with predication, branching and looping (both static and dynamic). 
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The main emphasis for this generation of shader architecture is on the efficiency of the flow 
control as it is the most important and useful feature of PS 3.0. The shader engines of the 
Radeon X1x00 family are capable of executing many pixel threads in parallel at very high 
performance, with a smaller thread size than the competition supports. These features bring a 
new level of unsurpassed pixel performance never seen before in any graphics hardware. 
 

4.2. Instruction Counts 
The Radeon X1x00 cards expose 512 pixel shader instruction slots that along with flow control 
provide a lot of flexibility for implementing very sophisticated algorithms. With 4 levels of 
nested loops you can be potentially executing up to trillions of instructions per pixel! This might 
cause the hardware to appear to have stopped responding, so you have to exercise caution 
when coding shaders with flow control. On the other hand, some shaders might fail to compile 
if they exceed the number of allotted instruction slots. Note that some instructions take more 
than one slot, as specified in DirectX® 9 specification. Standalone HLSL and ASM compilers, 
as well as the ones implemented in the D3DX library, included in the DirectX® 9 SDK may only 
report approximate instruction counts and they might sometimes be smaller than the real 
instruction slots count that the runtime verifies against. 
 

4.3. Instruction Vectorization, Swizzles and Write Masks 
The shader processors are vector units; thus, to achieve the highest shader processor 
utilization one should make sure that as many computations as possible are vectorized and 
are executed simultaneously. The compiler built into the driver can pair 3D and scalar 
instructions and you should use write masks to give the compiler a chance to co-issue 
instructions whenever possible. For example, if you do not care about the alpha output, you 
could use the .rgb write mask in all your color calculations and let the alpha come from a 
texture fetch or some other instruction. 
While the compiler does a good job of pairing instructions, its task can often be made simpler 
by explicitly vectorizing computations in the source code. This is especially important for 2D + 
2D cases where compiler cannot easily perform this task. A lot of post-processing shaders 
operate on 2D texture coordinates and these calculations are the ideal target for manual 
vectorization. Shader Model 3.0 supports arbitrary swizzles in the pixel shader and it makes 
programmers’ task of vectorizing calculations much simpler. The following HLSL shader code 
snippets illustrate an example of such an optimization. 
 
 
// Sub-optimal code 
float2 v0 = t + offset0; 
float2 v1 = t + offset1; 
float4 c = tex2D(s, v0) + tex2D(s, v1); 
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// Optimized code 
float4 v01 = t.xyxy + offset01; 
float4 c = tex2D(s, v01.xy) + tex2D(s, v01.zw); 
 

 
The few instructions saved here and there will quickly accumulate and in a typical post-
processing shader, where texture coordinate calculations dominate, it could result in a 
significant performance boost. 
 

4.4. SINCOS instruction 
The Radeon X1x00 family of graphics chips natively supports the SINCOS instruction in the 
pixel shader and the hardware is capable of computing a SIN or COS function in a single clock 
cycle. If both function results are needed, the computation will take two clock cycles. If you 
need only one of the functions computed, make sure to use the appropriate write mask. 
 

4.5. Instruction Balancing 
The Radeon X1x00 pixel shader pipe is built on a lot of concepts that made the older DirectX® 
9 Radeons so successful. One of those is the ability to execute texture and arithmetic 
instructions simultaneously. For each processed pixel, the Radeon X1800 and the Radeon 
X1300 can fetch a texture and execute one ALU instruction per clock (assuming memory 
bandwidth is not a limiting factor). Fetching 64-bit textures, volume textures, or using trilinear 
or more expensive filtering would take more clocks to execute, allowing a greater number of 
ALU instructions to be executed during the texture fetch. Ideally you should target anywhere 
around 1:4 texture to ALU instruction ratios; however, the optimal ratios vary based on filtering, 
texture formats and other factors. 
In the past, from the early DirectX® 8 days, we have seen the texture to ALU instruction ratios 
slowly increase from 1:1 or 1:2 to much higher numbers as shader complexity grew. As we 
move towards more and more complex shaders that implement complex lighting models, 
procedural materials and other advanced effects, the computational complexity will grow 
disproportionably to texture fetch requirements. To sustain the performance growth we all have 
enjoyed for years, shader developers will have to rely more and more on shader computations 
rather than texture fetches, as the former continues to grow with each new GPU generation at 
a much quicker pace than the available memory bandwidth. 
The Radeon X1900 and X1600 marks a new and exciting trend of targeting higher than ever 
before texture to ALU instruction ratios by executing up to 3 ALU instructions per clock per 
pixel, while performing at most one texture fetch. Volume textures, 64-bit or more textures, and 
expensive filtering will require more than one clock cycle for a texture fetch, allowing 6 or even 



 

ATI Technologies Inc. 

