

MX86200

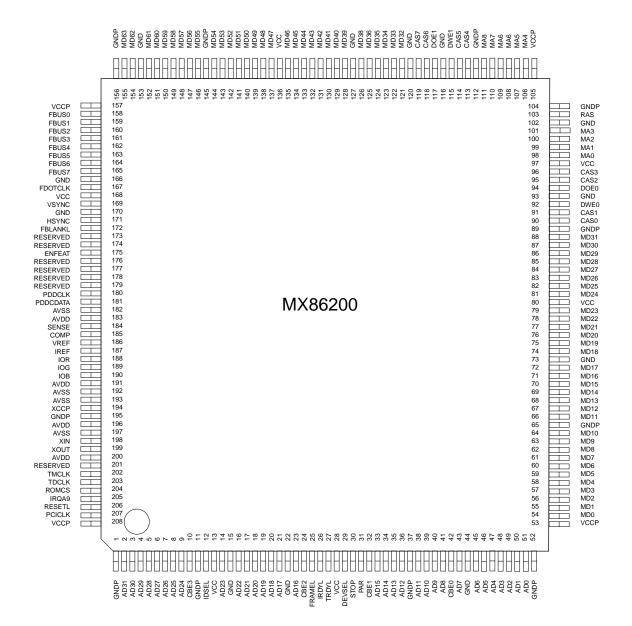
HIGH PERFORMANCE 64-BIT GUI/VIDEO ACCELERATOR

FEATURES

- High Performance Architecture
- True 64-bit graphics engine.
- True 8/16/32 bpp acceleration.
- BitBLT, rectangle, pattern fill, line draw, color expansion and complete 256 ROP.
- On-chip pattern memory.
- Multiple advanced FIFOs.
- Memory-mapped I/O.
- 64x64x2 bit-mapped hardware cursor.
- High-quality Video Playback
- Support primary surface DCI drivers for smooth and high quality video playback.
- Support Microsoft Video For Windows.
- Advanced Memory Control
- 1,2, or 4 MBytes display memory.
- True 64-bit display memory access.
- 256K x 4, 256K x 8, and 256K x 16 dual CAS or dual WE DRAM.
- Fast-page and Hyper-page EDO.

- Auto memory size detection.
- Linear addressing modes up to 4 MByte.
- Full Resolution/color support
- 1600x1200, 64K colors @ 60 Hz.
- 1280x1024, 64K color @ 75 Hz.
- 1024x768, 16M color @ 60 Hz.
- Fully Integrated for Modern Systems
- Glueless PCI bus interface.
- Full PCI 2.1 compliance.
- Integrated RA MDAC.
- Integrated programmable 135 MHz clock synthesizer.
- Low-Power sub-micron CMOS.
- 208 pin PQFP.
- Engineered for Modern Standards
- Plug and Play compliant.
- VESA Display Data Channel (DDC2B) protocol support.
- VESA standard Feature Connector support.
- DPMS and advanced power management support.

OVERVIEW


The MX86200 is an advanced 64-bit GUI and Video Accelerator. Integrating a 64-bit graphics coprocessor, 135 MHz RAMDAC and programmable clock synthesizer, the MX86200 is a complete low-cost and high-performance PC graphics / video solution. Performance of the memory subsystem was a key design consideration of the MX86200.

Utilizing the regular DRAM with 65 MHz memory clock, DRAM bandwidth can exceed 250 MB/sec. This bandwidth gives top-end Windows performance and smooth video playback in a low-cost DRAM system.

PIN ASSIGNMENT

Power-on Reset Strapping

There are 13 pins used for strapping, all these pins should have internal pull-down resistor (pull-down has value of about 50K Ohm), if the intended logic level is "0" that pin can be left open, if a "1" is desired, an external 10K Ohm pull-up need be used.

