- High-Performance Floating-Point Digital Signal Processor (DSP)
 - TMS320C30-50 (5 V)
 40-ns Instruction Cycle Time
 275 MOPS, 50 MFLOPS, 25 MIPS
 - TMS320C30-40 (5 V)
 50-ns Instruction Cycle Time
 220 MOPS, 40 MFLOPS, 20 MIPS
 - TMS320C30-33 (5 V)60-ns Instruction Cycle Time183.3 MOPS, 33.3 MFLOPS, 16.7 MIPS
 - TMS320C30-27 (5 V)
 74-ns Instruction Cycle Time
 148.5 MOPS, 27 MFLOPS, 13.5 MIPS
- 32-Bit High-Performance CPU
- 16-/32-Bit Integer and 32-/40-Bit Floating-Point Operations
- 32-Bit Instruction Word, 24-Bit Addresses
- Two 1K × 32-Bit Single-Cycle Dual-Access On-Chip RAM Blocks
- One 4K × 32-Bit Single-Cycle Dual-Access On-Chip ROM Block
- On-Chip Memory-Mapped Peripherals:
 - Two Serial Ports
 - Two 32-Bit Timers
 - One-Channel Direct Memory Access (DMA) Coprocessor for Concurrent I/O and CPU Operation

- Two 32-Bit External Ports
- 24- and 13-Bit Addresses
- 0.7-µm Enhanced Performance Implanted CMOS (EPIC™) Technology
- 208-Pin Plastic Quad Flat Package (PPM Suffix)
- 181-Pin Grid Array Ceramic Package (GEL Suffix)
- Eight Extended-Precision Registers
- Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
- Two- and Three-Operand Instructions
- Parallel Arithmetic and Logic Unit (ALU) and Multiplier Execution in a Single Cycle
- Block-Repeat Capability
- Zero-Overhead Loops With Single-Cycle Branches
- Conditional Calls and Returns
- Interlocked Instructions for Multiprocessing Support
- Two Sets of Memory Strobes (STRB and MSTRB) and One I/O Strobe (IOSTRB)
- Separate Bus-Control Registers for Each Strobe-Control Wait-State Generation

description

The TMS320C30 is the newest member of the TMS320C3x generation of DSPs from Texas Instruments (TI™). The TMS320C30 is a 32-bit floating-point processor manufactured in 0.7-µm triple-level-metal CMOS technology.

The TMS320C30's internal busing and special DSP instruction set have the speed and flexibility to execute up to 50 MFLOPS (million floating-point operations per second). The TMS320C30 optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.

The TMS320C30 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of these features.

General-purpose applications are enhanced greatly by the large address space, multiprocessor interface, internally and externally generated wait states, two external interface ports, two timers, serial ports, and multiple interrupt structure. The TMS320C30 supports a wide variety of system applications from host processor to dedicated coprocessor.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and TI are trademarks of Texas Instruments Incorporated.

description (continued)

High-level language support is implemented easily through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

pinout and pin assignments

TMS320C30 GEL pinout and pin assignments

The TMS320C30 digital signal processor is available in a 181-pin grid array (PGA) package. The pinout of this package is shown in the following two illustrations. The pin assignments are listed in the TMS320C30 GEL pin assignments (alphabetical) table and the TMS320C30 GEL pin assignments (numerical) table.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	НЗ	D2	D3	D7	D10	D13	D16	D17	D19	D22	D25	D28	XA0	XA1	XA5
Α	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
	X2/CLKIN	I CV _{SS}	H1	D4	D8	D11	D15	D18	D20	D24	D27	D31	XA4	IVSS	XA6
В	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
	EMU5	X1	DVSS	D0	D5	D9	D14	V_{SS}	D21	D26	D30	XA3	DVSS	XA7	XA10
С	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
	XR/\overline{W}	XRDY	V_{BBP}	DDV_{DD}	D1	D6	D12	V_{DD}	D23	D29	XA2	ADV_DD	XA9	XA11	MC/MP
D	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
	RDY	HOLDA	MSTRB	V _{SUBS} I	LOCATOR			DDV_{DD}				XA8	XA12	EMU3	EMU1
E	()	()	()	()	()			()				()	()	()	()
	RESET	STRB	HOLD	IOSTRB							1	EMU4/SHZ	EMU2	EMU0	A0
F	()	()	()	()								()	()	()	()
	IACK	XF0	XF1	R/W								A1	A2	АЗ	A4
G	()	()	()	()								()	()	()	()
	INT1	INT0	V_{SS}	V_{DD}	MDV_{DD}			1S3200 op Vie			ADV_DD	V_{DD}	V_{SS}	A6	A5
Н	()	()	()	()	()		'	op vie	vv		()	()	()	()	()
	INT2	INT3	RSV0	RSV1								A11	A9	A8	A7
J	()	()	()	()								()	()	()	()
	RSV2	RSV3	RSV5	RSV7								A17	A14	A12	A10
K	()	()	()	()								()	()	()	()
.	RSV4	RSV6	RSV9	CLKR1				IODV _{DE})			A22	A18	A15	A13
L	()	()	()	()				()				()	()	()	()
	RSV8	RSV10	FSR1	PDV_{DD}		EMU6	XD5	V_{DD}	XD16	XD22	XD27	IODV _{DD}	A21	A19	A16
М	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
	DR1	CLKX1	DVSS	CLKR0	TCLK1	XD2	XD7	VSS	XD14	XD19	XD23	XD28	DVSS	A23	A20
N	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
_	FSX1	DX1	FSR0	TCLK0	XD1	XD4	XD8	XD10	XD13	XD17	XD20	XD24	XD29	CVSS	XD31
P	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
_	DR0	FSX0	DX0	XD0	XD3	XD6	XD9	XD11	XD12	XD15	XD18	XD21	XD25	XD26	XD30
R	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
Į															

TMS320C30 GEL Pinout (Top View)

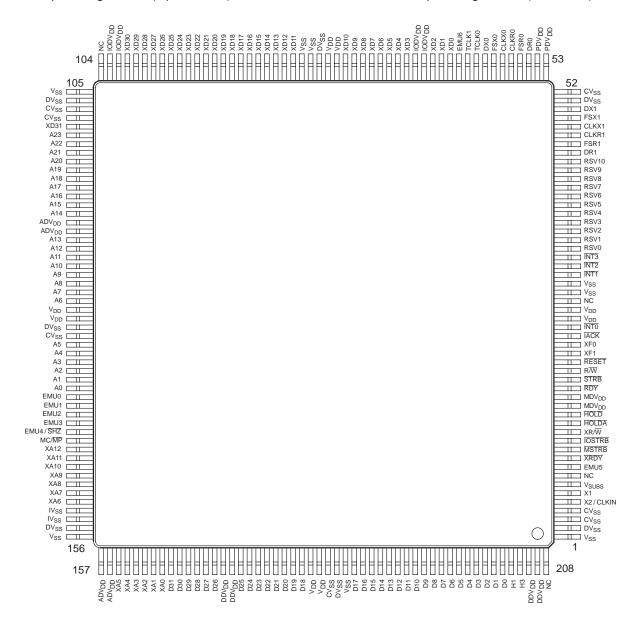
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
XA5	XA1	XA0	D28	D25	D22	D19	D17	D16	D13	D10	D7	D3	D2	НЗ
•	•		•			•	•	•			•			•
XA6	IVSS	XA4	D31	D27	D24	D20	D18	D15	D11	D8	D4	H1	CVSS	X2/CLKIN
•	•		•				•	•			•			•
XA10	XA7	DV_SS	XA3	D30	D26	D21	V_{SS}	D14	D9	D5	D0	DV_SS	X1	EMU5
•	•	•	•		•	•	•	•	•	•	•	•	•	•
MC/MP	XA11	XA9	ADV_DD	XA2	D29	D23	V_{DD}	D12	D6	D1	DDV_DD	V_{BBP}	XRDY	XR/W
	•		•	•		•	•	•	•	•	•			•
EMU1	EMU3	XA12	XA8				DDV_D	D		LOCATO	R V _{SUBS}	MSTRB	HOLDA	RDY
•	•	•								•	•			•
A0	EMU0	EMU2	EMU4/SHZ	7							IOSTRB	HOLD	STRB	RESET
•	•	•	•								•	•	•	•
A4	A3	A2	A1								R/W	XF1	XF0	IACK
•	•	•	•			_					•	•	•	•
A5	A6	VSS	V_{DD}	ADV_{DD}			MS320 ottom \			MDV_{DD}		Vss	INT0	INT1
•	•	•	•	•			Ottom	VICVV		•	•	•	•	•
A7	A8	A9	A11								RSV1	RSV0	ĪNT3	INT2
•		•	•									•	•	
A10	A12	A14	A17								RSV7	RSV5	RSV3	RSV2
A13	A15	A18	A22				IODV _{DE}				CLKR1	RSV9	RSV6	RSV4
•	AIJ	•	A22				IODVDL)			CLRICT	1379	N3V0	N3V4
A16	A19	A21	IODV _{DD}	XD27	XD22	XD16	V_{DD}	XD5	EMU6	CLKX0	PDV _{DD}	FSR1	RSV10	RSV8
•	•	•	•	•	•	AB10	• 00	•	•	•	•	•	•	•
A20	A23	DVSS	XD28	XD23	XD19	XD14	Vss	XD7	XD2	TCLK1	CLKR0	DVSS	CLKX1	DR1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
XD31	CVSS	XD29	XD24	XD20	XD17	XD13	XD10	XD8	XD4	XD1	TCLK0	FSR0	DX1	FSX1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
XD30	XD26	XD25	XD21	XD18	XD15	XD12	XD11	XD9	XD6	XD3	XD0	DX0	FSX0	DR0

TMS320C30 GEL Pinout (Bottom View)

TMS320C30 GEL Pin Assignments (Alphabetical)†

PIN	1	PIN		PI	N	PIN	1	PII	N
NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.
A0 A1 A2 A3 A4	F15 G12 G13 G14 G15	D8 D9 D10 D11 D12	B5 C6 A5 B6 D7	EMU6 FSR0 FSR1 FSX0 FSX1	M6 P3 M3 R2 P1	V _{BBP} VDD VDD VDD VDD	D3 D8 H4 H12 M8	XD15 XD16 XD17 XD18 XD19	R10 M9 P10 R11 N10
A5 A6 A7 A8 A9	H15 H14 J15 J14 J13	D13 D14 D15 D16 D17	A6 C7 B7 A7 A8	H1 H3 HOLD HOLDA IACK	B3 A1 F3 E2 G1	VSS VSS VSS VSS VSUBS	C8 H3 H13 N8 E4	XD20 XD21 XD22 XD23 XD24	P11 R12 M10 N11 P12
A10 A11 A12 A13 A14	K15 J12 K14 L15 K13	D18 D19 D20 D21 D22	B8 A9 B9 C9 A10	INTO INT1 INT2 INT3 IODV _{DD}	H2 H1 J1 J2 L8	X1 X2/CLKIN XA0 XA1 XA2	C2 B1 A13 A14 D11	XD25 XD26 XD27 XD28 XD29	R13 R14 M11 N12 P13
A15 A16 A17 A18 A19	L14 M15 K12 L13 M14	D23 D24 D25 D26 D27	D9 B10 A11 C10 B11	IODV _{DD} IOSTRB IV _{SS} LOCATOR MC/MP	M12 F4 B14 E5 D15	XA3 XA4 XA5 XA6 XA7	C12 B13 A15 B15 C14	XD30 XD31 XF0 XF1 XRDY	R15 P15 G2 G3 D2
A20 A21 A22 A23 ADV _{DD}	N15 M13 L12 N14 D12	D28 D29 D30 D31 DDV _{DD}	A12 D10 C11 B12 D4	MDV _{DD} MSTRB PDV _{DD} RDY RESET	H5 E3 M4 E1 F1	XA8 XA9 XA10 XA11 XA12	E12 D13 C15 D14 E13	XR/W	D1
ADV _{DD} CLKR0 CLKR1 CLKX0 CLKX1	H11 N4 L4 M5 N2	DDV _{DD} DR0 DR1 DV _{SS} DV _{SS}	E8 R1 N1 C3 C13	RSV0 RSV1 RSV2 RSV3 RSV4	J3 J4 K1 K2 L1	XD0 XD1 XD2 XD3 XD4	R4 P5 N6 R5 P6		
CV _{SS} CV _{SS} D0 D1 D2	B2 P14 C4 D5 A2	DV _{SS} DV _{SS} DX0 DX1 EMU0	N3 N13 R3 P2 F14	RSV5 RSV6 RSV7 RSV8 RSV9	K3 L2 K4 M1 L3	XD5 XD6 XD7 XD8 XD9	M7 R6 N7 P7 R7		
D3 D4 D5 D6 D7	A3 B4 C5 D6 A4	EMU1 EMU2 EMU3 EMU4/SHZ EMU5	E15 F13 E14 F12 C1	RSV10 R/W STRB TCLK0 TCLK1	M2 G4 F2 P4 N5	XD10 XD11 XD12 XD13 XD14	P8 R8 R9 P9 N9		

[†] ADV_{DD}, CV_{SS}, DDV_{DD}, DV_{SS}, IODV_{DD}, IV_{SS}, MDV_{DD}, PDV_{DD}, V_{DD}, and V_{SS} pins are on a common plane internal to the device.