 

 
http://www.ati.com/developer 
Copyright © ATI Technologies Inc. All rights reserved. Page 15 

more ALU instructions to be executed at the same time. To maintain the highest pixel pipe 
efficiency the texture to ALU instruction ratio has to be 1:8 or even higher. Future hardware is 
expected to continue this trend of targeting higher texture to ALU ratios; however exact 
numbers might vary from product to product. 
 

4.6. Pixel Shaders and Flow Control 
The biggest and most important feature of Shader Model 3.0 is the addition of flow control to 
pixel shaders. The supported flow control constructs include subroutine calls, predication, 
conditional statements and loops. Also, based on the condition that invokes the flow control, 
there are two types of flow control available in shaders: static flow control and dynamic flow 
control. The former is controlled by parameters that are known before shader execution, while 
the latter is based on the parameters derived during shader execution. 
This section provides in-depth explanation of flow control, the implications of its use, as well as 
general recommendations and optimizations. 
 

4.6.1. Subroutine Calls 
Subroutines calls in PS 3.0 assembly language allow shaders to exceed the 512 instruction 
limit by moving common code into a subroutine. Because of the extra overhead of calling 
routines, the HLSL compiler as well as the shader compiler in the driver will try to eliminate the 
subroutine calls by in-lining the functions into the body of the caller. The only real use for 
subroutine calls in assembly is to work around the 512 instruction limit in cases when 
subroutine calls reduce number of instruction slots used. 
 

4.6.2. Static Flow Control 
As advanced graphics techniques mature and applications rely more and more on shaders, we 
are faced with a combinatorial explosion of shaders due to the number of lights, materials and 
many effects that might need to be combined in shaders. PS 3.0 includes static flow control 
functionality, previously available only in vertex shaders, to help ease the pain of shader 
management. Shader developers can now produce a shader that contains all possible 
elements that could be used at one time – an über-shader. At runtime conditionals are used to 
pick the combinations of code parts that achieve the desired result. 
As with vertex shaders, there are pros and cons to using static flow control in pixel shaders. 
On one hand, static flow control allows the simplification of shader management and thus a 
reduction in CPU overhead, which can lead to some performance improvements in CPU bound 
cases. On the other hand, the use of static flow control can impact shader performance, which 
would have a negative effect on performance in fill-rate bound cases. By themselves, flow 
control instructions are not very expensive. However, their placement in the shader code 
restricts the compiler’s ability to reorganize other shader instructions for co-issue and achieve 
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the most optimal scheduling. In some extreme cases pixel shader performance can suffer by 
50% or more if a lot of small branches are used throughout the shader. The driver is capable of 
recognizing situations like this and compiling out flow control in the shader based on the 
currently set conditionals. The driver will cache those shaders to make sure they are not 
recompiled every time boolean shader constants change. To make sure the driver does not 
have to recompile shaders during application execution, it is recommended to “warm” the 
shader cache by rendering on a very first frame a dummy triangle with static flow control 
shaders and the most common boolean permutations that will be used with these shaders. For 
compatibility with earlier shader models the application might adopt a similar approach of pre-
caching the most common shaders that are compiled ahead of time based on some boolean 
conditionals that are used for shader fragment linking. 
 

