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Preface

About This Book

This document describes the instruction set architecture (ISA) native to the R600 processor. It defines
the instructions and formats as they are accessible to programmers and compilers.

The document serves two purposes. First, it specifies the microcode, including the format of each type
of microcode instruction and the relevant program state, including how the program state interacts
with the microcode. Some microcode fields are mutually dependent; not all possible settings for all
fields are legal. This document specifies the combinations of microcode settings that are valid.
Second, the document provides the programming guidelines that compiler writers should observe to
maximize performance of the processor.

For an understanding of the software environment in which the R600 processor operates, see the AT/
CTM Guide, Technical Reference Manual, which describes the interface by which a host controls an
R600 processor.

Audience

This document is intended for programmers writing application and system software, including
operating systems, compilers, loaders, linkers, device drivers, and system utilities. It assumes that
programmers are writing compute-intensive parallel applications, or streaming applications, including
both graphics and general-purpose computation. It assumes an understanding of general programming
practices for either graphics or general-purpose computing. See “Related Documents” on page xxxi
for descriptions of other relevant documents.

Contact Information

To submit questions or comments concerning this document, contact our technical documentation
staff at AMD64.Feedback@amd.com.

Organization

This document begins with an overview summarizing the R600 processor’s hardware and
programming environment for graphics computation and general-purpose computation. It then
describes the organization of an R600 program, and the program state that is maintained. Then it
describes the types of microcode instructions in detail, presenting a high-level description of the
instruction fields and discussing restrictions on the fields that must be observed. This is followed by
chapter contains instruction details, in an alphabetic order without four broad categories. Finally, a
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detailed specification of each microcode format is presented. The index at the end cross-references
topics within this volume.

The section that immediately follows defines key terms used in this document.

Definitions

Many of the following definitions assume knowledge of graphics and general-purpose programming.
*

An asterisk in a mnemonic indicates any number of alphanumeric characters in the name of a
microcode format, microcode parameter, or instruction, that define variants of the parameter.

0.0
A single-precision (32-bit) floating-point value.
1011b
A binary value, in this example a 4-bit value.
FOEAhR
A hexadecimal value, in this example a 2-byte value.
[1,2]
A range that includes both the left-most and right-most values (in this case, 1 and 2).
[1,2)
A range that includes the left-most value (in this case, 1) but excludes the right-most value (in this
case, 2).
7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.
{BUF, SWIZ}
One of the multiple options listed. In this case, the string BUF or the string SWIZ.
A0
Same as “AR”.
absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with “relative”.

address stack

A stack that contains only addresses (no other state). It is used for flow control. Popping the
address stack overrides the instruction address field of a flow control instruction. The address stack
is only modified if the flow control instruction decides to jump.

Xvi Preface
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al

The “loop index”. Software can use its current value as an index by specifying this in the
INDEX MODE field of the ALU_DWORDO microcode format. Also called AL.

AL
Same as “al.”.

allocate

To reserve storage space for data in an output buffer (a “scratch buffer”, “DirectX 9 supports two
kinds of resources: buffer and texture. Buffer resources hold a collection of vectors (see “vector”).
Texture resources hold a collection of texels (see “texel”). ring buffer”, “stream buffer”, or
“reduction buffer”) or for data in an input buffer (a “scratch buffer” or “DirectX 9 supports two
kinds of resources: buffer and texture. Buffer resources hold a collection of vectors (see “vector”).
Texture resources hold a collection of texels (see “texel”). ring buffer”) prior to exporting (writing)
or importing (reading) data or addresses to or from that buffer. Space is allocated only for data, not

for addresses. After allocating space in a buffer, an “export” operation can be performed.

ALU.[X)Y,Z,W] unit
An ALU unit that can perform four ALU.Trans operations in which the four operands (integers or
single-precision floating-point values) need not be related in any way. ALU.[X,Y,Z,W] units
perform “SIMD” operations. Thus, although the four operands need not be related, all four
operations execute the same instruction. The ability to operate on four unrelated operands
differentiates ALU.[X,Y,Z,W] operations from “vector” operations; in vector operations, all four
operands are typically assumed to be related. See “ALU.Trans unit” for more details.

ALU.Trans unit

An ALU unit that can perform one ALU.Trans, transcendental, or advanced integer operation on
one integer or single-precision floating-point value and replicate the result. A single instruction
can co-issue four ALU.Trans operations to an ALU.[X,Y,Z,W] unit and one (possibly complex)
operation to an ALU.Trans unit, which can then replicate its result across all four elements being
operated on in the associated ALU.[X,Y,Z,W] unit.

AR

Address register. It is set by all MOV A* instructions and is used for constant-file relative
addressing. AR-relative addressing uses “constant waterfalling”; instructions in a clause using AR
must have their USES_ WATERFALL bit set.

byte
Eight bits.

A bit, as in /Mb for one megabit, or Isb for least-significant bit.

A byte, as in /MB for one megabyte, or LSB for least-significant byte.

Preface XVii
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border color

Border color is specified by four 32-bit floating-point numbers (XYZW).

cache
A read-only or write-only on-chip or off-chip storage space.

CF
Control flow.

cfile
Same as “constant file” and “Same as “AR” register constant registers”.

channel
An element in a “vector”.

clamp
To hold within a stated range.

clause

A group of instructions that are of the same type (all ALU, all texture-fetch, etc.) executed as a
group. A clause is part of a “thread”.

clause size

The total number of slots required for an ALU clause. See “slot”.

clause temporaries
Temporary values stored at GPR[124,127] that do not need to be preserved past the end of a clause.

clear

To write a bit-value of 0. Compare “set”.

cleartype

A method for improving the quality of fonts on displays that contain repeating patterns of colored
sub-pixels.

command

A value written by the host processor directly to the R600. The commands contain information that
is not typically part of an application program, such as setting configuration registers, specifying
the data domain on which to operate, and initiating the start of data processing. See also, “event”.

command processor

A logic block in the R600 that receives host commands (see “command”), interprets them, and
performs the operations they indicate.

xviii Preface
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configuration registers

R600 register that can only be written and read by the host processor through its command
interface to the R600. They are not accessible to software running on the R600.

constant cache

The extension of the “Same as “AR” register constant registers” to off-chip memory. The term
cache is a misnomer, because the storage is in off-chip memory.

constant file

Same as “Same as “AR” register constant registers”.
constant index register

Same as “AR” register constant registers

On-chip registers that contain constants. The registers are organized as four 32-bit elements of a
“vector”. There are 256 such registers, each one 128-bits wide. The registers can be extended in
off-chip memory, where the off-chip part is called the “kcache”. Also called “CR”, “Same as “AR”

29 ¢

register constant registers”, “cfile”, or DirectX floating-point constant (F) registers.

constant waterfalling
Relative addressing of a constant file. Compare “waterfall”.

CP
See “command processor”.

CR
See “Same as “AR” register constant registers’.

CT™M

The ATI Close-To-Metal architecture, on which implementations such as the R600 “device” are
based. For more information, see the CTM HAL Programming Guide published by AMD.

cut

Finish emitting one “primitive strip” of vertices and start emitting a new “primitive strip”. Cutting
is done in a “GS” program.

DC
See “DMA copy program”.

device
As used in the ATI Close To Metal (CTM) Guide, a device is an entire R600 GPU.

DMA
Direct-memory access.