MD40: Reserved must set to 0

MD41: DRAMTYPE0, DRAM Type used 0:256Kx16 (1 CAS#, 2 WE#), 256Kx4, 256Kx8 1:256Kx16 (2 CAS#, 1 WE#), 256Kx4, 256Kx8

MD43: MS2: MCKSEL0

MD44: MS1: MCKSEL1

MD45: MS0: MCKSEL2

Memory Clock Frequency Table:

MCKSEL[2:0]	Memory Clock selected	
0 0 0	50.00 MHz	
0 0 1	55.00 MHz	
0 1 0	58.00 MHz	
0 1 1	60.00 MHz	
1 0 0	62.00 MHz	
1 0 1	65.00 MHz	
1 1 0	70.00 MHz	
1 1 1	72.00 MHz	

MD46: TYPICAL DRAM.

0: EDO DRAM on board

1: typical DRAM on board

MD47: KILLGUI. 0: Enable GUI. 1: Disable GUI.

MD48: DISVCG. 0: Enable internal VCG. 1: Disable internal VCG.

GUI PIN DESCRIPTION

PCI BUS INTERFACE PINS:

Pin Name	Pin No.	Туре	Description
RESET#	206	I	This input is PCI bus ESET#, it is an active low signal used to initialize the GU
			to a known state. The trailing edge of this input loads the power on strapping
			inputs through MD40 to MD52. The power on strap ping input pins each has a
			internally weakly pulled down resistor (about 50K Ohm). If a power on reset
			input status is needed, then the corresponding pin doesn't need an externally
			pulled up resistor. If a power on reset input status is needed, then the
			corresponding pin must be pulled up by a 10K Ohm resistor.
PCICLK	207	I	This input is LCLK, it is the PCI bus clock. It is an 1X clock of 33MHz.
FRAME#	25	I	This input is FRAME#, it is low to indicate the GUI that a valid address is
			present on the PCI address bus and a New bus cycle or Burst bus cycles are
			starting. GUI should use this signal to latch the address lines or any decode
			developed from them and any bus commands.
IRDY#	26	I	This input is Initiator RDY#, it is generated from an PCI Bus Master. When it i
			low, IRDY# indicates that the Initiator is able to complete the current bus trans
			action if and only if the TRDY# is also low.
TRDY#	27	STO	This output is Target RDY#, it is generated by GUI if the current bus cycle
			belongs to the GUI. When it is low, TRDY# indicates that the GUI is able to
			complete the current bus transaction which already targeted onto it if and only
			if the IRDY# is also low. It remains low until this current cycle ends, then goes
			into high for one PCI clock cycle, after that then goes into tri-state.
DEVSEL#	29	STO	This output is DEVSEL#. When driven low, it indicates that GUI will respond to
			the current cycle. It remains low until this current cycle ends, then goes into
			high for one PCI clock cycle, after that then goes into tri-state.
STOP#	30	STO	This output is STOP#. When driven low, it indicates that GUI will request the
			current bus master to stop the current bus transfer. It remains low until this
			current cycle ends, then goes into high for one PCI clock cycle, after that the
			goes into tri-state.
PAR	31	ТО	This output is PAR. It is only driven during PCI bus master doing read
			accesses from GUI. When driven, it will provide an even parity accross the
			AD[31:0], and C/BE#[3:0]. This signal is an tri-state output.