4.6.3. Dynamic Flow Control 
Dynamic flow control gives shader developers the ability to implement conditionals and loops, 
where execution might vary from pixel to pixel. This allows creation of very complex materials 
that might dynamically combine various lighting or material components per pixel. Another big 
use for dynamic flow control is to skip parts of the computations and texture fetches that would 
not contribute to the final result. 
As it is the case with static flow control, dynamic flow control can be good or bad, depending 
on how it is used. Besides the potential small performance impact from limiting instruction 
reshuffling, dynamic flow control potentially has a bigger problem. The reason modern GPUs 
are so fast is because they are massively parallel in architecture, with many pixels in flight at 
the same time. The smallest processing element is a 2x2 pixel quad; and a number of these 
quads run in lockstep, executing the same instructions. This collection of pixel quads 
constitutes an execution thread, and on modern graphics hardware many threads are sharing 
the same shader processor. If flow control makes pixels that are executed within a thread take 
different paths, all the pixels in the thread, regardless of whether they should or should not 
execute the path, will be dragged along. The pixels that should not execute a given path will 
just ignore the instructions, while pixels that should execute this path will be processed as 
usual. This sounds very bad and inefficient, but in reality it is not all that gloomy as long as 
there is a fair amount of coherency in branch selection within reasonably sized pixel blocks. 
The Radeon X1x00 family has a thread size of 16 pixels, which is the smallest in the industry, 
and it provides absolutely the best dynamic flow control efficiency on the market. 
Besides reasonable coherency of flow control execution there are several other tips that you 
should follow. Avoid many small conditional statements scattered throughout a shader. Just 
like in the static flow control case, this will impact optimization efficiency. Dynamic flow control 
should rather be used to skip fairly large portions of the code. 
While the dynamic flow control on Radeon X1x00 graphics hardware is extremely fast and 
efficient, there is a way to improve it even further. The fastest pixel shaders with dynamic flow 
control are the ones that do not contain loops and have no more than 6 levels of dynamic 
branching. If the shader is to execute a dynamic loop with a fairly low iteration count, you might 
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be better off substituting loops with a number of conditional statements as illustrated in the 
example below. However, if all loops in the shader cannot be substituted with branching there 
will be no performance improvement from this substitution. 
 
 
// Sub-optimal code 
int i = 0; 
float4 val; 
float2 dx = ddx(texCoord); 
float2 dy = ddy(texCoord); 
do 
{ 
 val = tex2D(s, texCoord, dx, dy); 
 texCoord += 0.1; 
} while (i++ < 4 && val.a > 0); 
 

 
// Better code 
float4 val; 
float2 dx = ddx(texCoord); 
float2 dy = ddy(texCoord); 
val = tex2D(s, texCoord, dx, dy); 
if (val.a > 0) 
{ 
 texCoord += 0.1; 
 val = tex2D(s, texCoord, dx, dy); 
 if (val.a > 0) 
 { 
  texCoord += 0.1; 
  val = tex2D(s, texCoord, dx, dy); 
  if (val.a > 0) 
  { 
   texCoord += 0.1; 
   val = tex2D(s, texCoord, dx, dy); 
  } 
 } 
} 
 

 

4.6.4. Using Dynamic Flow Control for Early-Out 
While dynamic flow control can be seen as a menace to performance, it should also be looked 
at as a great optimization opportunity. As it was mentioned before, one of the significant uses 
for dynamic flow control is skipping unnecessary calculations or exiting early out of the shader. 
There are too many examples to be listed here that can be optimized by dynamic flow control: 
skipping lighting computations in the shadow, optimizing shadow map filters and many others. 
Whenever you multiply results of a fairly long instruction chain by a zero value or whenever the 
contribution of your texture fetches is zero, you should see it as an opportunity to optimize a 
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shader with dynamic flow control. Always try experimenting with dynamic flow control 
optimizations whenever you find an opportunity. 
It should be noted though that while the X1x00 has high performance with dynamic branching, 
and shader based branching is very convenient, it can in some cases still be faster to use 
alternative approaches such as utilizing early stencil rejection, depending on the load on the 
vertex shader, number of draw calls, the percentage of pixels that can be rejected, and other 
factors. 
 

