
1
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

PowerVR™
The Future of 3D Graphics Technology

Technical Backgrounder

2
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Demystifying 3D Graphics Technology

Video games have been around for several years and improve substantially with each generation. Early video
game machines and their associated games titles were restricted by what is known as two-dimensional
graphics. The images that such machines or games provide are generally “flat” and lack any notion of depth (z-
dimension). For example, in a two-dimensional game, the player can only move in x and y dimensions and
cannot look “behind” objects in a scene. Later machines added the ability to process three-dimensional
graphics, where the player has total freedom of movement and can go “around” and “behind” objects, much
like in real life.

The processing power and graphics capabilities needed to migrate from two-dimensional to three-dimensional
graphics is substantial. In a two-dimensional game, two-dimensional images called bitmaps are moved from
one area of memory (the source) to another (the destination). Such bitmaps may be combined with other
bitmaps or with the destination bitmap to create special effects. Bitmap moves, often referred to as bitblit, can
also be made conditional on a pixel-by-pixel basis, depending on the destination and source pixels and their
relative values.

In a three-dimensional environment, the entire database representing the modeled “world” is processed for
every frame displayed. An observer can be looking at and manipulating the world from a new position and
direction, but the relative position and orientation of each object is recalculated in every frame. This operation
is called geometry transformation.

Figure 1. The Basics of 3D Graphical Processing

Once the new coordinate of every object is known, the effective view as seen by the observer must be generated,
often by projecting the three-dimensional world onto a viewport that constitutes the image seen by the
observer. To produce the correct image, it must be known which object or part of each object is visible in the
viewport. This operation is generally known as hidden surface removal.

Conventional Hidden-Surface Removal Techniques

Many three-dimensional rendering techniques use a z-buffer concept, whereby objects used to construct the
three-dimensional world are normally composed of triangles, or polygons. For example, the pyramid
(tetrahedron) in Figure 1 consists of four polygons. The cube as shown in Figure 1 can be divided into 12
triangles by separating each quad side into two triangles. Each polygon is then drawn, pixel by pixel, into the
display buffer, and then displayed on the screen.

3
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Depth value

Blue component

Green component

Red component

Figure 2. Representation of Z Buffer

During this process, polygons or portions of polygons drawn on to the screen are overwritten if follow-on
polygons are closer to the observer. Similarly, if polygons or a portion of the polygons to be drawn are behind
previously drawn polygons, the associated pixels are ignored and not drawn. To achieve hidden-surface
removal, many applications store a z value in addition to a color value for each pixel on the screen. This z
value represents depth and is used to determine whether pixels from a newly drawn polygon are in front of or
behind the current pixel. Figure 2 shows how each pixel is expressed in red, green and blue components and
also in a z value stored in the z-buffer.

Some systems avoid using a dedicated z-buffer by breaking down all intersecting polygons first, allowing
intersecting polygons to be simply drawn according to depth order. Compared to systems using a z-buffer,
these systems have reduced performance because the CPU must perform the additional polygon partitioning
and presorting.

Conventional Texturing and Shading

In addition to hidden-surface removal, when polygons are written into the frame buffer, pixel values must be
modified to take account of texture, shading and lighting characteristics.

Textures are stored in memory and relevant pixels from the texture map, called texels, are retrieved and used
to texture each pixel before it is written into the frame buffer. Depending on the texturing technique, each
output pixel requires a different number of texels. The simplest technique, called point sample texturing, uses a
single texel from the texture map to best approximate a pixel's texture, depending on the orientation of the
associated polygon. Point sampling can result in the same texel value being used for several adjacent output
pixels, depending on the orientation of the polygon. This technique sometimes causes “blockiness” of the
resulting textured polygons.

More advanced features interpolate between many texels to more accurately estimate the texture for the output
pixel. For example bilinear texturing uses four adjacent texels to interpolate the output pixel value, resulting in
a smoother-textured polygon as the interpolation smoothes the blockiness associated with point sampling. The
disadvantage of bilinear texturing is that it increases the memory bandwidth required to retrieve texture data by
up to four times.