TMS320C30 GEL Pin Assignments (Numerical)[†]

PIN	1	PIN		PI	N	PIN	N	PI	N
NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.
H3 D2 D3 D7 D10	A1 A2 A3 A4 A5	D30 XA3 DVSS XA7 XA10	C11 C12 C13 C14 C15	XF <u>1</u> R/W A1 A2 A3	G3 G4 G12 G13 G14	A13 RSV8 RSV10 FSR1 PDVDD	L15 M1 M2 M3 M4	XD17 XD20 XD24 XD29 CVSS	P10 P11 P12 P13 P14
D13 D16 D17 D19 D22	A6 A7 A8 A9 A10	XR/W XRDY VBBP DDV _{DD} D1	D1 D2 D3 D4 D5	A4 INT1 INT0 VSS VDD	G15 H1 H2 H3 H4	CLKX0 EMU6 XD5 VDD XD16	M5 M6 M7 M8 M9	XD31 DR0 FSX0 DX0 XD0	P15 R1 R2 R3 R4
D25 D28 XA0 XA1 XA5	A11 A12 A13 A14 A15	D6 D12 V _{DD} D23 D29	D6 D7 D8 D9 D10	MDV _{DD} ADV _{DD} V _{DD} V _{SS} A6	H5 H11 H12 H13 H14	XD22 XD27 IODV _{DD} A21 A19	M10 M11 M12 M13 M14	XD3 XD6 XD9 XD11 XD12	R5 R6 R7 R8 R9
X2/CLKIN CVSS H1 D4 D8	B1 B2 B3 B4 B5	XA2 ADV _{DD} XA9 XA1 <u>1</u> MC/MP	D11 D12 D13 D14 D15	A5 INT2 INT3 RSV0 RSV1	H15 J1 J2 J3 J4	A16 DR1 CLKX1 DV _{SS} CLKR0	M15 N1 N2 N3 N4	XD15 XD18 XD21 XD25 XD26	R10 R11 R12 R13 R14
D11 D15 D18 D20 D24	B6 B7 B8 B9 B10	RDY HOLDA MSTRB VSUBS LOCATOR	E1 E2 E3 E4 E5	A11 A9 A8 A7 RSV2	J12 J13 J14 J15 K1	TCLK1 XD2 XD7 VSS XD14	N5 N6 N7 N8 N9	XD30	R15
D27 D31 XA4 IV _{SS} XA6	B11 B12 B13 B14 B15	DDV _{DD} XA8 XA12 EMU3 EMU1	E8 E12 E13 E14 E15	RSV3 RSV5 RSV7 A17 A14	K2 K3 K4 K12 K13	XD19 XD23 XD28 DVSS A23	N10 N11 N12 N13 N14		
EMU5 X1 DV _{SS} D0 D5	C1 C2 C3 C4 C5	RESET STRB HOLD IOSTRB EMU4/SHZ	F1 F2 F3 F4 F12	A12 A10 RSV4 RSV6 RSV9	K14 K15 L1 L2 L3	A20 FSX1 DX1 FSR0 TCLK0	N15 P1 P2 P3 P4		
D9 D14 VSS D21 D26	C6 C7 C8 C9 C10	EMU2 EMU0 A0 IACK XF0	F13 F14 F15 G1 G2	CLKR1 IODV _{DD} A22 A18 A15	L4 L8 L12 L13 L14	XD1 XD4 XD8 XD10 XD13	P5 P6 P7 P8 P9		

[†] ADV_{DD}, CV_{SS}, DDV_{DD}, DV_{SS}, IODV_{DD}, IV_{SS}, MDV_{DD}, PDV_{DD}, V_{DD}, and V_{SS} pins are on a common plane internal to the device.

TMS320C30 PPM pinout and pin assignments

The TMS320C30 PPM device is packaged in a 208-pin plastic quad flatpack (PQFP) JEDEC standard package. The following illustration shows the pinout for this package. The pin assignments are listed in the TMS320C30 PPM pin assignments (alphabetical) table and the TMS320C30 PPM pin assignments (numerical) table.

TMS320C30 PPM Pinout

TMS320C30 PPM Pin Assignments (Alphabetical)[†]

PIN	PIN			PIN		PIN		PIN		PIN	
NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.
A0	139	CVSS	107	D31	165	ĪNT2	32	TCLK1	62	XD2	66
A1	138	CVSS	108	DDV _{DD}	171	ĪNT3	33	V_{DD}	26	XD3	69
A2	137	CVSS	133	DDV _{DD}	172	IODV _{DD}	67	V_{DD}	27	XD4	70
A3	136	CVSS	183	DDV _{DD}	206	IODV _{DD}	68	V_{DD}	77	XD5	71
A4	135	D0	203	DDV _{DD}	207	IODV _{DD}	102	V_{DD}	78	XD6	72
A5	134	D1	202	DR0	55	IODV _{DD}	103	V_{DD}	130	XD7	73
A6	129	D2	201	DR1	45	IOSTRB	12	V_{DD}	131	XD8	74
A7	128	D3	200	DVSS	2	IV _{SS}	153	V_{DD}	181	XD9	75
A8	127	D4	199	DVSS	51	IVSS	154	V_{DD}	182	XD10	76
A9	126	D5	198	DVSS	105	MC/MP	145	VSS	1	XD11	82
A10	125	D6	197	DVSS	106	MDV _{DD}	16	VSS	29	XD12	83
A11	124	D7	196	DVSS	132	MDV_{DD}	17	VSS	30	XD13	84
A12	123	D8	195	DVSS	155	MSTRB	11	V _{SS}	80	XD14	85
A13	122	D9	194	DVSS	156	NC	8	VSS	81	XD15	86
A14	119	D10	193	DVSS	184	NC	28	VSS	105	XD16	87
A15	118	D11	192	DX0	60	NC	104	VSS	156	XD17	88
A16	117	D12	191	DX1	50	NC	208	VSS	185	XD18	89
A17	116	D13	190	EMU0	140	PDV _{DD}	53	VSUBS	7	XD19	90
A18	115	D14	189	EMU1	141	PDV _{DD}	54	X1	6	XD20	91
A19	114	D15	188	EMU2	142	RDY	18	X2/CLKIN	5	XD21	92
A20	113	D16	187	EMU3	143	RESET	21	XA0	164	XD22	93
A21	112	D17	186	EMU4/SHZ	144	RSV0	34	XA1	163	XD23	94
A22	111	D18	180	EMU5	9	RSV1	35	XA2	162	XD24	95
A23	110	D19	179	EMU6	63	RSV2	36	XA3	161	XD25	96
ADV_{DD}	120	D20	178	FSR0	56	RSV3	37	XA4	160	XD26	97
ADV _{DD}	121	D21	177	FSR1	46	RSV4	38	XA5	159	XD27	98
ADV _{DD}	157	D22	176	FSX0	59	RSV5	39	XA6	152	XD28	99
ADV_{DD}	158	D23	175	FSX1	49	RSV6	40	XA7	151	XD29	100
CLKR0	57	D24	174	H1	204	RSV7	41	XA8	150	XD30	101
CLKR1	47	D25	173	H3	205	RSV8	42	XA9	148	XD31	109
CLKX0	58	D26	170	HOLD	15	RSV9	43	XA10	149	XF0	23
CLKX1	48	D27	169	HOLDA	14	RSV10	44	XA11	147	XF1	22
CVSS	3	D28	168	IACK	24	R/W	20	XA12	146	XRDY	10
CVSS	4	D29	167	ĪNT0	25	STRB	19	XD0	64	XR/W	13
CVSS	52	D30	166	ĪNT1	31	TCLK0	61	XD1	65		

[†]ADV_{DD}, CV_{SS}, DDV_{DD}, DV_{SS}, IODV_{DD}, IV_{SS}, MDV_{DD}, PDV_{DD}, V_{DD}, and V_{SS} pins are on a common plane internal to the device.

TMS320C30 PPM Pin Assignments (Numerical)[†]

	PIN		PIN		PIN		PIN		PIN
NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME	NO.	NAME
1	V _{SS}	43	RSV9	85	XD14	127	A8	169	D27
2	DVSS	44	RSV10	86	XD15	128	A7	170	D26
3	CVSS	45	DR1	87	XD16	129	A6	171	DDV_DD
4	CVSS	46	FSR1	88	XD17	130	V_{DD}	172	DDV_DD
5	X2/CLKIN	47	CLKR1	89	XD18	131	V_{DD}	173	D25
6	X1	48	CLKX1	90	XD19	132	DV _{SS}	174	D24
7	V _{SUBS}	49	FSX1	91	XD20	133	CVSS	175	D23
8	NC	50	DX1	92	XD21	134	A5	176	D22
9	EMU5	51	DVSS	93	XD22	135	A4	177	D21
10	XRDY	52	CVSS	94	XD23	136	A3	178	D20
11	MSTRB	53	PDV_{DD}	95	XD24	137	A2	179	D19
12	IOSTRB	54	PDV_{DD}	96	XD25	138	A1	180	D18
13	XR/W	55	DR0	97	XD26	139	A0	181	V_{DD}
14	HOLDA	56	FSR0	98	XD27	140	EMU0	182	V_{DD}
15	HOLD	57	CLKR0	99	XD28	141	EMU1	183	CVSS
16	MDV_DD	58	CLKX0	100	XD29	142	EMU2	184	DVSS
17	MDV_DD	59	FSX0	101	XD30	143	EMU3	185	VSS
18	RDY	60	DX0	102	$IODV_{DD}$	144	EMU4/SHZ	186	D17
19	STRB	61	TCLK0	103	IODV _{DD}	145	MC/MP	187	D16
20	R/W	62	TCLK1	104	NC	146	XA12	188	D15
21	RESET	63	EMU6	105	VSS	147	XA11	189	D14
22	XF1	64	XD0	106	DVSS	148	XA10	190	D13
23	XF0	65	XD1	107	CVSS	149	XA9	191	D12
24	IACK	66	XD2	108	CVSS	150	XA8	192	D11
25	ĪNT0	67	IODV _{DD}	109	XD31	151	XA7	193	D10
26	V_{DD}	68	$IODV_{DD}$	110	A23	152	XA6	194	D9
27	V_{DD}	69	XD3	111	A22	153	IV_{SS}	195	D8
28	NC	70	XD4	112	A21	154	IV_{SS}	196	D7
29	V_{SS}	71	XD5	113	A20	155	DVSS	197	D6
30	Vss	72	XD6	114	A19	156	VSS	198	D5
31	INT1	73	XD7	115	A18	157	ADV_DD	199	D4
32	INT2	74	XD8	116	A17	158	ADV_DD	200	D3
33	INT3	75	XD9	117	A16	159	XA5	201	D2
34	RSV0	76	XD10	118	A15	160	XA4	202	D1
35	RSV1	77	V_{DD}	119	A14	161	XA3	203	D0
36	RSV2	78	V_{DD}	120	ADV_DD	162	XA2	204	H1
37	RSV3	79	DVSS	121	ADV_DD	163	XA1	205	H3
38	RSV4	80	Vss	122	A13	164	XA0	206	DDV_{DD}
39	RSV5	81	Vss	123	A12	165	D31	207	DDV_{DD}
40	RSV6	82	XD11	124	A11	166	D30	208	NC
41	RSV7	83	XD12	125	A10	167	D29		
42	RSV8	84	XD13	126	A9	168	D28		

[†] ADV_{DD}, CV_{SS}, DDV_{DD}, DV_{SS}, IODV_{DD}, IV_{SS}, MDV_{DD}, PDV_{DD}, V_{DD}, and V_{SS} pins are on a common plane internal to the device.

pin functions

This section provides signal descriptions for the TMS320C30 in the microprocessor mode. The following tables list each signal, the number of pins, type of operating mode(s) (that is, input, output, or high-impedance state as indicated by I, O, or Z), and a brief description of its function. All pins labeled NC have special functions and should not be connected by the user. A line over a signal name (for example, RESET) indicates that the signal is active low (true at logic 0 level). The signals are grouped according to function.