4.6.5. Screen Gradients and Dynamic Flow Control 
The partial derivatives or screen gradients describe a change in values from pixel to pixel on 
the screen. There are many uses for the gradients in the shaders such as implementing 
shader antialiasing, constructing custom anisotropic filters, and computing texture LOD. PS 3.0 
includes special instructions to compute gradients; however, some caution has to be exercised 
with respect to dynamic flow control since gradients might be undefined inside flow control 
statements. The gradients are computed on a per quad basis by computing change in values 
across the quad. If pixels within the quad take on different code paths, the values used for 
gradient computation might not be available for all quad pixels, which might result in incorrect 
results. In assembly pixel shaders only the gradients of the texture coordinates and other 
interpolated values can be computed inside flow control statements because only these values 
are guaranteed to be available and correct for all pixels anywhere in the shader. If gradients 
have to be computed for shader-derived values, it has to be done outside of the flow control 
statement. Shader developers also have to make sure that inputs to gradient instructions have 
been initialized for all execution paths of the shader that could lead to gradient calculation. 
The HLSL compiler also performs checks on gradient computations and does not permit these 
instructions to be placed in flow control statements if the gradients are computed from shader-
derived values. Whenever possible, the HLSL compiler will try to move gradient instructions 
outside of the flow control. Failure to do so will result in shaders compiled without actual flow 
control instructions. 
 

4.6.6. Texture Fetches Inside of Dynamic Flow Control 
Texture fetches rely on the texture coordinate gradients to compute the appropriate mip-level 
and degree of anisotropy. As we have noted above, the gradients for shader-derived values 
cannot be computed inside of dynamic flow control. This means mip-level calculation of texture 
fetches inside of flow control statements cannot be based on shader-computed texture 
coordinates. To solve this problem Shader Model 3.0 includes special texture sampling 
instructions that accept user-supplied texture LOD or gradients. Since these instructions do not 
rely on automatically computed gradients, their use inside of flow control statements is 
permitted. The pixel shader compiler performs shader validation to enforce proper use of 
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texture fetches within flow control. In assembly only the fetches with interpolated texture 
coordinates are permitted inside of flow control. 
The HLSL compiler enforces rules for texture fetches inside of flow control, just like it does for 
gradient calculations. Failure to explicitly specify gradients or LOD with texture fetches based 
on computed texture coordinates inside of flow control will either disable the generation of flow 
control instructions or move significant chunks of code, including potentially expensive texture 
fetches, outside the flow control, resulting in much smaller performance gains than what 
otherwise would be possible. 
The following code fragment shows examples of invalid and correct use of texturing and 
gradient functions in the shader. 
 
 
// BAD: no flow control instructions generated 
float diffuse = dot(normal, lightVec); 
if (diffuse > 0) 
{ 
 // PROBLEM: Use of texture fetch inside of flow control 
 // with shader derived texture coordinates 
 float4 base = tex2D(Base, texCoord + 0.5); 
 finalColor = lightColor * diffuse * base + ambient; 
} 
 

 
 
// GOOD: flow control instructions generated 
float diffuse = dot(normal, lightVec); 
if (diffuse > 0) 
{ 
 // GOOD: Texture fetch with interpolated coordinates 
 // (assuming texCoord comes from interpolator) 
 float4 base = tex2D(Base, texCoord); 
 finalColor = lightColor * diffuse * base + ambient; 
} 
 

 
 
// GOOD: flow control instructions generated 
float diffuse = dot(normal, lightVec); 
// GOOD: Derivatives do not depend on values computed inside of flow control 
float2 dx = ddx(texCoord); 
float2 dy = ddy(texCoord); 
if (diffuse > 0) 
{ 
 // GOOD: Texture fetch with user gradients is permitted 
 float4 base = tex2D(Base, texCoord + 0.5, dx, dy); 
 finalColor = lightColor * diffuse * base + ambient; 
} 



 

ATI Technologies Inc. 

 

 
http://www.ati.com/developer 
Copyright © ATI Technologies Inc. All rights reserved. Page 20 

 

4.6.7. Predication 
By definition, predication is a flow control technique used in vector processors where all 
possible code branches are executed in parallel before the branch condition is proved. Shader 
Model 3.0 includes a form of predication that, without invoking special flow control constructs, 
can conditionally control instruction execution per channel. A special predication register 
containing 4 boolean values (one per channel) is used for execution control. The specification 
is quite flexible in how flow control can be implemented and it is allowed to substitute 
predication with flow control instructions and vice versa. The shader compiler will pick the most 
appropriate method for the internal flow control implementation based on the shader heuristics 
and intimate knowledge of the hardware, so there is no need to explicitly use predication in the 
shaders. 
 