Pin Name	Pin No.	Туре	Descriptior	1
IRQA9#	205	TO	This output	is INTA#. It is and interrupt request signal to system interrupt
			controller. Tl	his signal always hard wired to the PCI bus INTA# signal pin. It is
			an open dra	ined output. This pin is typically unused in display subsystem
			design, but i	may be connected to IRQ9 via PCI configuration register.
IDSEL#	12		It is used as	an Initialization Device Select during PCI bus Auto- configuration
			cycles. Whe	n high, it indicates that GUI is now selected as a target for PCI bus
			configuration	n cycles.
CBE0#	42			exed input is part of a PCI bus Command's definition or a Byte
				yte lane 0. During address phase of a PCI bus transaction, it
				Command. During data phase of a PCI bus transaction, it defines
				D is engaged in the transfer or not.
CBE3#	10	1	· ·	exed input is part of a PCI bus Command's definition or a Byte
CDE3#	10	1		
				yte lane 3. During address phase of a PCI bus transaction, it
				Command. During data phase of a PCI bus transaction, it defines i
			byte lane 3 i	s engaged in the transfer or not.
			The PCI bus	s Commands are defined as below:
			C\BE[3:0]#	PCI bus Command Type
			0000	Interrupt Acknowledge
			0001	Special Cycle
			0010	I/O Read
			0011	I/O Write
			0100	reserved
			0101	reserved
			0110	Memory Read
			0111	Memory Write
			1000	reserved
			1001	reserved
			1010	Configuration Read
			1010	Configuration Write
			1100	Memory Read Multiple
			1101	Dual Address Cycle
			1110	Memory Read Line
			1111	Memory Write and Invalidate

Pin Name	Pin No.	Туре	Description
CBE1#	32	I	This multiplexed input is part of a PCI bus Command's definition or a Byte
			Enalbe for byte lane 1. During address phase of a PCI bus transaction, it
			defines the Command. During data phase of a PCI bus transaction, it defines
			byte lane 1 is engaged in the transfer or not.
CBE2#	24	I	This multiplexed input is part of a PCI bus Command's definition or a Byte
			Enalbe for byte lane 2. During address phase of a PCI bus transaction, it
			defines the Command. During data phase of a PCI bus transaction, it defines
			byte lane 2 is engaged in the transfer or not.
AD0\ROMA0	51	I/O	This is a multiplexed/muti-function pin. This io pin directly connected to the PC
			bus AD0 and the ROM BIOS Address0. During PCI bus transactions (as io
			pin)it is used by GUI as a multiplexed Address and Data bus bit0 for PCI.
			During PCI reading from the GUI BIOS area (as output pin), GUI will internally
			latch the accessing address and insert any required PCI bus wait states in
			order to convert this BIOS read/fetch command into GUI BIOS ROM local read
			cycle(s). GUI will output the converted BIOS ROM address bit0 through this
			sigal to the BIOS ROM. GUI will also send out a BIOS ROM Chip Select signa
			to the GUI BIOS ROM. After the local ROM BIOS read cycle(s) complete, GU
			will send out the TRDY# together the read data to PCI to indicate the end of the
			current PCI bus transaction.
AD1\ROMA1	50	I/O	This is a multiplexed/muti-function pin. This io pin directly connected to the PC
			bus AD1 and the ROM BIOS Address1. This pin is used as DAC data bus bi
			1. When setting configuration at DACTST, this pin is used as DAC data bus
			input bit 1.
AD2\ROMA2	49	I/O	This is a multiplexed/muti-function pin When setting configuration not at DACTST
			this io pin directly connected to the PCI bus AD2 and the ROM BIOS Ad
			dress2.
AD3\ROMA3	48	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
			bus AD3 and the ROM BIOS Address3.
AD4\ROMA4	47	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
			bus AD4 and the ROM BIOS Address4.
AD5\ROMA5	46	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
			bus AD5 and the ROM BIOS Address5.
AD6\ROMA6	45	I/O	This is a multiplexed/muti-function pin This io input pin directly connected to
			the PCI bus AD6 and the ROM BIOS Address6.