TMS320C30 Pin Functions

PIN NAME	QTY‡	TYPET	DESCRIPTION		NDITIO WHEN	
			PRIMARY BUS INTERFACE	•		
D31-D0	32	I/O/Z	32-bit data port of the primary bus interface	S	Н	R
A23-A0	24	O/Z	24-bit address port of the primary bus interface	S	Н	R
R/\overline{W}	1	O/Z	Read/write for primary bus interface. R/\overline{W} is high when a read is performed and low when a write is performed over the parallel interface.	S	Н	R
STRB	1	O/Z	External access strobe for the primary bus interface	S	Н	
RDY	1	ı	Ready. RDY indicates that the external device is prepared for a primary-bus-interface transaction to complete.			
HOLD	1	I	Hold for primary bus interface. When $\overline{\text{HOLD}}$ is a logic low, any ongoing transaction is completed. A23–A0, D31–D0, $\overline{\text{STRB}}$, and R/\overline{W} are in the high-impedance state and all transactions over the primary bus interface are held until $\overline{\text{HOLD}}$ becomes a logic high or the NOHOLD bit of the primary-bus-control register is set.			
HOLDA	1	O/Z	Hold acknowledge for primary bus interface. HOLDA is generated in response to a logic low on HOLD. HOLDA indicates that A23-A0, D31-D0, STRB, and R/W are in the high-impedance state and that all transactions over the bus are held. HOLDA is high in response to a logic high of HOLD or when the NOHOLD bit of the primary-bus-control register is set.	S		
			EXPANSION BUS INTERFACE			
XD31-XD0	32	I/O/Z	32-bit data port of the expansion bus interface	S		R
XA12-XA0	13	O/Z	13-bit address port of the expansion bus interface	S		R
XR/\overline{W}	1	O/Z	Read/write signal for expansion bus interface. When a read is performed, XR/\overline{W} is held high; when a write is performed, XR/\overline{W} is low.	S		R
MSTRB	1	O/Z	External memory access strobe for the expansion bus interface	S		
IOSTRB	1	O/Z	External I/O access strobe for the expansion bus interface	S		
XRDY	1	ı	Ready signal. XRDY indicates that the external device is prepared for an expansion-bus-interface transaction to complete.			
			CONTROL SIGNALS			
RESET	1	ı	Reset. When RESET is a logic low, the device is in the reset condition. When RESET becomes a logic high, execution begins from the location specified by the reset vector.			
INT3-INT0	4	I	External interrupts			
ĪACK	1	O/Z	Interrupt acknowledge. IACK is generated by the IACK instruction. IACK can be used to indicate the beginning or end of an interrupt-service routine.	S		
MC/MP	1	I	Microcomputer/microprocessor mode			
XF1, XF0	2	I/O/Z	External flags. XF1 and XF0 are used as general-purpose I/Os or to support interlocked processor instructions.	S		R

T I = input, O = output, Z = high-impedance state. All pins labeled NC have specified functions and should not be connected by the user.

[‡] Quantity is the same for GEL and PPM packages unless otherwise noted.

 $[\]S S = \overline{SHZ}$ active, $H = \overline{HOLD}$ active, $R = \overline{RESET}$ active

TMS320C30 Pin Functions (Continued)

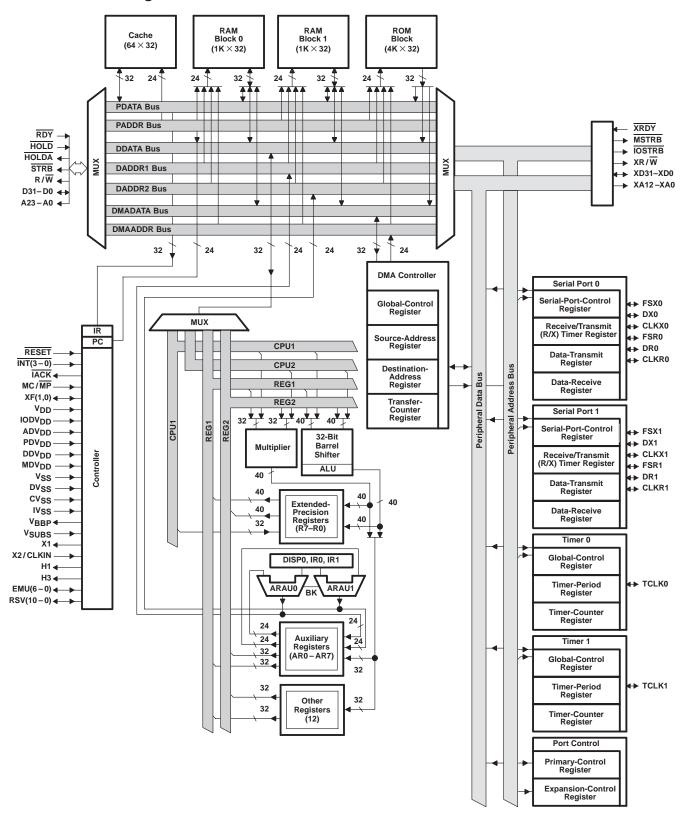
PI	N				CONDITION	ıs		
NAME	QT	γ‡	TYPE [†]	DESCRIPTION	WHEN SIGNAL IS Z T	VDE8		
				SERIAL PORT 0 SIGNALS	SIGNAL IS Z I	IFE3		
				Serial port 0 transmit clock. CLKX0 is the serial shift clock for the serial port 0				
CLKX0		1	I/O/Z	transmitter.	S	R		
DX0		1	I/O/Z	Data transmit output. Serial port 0 transmits serial data on DX0.	S	R		
FSX0	1 1/0		1		I/O/Z	Frame synchronization pulse for transmit. The FSX0 pulse initiates the transmit data process over DX0.	S	R
CLKR0		1 I/O/Z		I/O/Z Serial port 0 receive clock. CLKR0 is the serial shift clock for the serial port 0 receiver.		R		
DR0		1	I/O/Z	Data receive. Serial port 0 receives serial data on DR0.	S	R		
FSR0		1	I/O/Z	Frame synchronization pulse for receive. The FSR0 pulse initiates the receive data process over DR0.	S	R		
				SERIAL PORT 1 SIGNALS				
CLKX1		1	I/O/Z	Serial port 1 transmit clock. CLKX1 is the serial shift clock for the serial port 1 transmitter.	S	R		
DX1		1	I/O/Z					
FSX1	1 I/O/Z		I/O/Z	Frame synchronization pulse for transmit. The FSX1 pulse initiates to		R		
CLKR1		1 I/O/Z		I/O/Z Serial port 1 receive clock. CLKR1 is the serial shift clock for the serial port 1 receiver.		R		
DR1		1	I/O/Z	Data receive. Serial port 1 receives serial data on DR1.	S	R		
FSR1		1	I/O/Z	Frame synchronization pulse for receive. The FSR1 pulse initiates the receive data process over DR1.	S	R		
TCLK0		1	I/O/Z	Timer clock 0. As an input, TCLK0 is used by timer 0 to count external pulses. As an output, TCLK0 outputs pulses generated by timer 0.	S	R		
				TIMER 1 SIGNAL				
TCLK1		1	I/O/Z	Timer clock 1. As an input, TCLK1 is used by timer 1 to count external pulses. As an output, TCLK1 outputs pulses generated by timer 1.	S	R		
				SUPPLY AND OSCILLATOR SIGNALS				
	GEL	PPM						
V_{DD}	4	8	ı	5 V supply¶				
IODV _{DD}	2	4	I	5 V supply¶				
ADV_{DD}	2	4	I	5 V supply¶				
PDV _{DD}	1	2	ı	5 V supply¶				
DDV _{DD}	2	4	ı	5 V supply¶				
MDV_{DD}	1	2	ı	5 V supply¶				
V _{SS}	4	8	I	Ground				
DVSS	4	8	I	Ground				
CVSS	2	4	I	Ground				
IV _{SS}	2	1	I	Ground				

[†] I = input, O = output, Z = high-impedance state. All pins labeled NC have special functions and should not be connected by the user.
‡ Quantity is the same for GEL and PPM packages unless otherwise noted.
§ S = SHZ active, H = HOLD active, R = RESET active

 $[\]P$ Recommended decoupling capacitor is 0.1 $\mu\text{F}.$

TMS320C30 Pin Functions (Continued)

PIN				CONDITIONS
NAME	QTY [‡]	TYPE [†]	DESCRIPTION	WHEN SIGNAL IS Z TYPE§
			SUPPLY AND OSCILLATOR SIGNALS (CONTINUED)	
V_{BBP}	1	NC	V _{BB} pump oscillator output	
V _{SUBS}	1	I	Substrate terminal. Tie to ground.	
X1	1	0	Output from the internal oscillator for the crystal. If a crystal is not used, X1 should be left unconnected.	
X2/CLKIN	1	I	Input to the internal oscillator from the crystal or a clock	
H1	1	O/Z	External H1 clock. H1 has a period equal to twice CLKIN.	S
H3	1	O/Z	External H3 clock. H3 has a period equal to twice CLKIN.	S
			reserved¶	
EMU0-EMU2	3	I	Reserved. Use pullup resistors to 5 V.	
EMU3	1	O/Z	Reserved	S
EMU4/SHZ	1	I	Shutdown high impedance. When active, EMU4/SHZ shuts down the TMS320C30 and places all pins in the high-impedance state. EMU4/SHZ is used for board-level testing to ensure that no dual-drive conditions occur. CAUTION: A low on SHZ corrupts TMS320C30 memory and register contents. Reset the device with SHZ high to restore it to a known operating condition.	
EMU5, EMU6	2	NC	Reserved	
RSV10-RSV5	6	I/O	Reserved. Use pullup resistors to 5 V.	
RSV4-RSV0	5	ı	Reserved. Tie pins directly to 5 V.	
Locator	1#	NC	Reserved	


[†] I = input, O = output, Z = high-impedance state. All pins labeled NC have special functions and should not be connected by the user.

[‡] Quantity is the same for GEL and PPM packages unless otherwise noted. § S = SHZ active, H = HOLD active, R = RESET active

[¶] Follow the connections specified for the reserved pins. Use 18-kΩ-22-kΩ pullup resistors for best results. All 5-V supply pins must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

[#] For the GEL package only. There is no locator in the PPM package.

functional block diagram

memory map

Figure 1 depicts the memory map for the TMS320C30. Refer to the TMS320C3x User's Guide (literature number SPRU031) for a detailed description of this memory mapping. Figure 2 shows the reset, interrupt, and trap vector/branches memory-map locations. Figure 3 shows the peripheral bus memory-mapped registers.