4.7. Pixel Shader Constants 
Quite often shader developers use some common constants like 2.0, 0.5, -1.0 and so on 
throughout the shader. The most widespread uses of such constants are scale, scale and bias 
operations, and many others. Some developers prefer to set these constants in the application 
instead of using constant literals in the shader code, which is generally a bad practice. By 
embedding constants in the shader, not only will you produce more readable code, but the 
HLSL compiler as well as the driver shader compiler will have a better chance of optimizing 
shader code with respect to the constants. 
The following example highlights the proper use of literal constants. 
 
 
// Sub-optimal code 
float4 userConsts; // i.e. set by application to (2.0, 1.0, 0.5, 4.0) 
Normal = Normal * userConsts.x - userConsts.y; 
Result /= userConsts.w; 
 

 
 
// Better code 
Normal = 2.0 * Normal – 1.0; 
Result /= 4.0; 
 

 
This optimization applies not only to floating point constants used for computations, but also to 
the constants used for loop counts. If literal shader constants are used for loops, the compiler 
might be able to unroll the loops, resulting in more optimal code. 
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5. Optimal HLSL Use 
The HLSL compiler, whether we are talking about the standalone tool or shader compilation 
functions embedded in the D3DX library, exposes a number of compiler options that allow 
developers to tweak shader compilation. When compiling HLSL shaders for the Radeon X1x00 
family of hardware you should adhere to the following guidelines to get the best possible 
performance. 

• Vertex shaders compiled with the VS 3.0 model should be preferably compiled with the 
option to avoid flow control statements. Use the D3DXSHADER_AVOID_FLOW_CONTROL 
compiler flag with D3DX compiler functions or the /Gfa command line option with the 
fxc.exe compiler. 

• Pixel shaders compiled with the PS 3.0 model should be compiled with the option to 
prefer flow control statements, since flow control in pixel shaders is one of the strong 
points of the Radeon X1x00 architecture. Use the 
D3DXSHADER_PREFER_FLOW_CONTROL compiler flag with D3DX compiler functions or 
the /Gfp command line option with the fxc.exe compiler. 

• Another option that is worth investigating is skipping shader optimization altogether. 
Generally you would want to keep this option enabled to make sure the HLSL compiler 
produces the smallest code possible. This is especially important for cases where 
unoptimized shader code would exceed the number of available instructions. However, 
there are cases when disabling shader optimizations would lead to slightly higher 
performance as the driver shader compiler would be able to pick up more optimization 
opportunities. 

Experimenting with various compiler options is the best strategy to produce the best 
performing shaders. 
 

6. FP16 Render Targets  
High-precision floating point render targets made their first appearance a while ago in the first 
generation of ATI DirectX® 9 hardware. One major functionality missing from the previous 
implementations was alpha blending. The Radeon X1x00 hardware adds this missing piece of 
the puzzle, which greatly increases utility of FP16 surfaces. Alpha blending is supported on the 
most frequently used 4-channel FP16 format, while 1- and 2-channel formats are supported 
without blending. This is generally not a problem since such 1- and 2-channel formats are 
usually employed for storing values other than color, for which blending is not applicable 
anyway. 
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6.1. Fog and FP16 Render Targets 
Fixed function fog is one of the antiquated rendering methods that somehow have stayed with 
us for a very long time. Shader Model 3.0 marks a new “fogging era”, as it is not compatible 
with fixed function fog and developers are now expected to implement fog as a part of the 
shader whenever they use PS 3.0. It is possible, however, to use fixed function fog with lower 
shader models. Because Radeon X1x00 hardware primarily targets FP16 rendering and 
Shader Model 3.0, fixed-function fog with FP16 surfaces is not a first class citizen and 
developers are encouraged to implement their own fog in pixel shaders to obtain the best 
performance when rendering to FP16 surfaces (even with earlier shader models). Pixel 
shaders 2.0 and 2.x are more than capable of handling fog computations in the shader. 
The 8-bit and 10-bit per channel surfaces still treat fixed function fog as a first class citizen to 
ensure the highest rendering performance in legacy applications. 
 