Pin Name	Pin No.	Туре	Description
AD7\ROMA7	43	I/O	This is a multiplexed/muti-function pin. This io pin directly connected to the PC
			bus AD7 and the ROM BIOS Address7.
AD8\ROMA8	41	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD8 and the ROM BIOS Address8.
AD9\ROMA9	40	I/O	This is a multiplexed/muti-function pin. This io pin directly connected to the PC
			bus AD9 and the ROM BIOS Address9.
AD10\	39	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
ROMA10			bus AD10 and the ROM BIOS Address10.
AD11\	38	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
ROMA11			bus AD11 and the ROM BIOS Address11.
AD12\	36	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
ROMA12			bus AD12 ROM BIOS Address12.
AD13\	35	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
ROMA13			bus AD13 and the ROM BIOS Address13.
AD14\	34	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
ROMA14			bus AD14 and the ROM BIOS Address14.
AD15\	33	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PC
ROMA15			bus AD15 ROM BIOS Address15.
AD16	23	I/O	This is a multiplexed pin. Whis io pin connects to the PCI bus AD16. It is
			used to pass the Address/Data during the Address phase/Data phase,
			respectively, of PCI bus transactions.
AD17	21	I/O	This is a multiplexed pin. This io pin connects to the PCI bus AD17. It is used to
			pass the Address/Data during the Address phase/Data phase, respectively, of
			PCI bus transactions.
AD18	20	I/O	This is a multiplexed pin. This io pin connects to the PCI bus AD18. It is used
			to pass the Address/Data during the Address phase/Data phase, respectively,
			of PCI bus transactions.
AD19	19	I/O	This is a multiplexed pin. this io pin connects to the PCI bus AD19. It is used to
			pass the Address/Data during the Address phase/Data phase, respectively, of
			PCI bus transactions.
AD20	18	I/O	This is a multiplexed pin. This io pin connects to the PCI bus AD20. It is used
			to pass the Address/Data during the Address phase/Data phase, respectively
			of PCI bus transactions.

Pin Name	Pin No.	Туре	Description
AD21	17	I/O	This is a multiplexed pin. This pin connects to the PCI bus AD21. It is used to
			pass the Address/Data during the Address phase/Data phase, respectively,
			of PCI bus transactions.
AD22	16	I/O	This is a multiplexed pin. This io pin connects to the PCI bus AD22. It is used
			to pass the Address/Data during the Address phase/Data phase, respectively,
			of PCI bus transactions.
AD23	14	I/O	This is a multiplexed pin. This io pin connects to the PCI bus AD23. It is used
			to pass the Address/Data during the Address phase/Data phase, respectively,
			of PCI bus transactions.
AD24\ROMD0	9	I/O	This is a multiplexed/muti-function pin. This io pin directly connected to the PCI
			bus AD24 and the ROM BIOS Data0. During PCI bus transactions it is used by
			GUI as a multiplexed Address and Data bus bit24 for PCI. During PCI reading
			from the GUI BIOS area, GUI will internally latch the accessing ROM BIOS
			Data bit0 through this pin and stores this read data into a internal double word
			buffer. After the local ROM BIOS read cycle(s) complete, GUI will send out the
			TRDY# together with the read data to PCI to indicate the end of the current PCI
			bus transaction.
AD25\ROMD1	8	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD25 and the ROM BIOS Data1.
AD26\ROMD2	7	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD26 and the ROM BIOS Data2.
AD27\ROMD3	6	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD27 and the ROM BIOS Data3.
AD28\ROMD4	5	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD28 and the ROM BIOS Data4.
AD29\ROMD5	4	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD29 and the ROM BIOS Data5.
AD30\ROMD6	3	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD30 and the ROM BIOS Data6.
AD31\ROMD7	2	I/O	This is a multiplexed/muti-function pin This io pin directly connected to the PCI
			bus AD31 and the ROM BIOS Data7.