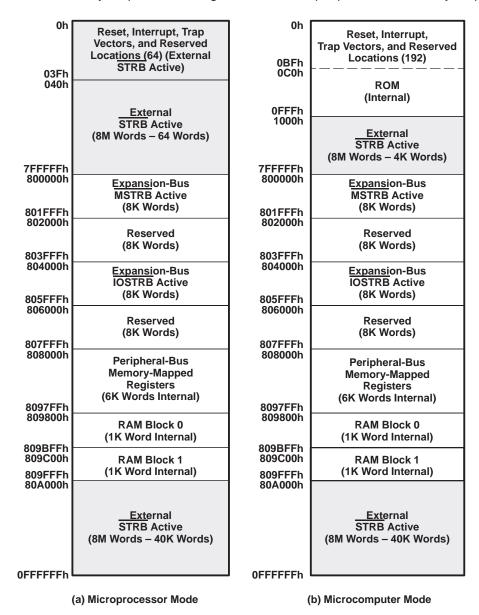


Figure 1. TMS320C30 Memory Map

memory map (continued)

00h	Reset
01h	ĪNT0
02h	ĪNT1
03h	ĪNT2
04h	ĪNT3
05h	XINT0
06h	RINT0
07h	XINT1
08h	RINT1
09h	TINT0
0Ah	TINT1
0Bh	DINT
0Ch	Decembed
1Fh	Reserved
20 h	TRAP 0
	•
3Bh	TRAP 27
3Ch	Reserved
3Fh	ixesel veu

00h	Reset
01h	ĪNT0
02h	INT1
03h	ĪNT2
04h	ĪNT3
05h	XINT0
06h	RINT0
07h	XINT1
08h	RINT1
09h	TINT0
0Ah	TINT1
0Bh	DINT
0Ch	Reserved
1Fh	Keserveu
20h	TRAP 0
	•
	•
	•
3Bh	TRAP 27
3Ch	
BFh	Reserved

(a) Microprocessor Mode

(a) Microcomputer Mode

Figure 2. Reset, Interrupt, and Trap Vector/Branches Memory-Map Locations

memory map (continued)

808000h	DMA Global Control
808004h	DMA Source Address
808006h	DMA Destination Address
9090096	DMA Transfer Country
808008h	DMA Transfer Counter
808020h	Timer 0 Global Control
808024h	Timer 0 Counter
808028h	Timer 0 Period
808030h	Timer 1 Global Control
808034h	Timer 1 Counter
808038h	Timer 1 Period Register
808040h	Serial Port 0 Global Control
808042h	FSX/DX/CLKX Serial Port 0 Control
808043h	FSR/DR/CLKR Serial Port 0 Control
808044h	Serial Port 0 R/X Timer Control
808045h	Serial Port 0 R/X Timer Counter
808046h	Serial Port 0 R/X Timer Period
808048h	Serial Port 0 Data Transmit
80804Ch	Serial Port 0 Data Receive
808050h	Serial Port 1 Global Control
808052h	FSX/DX/CLKX Serial Port 1 Control
808053h	FSR/DR/CLKR Serial Port 1 Control
808054h	Serial Port 1 R/X Timer Control
808055h	Serial Port 1 R/X Timer Counter
808056h	Serial Port 1 R/X Timer Period
808058h	Serial Port 1 Data Transmit
80805Ch	Serial Port 1 Data Receive
808060h	Expansion-Bus Control
808064h	Primary-Bus Control
'	

[†]Shading denotes reserved address locations

Figure 3. Peripheral Bus Memory-Mapped Registers[†]

TMS320C30 DIGITAL SIGNAL PROCESSOR

SPRS032A - APRIL 1996 - REVISED JUNE 1997

absolute maximum ratings over specified temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1)	0.3 V to 7 V
Input voltage range, V _I	– 0.3 V to 7 V
Output voltage range, V _O	0.3 V to 7 V
Continuous power dissipation (see Note 2)	3.15 W
Operating case temperature range, T _C	0°C to 85°C
Storage temperature range, T _{stg}	– 55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to VSS.

recommended operating conditions (see Note 3)

			MIN	NOM [‡]	MAX	UNIT
V_{DD}	Supply voltage (AV _{DD} , etc.)		4.75	5	5.25	V
VSS	Supply voltage (CV _{SS} , etc.)			0		V
\/	High level input voltage	All other pins	2		V _{DD} + 0.3§	V
VIH	High-level input voltage	CLKIN	2.6		V _{DD} + 0.3§	V
V _{IL}	Low-level input voltage		- 0.3§		0.8	V
lOH	High-level output current				- 300	μΑ
l _{OL}	Low-level output current				2	mA
TC	Operating case temperature		0		85	°C

[‡] All nominal values are at $V_{DD} = 5 \text{ V}$, T_A (ambient air temperature)= 25°C.

NOTE 3: All input and output voltage levels are TTL-compatible.

^{2.} Actual operating power is less. This value is obtained under specially produced worst-case test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and extension buses at the maximum rate possible. See normal (ICC) current specification in the electrical characteristics table and also read Calculation of TMS320C30 Power Dissipation Application Report (literature number SPRA020).

[§] These values are derived from characterization and not tested.

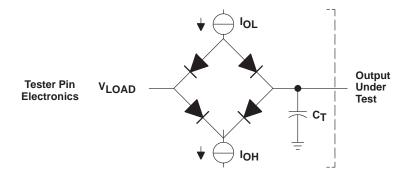
electrical characteristics over recommended ranges of supply voltage (unless otherwise noted) (see Note 3)

	PARAMETER		TEST CONDITION	_{IS} †	MIN	TYP [‡]	MAX	UNIT
Vон	High-level output voltage		$V_{DD} = MIN, I_{OH} = MAX$		2.4	3		V
VOL	Low-level output voltage		$V_{DD} = MIN, I_{OL} = MAX$			0.3	0.6§	V
IZ	High-impedance current		$V_{DD} = MAX$		- 20		20	μΑ
Ц	Input current		$V_I = V_{SS}$ to V_{DD}		- 10		10	μΑ
lιΡ	Input current		Inputs with internal pullups (see Note 4)	- 600		20	μΑ
				'320C30-27		130	600	
	Cupply ourrent		$T_A = 25^{\circ}C$, $V_{DD} = MAX$,	'320C30-33		150	600	mA
Icc	Supply current		$t_{C(CI)} = MIN$, See Note 5	'320C30-40		175	600	IIIA
				'320C30-50		200	600	
C.	Input capacitance	CLKIN					25	2
Ci	Input capacitance	All other inputs					15	pF
Co	Output capacitance						20¶	pF

[†] For conditions shown as MIN/MAX, use the appropriate value specified in recommended operating conditions.

NOTES: 3. All input and output voltage levels are TTL-compatible.

- 4. Pins with internal pullup devices: \(\overline{\text{INT0}}\)-\(\overline{\text{INT0}}\)-\(\overline{\text{INT0}}\), \(\overline{\text{NP}}\), \(\overline{\text{RSV0}}\)-\(\overline{\text{RSV10}}\). Although \(\overline{\text{RSV10}}\)-\(\overline{\text{RSV10}}\) have internal pullup devices, external pullups should be used on each pin as identified in the pin functions tables.
- Actual operating current is less than this maximum value. This value is obtained under specially produced worst-case test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See *Calculation of TMS320C30 Power Dissipation Application Report* (literature number SPRA020).



[‡] All typical values are at $V_{DD} = 5 \text{ V}$, T_A (ambient air temperature)= 25°C.

[§] These values are derived from characterization but not tested.

[¶] These values are derived by design but not tested.

PARAMETER MEASUREMENT INFORMATION

Where: IOL = 2 mA (all outputs) IOH = 300 μ A (all outputs) VLOAD = 2.15 V CT = 80-pF typical load-circuit capacitance

Figure 4. Test Load Circuit

signal transition levels

TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V. Output transition times are specified as follows (see Figure 5):

- For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be no longer high is 2 V and the level at which the output is said to be low is 1 V.
- For a low-to-high transition, the level at which the output is said to be no longer low is 1 V and the level at which the output is said to be high is 2 V.



Figure 5. TTL-Level Outputs

Transition times for TTL-compatible inputs are specified as follows (see Figure 6):

- For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is 2 V and the level at which the input is said to be low is 0.8 V.
- For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is 0.8 V and the level at which the input is said to be high is 2 V.

Figure 6. TTL-Level Inputs

PARAMETER MEASUREMENT INFORMATION

timing parameter symbology

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. In order to shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows, unless otherwise noted:

Α	(L)A30-(L)A0 or (L)Ax	IOS	IOSTRB
ASYNCH	Asynchronous reset signals in the high-impedance state	(M)S	(M)STRB, includes STRB and MSTRB
CH	CLKX0 and CLKX1	RDY	RDY
CI	CLKIN	RESET	RESET
CLKR	CLKR0 and CLKR1	RW	R/\overline{W}
CONTROL	Control signals	S	(M)S, which includes MSTRB, STRB; and IOS, IOSTRB
D	D31 – D0 or Dx	SCK	CLKX/R, includes CLKX0, CLKX1, CLKR0, and CLKR1
DR	DR0 and DR1	TCLK	TCLK0 and TCLK1
DX	DX0 and DX1	XA	XA12-XA0 or XAx
FS	FSX/R, includes FSX0, FSX1, FSR0, and FSR1	(X)A	Includes A23-A0 and XA12-XA0
FSR	FSR0 and RSR1	XD	XD31-XD0 or XDx
FSX	FSX0 and FSX1	(X)D	Includes D31-D0 and XD31-XD0
GPIO	General-purpose input/output (peripheral pins include CLKX0/1, CLKR01, DX0/1, DR0/1, FSX0/1, FSR0/1, TCLK0/1)	XF	XFx, includes XF0 and XF1
Н	H1 and H3	XF0	XF0
H1	H1	XF1	XF1
H3	H3	XFIO	XFx switching from input to output
HOLD	HOLD	XRDY	XRDY
HOLDA	HOLDA	(X)RDY	(X)RDY, includes RDY and XRDY
IACK	IACK	XRW	XR/W
INT	INT3-INTO	(X)RW	(X)R/ \overline{W} , includes R/ \overline{W} and XR/ \overline{W}

X2/CLKIN, H1, and H3 timing

The following table defines the timing parameters for the X2/CLKIN, H1, and H3 interface signals. The numbers shown in Figure 7 and Figure 8 correspond with those in the NO. column of the table below. Refer to the RESET timing in Figure 19 for CLKIN to H1 and H3 delay specification.

timing parameters for X2/CLKIN, H1, H3 (see Figure 7 and Figure 8)

NO.			'C30	-27	'C30)-33	'C30	-40	'C30	-50	UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
1	t _f (CI)	Fall time, CLKIN		6†		5†		5†		5†	ns
2	tw(CIL)	Pulse duration, CLKIN low $t_{C(CI)} = min$	14		10		9		7		ns
3	tw(CIH)	Pulse duration, CLKIN high $t_{C(CI)} = min$	14		10		9		7		ns
4	tr(CI)	Rise time, CLKIN		6†		5†		5†		5†	ns
5	t _C (CI)	Cycle time, CLKIN	37	303	30	303	25	303	20	303	ns
6	^t f(H)	Fall time, H1 and H3		4		3		3		3	ns
7	tw(HL)	Pulse duration, H1 and H3 low	P-6 [‡]		P-6 [‡]		P-5 [‡]		P-5 [‡]		ns
8	tw(HH)	Pulse duration, H1 and H3 high	P-7 [‡]		P-7 [‡]		P-6 [‡]		P-6 [‡]		ns
9	t _{r(H)}	Rise time, H1 and H3		5		4		3		3	ns
9.1	^t d(HL-HH)	Delay time, from H1 low to H3 high or from H3 low to H1 high	0	6	0	5	0	4	0	4	ns
10	t _{c(H)}	Cycle time, H1 and H3	74	606	60	606	50	606	40	606	ns

[†] Specified by design but not tested

 $^{^{\}ddagger}P = t_{C(CI)}$

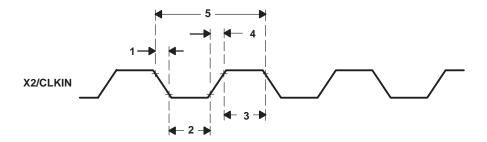


Figure 7. Timing for X2/CLKIN

X2/CLKIN, H1, and H3 timing (continued)

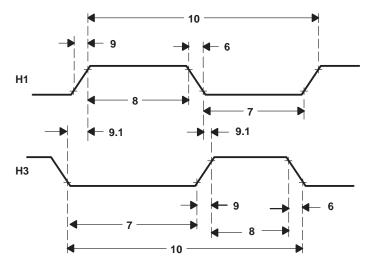


Figure 8. Timing for H1 and H3

The following table defines memory read/write timing parameters for (M)STRB. The numbers shown in Figure 9 and Figure 10 correspond with those in the NO. column of the table.

timing parameters for a memory $[(\overline{M})STRB = 0]$ read/write (see Figure 9 and Figure 10)