6.2. FP16 Render Targets and MSAA 
FP16 HDR rendering is quite often tied to very high visual fidelity and photorealism. Up until 
now the major obstacle in achieving the highest possible quality with HDR rendering and other 
post-processing methods that rely on FP16 surfaces was the lack of multisampling. Even the 
most beautiful HDR scene can look wrong and the perception of reality could be completely 
destroyed by something seemingly as small as jagged lines. The Radeon X1x00 features a 
solution that brings HDR rendering to the next level – multisampling support with FP16 
surfaces. When creating FP16 surfaces to be used for scene rendering, always check if 
multisampling is available and make the best use of it whenever possible. The new graphics 
cards sporting 512MB of video memory are the best candidates for multisampled FP16 HDR 
implementation, as conventional applications rarely require this much video memory for normal 
rendering. 
Using multisampling with FP16 render targets not only requires more memory, but also 
significantly increases memory bandwidth. This is especially noticeable when alpha blending is 
enabled. If alpha blended geometry is rendered with a fairly simple pixel shader it makes 
sense, whenever possible, to use alpha testing or TEXKILL to reduce the number of blended 
pixels. For example, when using additive blending, “killing” black pixels could provide a 
substantial performance boost. This optimization works well only with fairly small pixel shaders 
because alpha test and TEXKILL disables top-of-the-pipe Z rejection. Large and expensive 
pixel shaders might become a greater bottleneck than the saved memory bandwidth if top-of-
the-pipe Z rejection is disabled. In most cases this is not a problem since nearly all alpha 
blended geometry is rendered with a very simple shader (e.g. smoke particles). 
 

7. RGBA1010102 Render Targets 
10-bit formats are not anything new, and they are widely used to provide higher quality than 
standard 8-bit textures and render targets. The Radeon X1x00 includes some improvements 
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for 10-bit render targets – now, on top of the filtering, these renderable surfaces also support 
alpha blending and multisampling. With the addition of these features the 10-bit surfaces have 
become first-class citizens, and they may be used in many scenarios including a high-fidelity 
replacement for standard 8-bit surfaces. These surfaces could also be useful for HDR 
whenever the dynamic range is not too large. This is representative of many games with fairly 
dark indoor environments and strategy games where the sun – the highest intensity source – is 
not visible. Now HDR effects are more of a reality on mainstream and value market segment 
hardware since 10-bit surfaces are much less expensive than FP16. 
Another new feature of the 10-bit surface format support is the fact that this format is now also 
displayable on the Radeon X1x00 family of hardware. An RGBA1010102 surface can now be 
used for both back and front buffers (fullscreen only), allowing a better rendition of colors onto 
the screen. A good quality CRT monitor, or an LCD supporting 10-bits precision are required to 
accurately represent the gain in image quality compared to a standard RGBA8888 format, but 
even older and cheaper 8-bit LCD monitors can benefit from 10-bit displayable surfaces since 
display engine in Radeon X1x00 video cards automatically supports advanced dithering when 
working with less than 10-bit LCDs. 
 

8. Floating Point Rules 
The Radeon X1x00 family marks a real breakthrough with full 32-bit IEEE floating point support 
throughout the shader pipeline and 16-bit floating point in the raster backend. The use of 
floating point calculations opens new possibilities for very flexible techniques, but it creates an 
opportunity for making mistakes at the same time. Floating point formats have a number of 
special rules to deal with numbers that are outside of the supported range and results that are 
not representable. This section explains some important facts about the floating point 
implementation on Radeon X1x00 cards. Failure to recognize the importance of and to honor 
these rules might lead to visual artifacts that could be hard to debug. As an example, during a 
post-processing pass an invalid value of even a single pixel might propagate to large regions 
of the screen and cause white or black areas. 
 

8.1. Floating Point in Vertex Shaders 
The floating point computations in vertex shaders on the Radeon X1x00 cards are performed 
on standard 32-bit IEEE numbers with most of the IEEE computation rules honored. However, 
there are some minor deviations from the IEEE standard. Computations are performed without 
intermediate rounding, and fused operations might have slightly different results and precision 
from simple calculations. As with all shader-based vertex processors, when computing vertex 
position in multi-pass rendering, always use the same sequence of instructions to guarantee 
exactly the same results. Failure to do so might result in Z-fighting. 
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8.2. Floating Point in Pixel Shaders 
The floating point implementation in pixel shader engine is very close to the IEEE 32-bit 
floating point standard. In fact, it is much closer than required by Shader Model 3.0 
specification. However, there are several very small differences that shader developers might 
need to be aware of. The biggest divergence from the IEEE rules is that denorms are flushed 
to appropriately signed zero. For instance, all comparisons with denorms will be equivalent to 
comparisons with zero. Another small deviation from the IEEE standard is the inconsistency of 
rounding modes for various operations. Regardless, operations are generally accurate within 1 
ULP (Unit of Least Precision). A lot of operations maintain a higher internal precision than 
IEEE requires ensuring that the results of the fused operations are acceptable. With dot 
products, nevertheless, there is a possibility of losing some precision if added values differ 
greatly in magnitude. 
 