4
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Another advanced texturing technique is MIP mapping, where low- and high-resolution versions of the same
texture are mixed to produce the final value. This technique is particularly useful in removing the aliasing
problems that occur when textures are mapped onto acute-angled polygons that disappear into the distance.
Aliasing occurs when there are insufficient pixels to faithfully represent sharp variations in the image. Anti-
aliasing is important for modeling sky or flat landscapes in which a single resolution is used and image
discontinuities occur due to aliasing at certain depths. Varying the mix of low- and high-resolution textures,
depending on depth, greatly minimizes this effect.

It is possible to combine point sampling and bilinear techniques within a MIP map approach. Linear MIP
mapping refers to a case where point sampling is used for both MIP maps when two texels, one from each MIP
map, are accessed and combined for every output pixel. Trilinear texturing is where bilinear interpolation is
used for both MIP maps, resulting in eight texel accesses per output pixel. Even more advanced techniques are
now appearing e.g. anisotropic texturing where typically sixteen texels are sampled depending on the polygon
orientation to achieve a very high level of image sharpness without introducing aliasing.

Figure 3 shows a basic three-dimensional rendering pipeline, with particular emphasis on memory access
requirements. Front-end geometry transformation is omitted for simplicity.

Read associated
z-buffer location

to decide
whether that

pixel is visible.
If it is modify
the z-value.

Modify intensity
to implement
the desired
shading and
update frame
buffer (read

previous value
of the pixel if
transparent).

Write the output
to the display.

Z-Buffer
Memory

Texture
Memory

Frame Buffer
Memory

To Display

One to sixteen
accesses per pixel

Two to three
accesses per pixel

180MB/s 180MB/s 90MB/s

For every pixel
of every polygon

Read the relevant
texels (1 to 16
depending on

texturing
approach) and
generate the
texture for the
output pixel

Figure 3. Data Flow in a Simplified Rendering Pipeline at 500K polygons/sec

In addition to adding textures to polygons, it is often desirable to model surfaces that appear smooth and
curved. Processing curved surfaces is very complicated; modifying the pixels' colour so that the polygons
appear curved and smooth to the observer is a simpler approach that takes into account the position of light
sources in the scene relative to the polygon surface. This technique is used to modify the colour of reflected
light at each pixel on the surface, as if the surface normals at each pixel were those of a curved surface passing
through vertices of the polygon.

Resultant average
normal

Vertex normal

Figure 4. Colour of Reflected Light at Each Pixel (Smooth Shading)

5
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Figure 4 illustrates the basics of smooth shading, where surface normals at vertices are defined and are linearly
interpolated (averaged) across each edge and along each display line. The resulting “simulated” curved surface
is used in calculating the colour of reflected light across the polygon. Unlike z-buffering and texturing, the
shading operation does not require memory accesses.

Once the output pixel is shaded and textured, it is written into the display frame buffer. If the polygon has any
degree of transparency, then the previous value of the same pixel is read from the frame buffer and combined
with the new value before being written.

Once all the polygons are processed, the newly generated image is output to the display. This operation is often
done in a double-buffered manner to overlap the image display and rendering of the next frame. Double
buffering eliminates visual cut lines generated because of the difference between display refresh and rendering
frame rate. Figure 3 illustrates the concept of a standard approach to three-dimensional rendering operations
including z-buffering, texturing, shading, translucency and frame buffer management.

Limitations of Today's Approaches

Three-dimensional systems using conventional approaches suffer from a number of limitations.

Massive Memory Bandwidth Requirement

There are many accesses into the z-buffer and the texture and frame buffers for each polygon (Figure 3).
Assuming a 24-bit z-buffer, 24-bit textures, 24-bit pixels, and a 800x600x72Hz refresh rate, these formulas can
be used to calculate required bandwidth.

Z-Buffer
Bandwidth

(Bytes/Second)

Texture Bandwidth
(Bytes/Second)

Frame Buffer
Bandwidth

(Bytes/Second)

Total Bandwidth
Required

6xPPxPZ
3xPPxPZ (note 3)
6xPPxPZ (note 4)
12xPPxPZ (note 5)
24xPPxPZ (note 6)
48xPPxPZ (note 7)

3xPPxPZ
+

104 MB/sec

12xPPxPZ+104 MB/sec
15xPPxPZ+104 MB/sec
21xPPxPZ+104 MB/sec
33xPPxPZ+104 MB/sec
57xPPxPZ+104 MB/sec

Table 1. Bandwidth Requirements for Conventional Three-Dimensional Systems

Notes:
(1) PZ = polygon size in pixels (average polygon size of 100 pixels)
(2) PP = polygon-per-second performance
(3) Point sampling
(4) Linear MIP mapping
(5) Bilinear interpolation
(6) Trilinear texturing
(7) Anisotropic texturing

Table 2 shows the results of these calculations.