NO.			'C30-27		,C30-	33	'C30	-40	'C30-50		UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
11	td[H1L-(M)SL]	Delay time, H1 low to (M)STRB low	0†	13	0†	10	0†	6‡	0†	4	ns
12	^t d[H1L-(M)SH]	Delay time, H1 low to (M)STRB high	0†	13	0†	10	0†	6	0†	4	ns
13.1	^t d(H1H-RWL)	Delay time, H1 high to R/W low	0†	13	0†	10	0†	9	0†	7	ns
13.2	^t d(H1H-XRWL)	Delay time, H1 high to XR/W low	0†	19	0†	15	0†	13	0†	11	ns
14.1	^t d(H1L-A)	Delay time, H1 low to A valid	0†	16	0†	14	0†	11	0†	9	ns
14.2	^t d(H1L-XA)	Delay time, H1 low to XA valid	0†	12	0†	10	0†	9	0†	8	ns
15.1	t _{su(D-H1L)} R	Setup time, D before H1 low (read)	18		16		14		10		ns
15.2	t _{su(XD-H1L)R}	Setup time, XD before H1 low (read)	21		18		16		14		ns
16	^t h[H1L-(X)D]R	Hold time, (X)D after H1 low (read)	0		0		0		0		ns
17.1	t _{su} (RDY-H1H)	Setup time, RDY before H1 high	10		8		8		6		ns
17.2	t _{su(XRDY-H1H)}	Setup time, XRDY before H1 high	11		9		9		8		ns
18	th[H1H-(X)RDY]	Hold time, (X)RDY after H1 high	0		0		0		0		ns
19	td[H1H-(X)RWH]W	Delay time, H1 high to $(X)R/\overline{W}$ high (write)		13		10		9		7	ns
20	t _V [H1L-(X)D]W	Valid time, (X)D after H1 low (write)		25		20		17		14	ns
21	th[H1H-(X)D]W	Hold time, (X)D after H1 high (write)	0†		0†		0†		0†		ns
22.1	^t d(H1H-A)W	Delay time, H1 high to A valid on back-to-back write cycles (write)		23		18		15		12	ns
22.2	^t d(H1H-XA)W	Delay time, H1 high to XA valid on back-to-back write cycles (write)		32		25		21		18	ns
26	td[A-(X)RDY]	Delay time, (X)RDY from A valid		10§		8§		7§		6	ns

[†] Specified by design but not tested ‡ For 'C30 PPM, td[H1L-(M)SL] (max)=7 ns § This value is characterized but not tested

memory read/write timing (continued)

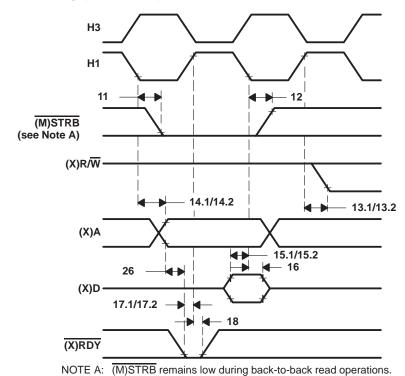


Figure 9. Timing for Memory [(M)STRB = 0] Read

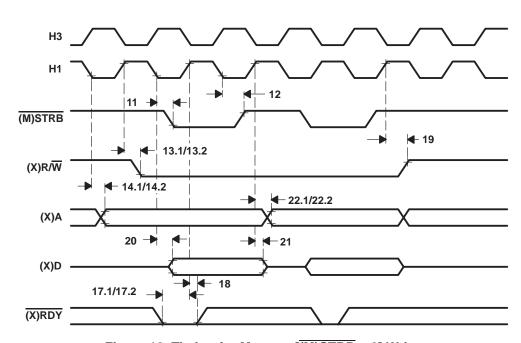


Figure 10. Timing for Memory $[\overline{(M)STRB} = 0]$ Write

memory read/write timing (continued)

The following table defines memory read timing parameters for $\overline{\text{IOSTRB}}$. The numbers shown in Figure 11 correspond with those in the NO. column of the table below.

timing parameters for a memory (IOSTRB = 0) read (see Figure 11)

NO.			,C30)-27	'C30-	33	'C30	-40	'C30	-50	UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
11.1	td(H1H-IOSL)	Delay time, H1 high to IOSTRB low	0†	13	0†	10	0†	9	0†	8	ns
12.1	td(H1H-IOSH)	Delay time, H1 high to IOSTRB high	0†	13	0†	10	0†	9	0†	8	ns
13.1	^t d(H1L-XRWH)	Delay time, H1 low to XR/W high	0†	13	0†	10	0†	9	0	8	ns
14.3	^t d(H1L-XA)	Delay time, H1 low to XA valid	0†	13	0†	10	0†	9	0†	8	ns
15.3	t _{su(XD-H1H)R}	Setup time, XD before H1 high (read)	19		15		13		11		ns
16.1	thH1H-XD)R	Hold time, XD after H1 high (read)	0		0		0		0		ns
17.3	tsu(XRDY-H1H)	Setup time, XRDY before H1 high	11		9		9		8		ns
18.1	^t h(H1H-XRDY)	Hold time, XRDY after H1 high	0		0		0		0		ns
23	^t d(H1L-XRWL)	Delay time, H1 low to XR/\overline{W} low	0†	19	0†	15	0†	13	0†	11	ns

[†] This value is characterized but not tested

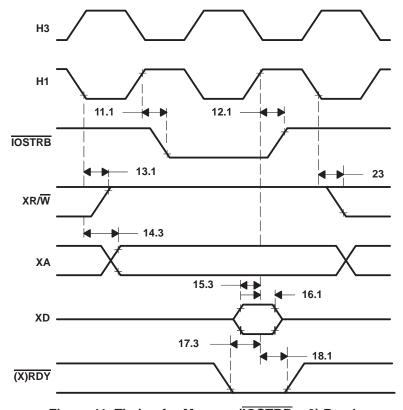


Figure 11. Timing for Memory (IOSTRB = 0) Read

memory read/write timing (continued)

The following table defines memory write timing parameters for $\overline{\text{IOSTRB}}$. The numbers shown in Figure 12 correspond with those in the NO. column of the table below.

timing parameters for a memory (IOSTRB = 0) write (see Figure 12)

NO.			,C30)-27	'C30	-33	,C30)-40	,C30	-50	UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
11.1	^t d(H1H-IOSL)	Delay time, H1 high to IOSTRB low	0†	13	0†	10	0†	9	0†	8	ns
12.1	^t d(H1H-IOSH)	Delay time, H1 high to IOSTRB high	0†	13	0†	10	0†	9	0†	8	ns
13.1	^t d(H1L-XRWH)	Delay time, H1 low to XR/W high	0†	13	0†	10	0†	9	0	8	ns
14.3	^t d(H1L-XA)	Delay time, H1 low to XA valid	0†	13	0†	10	0†	9	0†	8	ns
17.3	t _{su(XRDY-H1H)}	Setup time, XRDY before H1 high	11		9		9		8		ns
18.1	^t h(H1H-XRDY)	Hold time, XRDY after H1 high	0		0		0		0		ns
23	^t d(H1L-XRWL)	Delay time, H1 low to XR/W low	0†	19	0†	15	0†	13	0†	11	ns
24	t _V (H1H-XD)W	Valid time, (X)D after H1 high (write)		38		30		25		20	ns
25	^t h(H1L-XD)W	Hold time, (X)D after H1 low (write)	0		0		0		0		ns

[†] This value is characterized but not tested

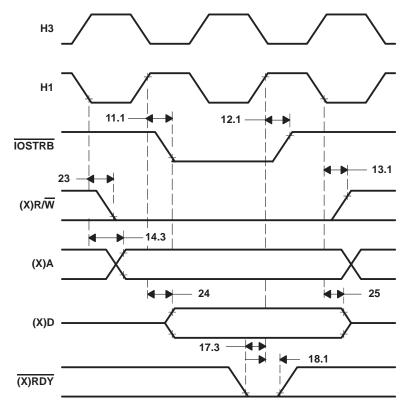


Figure 12. Timing for Memory (IOSTRB = 0) Write

XF0 and XF1 timing when executing LDFI or LDII

The following table defines the timing parameters for XF0 and XF1 during execution of LDFI or LDII. The numbers shown in Figure 13 correspond with those in the NO. column of the table below.

timing parameters for XF0 and XF1 when executing LDFI or LDII (see Figure 13)

NO.		'C30-27		'C3(0-33	'C30)-40	'C30-50		UNIT
NO.		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
1	t _{d(H3H-XF0L)} Delay time, H3 high to XF0 low		19		15		13		12	ns
2	t _{su(XF1-H1L)} Setup time, XF1 before H1 low	13		10		9		9		ns
3	t _{h(H1L-XF1)} Hold time, XF1 after H1 low	0		0		0		0		ns

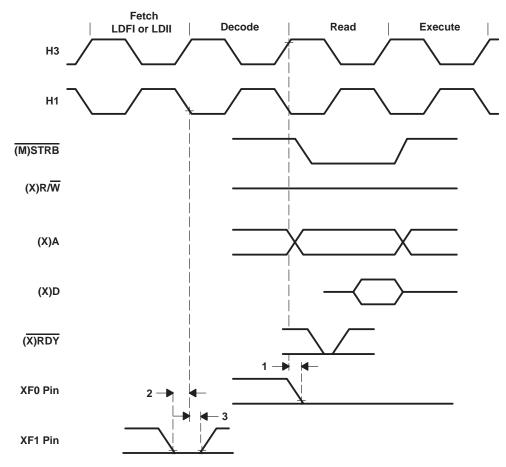


Figure 13. Timing for XF0 and XF1 When Executing LDFI or LDII

XF0 timing when executing STFI and STII

The following table defines the timing parameters for the XF0 pin during execution of STFI or STII. The number shown in Figure 14 corresponds with the number in the NO. column of the table below.

timing parameters for XF0 when executing STFI or STII (see Figure 14)

NO.		'C30)-27	,C30	0-33	,C30)-40	,C30)-50	UNIT
INO.		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	t _d (H3H-XF0H) Delay time, H3 high to XF0 high		19		15		13		12	ns

XF0 is always set high at the beginning of the execute phase of the interlock store instruction. When no pipeline conflicts occur, the address of the store is also driven at the beginning of the execute phase of the interlock store instruction. However, if a pipeline conflict prevents the store from executing, the address of the store will not be driven until the store can execute.

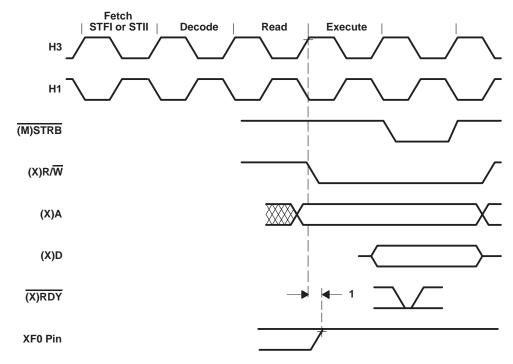


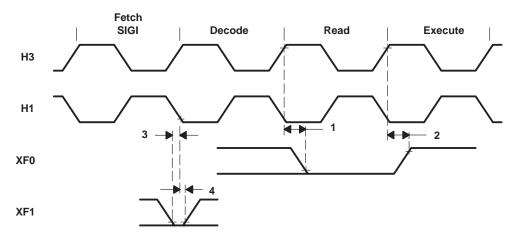
Figure 14. Timing for XF0 When Executing an STFI or STII

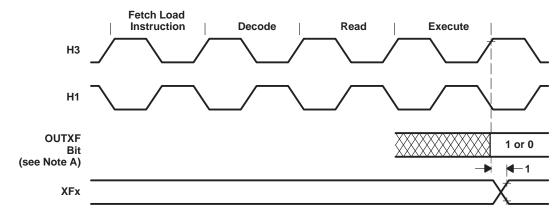
XF0 and XF1 timing when executing SIGI

The following table defines the timing parameters for the XF0 and XF1 pins during execution of SIGI. The numbers shown in Figure 15 correspond with those in the NO. column of the table below.

timing parameters for XF0 and XF1 when executing SIGI (see Figure 15)

NO.			'C30-27		'C30)-33	'C30)-40	'C30)-50	UNIT
INO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	^t d(H3H-XF0L)	Delay time, H3 high to XF0 low		19		15		13		12	ns
2	^t d(H3H-XF0H)	Delay time, H3 high to XF0 high		19		15		13		12	ns
3	t _{su(XF1-H1L)}	Setup time, XF1 before H1 low	13		10		9		9		ns
4	th(H1L-XF1)	Hold time, XF1 after H1 low	0		0	·	0		0	·	ns




Figure 15. Timing for XF0 and XF1 When Executing SIGI

loading when XFx is configured as an output

The following table defines the timing parameter for loading the XF register when the XFx pin is configured as an output. The number shown in Figure 16 corresponds with the number in the NO. column of the table below.