DRAM INTERFACE PINS:

Pin Name	Pin No.	Туре	Description
RAS#	103	0	This output is RAS#, it is the RAS address strobe for the two banks of DRAM
			memory of DRAM type 256Kx4, 256Kx8, 256Kx16 (1 CAS, 2 WE), 256Kx16
			(2 CAS, 1 WE).
CAS0#	90	0	This output is CAS0#, it is the CAS address strobe of byte lane 0 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE0#, it is the WE# contro
			signal of byte lane 0 for DRAM configuration type (1CAS#, 2WE#).
CAS1#	91	0	This output is CAS1#, it is the CAS address strobe of byte lane 1 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE1#, it is the WE# contro
			signal of byte lane 1 for DRAM configuration type (1CAS#, 2WE#).
CAS2#	95	0	This output is CAS2#, it is the CAS address strobe of byte lane 2 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE3#, it is the WE# contro
			signal of byte lane 2 for DRAM configuration type (1CAS#, 2WE#).
CAS3#	96	0	This output is CAS3#, it is the CAS address strobe of byte lane 3 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE3#, it is the WE# contro
			signal of byte lane 3 for DRAM configuration type (1CAS#, 2WE#).
CAS4#	112	0	This output is CAS4#, it is the CAS address strobe of byte lane 4 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE4#, it is the WE# contro
			signal of byte lane 4 for DRAM configuration type (1CAS#, 2WE#).
CAS5#	113	0	This output is CAS5#, it is the CAS address strobe of byte lane 5 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE5#, it is the WE# contro
			signal of byte lane 5 for DRAM configuration type (1CAS#, 2WE#).
CAS6#	117	0	This output is CAS6#, it is the CAS address strobe of byte lane 6 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE6#, it is the WE# contro
			signal of byte lane 6 for DRAM configuration type (1CAS#, 2WE#).
CAS7#	118	0	This output is CAS7#, it is the CAS address strobe of byte lane 7 for DRAM
			configuration type (2CAS#, 1WE#). This output is WE7#, it is the WE# contro
			signal of byte lane 7 for DRAM configuration type (1CAS#, 2WE#).
WE0#	92	0	This output is WE0#, it is the WE# control signal of bank 0 for DRAM configu
			ration type (2CAS#, 1WE#). This output is CAS0#, it is the CAS address strobe
			of bank 0 for DRAM configuration type (1CAS#, 2WE#).

MX86200

DRAM INTERFACE PINS:(Continued)

Pin Name	Pin No.	Туре	Description
WE1#	114	0	This output is WE1#, it is the WE# control signal of bank 1 for DRAM configu
			ration type (2CAS#, 1WE#). This output is CAS1#, it is the CAS address strob
			of bank 1 for DRAM configuration type (1CAS#, 2WE#).
DOE0#	94	0	This output is OE0#, it is the DOE# control signal of bank 0 for DRAM.
DOE1#	116	0	This output is OE1#, it is the DOE# control signal of bank 1 for DRAM.
MA0	98	0	This output is MA0, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA1	99	0	This output is MA1, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA2	100	0	This output is MA2, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA3	101	0	This output is MA3, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA4	106	0	This output is MA4, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA5	107	0	This output is MA5, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA6	108	0	This output is MA6, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA7	109	0	This output is MA7, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MA8	110	0	This output is MA8, it is the DRAM memory address bus for both banks. It is
			used to pass the RAS address and CAS address to DRAMs.
MD0	54	I/O	MD[7:0] is the DRAM data bus of memoryplane 0 of bank 0 or bank 1.
MD1	55		
MD2	56		
MD3	57		
MD4	58		
MD5	59		
MD6	60		
MD7	61		

DRAM INTERFACE PINS:(Continued)

Pin Name	Pin No.	Туре	Description
MD8	62	I/O	MD[15:8] is the DRAM data bus of memory plane 1 of bank 0 or bank 1.
MD9	63		
MD10	64		
MD11	66		
MD12	67		
MD13	68		
MD14	69		
MD15	70		
MD16	71	I/O	MD[23:16] is the DRAM data bus of memory plane 2 of bank 0 or bank 1.
MD17	72		
MD18	74		
MD19	75		
MD20	76		
MD21	77		
MD22	78		
MD23	79		
MD24	81	I/O	MD[31:24] is the DRAM data bus of memory plane 3 of bank 0 or bank 1.
MD25	82		
MD26	83		
MD27	84		
MD28	85		
MD29	86		
MD30	87		
MD31	88		
MD32	120	I/O	MD[39:32] is the DRAM data bus of memory plane 4 of bank 0 or bank 1.
MD33	121		
MD34	122		
MD35	123		
MD36	124		
MD37	125		
MD38	126		
MD39	128		