Preface Xix



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

DMA copy program

A program that transfers data from the “geometry shader” (GS) “DirectX 9 supports two kinds of
resources: buffer and texture. Buffer resources hold a collection of vectors (see “vector”). Texture
resources hold a collection of texels (see “texel”). ring buffer” into the “parameter cache” and
“position buffer”. It is required for systems running a “geometry shader” program. If a “geometry
shader” is not used, then a DMA copy program is not used.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called “octword”.

element
(1) One of four data items in a “vector”. (2) A data item in an array.

enum(7)

A 7-bit field that specifies an enumerated set of decimal values (in this case, a set of up to 27
values). The valid values may begin at a value greater than zero and the number of valid values
may be less than the maximum supported by the field.

ES
See “export shader”.

event

A token sent through a pipeline that can be used to enforce synchronization, flush caches, and
report status back to the “command processor”.

execute mask

A 1-bit-per-pixel mask that controls which pixels in a “quad” are really running. Some pixels may
not be running if the current “primitive” doesn’t cover the whole quad. A mask can be updated
with a PRED_SET* ALU instruction, but updates do not take effect until the end of the ALU
“clause”.

export

To write data from GPRs to an output buffer (a “scratch buffer”, “frame buffer”, “DirectX 9
supports two kinds of resources: buffer and texture. Buffer resources hold a collection of vectors
(see “vector”). Texture resources hold a collection of texels (see “texel”). ring buffer”, “stream
buffer”, or “reduction buffer”), or to write an address for data inputs to the R600 memory
controller, or to read data from an input buffer (a “scratch buffer” or “DirectX 9 supports two kinds
of resources: buffer and texture. Buffer resources hold a collection of vectors (see “vector”).
Texture resources hold a collection of texels (see “texel”). ring buffer””) to GPRs. The term export
is a partial misnomer because it performs both input and output functions. Prior to exporting, an

“allocate” operation must be performed to reserve space in the associated buffer.
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export shader

(1) Export shader (ES). A type of program. When a “geometry shader” (GS) is active, an ES is
required; the ES is typically a vertex shader (“VS”), which can call a “fetch subroutine”
subroutine. An ES only outputs to memory, never the “parameter cache”. (2) The ELEM_SIZE
field of the CF_ALLOC_IMP_EXP_DWORDO microcode format. (3) The ENDIAN_SWAP field
of the VITX_DWORD?2 microcode format.

F registers
DirectX floating-point constant registers. Same as “Same as “AR” register constant registers”.

FacelD
An identification number [0,5] for a D3DCUBEMAP_FACE defined in Direct3D.

fetch

To load data, using a vertex-fetch or texture-fetch instruction clause. Loads are not necessarily to
general-purpose registers (GPRs); specific types of loads may be confined to specific types of
storage destinations.

fetch program
See “FS”.

fetch subroutine

A global program for fetching vertex data. It can be called by a “vertex shader” (VS), and it runs in
the same thread context as the vertex program, and thus is treated for execution purposes as part of
the vertex program. The FS provides driver independence between the process of fetching data
required by a VS, and the VS itself. This includes having a semantic connection between the
outputs of the fetch process and the inputs of the VS.

flag
(1) A predicate bit that is modified by a CF or ALU operation and that can affect subsequent
operations. (2) An operation encoded in an instruction’s microcode format.

floating-point constant registers.
Same as “Same as “AR” register constant registers”.

Sflush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in flush the cache
line, or (2) invalidate, as in flush the pipeline, or (3) change a value, as in flush to zero.

fragment
A 2D (x,y) grid location and optional associated values that represent the properties of a surface. A
fragment is the result of rasterizing a “primitive”. A fragment has no vertices; instead, it is
represented by 2-dimensional (X-Y) coordinates in a raster buffer.
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frame

A single two-dimensional screenful of data, or the storage space required for it.

Jframe buffer
Off-chip memory that stores a “frame”.

FS
See “fetch subroutine™.

GART

Graphics address remapping table. A set up at initialization time that points to portions of system
memory that a GPU can see.

geometry program

See “geometry shader”.

geometry shader

A program that reads primitives from the VS “DirectX 9 supports two kinds of resources: buffer
and texture. Buffer resources hold a collection of vectors (see “vector’). Texture resources hold a
collection of texels (see “texel”). ring buffer”, and for each input primitive writes one or more
primitives as output to the GS ring buffer. When a geometry shader (GS) is active, an “export
shader” (ES) is required; the ES is typically a “vertex shader” (VS), which can call a “fetch
subroutine”.

GPGPU
General-purpose computing on graphics processing units.

GPR

General-purpose register. Each thread has access to 127 GPRs, 128-bits wide, four of which are
reserved as temporary registers that persist only for one ALU clause (and therefore are not
accessible to fetch or export operations). GPRs hold vectors of four 32-bit IEEE floating-point,
unsigned integer, or signed integer data elements.

GPR count

The number of GPRs that a thread can use. The same count applies to all threads, and it is modified
by the host processor in a configuration register which is not accessible to R600 software.

GPU
Graphics processing unit. The R600 is a GPU.

GRB
Graphics register bus.

GRBM
Graphics register bus manager.
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GS
See “geometry shader”.

HAL

Hardware abstraction layer.
iff

If and only if.
import

See “export”.

int(2)
A 2-bit field that specifies an integer value.

instruction

A computing function specified by the *_INST _ field of a microcode format. For example, the
mnemonic CF_INST_JUMP is an jump instruction specified by the CF_DWORD]IO0,1] microcode-
format pair. All instructions have an *_INST_ prefix in their mnemonic. To simplify reading, most
references to instructions throughout this manual omit the *_INST_ prefix. Compare “opcode”,

29 ¢

“operation”, “slot”, and “instruction group”.

instruction group

A set of one to seven instructions. Each instruction controls one of the five ALUs—
ALU[X,Y,Z,W] and ALU.Trans—and up to two additional slots may be used for literal constants.
Compare “instruction”.

ISA
Instruction set architecture.

kcache

A memory area containing “waterfall” (off-chip) constants. These cache lines of these constants
can be locked. The “Same as “AR” register constant registers” are the 256 on-chip constants.

kernel

A small program that is run repeatedly on a stream of data. A “shader” program is one type of
kernel. Unless otherwise specified, an R600 “program” is a kernel.

kill
To prevent rendering of a “An on-chip buffer that holds vertex parameters associated with entries
in the “position buffer”. pixel”.

lerp
Linear interpolation.
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LI
See “loop index”.

LIT

An operation that computes diffuse and specular light components based on an input vector
containing information about shininess and normals to the light. It uses Blinn's lighting equation.

LOD
Level of detail.

loop counter

A hardware-maintained register that is initialized by hardware to zero at the beginning of a loop
and that counts in steps of one. Also called “loop iterator”. Compare “loop index”.

loop increment

The step value added to the “loop index” at each iteration of a loop. Software specifies it with the
CF_CONST field of the CF_DWORD1 microcode format.

loop index initializer
The beginning value of the “loop index”. Software specifies it with the CF_CONST field of the
CF_DWORDI1 microcode format.

loop index

The “al.” register. A hardware-maintained register that is initialized by software to a beginning
value (see “loop index initializer””) with the CF_CONST field of the CF_DWORD1 microcode
format. Hardware increments the loop index in “loop increment” steps. Compare “loop counter”.

loop iterator
Same as “loop counter”.

loop register
Same as “al.” and “loop index”.

loop trip count

The maximum number of iterations in a loop. Software specifies it with the CF_CONST field of
the CF_DWORDI1 microcode format.