Case 500k Polygons/Second 1M Polygons/Second 2M Polygons/Second
Point sample 704 MB/sec 1304 MB/sec 2504 MB/sec

Linear MIP mapping 854 MB/sec 1604 MB/sec 3104 MB/sec

Bilinear interpolation 1154 MB/sec 2204 MB/sec 4304 MB/sec

Trilinear texturing 1754 MB/sec 3404 MB/sec 6704 MB/sec

Anisotropic texturing 2954 MB/sec 5804 MB/sec 11504 MB/sec

Table 2. Examples of Bandwidth Requirements (Average Polygon Size of 100 Pixels)

It is clear from these examples that the bandwidth requirement for conventional three-dimensional rendering
systems is substantial. Furthermore, this requirement increases as the performance level or quality of texturing
technique improves.

6
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Memory Consumption

Conventional three-dimensional solutions require memory systems for the z-buffer, texture storage and frame
buffer. In addition, many implementations use multi-bank memory systems to optimize data transfer since the
bandwidth needed for each one of these memories, particularly texture storage and the z-buffer, is very high
and increases with performance. Memory subsystems have necessarily become the most costly part of today’s
high-performance, three-dimensional rendering systems. In fact, the cost of processing devices is often only a
fraction of the cost for required memory components. To achieve a cost-effective three-dimensional graphics
solution, therefore, it is essential to eliminate memory requirements wherever possible.

Performance for Cost Sensitive systems Limited by Memory Bandwidth

Given their memory bandwidth and cost, conventional three-dimensional systems cannot deliver both low cost
and high performance. Low-cost systems must use cost-effective DRAM memories and combine z-buffer,
texture memory and frame buffer memory wherever possible to share the expensive resources. It is therefore
not surprising that systems making such compromises do not deliver the required performance.

Poor Platform Scalability

Given the nature of the algorithms used in conventional three-dimensional rendering systems, and the hugely
different memory bandwidth requirements, none of today’s conventional approaches are scalable. It is therefore
impossible to use the same solution for a low-end consumer application and a high-end arcade platform. Such
scalability is highly desirable because the very best titles are often developed on arcade platforms and then
migrated to a consumer PC implementation

Limited Special Effects and Realism

Some of the very powerful and important special effects need a fundamentally different approach in order to
achieve low overhead and cost effective implementations. An example of such capabilities is the ability to
modify an object’s appearance on screen dynamically dependant on it’s interaction with other objects in the
scene e.g. a car being cast into shadow when passing under a tree. Such features bring a new dimension to
games and cannot be effectively implemented using the conventional polygon based approach. Mechanisms
that can better model the real world are needed to address these issues.

PowerVR Breaks All Conventional 3D Barriers

A traditional three-dimensional approach cannot provide both low cost and high performance. PowerVR
technology, a joint development between VideoLogic and NEC Corporation, minimizes the amount of memory
used and the bandwidth of the memory system. As shown in Figure 3, in conventional three-dimensional
approaches, two memory subsystems (texture memory and frame buffer memory) hold real image data, while
the third (z-buffer) temporarily holds depth history during rendering of each frame.

Architecture and Design Objectives

To minimize memory requirements, PowerVR was designed to eliminate the requirement for z-buffer memory.
To ensure that maximum performance is maintained, hidden-surface removal is implemented entirely in
hardware. This saves z-buffer costs and removes the bottleneck associated with accessing off-chip memory.
Furthermore, since hidden-surface removal is performed fully on-chip, calculations are performed at the clock
speed of the device and can benefit from continuous improvements to silicon technology. The first generation
PowerVR chips (NEC PCX1 and PCX2) were the first devices to use this innovative architecture. Recently the
second generation PowerVR technology was introduced which included future significant enhancements to the
basic PowerVR architecture.

7
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Tiling HSR
Setup

HSR

Texture &
Shading

Setup

Texture &
Shading

Accum
Buffer

Frame
Buffer

Figure 5. PowerVR Second Generation Rendering Pipeline

PowerVR also substantially reduces the bandwidth requirements of the texture and frame buffers. Texture
bandwidth is minimized using deferred texturing. Unlike a conventional rendering system where every
polygon is textured and then potentially overwritten, the PowerVR approach only textures finally visible pixels
(polygons or portions of polygons).