DRAM INTERFACE PINS:(Continued)

Pin Name	Pin No.	Туре	Description
MD40	129	I/O	MD[47:40] is the DRAM data bus of memory plane 5 of bank 0 or bank 1.
MD41	130		
MD42	131		
MD43	132		
MD44	133		
MD45	134		
MD46	135		
MD47	137		
MD48	138	I/O	MD[55:48] is the DRAM data bus of memory plane 6 of bank 0 or bank 1.
MD49	139		
MD50	140		
MD51	141		
MD52	142		
MD53	143		
MD54	144		
MD55	146		
MD56	147	I/O	MD[63:56] is the DRAM data bus of memory plane 7 of bank 0 or bank 1.
MD57	148		
MD58	149		
MD59	150		
MD60	151		
MD61	152		
MD62	154		
MD63	155		

ROM BIOS INTERFACE PINS:

Pin Name	Pin No. Type		Description
ROMCS#	204	0	This output is ROMCS#. It may be connected both to the BIOS ROM chip
			select and output enable pins directly.

INTERNAL VCG RELATED INTERFACE PINS:

Pin Name	Pin No.	Туре	Description
XIN	198	I	This input is used as a Reference Frequency Input for internally implemented
			oscilator. An external crystal or oscilator of 14.318MHz may be used. If an
			external crystal is used, it must be connected between XIN and XOUT. If an
			external oscilator is used, it must connect to XIN. In this case, the XOUT must
			be left open.
XOUT	199	0	This is used as a Reference Frequency output for internally implemented
			oscilator. If an external crystal is used, it must be connected between XIN and
			XOUT. If an external oscilator is used, the XOUT must be left open.

INTERNAL RAMDAC RELATED INTERFACE PINS:

Pin Name	Pin No.	Туре	Description	
VREF	186	I	This pin is indicated the Voltage Reference of 1.2V for internal DAC and Moni	
			tor Sence logic. It must be connected with a 0.1 u capacitor to AVCC of RAMDAC.	
COMP	185	I	This pin is the Compensation input for internal DAC. It must be connected with	
			a 0.1u capacitor to AVCC of RAMDAC.	
IREF	187	I	This pin is indicated the Current Reference.	
IOR	188	0	This pin is the analog output of the pixel color Red component to monitor. It has	
			a voltage level of 0.0V(blank) to 0.7V(full scale) when terminated with 75 ohm	
			double loads.	
IOG	189	0	This pin is the analog output of the pixel color Green component to monitor. It	
			has a voltage level of $0.0V$ (blank) to $0.7V$ (full scale) when terminated with 75	
			ohm double loads.	
IOB	190	0	This pin is the analog output of the pixel color Blue component to monitor. It has	
			a voltage level of 0.0V(blank) to 0.7V(full scale) when terminated with 75 ohm	
			double loads.	

EXTERNAL MONITOR RELATED INTERFACE PINS:

Pin Name	Pin No.	Туре	Description	
HSYNC	171	0	This output is HSYNC, it is the horizontal sync to analog monitor.	
VSYNC	169	0	This output is VSYNC, it is the vertical sync to analog monitor.	
DDCLK	180	0	This output is DDCCLK, it is the Clock to analog monitor when Display	
			Data Channel mechanism 2 is enabled and selected.	
DDCDATA	181	0	This bidrection pin is DDCDATA, it is used to pass the DDC Command/Data to/	
			from analog monitor when any kind of Display Data Channel mechanisms is	
			enabled and selected.	
SENSE	184	10	This input is the MONITOR SENSE of the R,G,B comparator output from	
			RAMDAC. It is used to detect the analog monitor type attached to the GUI.	
			When setting configuration at GUIONLY, this pin is used as input from external	
			DAC. When setting configuration at DACTST, this pin is used as output from	
			internal DAC. When setting configuration at 3 in 1, DISVCG, this pin is of no	
			use.	