Isb
Least-significant bit.

LSB
Least-significant byte.

microcode format

An encoding format whose fields specify instructions and associated parameters. Microcode
formats are used in sets of two or four. For example, the two mnemonics, CF_DWORD]|0,1]
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indicate a microcode-format pair, CF_DWORDO0 and CF_DWORDI1. The microcode formats and
all of their fields are described in Section 8 on page 259.

mipmaps

A group of related texture maps (bitmaps) at various sizes. Each texture map is the same image,
optimized for the size of the map.

MRT

See “multiple render target”.

msb

Most-significant bit.

MSB
Most-significant byte.

multiple render target
One of multiple areas of local GPU memory, such as a “frame buffer”, to which a graphics pipeline

writes data.
octword
Eight words, or 16 bytes, or 128 bits. Same as “double quadword”.

opcode

The numeric value of the CF_INST field of an “instruction”. For example, the opcode for the
CF_INST_JUMP instruction is decimal 16 (10h).

operation

The function performed by an “instruction”.

page
A program-controlled cache, backing up processor-accessible memory.
PARAM

A parameter, or relating to the parameter cache.

parameter

(1) A graphics parameter stored in the “parameter cache”. (2) An attribute of an “instruction” and
specified in the same microcode format as the instruction.

parameter cache

An on-chip buffer that holds vertex parameters associated with entries in the “position buffer”. pixel

(1) The result of placing a “fragment” in a “frame buffer”. (2) The smallest resolvable unit of a
graphic image. It has a specific luminescence and color.
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PIXEL
Related to the pixel exports to a “frame buffer”.

pixel program
See “pixel shader”.

pixel shader

29 ¢

A program that (a) reads rasterized data from the “position buffer”, “parameter cache”, and “vertex
geometry translator” (VGT), (b) processes individual pixel quads (see “quad”), and (c) writes
output to up to eight local-memory buffers, called multiple render targets (see “MRT”), including
targets such as a “frame buffer”.

pop
Write “stack” entries to their associated hardware-maintained control-flow state. The
POP_COUNT field of the CF_DWORDI1 microcode format specifies the number of stack entries
to pop for instructions that pop the stack. Compare “push”.

position buffer
An off-chip buffer that holds vertex-position data associated with entries in the “parameter cache”.

POS
A position of a vertex, or relating to the “position buffer”.

PRED_SET*
An OP2_INST_PRED_SET#* instruction of the ALU_DWORD1_OP2 microcode format.

predicate counter

A counter associated with an “execute mask” that is set in the ALU clause but is used in CF
instructions.

predicate register

A register containing predicate bits. The bits are set or cleared by ALU instructions as the result of
evaluating some condition, and the bits are subsequently used either to mask writing an ALU result
or as a condition itself.

predicate mask
A mask that is valid within a single ALU clause.

primitive
(1) A point, line segment, or polygon before rasterization. It has vertices specified by geometric
coordinates. Additional data can be associated with vertices by means of linear interpolation across

the primitive. (2) A group of one, two, or three vertices that covers some number of fragments or
pixels (points on an integer grid).
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primitive strip

In DirectX, a series of connected triangles. Compare “cut”.processor
Unless otherwise stated, the R600 “GPU”".

program

Unless otherwise specified, a program is a “kernel” that can run on the R600. A *“shader” program
is a type of “kernel”.

PS

(1) Previous scalar register. It contains the previous result from a ALU.Trans unit within a given
ALU clause. (2) See “pixel shader”. (3) The PRED_SEL field of the ALU_DWORDO microcode
format.

push
Read hardware-maintained control-flow state and write their contents onto the “stack”. Compare

13 29

pop .
PV

Previous vector register. It contains the previous 4-element vector result from a ALU.[X,Y,Z,W]
unit within a given clause.

quad

(1) Four pixel-data elements arranged in a 2-by-2 array. (2) Four pixels representing the four
vertices of a quadrilateral. (3) Same as an independent quad in OpenGL v2.1.

quadword
Four words, or eight bytes, or 64 bits.

RB

See “DirectX 9 supports two kinds of resources: buffer and texture. Buffer resources hold a
collection of vectors (see “vector”). Texture resources hold a collection of texels (see “texel”). ring
buffer”.

reduction buffer

An off-chip buffer used to help compute results across multiple threads, such as accumulate
operations.

relative

Referencing with a displacement (also called offset) from an index register, rather than from the
base address of a program. Contrast with “absolute”.

repeat loop

A loop that does not maintain a loop index. Repeat loops are implemented with the
LOOP_START NO_AL and LOOP_END instructions.
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resource

DirectX 9 supports two kinds of resources: buffer and texture. Buffer resources hold a collection of
vectors (see “vector”). Texture resources hold a collection of texels (see “texel”). ring buffer

An on-chip buffer that indexes itself automatically in a circle. There is “VS” and a “GS” ring
buffer.

Rsvd
Reserved.

SC
Scan converter.

scalar
A single data element, as opposed to a complete four-element “vector”.

scalar ALU
See “ALU.Trans unit”.

scratch buffer
A variable-sized space in off-chip memory that stores some of the “GPR”.

scratch memory
Same as “scratch buffer”.

semantic table
A table that specifies GPRs to which vertex data is to be written.

sequencer
R600 control logic.

set
To write a bit-value of 1. Compare “clear”.

shader
A program or hardware block that defines the graphical surface properties of an object. The

99 ¢

following types of shader programs are common: “vertex shader”, “fetch subroutine”, “export

29 46

shader”, “geometry shader”, and “pixel shader”.

SIMD
Single instruction, multiple data. See “ALU.[X,Y,Z,W] unit” and “SIMD pipeline”.

SIMD pipeline

A hardware block (also called a SIMD block or a slice) consisting of five ALUs, one ALU
instruction decoder and issuer, one ALU constant fetcher, and support logic. All parts of a SIMD
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pipeline receive the same instruction and operate on “thread group”. Each SIMD pipeline can
process a separate set of instructions, called a “kernel” or “shader”.

slice
Same as “SIMD pipeline”.

slot

A position, in an “instruction group”, for an “instruction” or an associated literal constant. An
ALU instruction group consists of between one and seven slots, each 64 bits wide. The size of an
ALU clause is the total number of slots required for the clause.

slot size
64 bits.

SMX
Shader memory exporter. A hardware block in the R600 processor.

software-visible
Readable and/or writable by a program running on an R600 processor or the host.

SP
Shader Pipeline. A set of arithmetic and logic units (ALUs) and associated logic. Compare “SIMD
pipeline”.

SPI

Shader pipe interpolator. A hardware block in the R600 processor. It is instrumental in loading
threads for execution.

stack

The R600 hardware maintains a single, multi-entry stack for saving and restoring control-flow
state during the execution of certain instructions that alter the control flow. The stack entries store
the state of nested loops, pixels, predicates, and other execution details. Compare “push” and
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pop .
stream buffer

A variable-sized space in off-chip memory that holds output data. It is an output-only buffer,
configured by the host processor. It does not store inputs from off-chip memory to the R600
processor.

Strip
See “primitive strip”.

swizzle
To copy or move any element in a source vector to any element-position in an result vector.
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SX
Shader exporter.

TA
Texture address.

B
Thread buffer.

C
Texture cache.

texel
Texture element. A texel is the basic unit of texture. The smallest addressable unit of a texture
map.

texture buffer
A read-only portion of off-chip memory that contains texture data.

thread

One invocation of a program executing on a set of vectors. The set of vectors can represent one
vertex, one primitive, or one pixel. Each thread has its own unique state.

thread group
All of the threads (see “thread”) that are simultaneously executing on a “SIMD pipeline”.