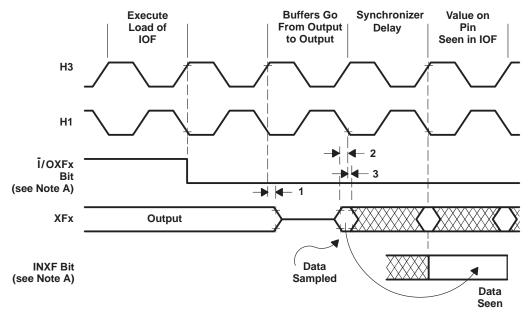
timing parameters for loading the XFx register when configured as an output pin (see Figure 16)

NO.		,C3	'C30-27		'C30-33		'C30-40		'C30-50	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	t _V (H3H-XF) Valid time, H3 high to XFx		19		15		13		12	ns

NOTE A: OUTXFx represents either bit 2 or 6 of the IOF register.

Figure 16. Timing for Loading XFx Register When Configured as an Output Pin

changing XFx from an output to an input


The following table defines the timing parameters for changing the XFx pin from an output pin to an input pin. The numbers shown in Figure 17 correspond with those in the NO. column of the table below.

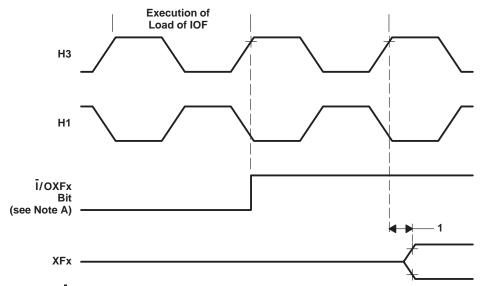
timing parameters of XFx changing from output to input mode (see Figure 17)

NO.				'C30-27		'C30-33		'C30-40		'C30-50	
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	th(H3H-XF)	Hold time, XFx after H3 high		19‡		15‡		13†‡		12‡	ns
2	t _{su(XF-H1L)}	Setup time, XFx before H1 low	13		10		9		9		ns
3	th(H1L-XF)	Hold time, XFx after H1 low	0		0		0		0		ns

[†]For 'C30 PPM, t_{n(H3H-XF01)} (max)=14 ns

[‡] This value is characterized but not tested

NOTE A: 1/OXFx represents bit 1 or 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register.


Figure 17. Timing for Change of XFx From Output to Input Mode

changing XFx from an input to an output

The following table defines the timing parameter for changing the XFx pin from an input pin to an output pin. The number shown in Figure 18 corresponds with the number in the NO. column of the table below.

timing parameters of XFx changing from input to output mode (see Figure 18)

I I			'C30-27		'C30-33		'C30-40		'C30-50		UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
1	td(H3H-XFIO)	Delay time, H3 high to XFx switching from input to output		25		20		17		17	ns

NOTE A: I/OXFx represents either bit 1 or 5 of the IOF register.

Figure 18. Timing for Change of XFx From Input to Output Mode

reset timing

RESET is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings are met, the exact sequence shown in Figure 19 occurs; otherwise, an additional delay of one clock cycle is possible.

The asynchronous reset signals include XF0/1, CLKX0/1, DX0/1, FSX0/1, CLKR0/1, DR0/1, FSR0/1, and TCLK0/1.

The following table defines the timing parameters for the RESET signal. The numbers shown in Figure 19 correspond with those in the NO. column of the following table.

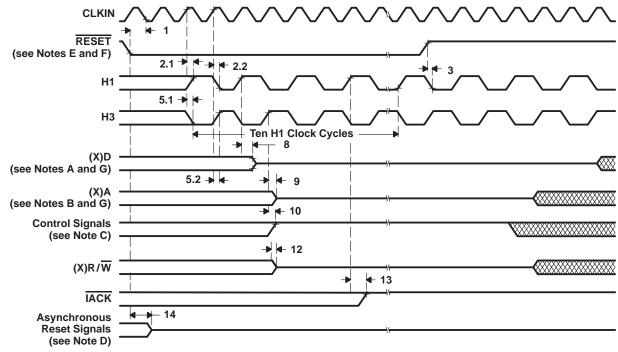
Resetting the device initializes the primary- and expansion-bus control registers to seven software wait states and therefore results in slow external accesses until these registers are initialized.

Note also that HOLD is an asynchronous input and can be asserted during reset.

timing parameters for RESET for the TMS320C30 (see Figure 19)

NO.			'C30)-27	'C30-33		'C30-40		'C30-50		UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII
1	tsu(RESET-CIL)	Setup time, RESET before CLKIN low	28	P†‡	10	P†‡	10	P†‡	10	P†‡	ns
2.1	^t d(CIH-H1H)	Delay time, CLKIN high to H1 high§¶	2	20	2	14	2	12	2	10	ns
2.2	^t d(CIH-H1L)	Delay time, CLKIN high to H1 low§¶	2	20	2	14	2	12	2	10	ns
3	tsu(RESETH-H1L)	Setup time, RESET high before H1 low and after ten H1 clock cycles	13		10		9		7		ns
5.1	td(CIH-H3L)	Delay time, CLKIN high to H3 low§¶	2	20	2	14	2	12	2	10	ns
5.2	td(CIH-H3H)	Delay time, CLKIN high to H3 high§¶	2	20	2	14	2	12	2	10	ns
8	^t dis[H1H-(X)D]	Disable time, H1 high to (X)D (high impedance)		19†		15†		13†		12†	ns
9	tdis[H3H-(X)A]	Disable time, H3 high to (X)A (high impedance)		13†		10†		9†		8†	ns
10	td(H3H-CONTROLH)	Delay time, H3 high to control signals high		13†		10†		9†		8†	ns
12	^t d(H1H-RWH)	Delay time, H1 high to R/W		13†		10†		9†		8†	ns
13	^t d(H1H-IACKH)	Delay time, H1 high to IACK high		13†		10†		9†		8†	ns
14	tdis(RESETL-ASYNCH)	Disable time, RESET low to asynchronous reset signals (high impedance)		31†		25†		21†		17†	ns

[†] This value is characterized but not tested



 $^{^{\}ddagger}P = t_{C(CI)}$

[§] See Figure 20 for temperature dependence for the 33-MHz and the 40-MHz TMS320C30.

 $[\]P$ See Figure 21 for temperature dependence for the 50-MHz TMS320C30.

reset timing (continued)

NOTES: A. (X)D includes D31-D0 and XD31-XD0.

- B. (X)A includes A23-A0 and XA12-XA0.
- C. Interface signals include STRB, MSTRB, and IOSTRB.
- D. Asynchronous reset signals include XF0/1, CLKX0/1, DX0/1, FSX0/1, CLKR0/1, DR0/1, FSR0/1, and TCLK0/1.
- E. RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence shown occurs; otherwise, an additional delay of one clock cycle is possible.
- F. The $R\overline{W}$ and $XR\overline{W}$ outputs are placed in a high-impedance state during reset and can be provided with a resistive pullup, nominally 18–22 k Ω , if undesirable spurious writes could be caused when these outputs go low.
- G. In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In microcomputer mode, the reset vector is fetched twice, with no software wait states.

Figure 19. Timing for RESET

4 2 0

reset timing (continued)

Figure 20 and Figure 21 illustrate CLKIN-to-H1 and CLKIN-to-H3 timing as a function of case temperature.

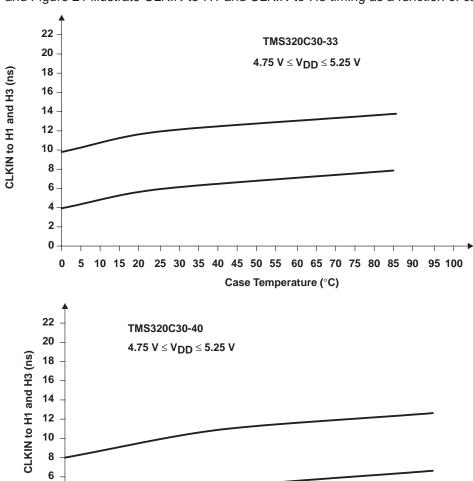


Figure 20. CLKIN to H1 and H3 as a Function of Temperature

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 Case Temperature (°C)

reset timing (continued)

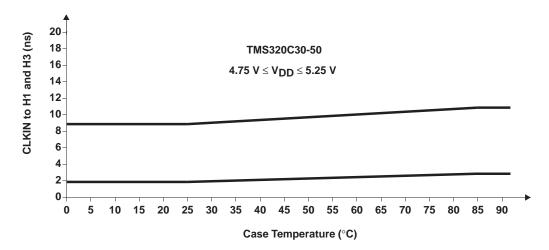


Figure 21. CLKIN to H1 and H3 as a Function of Temperature

interrupt response timing

The following table defines the timing parameters for the $\overline{\text{INT}}$ signals. The numbers shown in Figure 22 correspond with those in the NO. column of the table below.

timing parameters for INT3-INT0 (see Figure 22)

NO.			'C30-27		'C30-33		'C30-40		'C30-50		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	tsu(INT-H1L)	Setup time, INT3-INT0 before H1 low	19		15		13		10		ns
2	t _w (INT)	Pulse duration, interrupt to ensure only one interrupt	Р	2P†‡	Р	2P†‡	Р	2P†‡	Р	2P†‡	ns

[†] Characterized but not tested

The interrupt (INT) pins are asynchronous inputs that can be asserted at any time during a clock cycle. The TMS320C30 interrupts are level-sensitive, not edge-sensitive. Interrupts are detected on the falling edge of H1. Therefore, interrupts must be set up and held to the falling edge of H1 for proper detection. The CPU and DMA respond to detected interrupts on instruction-fetch boundaries only.

For the processor to recognize only one interrupt on a given input, an interrupt pulse must be set up and held to:

- A minimum of one H1 falling edge
- No more than two H1 falling edges

The TMS320C30 can accept an interrupt from the same source every two H1 clock cycles.

If the specified timings are met, the exact sequence shown in Figure 22 occurs; otherwise, an additional delay of one clock cycle is possible.

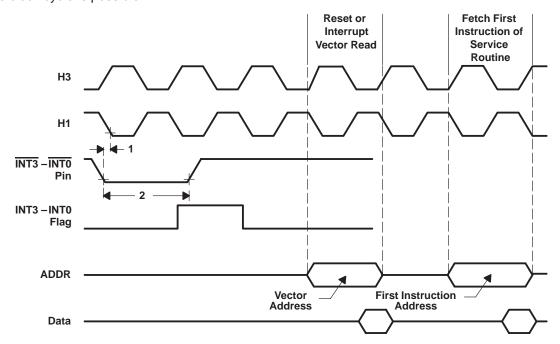


Figure 22. Timing for INT3-INT0 Response

 $P = t_{C(H)}$

interrupt-acknowledge timing

The IACK output goes active on the first half-cycle (H1 rising) of the decode phase of the IACK instruction and goes inactive at the first half-cycle (H1 rising) of the read phase of the IACK instruction.

The following table defines the timing parameters for the \overline{IACK} signal. The numbers shown in Figure 23 correspond with those in the NO. column of the table below.

timing parameters for IACK (see Note 6 and Figure 23)

NO.		'C30-27	'C30-33	'C30-40	'C30-50	UNIT
INO.		MIN MAX	MIN MAX	MIN MAX	MIN MAX	ONIT
1	td(H1H-IACKL) Delay time, H1 high to IACK low	13	10	9	7	ns
2	td(H1H-IACKH) Delay time, H1 high to IACK high	13	10	9	7	ns

NOTE 6: IACK goes active on the first half-cycle (H1 rising) of the decode phase of the IACK instruction and goes inactive at the first half-cycle (H1 rising) of the read phase of the IACK instruction. Because of the pipeline conflicts, IACK remains low for one cycle even if the decode phase of the IACK instruction is extended.