FEATURE CONNECTOR INTERFACE PINS:

Pin Name	Pin No.	Туре	Description	
ENFEAT#	175	I	This pin is used to enable the feature connector interface functions. For VGA	
			feature connector compatible mode. This pin is pulled up with a 10K resistor.	
			When high, it is used to enable the FDOTCLK, FBLANK#, VHSYNC, VSYNC	
			FBUS[7:0] output signals to VGA compatible feature connector. When low, all	
			of these signal pins are tri-stated.	
FDOTCLK	167	10	Set up for VGA feature connector compatible mode as well as ENFEAT# is	
			high, the pixel clock , being internally driven to RAMDAC, is also driven to this	
			pin. If ENFEAT is low, it is tri-stated.	
FBLANK#	172	IO	Set up for VGA feature connector compatible mode as well as ENFEAT# is	
			high, the BLANK# signal, being internally driven to RAMDAC, is also driven to	
			this pin. If ENFEAT is low, it is tri-stated.	
FBUS0\DACD0	158	10	This pin is FBUS0.	
FBUS1\DACD1	159	IO	This pin is FBUS1.	
FBUS2\DACD2	160	IO	This pin is FBUS2.	
FBUS3\DACD3	161	IO	This pin is FBUS3.	
FBUS4\DACD4	162	IO	This pin is FBUS4.	
FBUS5\DACD5	163	IO	This pin is FBUS5.	
FBUS6\DACD6	164	Ю	This pin is FBUS6.	
FBUS7\DACD7	165	IO	This pin is FBUS7.	
			Setting up for VGA feature connector compatible mode as well as ENFEAT is	
			high, the FBUS0 to FBUS7 bus, being internally driven to RAMDAC, are also	
			driven to these pins. If ENFEAT is low, they are tri-stated.	
TMCLK	202	IO	This pin is used as memory clock and can be driven output for observation by	
			pulling up power on strapped pin MD40(VCGDBG), or it will be tristated.	
TDCLK	203	IO	This pin used as dot clock and can be driven output for observation by	
			pulling up power on strapped pin MD40(DBVCG), or it will be tristated.	
Reserved	173,174	1,176,1	77,178,179,201	

POWER PINS:

PIN NAME	PINTYPE	PIN NO.	DRIVE(ma)	C_LOAD(pf)
VCCP	-	53,105,157,194,208	-	-
GNDP	-	1,11,37,52,65,89,104,111,145,156,195	-	-
VCC	-	13,28,80,97,136,168	-	-
GND	-	15,22,44	-	-
		73,93,102,115, 119,127,153,166, 170		
AVDD	-	183,191,196,200	-	-
AVSS	-	182,192,193,197	-	

MACRONIX INTERNATIONAL CO., LTD.

HEADQUARTERS: TEL:+886-3-578-8888 FAX:+886-3-578-8887

EUROPE OFFICE: TEL:+32-2-456-8020 FAX:+32-2-456-8021

JAPAN OFFICE: TEL:+81-44-246-9100 FAX:+81-44-246-9105

SINGAPORE OFFICE: TEL:+65-747-2309 FAX:+65-748-4090

TAIPEI OFFICE: TEL:+886-3-509-3300 FAX:+886-3-509-2200

MACRONIX AMERICA, INC. TEL:+1-408-453-8088 FAX:+1-408-453-8488

CHHICAGO OFFICE: TEL:+1-847-963-1900 FAX:+1-847-963-1909

http://www.macronix.com