TP
Texture pipe.

trip count
Same as “loop trip count”.

VC
Vertex cache.

vector

(1) A set of up to four values of the same data type, each of which is an “element”. One instruction
executing in a “SIMD pipeline” operates on vectors containing 64 vertices, primitives, pixels, or
other data, related or unrelated, in a fixed number of clock cycles. A vector operation is the basic
unit of R600 work. (2) See “ALU.[X,Y,Z,W] unit”.

vertex
A set of X,y (2D) coordinates.

vertex geometry translator
A hardware block that translates vertex geometry.

XXX Preface



AMDA
ProductiD—Rev. 0.31—May 2007 AMD R600 Technology

vertex program
See “vertex shader”.

vertex shader

A program that reads vertices, processes them, and outputs to either the VS “DirectX 9 supports
two kinds of resources: buffer and texture. Buffer resources hold a collection of vectors (see
“vector”). Texture resources hold a collection of texels (see “texel”). ring buffer” or the “parameter
cache” and “position buffer”, depending on whether a “geometry shader” (GS) is active. It does
not introduce new primitives. When a GS is active, a vertex shader is a type of “export shader”
(ES). A vertex shader can call a “fetch subroutine” (FS), which is a special global program for
fetching vertex data; the FS is treated, for execution purposes, as part of the VS. The FS provides
driver independence between the process of fetching data required by a VS, and the VS itself.

vfetch
Vertex fetch.

VGT
See “vertex geometry translator”.

VP
(1) Vector processor. (2) “vertex program”.

VS
See “vertex shader”.

waterfall

To use the address register (AR) for indexing the GPRs. Waterfall behavior is determined by a
“configuration registers”.

word
Two bytes, or 16 bits.

Endian Order

The R600 architecture addresses memory and registers using little-endian byte-ordering and bit-
ordering. Multi-byte values are stored with their least-significant (low-order) byte (LSB) at the lowest
byte address, and they are illustrated with their LSB at the right side. Byte values are stored with their
least-significant (low-order) bit (Isb) at the lowest bit address, and they are illustrated with their Isb at
the right side.

Related Documents

e CTM HAL Programming Guide. Published by AMD.
* ATI Intermediate Language (IL) Compiler Reference Manual. Published by AMD.
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*  OpenGL Programming Guide, at http://www.glprogramming.com/red/

*  Microsoft DirectX Reference Website, at http://msdn.microsoft.com/archive/default.asp?
url=/archive/en-us/directx9_c_Summer_04/directx/graphics/reference/reference.asp

*  GPGPU: http://www.gpgpu.org
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1 Introduction

The R600 processor implements a parallel microarchitecture that provides an excellent platform not
only for computer graphics applications but also for general-purpose streaming applications. Any
data-intensive application that can be mapped to a 2D matrix is a potential candidate for running on the
R600.

Figure 1-1 shows a block diagram of the R600 processor. It includes a data-parallel processor (DPP)
array, a command processor, a memory controller, and other logic (not shown). The R600 command
processor reads commands that the host has written to memory-mapped R600 registers in the system-
memory address space, and the command processor sends hardware-generated interrupts to the host
when the command is completed. The R600 memory controller has direct access to all of R600 local
memory and the host-specified areas of system memory. In addition to satisfying read and write
requests, the memory controller performs the functions of a direct-memory access (DMA) controller,
including computing memory-address offsets based on the format of the requested data in memory.

Host Interrupts
Application

ECDmmands, Instructions and data

System-Memory R600
Address Space Command Processor

Memory-Mapped
R600 Registers >

Commands >
Instructions >
Constants >

3
5
Pl
o
R600 Local a% Data Parallel Processor (DPP) Array
Memory =

Commands |« »
Instructions |« >
Constants < »
Inputs < »
Outputs <

h 4

Figure 1-1. R600 Block Diagram

A host application cannot write to R600 local memory directly, but it can command the R600 to copy
programs and data from system memory to R600 memory, or vice versa. A complete application for
the R600 includes two parts: a program running on the host processor, and programs—called kernels
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or shaders—running on the R600 processor. The R600 programs are controlled by host commands,
which do such things as set R600-internal base-address and other configuration registers, specify the
data domain on which the R600 is to operate, invalidate and flush caches on the R600, and cause the
R600 to begin execution of a program. The R600 driver program runs on the host.

The DPP array is the heart of the R600 processor. The array is organized as a set of SIMD pipelines,
each independent from the other, that operate in parallel on streams of 32-bit floating-point or integer
data. The SIMD pipelines can process data or, via the memory controller, transfer data to or from
memory. Computation in a SIMD pipeline can be made subject to a condition. Outputs written to
memory can also be made subject to a condition. R600 software stores data to memory by first
allocating space in a memory buffer and then exporting data from GPRs to that buffer. The R600
export facility is also used to import (read) data from memory.

Host commands request a SIMD pipeline to execute a kernel by passing it an identifier pair (X, y), a
conditional value, and the location in memory of the kernel code. Upon receiving a request, a SIMD
pipeline loads instructions and data from memory, begins execution, and continues until the end of the
kernel. As kernels are running, the R600 hardware automatically fetches instructions and data from
memory into on-chip caches; R600 software plays no role in this. In addition, R600 software can load
data from off-chip memory into on-chip GPRs and caches.

Conceptually, each SIMD pipeline maintains a separate interface to memory, consisting of index pairs
and a field identifying the type of request (program instruction, floating-point constant, integer
constant, boolean constant, input read, or output write). The index pairs for inputs, outputs, and
constants are specified by the requesting R600 instructions from hardware-maintained program state
in the pipelines.

R600 programs do not support exceptions, interrupts, errors, or any other events that can interrupt its
pipeline operation. In particular, it does not support IEEE floating-point exceptions. The interrupts
shown in Figure 1-1 from the command processor to the host represent hardware-generated interrupts
for signalling command-completion and related management functions.
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Figure 1-2 shows a programmer’s view of dataflow for three versions of an R600 application. The top
version (a) is a graphics application that includes a geometry shader program and a DMA copy
program. The middle version (b) is a graphics application without a geometry shader and DMA copy
program. The bottom version (c) is a general-purpose application. The square blocks represent
programs running on the DPP array. The circles and cloud represents non-programmable hardware
functions. For graphics applications, each block in the chain processes a particular kind of data and
passes its result on to the next block. For general-purpose applications, only one processing block
performs all computation.

Texture Data

Syst(:;cljle?r:ory) i i i i

PoC Frame Data
VS —> GS DC PS (Local Memory)

Vertex Data T T T T

(Local Memory)

(a) Pipeline for Graphics Application With Geometry Shader (GS)

Texture Data

(Local or
System Memory) i l DC DMA Copy Program
GS Geometry Shader Program
PoC Frame Data. PaC Pargmeter Cache
VS — : PS PoC Position Cache
PS Pixel Shader Program
RB Ring Buffer
Vertex Data T T 'S Vertex Shader Program

(Local Memory)

(b) Pipeline for Graphics Application Without Geometry Shader (GS)

Input Data
(System Memory)

:

Output Data
A& ’ (Local Memory)

(c) Pipeline for General-Purpose Computing Program

Input Data
(Local Memory)

!