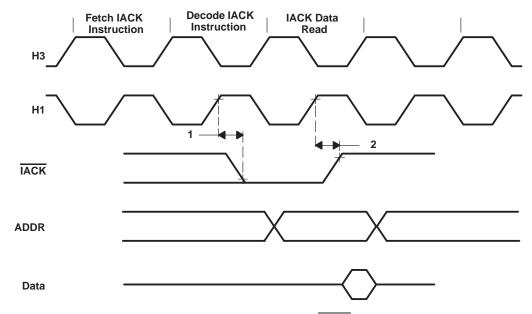


Figure 23. Timing for IACK

serial-port timing parameters (see Figure 24 and Figure 25)

NO.				'320C	30-27	UNIT
NO.				MIN	MAX	UNIT
1	td(H1H-SCK)	Delay time, H1 high to internal CLKX/R			19	ns
2	t (2010	Cycle time, CLKX/R	CLKX/R ext	t _{c(H)} x2.6		ns
	tc(SCK)	Cycle time, CLRX/R	CLKX/R int	t _{c(H)} x2	t _{c(H)} x2 ³²	115
3	t(0010	Pulse duration, CLKX/R high/low	CLKX/R ext	t _{C(H)} +12		ns
	^t w(SCK)	r dise duration, CERANT High/low	CLKX/R int	[t _{C(SCK)} /2]-15	[t _{C(SCK)} /2]+5	113
4	tr(SCK)	Rise time, CLKX/R			10	ns
5	tf(SCK)	Fall time, CLKX/R			10	ns
6		Delay time, CLKX to DX valid	CLKX ext		44	ns
L°	td(CH-DX)	Delay time, CLRA to DA Valid	CLKX int		25	115
7	t (55 6) (51)	Setup time, DR before CLKR low	CLKR ext	13		ns
_ ′	tsu(DR-CLKRL)	Setup time, DK before CLKK low	CLKR int	31		115
8	t. (0.1(D) DD)	Hold time, DR from CLKR low	CLKR ext	13		ns
L°	^t h(CLKRL-DR)	Floid time, DK Hom CERK low	CLKR int	0		115
9	t ((0) F0) ()	Delay time, CLKX to internal FSX high/low	CLKX ext		40	ns
	td(CH-FSX)	Delay time, CERA to internal FSA high/low	CLKX int		21	115
10	t (500 0110)	Setup time, FSR0 or FSR1 before CLKR low	CLKR ext	13		ns
10	tsu(FSR-CLKRL)	Setup time, F3KU of F3KT before CLKK low	CLKR int	13		115
11	t. (0.01() =0)	Hold time, FSX/R input from CLKX/R low	CLKX/R ext	13		ns
L''	th(SCKL-FS)	Floid time, F3X/K input from CEKX/K low	CLKX/R int	0		115
12	t (50)(01)	Setup time, external FSX before CLKX	CLKX ext	-[t _{c(H)} -8]†	[t _{C(SCK)} /2]-10 [†]	ns
12	tsu(FSX-CH)	Setup time, external 1 3/ before CLK/	CLKX int	-[t _{C(H)} -21]†	t _{c(SCK)} /2†	115
13	tuou pyyy	Delay time, CLKX to first DX bit, FSX0 or	CLKX ext		45†	ns
13	td(CH-DX)V	FSX1 precedes CLKX high	recedes CLKX high CLKX int		26†	119
14	td(FSX-DX)V	Delay time, FSX0 or FSX1 to first DX bit, CLKX precedes FSX0 or FSX1			45†	ns
15	t _d (CHH-DXZ)	Delay time, CLKX high to DX high impedance fo	llowing last data bit		25†	ns

[†] This value is characterized but not tested

serial-port timing parameters (see Figure 24 and Figure 25) (continued)

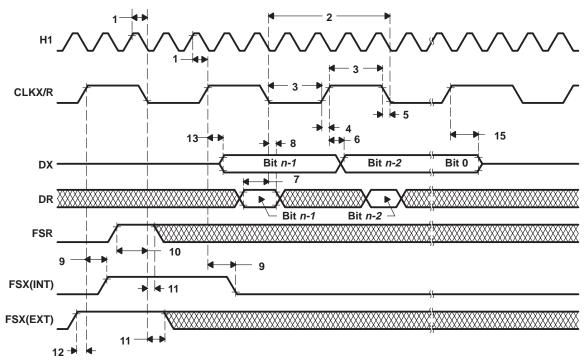
NO				'3200	30-33	LINUT
NO.				MIN	MAX	UNIT
1	t _d (H1H-SCK)	Delay time, H1 high to internal CLKX/R			15	ns
2		Cycle time, CLKX/R	CLKX/R ext	t _{C(H)} x2.6		
2	t _C (SCK)	Cycle time, CERA/R	CLKX/R int	t _{c(H)} x2	t _{c(H)} x2 ³²	ns
3	t (2210	Pulse duration, CLKX/R high/low	CLKX/R ext	t _{C(H)} +12		ns
٠	tw(SCK)	Fulse duration, CLRA/R High/low	CLKX/R int	[t _{C(SCK)} /2]-15	[t _C (SCK)/2]+5	115
4	tr(SCK)	Rise time, CLKX/R			8	ns
5	tf(SCK)	Fall time, CLKX/R			8	ns
6		Delay time, CLKX to DX valid	CLKX ext		35	
6	td(CH-DX)	Delay time, CLKX to DX Valid	CLKX int		20	ns
7		Setup time, DR before CLKR low	CLKR ext	10		
<i>'</i>	tsu(DR-CLKRL)	Setup time, DR before CLRR low	CLKR int	25		ns
8	.	Hold time DD from CLVD low	CLKR ext	10		
0	^t h(CLKRL-DR)	Hold time, DR from CLKR low	CLKR int	0		ns
9		Delay time, CLKX to internal FSX high/low	CLKX ext		32	
9	td(CH-FSX)	Delay time, CLKX to internal FSX high/low	CLKX int		17	ns
10		Setup time, FSR before CLKR low	CLKR ext	10		no
10	tsu(FSR-CLKRL)	Setup time, FSK before CLKK low	CLKR int	10		ns
11	t	Hold time, FSX/R input from CLKX/R low	CLKX/R ext	10		ns
- 11	th(SCKL-FS)	Tiola time, F3X/K input from CEXX/K low	CLKX/R int	0		115
12	t (50)(01)	Setup time, external FSX before CLKX	CLKX ext	-[t _{c(H)} -8]†	[t _{C(SCK)} /2]-10 [†]	ns
12	tsu(FSX-CH)	Setup time, external FSA before CERA	CLKX int	[t _{C(H)} -21]†	t _{c(SCK)} /2†	115
13	t	Delay time, CLKX to first DX bit, FSX			36†	no
13	td(CH-DX)V	precedes CLKX high	X high CLKX int		21†	ns
14	td(FSX-DX)V	Delay time, FSX to first DX bit, CLKX precede	s FSX		36†	ns
15	^t d(CHH-DXZ)	Delay time, CLKX high to DX high impedance bit	following last data		20†	ns

[†]This value is characterized but not tested

serial-port timing parameters (see Figure 24 and Figure 25) (continued)

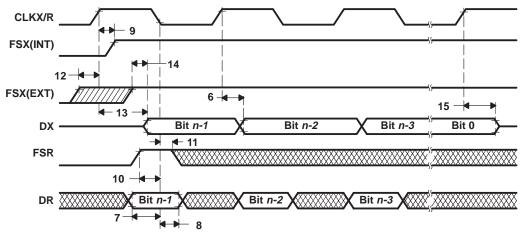
NO.				'3200	30-40	UNIT
NO.				MIN	MAX	UNII
1	td(H1H-SCK)	Delay time, H1 high to internal CLKX/R			13	ns
2	t (2010	Cycle time, CLKX/R	CLKX/R ext	t _{c(H)} x2.6		ns
	tc(SCK)	Cycle time, GLRA/R	CLKX/R int	t _{c(H)} x2	t _{c(H)} x2 ³²	115
3	t(0010	Pulse duration, CLKX/R high/low	CLKX/R ext	t _{C(H)} +10		ns
	tw(SCK)	ruise duration, CERA/K nigh/low	CLKX/R int	[t _{C(SCK)} /2]-5	[t _{C(SCK)} /2]+5	115
4	tr(SCK)	Rise time, CLKX/R			7	ns
5	tf(SCK)	Fall time, CLKX/R			7	ns
6	t ((011 B)()	Delay time, CLKX to DX valid	CLKX ext		30	ns
L	td(CH-DX)	Delay time, GERA to DA Valid	CLKX int		17	115
7	t (55 01151)	Setup time, DR before CLKR low	CLKR ext	9		ns
_ ′	^t su(DR-CLKRL)	Setup time, DK before CEKK low	CLKR int	21		115
8	t. (0.1(D) DD)	Hold time, DR from CLKR low	CLKR ext	9		ns
l °	th(CLKRL-DR)	Hold time, DK Holli CEKK low	CLKR int	0		115
9	t = 0.0	Delay time, CLKX to internal FSX high/low	CLKX ext		27	no
9	td(CH-FSX)	Delay time, CERA to internal FSA high/low	CLKX int		15	ns
10		Setup time, FSR before CLKR low	CLKR ext	9		ns
10	tsu(FSR-CLKRL)	Setup time, FSR before CERR low	CLKR int	9		115
11	t. (0.01(1 =0)	Hold time, FSX/R input from CLKX/R low	CLKX/R ext	9		ns
''	th(SCKL-FS)	Hold time, FSA/K input from CLKA/K low	CLKX/R int	0		115
12	t (=0)(0) ii	Setup time, external FSX before CLKX	CLKX ext	-[t _{c(H)} -8]†	[t _{C(SCK)} /2]-10 [†]	ns
12	tsu(FSX-CH)	Setup time, external PSA before CENA	CLKX int	[t _{c(H)} -21]†	t _{c(SCK)} /2†	115
13	^t d(CH-DX)V	Delay time, CLKX to first DX bit, FSX precedes CLKX high	CLKX ext CLKX int		30† 18†	ns
14	^t d(FSX-DX)V	Delay time, FSX to first DX bit, CLKX precede	es FSX		30†	ns
15	^t d(CHH-DXZ)	Delay time, CLKX high to DX high impedance bit	e following last data		17†	ns

[†]This value is characterized but not tested


serial-port timing parameters (see Figure 24 and Figure 25) (continued)

NO.				'3200	30-50	UNIT
NO.				MIN	MAX	UNII
1	td(H1H-SCK)	Delay time, H1 high to internal CLKX/R			10	ns
2	t _C (SCK)	Cycle time, CLKX/R	CLKX/R ext CLKX/R int	$t_{C(H)} \times 2.6$ $t_{C(H)} \times 2$	$t_{\text{C(H)}} \times 2^{32}$	ns
3	t (00)	Pulse duration, CLKX/R high/low	CLKX/R ext	t _{c(H)} +10		ns
L	tw(SCK)	Tuise duration, GENA/IN High/low	CLKX/R int	[t _{c(SCK)} /2]-5	[t _{c(SCK)} /2]+5	115
4	tr(SCK)	Rise time, CLKX/R			6	ns
5	tf(SCK)	Fall time, CLKX/R			6	ns
6	t	Delay time, CLKX to DX valid	CLKX ext		24	no
"	^t d(CH-DX)	Delay time, CERA to DA Valid	CLKX int		16	ns
7		Setup time, DR before CLKR low	CLKR ext	9		
′	^t su(DR-CLKRL)	Setup time, DR before CLRR low	CLKR int	17		ns
8	.	Hold time, DR from CLKR low	CLKR ext	7		
l °	th(CLKRL-DR)	Hold time, DR from CLRR low	CLKR int	0		ns
9		Delay time, CLKX to internal FSX high/low	CLKX ext		22	
9	td(CH-FSX)	Delay time, CERX to internal FSX high/low	CLKX int		15	ns
10	t (505 01/51)	Setup time, FSR before CLKR low	CLKR ext	7		ns
	^t su(FSR-CLKRL)	Setup time, I Six before CEXX low	CLKR int	7		110
11	t. (0.01(1 =0)	Hold time, FSX/R input from CLKX/R low	CLKX/R ext	7		ns
''	th(SCKL-FS)	Hold time, FSX/K input from CEXX/K low	CLKX/R int	0		110
12	t (=0)(0) "	Setup time, external FSX before CLKX	CLKX ext	-[t _{C(H)} -8]†	[t _{C(SCK)} /2]-10 [†]	20
12	tsu(FSX-CH)	Setup time, external FSA before CLRA	CLKX int	[t _{C(H)} -21] [†]	t _{c(SCK)} /2†	ns
13	t	Delay time, CLKX to first DX bit, FSX	CLKX ext		24†	no
13	td(CH-DX)V	precedes CLKX high	CLKX int		14†	ns
14	td(FSX-DX)V	Delay time, FSX to first DX bit, CLKX precede	s FSX		24†	ns
15	^t d(CHH-DXZ)	Delay time, CLKX high to DX high impedance data bit	following last		14 [†]	ns

[†]This value is characterized but not tested


data-rate timing modes

Unless otherwise indicated, the data-rate timings shown in Figure 24 and Figure 25 are valid for all serial-port modes, including handshake. See serial-port timing parameter tables.

- NOTES: A. Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = 0.
 - B. Timing diagrams depend on the length of the serial port word, where n = 8, 16, 24, or 32 bits, respectively.