This deferral is possible through innovative hidden-surface removal techniques which outputs pixel groups
(tiles) fully resolved in depth and constituting visible pixels only. During the rendering of each frame, every
pixel on the screen is only textured once and each output pixel is written to the frame buffer only once.
Conversely, in a conventional system, every pixel on every rendered polygon potentially must be written into
the frame buffer. First generation chips processed 32 pixels in a group in a single clock cycle. Second
generation chips process a 32 x16 pixel matrix (or tile) in a single clock cycle.

Table 3 uses the same parameters and conditions defined earlier to calculate bandwidth requirements for each
of the three main operations in PowerVR.

z-Buffer
Bandwidth

(Bytes/Second)

Texture Bandwidth
(Bytes/Second)

Frame Buffer
Bandwidth

(Bytes/Second)

Total
Bandwidth
Required

0
0
0
0
0

3xFRxRES (note 3)
6xFRxRES (note 4)
12xFRxRES (note 5)
24xFRxRES (note 6)
48xFRxRES (note 7)

3xFRxRES
+

104 MB/sec

6xFRxRES+104 MB
9xFRxRES+104 MB
15xFRxRES+104 MB
27xFRxRES+104 MB
51xFRxRES+104 MB

Table 3. Bandwidth Requirement (Sustained) For PowerVR

Notes:
(1) RES = screen resolution (800x600)
(2) FR = rendering frames rate (60)
(3) Point sampling
(4) Linear MIP mapping
(5) Bilinear interpolation
(6) Trilinear texturing
(7) Anisotropic texturing

8
© Copyright NEC/VideoLogic 1996-1998

5/98 V.10

Table 4 shows the results obtained by applying these equations to 500k, 1M and 2M polygons for a 60fps
rendering frame rate.

Case 500k Polygons 1M Polygons 2M Polygons
Point sampling 276.8 MB/sec 276.8 MB/sec 276.8 MB/sec

MIPmapping 363.2 MB/sec 363.2 MB/sec 363.2 MB/sec

Bilinear interpolation 536 MB/sec 536 MB/sec 536 MB/sec

Trilinear texturing 881.6 MB/sec 881.6 MB/sec 881.6 MB/sec

Anisotropic filtering 1572.8 MB/sec 1572.8 MB/sec 1572.8 MB/sec

Table 4. Example of Bandwidth Requirements (Average Polygon Size of 100 Pixels)

The comparison between the results of Table 2 and Table 4 clearly show two points:
• PowerVR’s memory bandwidth requirements are between three to ten times lower than traditional three-

dimensional systems
• PowerVR’s memory bandwidth requirement for any given texturing approach is independent of polygon-

per-second performance figure.

Note that second generation PowerVR implementations can improve the bandwidth further by using
compressed textures, a 16-bit frame buffer with the texturing and shading operations all calculated in 24-bit,
and then dithering the output. Also the Z compare is 32-bit which is more accurate than the example
conditions without any increase in bandwidth requirement.

Scalable Architecture

Another key feature of the PowerVR technology is its true scalability. PowerVR’s display list architecture is
inherently scalable. The screen can be segmented and the work shared between PowerVR chips, providing
linear performance increases, allowing system designers to match three-dimensional performance to user
requirements.

Hidden surface removal is also key to PowerVR scalability. Hidden surface removal is performed by multiple
on-chip processing elements (PEs which operate concurrently and process a tile of pixels. By adding more PEs
(in an integrated device or by using multiple devices) it is possible to process more pixels simultaneously.

Summary

In summary, traditional 3D rendering approaches rely on large memory systems and performance is limited by
memory access speed (bandwidth). This means conventional 3D systems cannot fundamentally deliver both
low cost and high performance. PowerVR’s reduced memory approach eliminates expensive memory and
associated performance limiting bandwidth. This means the performance of PowerVR chips is determined by
the number of processing elements simultaneously active in a chip (or group of chips) and the clock speed of
the chip (or group of chips). Therefore PowerVR provides high performance with low cost and ensures
scalability as performance is not limited by memory bandwidth and continues to increase as silicon technology
improves.