Figure 1-2. Programmer’s View of R600 Dataflow

The dataflow sequence starts by reading 2D vertices, 2D textures, or other 2D data from local R600
memory or system memory, and it ends by writing 2D pixels or other 2D data results to local R600
memory. The R600 processor hides memory latency by keeping track of potentially hundreds of
threads in different stages of execution, and by overlapping compute operations with memory-access
operations.
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The remainder of this manual describes the instruction set architecture (ISA) supported by the R600
processor. For more information about the host commands used to control the R600 processor, see the

CTM HAL Programming Guide.
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2 Program Organization and State

R600 programs consist of control-flow (CF), ALU, texture-fetch, and vertex-fetch instructions, which
are described in this manual. ALU instructions can have up to three source operands and one
destination operand. The instructions operate on 32-bit IEEE floating-point values and signed or
unsigned integers. The execution of some instructions cause predicate bits to be written that affect
subsequent instructions. Graphics programs typically use vertex-fetch and texture-fetch instructions
for data loads, whereas general-computing applications typically use texture-fetch instructions for data
loads.

2.1 Program Types

The following program types are commonly run on the R600 (see Figure 1-2 on page 3):

*  Vertex Shader (VS)—This type of program reads vertices, processes them, and outputs the results
to either a VS ring buffer or the parameter cache and position buffer, depending on whether a
geometry shader (GS) is active. It does not introduce new primitives. When a GS is active, a vertex
shader is a type of Export Shader (ES). A vertex shader can invoke a Fetch Subroutine (FS), which
is a special global program for fetching vertex data that is treated, for execution purposes, as part of
the vertex program. The FS provides driver independence between the process of fetching data
required by a VS, and the VS itself.

*  Geometry Shader (GS)—This type of program reads primitives from the VS ring buffer, and for
each input primitive writes one or more primitives as output to the GS ring buffer. This program
type is optional; when active, it requires a DMA copy (DC) program to be active. The GS
simultaneously reads up to six vertices from an off-chip memory buffer created by the VS, and it
outputs a variable number of primitives to a second memory buffer.

*  DMA Copy (DC)—This type of program transfers data from the GS ring buffer into the parameter
cache and position buffer. It is required for systems running a geometry shader.

*  Pixel Shader (PS) or Fragment Shader—This type of program (a) reads data from the position
buffer, parameter cache, and vertex geometry translator (VGT), (b) processes individual pixel
quads (four pixel-data elements arranged in a 2-by-2 array), and (c) writes output to up to eight
local-memory buffers, called multiple render targets (MRTs), which can include one or more
frame buffers.

All program types accept the same instruction types, and all of the program types can run on any of the
available DPP-array pipelines that support these programs, but each program type has certain
restrictions that are described in this manual.

Program Organization and State 5



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

2.2 Data Flows

The host may initialize the R600 to run in one of two configurations—with or without a geometry
shader program and a DMA copy program. Figure 1-2 on page 3 illustrates the processing order. Each
type of flow is described in the sections below.

2.2.1 Geometry Program Absent

Table 2-1 shows the order in which programs run when a geometry program is absent.

Table 2-1. Order of Program Execution (Geometry Program Absent)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To

Parameter cache
and position buffer.

VS Vertex Shader Vertices Vertex memory.

Positions cache,
parameter cache, and
vertex geometry translator
(VGT).

PS Pixel Shader Pixels Frame buffer.

This processing configuration begins with the VS program sending a pointer to a buffer in local
memory containing up to 64 vertex indices. The R600 hardware then groups the vectors for these
vertices in its input buffers. When all vertices are ready to be processed, the R600 allocates GPRs and
thread space for the processing of each of the 64 vertices, based on compiler-provided sizes. The VS
program calls the fetch subroutine (FS) program, which fetches vertex data into GPRs and returns
control to the VS program. Then, the transform and lighting (and whatever else) part of the VS
program runs. The VS program allocates space in the position buffer and exports positions (XYZW).
Before exiting, the VS program allocates parameter-cache and position-buffer space and exports
parameters and positions for each vertex. The program exits, and the R600 deallocates its GPR space.

When the VS program completes, the pixel shader (PS) program begins. The R600 hardware
assembles primitives from data in the position buffer and the vertex geometry translator (VGT),
performs scan conversion and final pixel interpolation, and loads these values into GPRs. The PS
program then runs for each pixel. Upon completion, the program exports data to a frame buffer, and
the R600 deallocates its GPR space.
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2.2.2 Geometry Shader Present

Table 2-2 shows the order in which programs run when a geometry program is present.

Table 2-2. Order of Program Execution (Geometry Program Present)

Mnemonic Program Type Operates On Inputs Come From Outputs Go To
VS Vertex Shader Vertices Vertex memory. VS ring buffer.
GS Geometry Shader | Primitives VS ring buffer. GS ring buffer.
DC DMA Copy Any Data GS ring buffer. Parameter cache or

position buffer.

Positions cache,
parameter cache, and
vertex geometry translator
(VGT).

PS Pixel Shader Pixels Frame buffer.

In this processing configuration, the R600 hardware loads input indices or primitive and vertex IDs
from the vertex geometry translator (VGT) into GPRs. Then, the VS program fetches the vertex or
vertices needed, and the transform and lighting (and whatever else) part of the VS program runs. The
VS program ends by writing vertices out to the VS ring buffer.

Next, the GS program reads multiple vertices from the VS ring buffer, executes its geometry functions,
and outputs one or more vertices per input vertex to the GS ring buffer. Whereas a VS program can
only write a single vertex per single input, a GS program can write a large number of vertices per
single input. Every time a GS program outputs a vertex, it indicates to the vertex VGT that a new
vertex has been output (using EMIT_* instructions'). The VGT counts the total number of vertices
created by each GS program. The GS program divides primitive strips by issuing CUT_VERTEX
instructions. The GS program ends when all vertices have been output. No position or parameters is
exported.

Then, the DC program reads the vertex data from the GS ring buffer and transfers this data to the
parameter cache and position buffer using one of the MEM* memory export instructions. The DC
program exits, and the R600 deallocates the GPR space.

Finally, the PS program runs. The R600 assembles primitives from data in the position buffer,
parameter cache, and VGT. The hardware performs scan conversion and final pixel interpolation, and
hardware loads these values into GPRs. The PS program then runs. When the program reaches the end
of the data, it exports the data to a frame buffer or other render target (up to eight) using EXPORT
instructions. The program exits upon execution of an EXPORT_DONE instruction, and the processor
deallocates GPR space.

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that define variants.
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2.3 Instruction Terminology

Table 2-3 summarizes some of the instruction-related terms used in this document. The instructions
themselves are described in the remaining chapters. Details on each instruction are given in Section 7
on page 71. A more complete glossary of terms is given in the “Definitions” on page xvi.

Table 2-3. Basic Instruction-Related Terms

Term Size (bits) Description

One of several encoding formats for all instructions. They are
described in Section 3.1 on page 20, Section 4.1 on page 39,
Section 6.1 on page 69, Section 5.1 on page 67, and Section 8 on
page 259.

Two to four microcode formats that specify:

e Control flow (CF) instructions (64 bits). These include general
control flow instructions (such as branches and loops),
instructions that allocate buffer space and import or export data,
and instructions that initiate the execution of ALU, texture-fetch,
or vertex-fetch clauses.

e ALU instructions (64 bits).
* Texture-fetch instructions (128 bits).

Microcode format 32

Instruction 64 or 128

» Vertex-fetch instructions (128 bits).