8.3. Floating Point in Texture Unit 
The texture unit accepts input texture coordinates in floating point format and the hardware 
implements several special cases of handling special values. Just like in pixel shaders, the 
denorms used for texture fetching will be flushed to appropriately signed zero. NaN values do 
not make sense as texture coordinates and are automatically converted to +Inf. Avoid 
generating very large values to be used for texture lookups as these values might generate 
infinite values during texture projection and cubemap lookup processing. 
 

8.4. Floating Point in Alpha Blender 
The 16-bit floating point implementation in the alpha blender generally follows the FP16 rules 
set out in the DirectX® 9 specification. The FP16 format contains 1 sign bit, 5 bits of biased 
exponent (bias of 15.0) and 10 bits of fraction with the additional hidden bit. The 
implementation does not support special cases such as +NaN/-NaN and +Inf/-Inf, however it 
does support denorms. Because the mentioned specials are not supported, the extra exponent 
value can be used to represent values up to 131,008.0, which is twice the required range. The 
alpha blender will also not create negative zeros and will convert them to positive zeros. 
Because alpha blending is a fused operation, the internal precision of the calculation is slightly 
higher than required for an FP16 implementation to insure the correct blending results. 
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9. Summary of Texture Formats 
The following tables summarize support of various surface formats and texturing capabilities 
on Radeon X1x00 hardware. 
 
Integer texture formats 

Format Renderable Blend Filter Auto Mip sRGB Read sRGB Write 
A8R8G8B8 Yes Yes Yes Yes Yes Yes 
X8R8G8B8 Yes Yes Yes Yes Yes Yes 
R5G6B5 Yes Yes Yes Yes No No 
X1R5G5B5 Yes Yes Yes Yes No No 
A1R5G5B5 Yes Yes Yes Yes No No 
A4R4G4B4 Yes Yes Yes Yes Yes Yes 
A8 No No Yes No No No 
A2B10G10R10 Yes No Yes Yes No No 
G16R16 Yes No Yes Yes No No 
A2R10G10B10 Yes Yes Yes Yes No No 
A16B16G16R16 Yes No Yes Yes No No 
L8 No No Yes No Yes No 
A8L8 No No Yes No Yes No 
V8U8 No No Yes No No No 
L6V5U5 No No Yes No No No 
X8L8V8U8 No No Yes No No No 
Q8W8V8U8 No No Yes No No No 
V16U16 No No Yes No No No 
A2W10V10U10 No No Yes No No No 
L16 No No Yes No No No 
Q16W16V16U16 No No Yes No No No 
 
Floating texture point formats 

Format Renderable Blend Filter Auto Mip sRGB Read sRGB Write 
R16F Yes No No Yes No No 
G16R16F Yes No No Yes No No 
A16B16G16R16F Yes Yes No Yes No No 
R32F Yes No No Yes No No 
G32R32F Yes No No Yes No No 
A32B32G32R32F Yes No No Yes No No 
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Compressed texture formats 

Format Renderable Blend Filter Auto Mip sRGB Read sRGB Write 
DXT1 No No Yes No Yes No 
DXT2 No No Yes No Yes No 
DXT3 No No Yes No Yes No 
DXT4 No No Yes No Yes No 
DXT5 No No Yes No Yes No 
ATI1 No No Yes No Yes No 
ATI2 No No Yes No Yes No 
 
Depth texture formats 

Format Renderable Blend Filter Auto Mip sRGB Read sRGB Write 
DF16 No No Yes No No No 
DF24 * No No Yes No No No 
Note: * - available only on Radeon X1900, X1600 and X1300 
 
Video texture formats 

Format Renderable Blend Filter Auto Mip sRGB Read sRGB Write 
UYVY No No Yes No No No 
YUY2 No No Yes No No No 
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