Figure 24. Timing for Fixed Data-Rate Mode

- NOTES: A. Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = 0.
 - B. Timing diagrams depend on the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively.
 - C. The timings that are not specified expressly for the variable data-rate mode are the same as those that are specified for the fixed data-rate mode.

Figure 25. Timing for Variable Data-Rate Mode

HOLD timing

HOLD is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings are met, the exact sequence shown in Figure 26 occurs; otherwise, an additional delay of one clock cycle is possible.

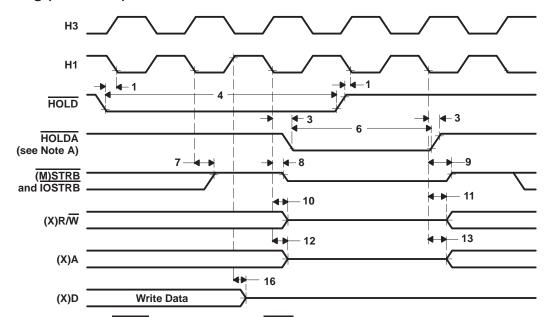
The "timing parameters for HOLD/HOLDA" table defines the timing parameters for the HOLD and HOLDA signals. The numbers shown in Figure 26 correspond with those in the NO. column of the table.

The NOHOLD bit of the primary bus control register overrides the HOLD signal. When this bit is set, the device comes out of hold and prevents future hold cycles.

Asserting HOLD prevents the processor from accessing the primary bus. Program execution continues until a read from or a write to the primary bus is requested. In certain circumstances, the first write is pending, thus allowing the processor to continue until a second write is encountered.

HOLD timing (continued)

timing parameters for HOLD/HOLDA (see Figure 26)


NO.			'C30-	27	'C30-	33	'C30-	40	'C30-5	50	UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	tsu(HOLD-H1L)	Setup time, HOLD before H1 low	19		15		13		10		ns
3	^t v(H1L-HOLDA)	Valid time, HOLDA after H1 low	0†	14	0†	10	0†	9	0†	7	ns
4	tw(HOLD [‡])	Pulse duration, HOLD low	2t _C (H)		2t _C (H)		^{2t} c(H)		2t _{c(H)}		ns
6	^t w(HOLDA)	Pulse duration, HOLDA low	t _{c(H)} -5†		t _{c(H)} -5†		t _{c(H)} -5†		t _{c(H)} -5†		ns
7	^t d(H1L-SH)HOLD	Delay time, H1 low to (M)S and IOS high for a HOLD	0\$	13	0\$	10	0\$	9	0§	7	ns
8	^t dis(H1L-S)Z	Disable time, H1 low to (M)S and IOS in the high-impedance state	0§	₁₃ †	0§	10†	0§	9†	0\$	8†	ns
9	^t en(H1L-S)	Enable time, H1 low to (M)S and IOS (active)	0\$	13	0\$	10	0\$	9	0§	7	ns
10	^t dis[H1L-(X)RW]Z	Disable time, H1 low to (X)R/W in the high-impedance state	0†	13†	0†	10†	0†	9†	o†	8†	ns
11	ten[H1L-(X)RW]	Enable time, H1 low to (X)R/W (active)	0†	13	0†	10	0†	9	0†	7	ns
12	^t dis[H1L-(X)A]	Disable time, H1 low to (X)A in the high-impedance state	0§	13†	0§	10†	0§	10†	0§	8†	ns
13	ten[H1L-(X)A]	Enable time, H1 low to (X)A (valid)	0§	19	0§	15	0§	13	0§	12	ns
16	^t dis[H1H-(X)D]Z	Disable time, H1 high to (X)D in the high-impedance state	0§	13†	0§	10†	0§	9†	0§	8†	ns

[†] This value is characterized but not tested

FIOLD is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence shown occurs; otherwise, an additional delay of one clock cycle is possible.

[§] Not tested

HOLD timing (continued)

NOTE A: HOLDA goes low in response to HOLD going low and continues to remain low until one H1 cycle after HOLD goes back high.

Figure 26. Timing for HOLD/HOLDA

general-purpose I/O timing

Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The contents of the internal-control registers associated with each peripheral define the modes for these pins.

peripheral pin I/O timing

The following table defines peripheral pin general-purpose I/O timing parameters. The numbers shown in Figure 27 correspond with those in the NO. column of the table below.

timing parameters for peripheral pin general-purpose I/O (see Note 7 and Figure 27)

NO.			'C30-27		'C30-33		'C30-40		'C30-50		UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	t _{su} (GPIO-H1L)	Setup time, general-purpose input before H1 low	15		12		10		9		ns
2	th(H1L-GPIO)	Hold time, general-purpose input after H1 low	0		0		0		0		ns
3	^t d(H1H-GPIO)	Delay time, general-purpose output after H1 high		19		15		13		10	ns

NOTE 7: Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined by the contents of internal control registers associated with each peripheral.

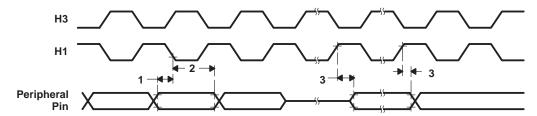


Figure 27. Timing for Peripheral Pin General-Purpose I/O

changing the peripheral pin I/O modes

The following tables show the timing parameters for changing the peripheral pin from a general-purpose output pin to a general-purpose input pin and the reverse. The numbers shown in Figure 28 and Figure 29 correspond to those shown in the NO. column of the following tables.

timing parameters for peripheral pin changing from general-purpose output to input mode (see Note 7 and Figure 28)

NO.				'C30-27		0-33	'C30	0-40	'C30)-50	UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
1	th(H1H-GPIO)	Hold time, peripheral pin after H1 high		19		15		13		10	ns
2	t _{su} (GPIO-H1L)	Setup time, peripheral pin before H1 low	13		10		9		9		ns
3	th(H1L-GPIO)	Hold time, peripheral pin after H1 low	0		0	·	0		0		ns

NOTE 7: Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined by the contents of internal control registers associated with each peripheral.

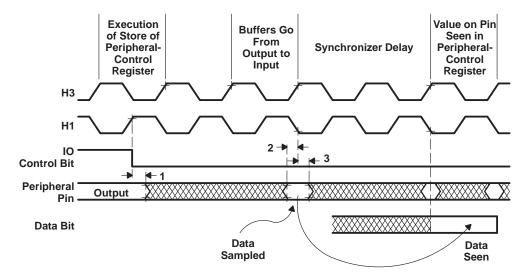


Figure 28. Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode

timing parameters for peripheral pin changing from general-purpose input to output mode (see Note 7 and Figure 29)

NO.		'C30)-27	'C30)-33	'C30)-40	'C30	-50	UNIT		
Ľ	NO.			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Γ	1	^t d(H1H-GPIO)	Delay time, H1 high to peripheral pin switching from input to output		19		15		13		10	ns

NOTE 7: Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined by the contents of internal-control registers associated with each peripheral.

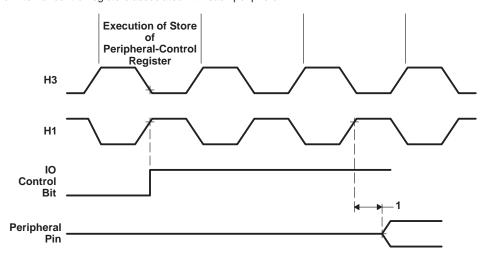


Figure 29. Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode

timer pin (TCLK0 and TCLK1) timing

Valid logic-level periods and polarity are specified by the contents of the internal control registers.

The following tables define the timing parameters for the timer pin. The numbers shown in Figure 30 correspond with those in the NO. column of the tables below.

timing parameters for timer pin (TCLK0 and TCLK1) (see Figure 30)†

NO.				'C30-	. ₂₇ †	'C30-	-33†	UNIT
NO.				MIN	MAX	MIN	MAX	UNIT
1	t _{su} (TCLK-H1L)	Setup time, TCLK ext before H1 low	TCLK ext	15		12		ns
2	th(H1L-TCLK)	Hold time, TCLK ext after H1 low	TCLK ext	0		0		ns
3	^t d(H1H-TCLK)	Delay time, H1 high to TCLK int valid	TCLK int		13		10	ns
4	t (TOLIO	Cycle time, TCLK	TCLK ext	t _{c(H)} ×2.6		t _{c(H)} ×2.6		ns
	t _c (TCLK)	Cycle time, TCLK	TCLK int	t _{c(H)} ×2	t _{c(H)} ×2 ^{32‡}	t _{c(H)} ×2	t _{c(H)} ×2 ^{32‡}	115
5	t (TOLIO	71 K) = 0.1 K 1 1 1 1	TCLK ext	t _{c(H)} +12		t _{C(H)} +12		ns
	tw(TCLK) -		TCLK int	[t _{C(TCLK)} /2]-15	[t _{C(TCLK)} /2]+5	[t _{c(TCLK)} /2]-15	[t _{C(TCLK)} /2]+5	115

NO.				'C30-	-40†	'C30	-50†	UNIT
140.				MIN	MAX	MIN	MAX	ONT
1	tsu(TCLK-H1L)	Setup time, TCLK ext before H1 low	TCLK ext	10		8		ns
2	th(H1L-TCLK)	Hold time, TCLK ext after H1 low	TCLK ext	0		0		ns
3	^t d(H1H-TCLK)	Delay time, H1 high to TCLK int valid	TCLK int		9		9	ns
4	t (TOLIO	Cycle time, TCLK	TCLK ext	t _{C(H)} ×2.6		t _{C(H)} ×2.6		ns
	t _C (TCLK)	Cycle time, TCLK	TCLK int	t _{c(H)} ×2	t _{c(H)} ×2 ^{32‡}	t _{c(H)} ×2	t _{c(H)} ×2 ^{32‡}	115
5	t (TOLIO	Pulse duration,	TCLK ext	t _{c(H)} +10		t _{c(H)} +10		ns
Ľ		CLK) TCLK high/low	TCLK int	[t _{C(TCLK)} /2]-5	[t _{c(TCLK)} /2]+5	[t _{c(TCLK)} /2]-5	[t _{c(TCLK)} /2]+5	115

[†] Timing parameters 1 and 2 are applicable for a synchronous input clock. Timing parameters 4 and 5 are applicable for an asynchronous input clock.

[‡] Assured by design but not tested

timer pin (TCLK0 and TCLK1) timing (continued)

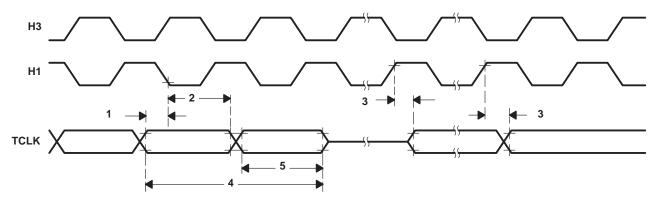
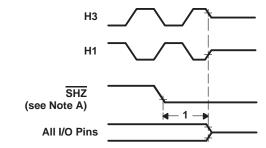


Figure 30. Timing for Timer Pin


SHZ pin timing

The following table defines the timing parameter for the SHZ pin. The number shown in Figure 31 corresponds with that in the NO. column of the table below.

timing parameters for SHZ pin (see Figure 31)

NO.		,C3	0	UNIT
NO.		MIN	MAX	ONII
1	t _{dis(SHZ)} Disable time, SHZ low to all outputs, I/O pins disabled (high impedance)	0†	2P†‡	ns

[†] Characterized but not tested

NOTE A: Enabling SHZ destroys TMS320C30 register and memory contents. Assert SHZ = 1 and reset the TMS320C30 to restore it to a known condition.

Figure 31. Timing for SHZ

 $P = t_{C(CI)}$

PACKAGE OPTION ADDENDUM

8-Feb-2014

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TMS320C30GEL	OBSOLETE	CPGA	GE	181		TBD	AU	N / A for Pkg Type	0 to 70		
TMS320C30GEL27	OBSOLETE	CPGA	GB	181		TBD	Call TI	Call TI			
TMS320C30GEL40	OBSOLETE	CPGA	GE	181		TBD	AU	N / A for Pkg Type	0 to 70	40	
TMS320C30GEL50	OBSOLETE	CPGA	GE	181		TBD	AU	N / A for Pkg Type		50	
TMS320C30GELSD	NRND	CPGA	GE	181	21	TBD	AU	N / A for Pkg Type	0 to 70	TMS320C30GEL SD	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

8-Feb-2014

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TMS320C30:

Military: SMJ320C30

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>