Instructions are identified in microcode formats by the “_INST_”
string in their field names and mnemonics. The functions of the
instructions are described in Section 7 on page 71.

Variable-sized groups of instructions and constants that consist of:
* One to five 64-bit ALU instructions.

e Zero to two 64-bit literal constants.

ALU instruction groups are described in Section 4.3 on page 40.

ALU Instruction Group 64 to 448

Literal constants specify two 32-bit values, which may represent
values associated with two elements of a 128-bit vector. These
constants can optionally be included in ALU instruction groups.

Literal constants are described in Section 4.3 on page 40.

Literal Constant 64

An ordered position within an ALU instruction group. Each ALU
instruction group has one to seven slots, corresponding to the
Slot 64 number of ALU instructions and literal constants in the instruction
group.

Slots are described in Section 4.3 on page 40.

A set of instructions of the same type. The types of clauses are:
* ALU clauses (which contain ALU instruction groups).

64 to e Texture-fetch clauses.

Clause unlimited

¢ \Vertex-fetch clauses.

Clauses are initiated by control flow (CF) instructions and are
described in Section 2.4 on page 10 and Section 3.3 on page 23.
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Table 2-3. Basic Instruction-Related Terms (continued)

Term Size (bits) Description

To reserve storage space for data in an output buffer (a “scratch
buffer”, “DirectX 9 supports two kinds of resources: buffer and
texture. Buffer resources hold a collection of vectors (see “vector”).
Texture resources hold a collection of texels (see “texel”). ring
buffer”, “stream buffer”, or “reduction buffer”) or for data in an input
buffer (a “scratch buffer” or “DirectX 9 supports two kinds of
resources: buffer and texture. Buffer resources hold a collection of
vectors (see “vector”). Texture resources hold a collection of texels
(see “texel”). ring buffer”) prior to exporting (writing or reading) data
or addresses to or from that buffer. Space is allocated only for data,
not for addresses. After allocating space in a buffer, an export
(write or read) operation can be performed.

Allocate n.a.

To do any of the following:

e Write data from GPRs to an output buffer (a “scratch buffer”,
“frame buffer”, “DirectX 9 supports two kinds of resources: buffer
and texture. Buffer resources hold a collection of vectors (see
“vector”). Texture resources hold a collection of texels (see

“texel”). ring buffer”, “stream buffer”, or “reduction buffer”).
* Write an address for data inputs to the memory controller.

Export n.a. * Read data from an input buffer (a “scratch buffer” or “DirectX 9
supports two kinds of resources: buffer and texture. Buffer
resources hold a collection of vectors (see “vector”). Texture
resources hold a collection of texels (see “texel”). ring buffer”) to
GPRs.

The term exportis a partial misnomer because it performs both
input and output functions. Prior to exporting, an “allocate”
operation must be performed to reserve space in the associated
buffer.

To load data, using a vertex-fetch or texture-fetch instruction
clause. Loads are not necessarily to general-purpose registers

Fetch n-a. (GPRs); specific types of loads may be confined to specific types of
storage destinations.

Vertex n.a. A set of x,y (2D) coordinates.

Quad n.a. Four (x,y) data elements arranged in a 2-by-2 array.

Program Organization and State 9



AMDAQ

AMD R600 Technology

ProductiD—Rev. 0.31—May 2007

Table 2-3. Basic Instruction-Related Terms (continued)

Term

Size (bits)

Description

Primitive

n.a.

A point, line segment, or polygon before rasterization. It has
vertices specified by geometric coordinates. Additional data can be
associated with vertices by means of linear interpolation across the
primitive.

Fragment

n.a.

For graphics programming:

* The result of rasterizing a primitive. A fragment has no vertices;
instead, it is represented by (x,y) coordinates.

For general-purpose programming:

* A set of (x,y) data elements.

Pixel

n.a.

For graphics programming:

* The result of placing a fragment in an (x,y) frame buffer.
For general-purpose programming:

* A set of (x,y) data elements.

“n.a.” means not applicable.

2.4 Control Flow and Clauses

Each program consists of two sections:

e  Control Flow—Control flow instructions can do the following:

- Initiate execution of ALU, texture-fetch, or vertex-fetch instructions.

- Allocate space in an input or output buffer.

- Export data to or import data from a buffer.

- Control branching, looping, and stack operations.

*  Clause—A homogeneous group of instructions; each clause comprises ALU, texture-fetch, or
vertex-fetch instructions exclusively. A control flow instruction that initiates an ALU, texture-
fetch, or vertex-fetch clause does so by referring to an appropriate clause.

10
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Table 2-4 illustrates an example of a typical program flow.

Table 2-4. Flow of a Typical Program

Microcode Formats

Function
Control Flow (CF) Code Clause Code
Start loop. CF_DWORD[0, 1]
Initiate texture-fetch clause CF_DWORDI[0, 1]

Texture-fetch or vertex-fetch clause to

load data from memory to GPRs. TEX_DWORDLO, L, 2]

Initiate ALU clause CF_ALU_DWORDI[O0, 1]

ALU clause to compute on loaded

data and literal constants. This ALU_DWORD[O, 1]

example shows a single clause ALU_DWORD[O, 1]

consisting of a single ALU instruction ALU_DWORD[O0, 1]

group, which contains five ALU ALU_DWORD[0, 1]

; " ALU_DWORD[0,1] LAST bit set
instructions (two quadw_ords each) Literal[X,Y]

and two quadwords of literal Literall[z,w]

constants.

End loop CF_DWORD[O0, 1]

Allocate space in an output buffer. CF_ALLOC_IMP_EXP_DWORDO

CF_ALLOC_IMP_EXP_DWORD1_BUF

Export (write) results from GPRs to CF_ALLOC_IMP_EXP_DWORDO
output buffer. CF_ALLOC_IMP_EXP_DWORD1_BUF

Control flow instructions constitute the main program. Jump statements, loops, and subroutine calls
are expressed directly in the control flow part of the program. Control flow instructions also include
mechanisms to synchronize operations and indicate when a clause has completed. Finally, the control
flow instructions are required for buffer allocation in, and writing to, a program block’s output buffer.
Some program types (VS, GS, DC, PS) have specific control flow instructions for synchronization
with other blocks.

Each clause, invoked by a control flow instruction, is a sequential list of instructions of limited length
(for the maximum length, see sections on individual clauses, below). Clauses contain no flow control
statements, but ALU clause instructions can apply a predicate on a per-instruction basis. Instructions
within a single clause execute serially. Multiple clauses of a program may execute in parallel if they
contain instructions of different types and the clauses are independent of one another (such parallel
execution is invisible to the programmer except for increased performance).

ALU clauses contain instructions for performing operations in each of the five ALUs
(ALU.[X,Y,Z,W] and ALU.Trans) including setting and using predicates, and pixel kill operations
(see Section 4.8.1 on page 57). Texture-fetch clauses contain instructions for performing texture and
constant-fetch reads from memory. Vertex-fetch clauses are devoted to obtaining vertex data from
memory. Systems lacking a vertex cache can perform vertex-fetch operations in a texture clause
instead.

Program Organization and State 11
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A predicate is a bit that is set or cleared as the result of evaluating some condition, and is subsequently
used either to mask writing an ALU result or as a condition itself. There are two kinds of predicates,
both of which are set in an ALU clause. The first is a single predicate local to the ALU clause itself.
Once computed, the predicate can be referred to in a subsequent instruction to conditionally write an
ALU result to the indicated general purpose register or registers. The second type is a bit in a predicate
stack. An ALU clause computes the predicate bits in the stack and manipulates the stack. A predicate
bit in the stack may be referred to in a control-flow instruction to induce conditional branching.

2.5 Instruction Types and Grouping

There are four types of instructions: control flow instructions and three clause types—control flow
(CF), ALU, texture fetch, and vertex fetch. There are separate instruction caches in the processor for
each instruction type.

A CF program has no maximum size; each clause, however, does have a maximum size. When a
program is organized in memory, the instructions must be ordered as follows:

¢ All CF instructions.
e All ALU clauses.

¢ All texture-fetch and vertex-fetch clauses.

The CPU host configures the base address of each program type prior to execution of any program.

12 Program Organization and State
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2.6 Program State

Table 2-5 through Table 2-8, on the following pages, summarize a programmer’s view of the R600
program state that is accessible by a single thread in an R600 program. The tables do not include state
that is maintained exclusively by R600 hardware, such as the internal loop-control registers, or state
that is accessible only to host software, such as configuration registers, or the duplication of state for
many execution threads.

The column headings in Table 2-5 through Table 2-8 have the following meanings:
* Access by R600 Software—Readable (R), writable (W), or both (R/W) by software executing on
the R600 processor.

* Access by Host Software—Readable, writable, or both by software executing on the host
processor. The tables do not, however, include state, such as R600 configuration registers,
accessible only to host software.

*  Number per Thread—The maximum number of such state objects available to each thread. In
some cases, the maximum number is shared by all executing threads.

e Width—The width, in bits, of the state object.

Program Organization and State 13
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State

Access
by R600
Software

Access
by Host
Software

Number
per
Thread

Width
(bits)

Description

Integer
Constant
Register (1)

W

96
(3x 32)

The loop-variable constant specified in the
CF_CONST field of the CF_DWORD1
microcode format for the current LOOP*
instruction.

Loop Index
(aL)

No

13

A register that is initialized by LOOP*
instructions and incremented by hardware
on each iteration of a loop, based on
values provided in the LOOP* instruction’s
CF_CONST field of the CF_DWORD1
microcode format. The Loop Index can be
used for relative addressing of GPRs by
any clause. Loops may be nested, so the
counter and index are stored in the stack.

ALU instructions can read the current aL
index value by specifying it in the
INDEX_MODE field of the ALU_DWORDO
microcode format, or in the ELEM_LOOP
field of
CF_ALLOC_IMP_EXP_DWORD1_*
microcode formats.

The register is 13 bits wide, but some
instructions use only the low 9 bits.

Stack

No

No

Chip-
Specific

Chip-
Specific

The hardware maintains a single, multi-
entry stack for saving and restoring the
state of nested loops, pixels (valid mask
and active mask), predicates, and other
execution details. The total number of
stack entries is divided among all
executing threads.

14
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Table 2-6. ALU State
Access Access | Number Width
State by R600 | by Host per (bits) Description
Software | Software | Thread
Each thread has access to up to 127
GPRs, minus two times the number of
Clause-Temporary GPRs. Four GPRs are
.1 27 reserved as Clause-Temporary GPRs that
General- minus 2 persist only for one ALU clause (and
Purpose R/W No Ctl'glzse_ 128 therefore are not accessible to fetch and
Registers Tempo- (4 x 32 bit) | export units).
(GPRs) rary GPRs may hold data in one of several
GPRs formats: the ALU can work with 32-bit IEEE
floats (S23E8 format with special values),
32-bit unsigned integers, and 32-bit signed
integers.
GPRs containing clause-temporary
Clause- 128 variables. The number of clause-temporary
Temporary No Yes 4 ... | GPRs used by each thread reduces the
GPRs (4 x 32 bit) total number of GPRs available to the
thread, as described immediately above.
A register containing a 4-element vector of
indices that are written by MOVA
instructions. Hardware reads this register.
Address 36 The indipes are used for rglative
Register (AR) w No 1 (4 x 9 bit addressing of a constant file (called
constant waterfalling). This state only
persists for one ALU clause. When used
for relative addressing, a specific vector
element must be selected.
Registers that contain constants. Each
register is organized as four 32-bit
Constant 128 elements of a vector. Software can use
Registers R w 512 . |either the CRs or the off-chip constant
(CRs) (4 x32Dit) | cache, but not both.
DirectX calls these the Floating-Point
Constant (F) Registers.
Previous 128 Regi_sters that contain the resul_ts of the_
Vector (PV) R No 1 (4 x 32 bit) previous ALU.[X,Y,Z,W] operations. This
state only persists for one ALU clause.
Previous A register that contains the results of the
R No 1 32 previous ALU.Trans operations. This state
Scalar (PS)

only persists for one ALU clause.

Program Organization and State

15



AMDAQ

AMD R600 Technology

Table 2-6.

ALU State (continued)
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State

Access
by R600
Software

Access
by Host
Software

Number
per
Thread

Width
(bits)

Description

Predicate
Register

R/wW

No

A register containing predicate bits. The
bits are set or cleared by ALU instructions
as the result of evaluating some condition,
and the bits are subsequently used either
to mask writing an ALU result or as a
condition itself.

An ALU clause computes the predicate bits
in this register. A predicate bit in this
register may be referred to in a control-flow
instruction to induce conditional branching.
This state only persists for one ALU
clause.

Pixel State

No

No

192
(64 x 2 bits)

State bits indicating which pixels are
currently executing, based on the current
branch counters. The bits are used to
determine conditional execution of
clauses.

Valid Mask

No

No

64

A mask indicating which pixels have been
killed by a pixel-kill operation. The mask is
updated when a CF_INST_KILL instruction
is executed.

Execute Mask

w
(indirect)

No

1 bit per
pixel

A mask indicating which pixels are
currently executing and which are not
(1 = execute, 0 = skip). This can be
updated by PRED_SET* ALU

instructions?, but the updates do not take
effect until the end of the ALU clause.

CF_ALU instructions can update this mask
with the result of the last PRED_SET*
instruction in the clause.

a. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that define variants.

Table 2-7. Vertex-Fetch State

Access Access | Number Width
State by R600 | by Host per (bits) Description
Software | Software | Thread
Vertex-Fetch R W 128 84 These describe the buffer format, etc.
Constants
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Table 2-8. Texture-Fetch and Constant-Fetch State
Access Access | Number Width
State by R600 | by Host per (bits) Description
Software | Software | Thread
There are 18 samplers (16 for DirectX plus
2 spares) available for each of the VS, GS,
Texture PS program types, two of which are
No W 18 96 spares. A texture sampler constant is used
Samplers : .
to specify how a texture is to be accessed.
It contains information such as filtering and
clamping modes.
Texture There are 160 resources available for each
R No w 160 160 of the VS, GS, PS program types, and 16
esources
for FS program types.
128 This is stored in the texture pipeline but is
Border Color No w 1 (4 x 32 bits) | referenced in texture-fetch instructions.
These define the weights, one horizontal
Bicubic No W > 176 and one vertical, for bicubic interpolation.
Weights The state is stored in the texture pipeline
but referenced in texture-fetch instructions.
These define the kernel sizes, one
. horizontal and one vertical, for filtering with
Kernel Size for . | . .
Microsoft's Cleartype™ subpixel rendering
Cleartype No w 2 3 il hnol Th ) .
Filtering display technology. The state is stored in

the texture pipeline but referenced in
texture-fetch instructions.

Program Organization and State
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3 Control Flow (CF) Programs

A control flow (CF) program is a main program. It directs the flow of program clauses by using
control-flow instructions (conditional jumps, loops, and subroutines), and it may include memory-
allocation instructions and other instructions that specify when vertex and geometry programs have
completed their operations. The R600 hardware maintains a single, multi-entry stack for saving and
restoring state for instructions that alter the control flow.

CF instructions can perform the following types of operations:

* Execute an ALU, texture-fetch, or vertex-fetch clause. These operations take the address of the
clause to execute, and a count indicating the size of the clause. A program may specify that a
clause must wait until previously executed clauses complete, or that a clause must execute
conditionally (only active pixels execute the clause, and the clause is skipped entirely if no pixels
are active).

* Execute a DirectX9-style loop. There are two instructions marking the beginning and end of the
loop. Each instruction takes the address of its paired LOOP_START and LOOP_END
instructions. A loop reads from one of 32 constants to get the loop count, initial index value, and
index increment value. Loops may be nested.

* Execute a DirectX10-style loop. There are two instructions marking the beginning and end of the
loop. Each instruction takes an address of its paired LOOP_START and LOOP_END instructions.
Loops may be nested.

* Execute a repeat loop (one that does not maintain a loop index). Repeat loops are implemented
with the LOOP_START_NO_AL and LOOP_END instructions. Such loops may be nested.

* Break out of the innermost loop. LOOP_BREAK instructions take an address to the corresponding
LOOP_END instruction. LOOP_BREAK instructions may be conditional (executing only for
pixels that satisfy a break condition).

e Continue a loop, starting with the next iteration of the innermost loop. LOOP_CONTINUE
instructions take an address to the corresponding LOOP_END instruction. LOOP_CONTINUE
instructions may be conditional.

* Execute a subroutine CALL or RETURN. A call takes a jump address. A return never takes an
address; it returns to the address at the top of the stack. Calls may be conditional (only pixels
satisfying a condition perform the instruction). Calls may be nested.

e (Call a vertex-fetch clause. The address field in a VITX or VIX_TC control-flow instruction is
unused; the address of the vertex-fetch clause is global and written by the host. As a result, it
makes no sense to nest these calls.

e Jump to a specified address in the control-flow program. A JUMP instruction may be conditional
or unconditional.

e Perform manipulations on the current active mask for flow control (e.g., executing an ELSE
instruction, saving and restoring the active mask on the stack).

* Allocate data-storage space in a buffer and import (read) or export (write) addresses or data.
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* Signal that the geometry shader (GS) has finished exporting a vertex, and optionally the end of a
primitive strip as well.

The end of the CF program is marked by setting the END_OF_PROGRAM bit in the last CF
instruction in the program. The CF program terminates after the end of this instruction, regardless of
whether the instruction is conditionally executed.

3.1 CF Microcode Encoding

The microcode formats and all of their fields are described in Section 8 on page 259. An overview of
the encoding is given below. The following instruction-related terms are used throughout the
remainder of this document:

*  Microcode Format—An encoding format whose fields specify instructions and associated
parameters. Microcode formats are used in sets of two or four 32-bit doublewords (dwords). For
example, the two mnemonics, CF_DWORDI0,1] indicate a microcode-format pair,
CF_DWORDO and CF_DWORDI, described in Section 8.1 on page 261.

* [Instruction—A computing function specified by the CF_INST field of a microcode format. For
example, the mnemonic CF_INST_JUMP is an instruction specified by the CF_DWORD]IO0,1]
microcode-format pair. All instructions have the “_INST_" string in their mnemonic; for example,
CF instructions have a “CF_INST_” prefix. The instructions are listed in the “Description”
columns of the microcode-format field tables in Section 8. In the remainder of this document, the
“CF_INST_” prefix is omitted when referring to instructions, except in passages for which the
prefix adds clarity.

* Opcode—The numeric value of the CF_INST field of an instruction. For example, the opcode for
the JUMP instruction is decimal 16 (10h).

*  Parameter—An address, index value, operand size, condition, or other attribute required by an
instruction and specified as part of it. For example, CF_COND_ACTIVE (condition test passes for
active pixels) is a field of the JUMP instruction.

The doubleword layouts in memory for CF microcode encodings are shown below, where “+0” and
“+4” indicate the relative byte offset of the doublewords in memory, “{BUF, SWIZ}” indicates a
choice between the strings “BUF” and “SWIZ”, and “LSB” indicates the least-significant (low-order)
byte:

e CF microcode instructions that initiate ALU clauses use the following memory layout:

31 24 23 16 15 8 7 0
CF_ALU_DWORD1 +4
CF_ALU_DWORDO +0

< LSB >

20 Control Flow (CF) Programs



AMDA

ProductiD—Rev. 0.31—May 2007

AMD R600 Technology

* CF microcode instructions that reserve storage space in an input or output buffer, write data from
GPRs into an output buffer, or read data from an input buffer into GPRs use the following memory

layout:
31 24 23 16 15 8 7 0
CF_ALLOC_IMP_EXP_DWORD1_{BUF, SWIZ} +4
CF_ALLOC_IMP_EXP_DWORDO +0
< LSB >
e All other CF microcode encodings use the following memory layout:
31 24 23 16 15 8 7 0
CF_DWORD1 +4
CF_DWORDO +0
< LSB >
3.2 Summary of Fields in CF Microcode Formats

Table 3-1 summarizes the fields in various CF microcode formats and indicate which fields are used
by the different types of instructions. Each column represents a type of CF instruction. The fields in

this table have the following meanings:

e “Yes”—The field is present in the microcode format and required by the instruction.
*  “No”—The field is present in the microcode format but ignored by the instruction.

*  Blank—The field is not present in the microcode format for that instruction.

For descriptions of the CF fields listed in Table 3-1, see Section 8.1 on page 261.

Table 3-1. CF Microcode Field Summary
CF Instruction Type
CF Microcode Field a Texture Vertex Allocate e Branchor
ALU Fetch® | Fetch® | Export? Memory Loopf Other®

CF_INST Yes Yes Yes Yes Yes Yes Yes
ADDR Yes Yes Yes Note" No
CF_CONST No No Note' Yes
POP_COUNT No No Note’ No
COND No No Yes No
COUNT Yes Yes Yes No No
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Table 3-1. CF Microcode Field Summary (continued)

Required if COND refers to the boolean constant, and for loop instructions that use DirectX9-style loop indexes.

Used by CF instructions that pop from the stack. Not available to ALU clause instructions that pop the stack (see the
ALU instructions for similar control).

CALL_COUNT is only used for CALL instructions.
INDEX_GPR is used if the TYPE field indicates an indexed read or write.
. COMP_MASK is used if the TYPE field indicates a write operation; reads are never masked.

CF Instruction Type
CF Microcode Field a Texture Vertex | Allocate o | Branchor
ALU Fetch® | Fetch® | Export? Memory Loopf Other?

CALL_COUNT No No Note® No
KCACHE_BANK]O0,1] Yes
KCACHE_ADDR][0,1] Yes
KCACHE_MODE[0,1] Yes
USES_WATERFALL Yes
VALID_PIXEL_MODE Yes Yes Yes Yes Yes Yes
WHOLE_QUAD_MODE Yes Yes Yes Yes Yes Yes Yes
BARRIER Yes Yes Yes Yes Yes Yes Yes
END_OF_PROGRAM Yes Yes Yes Yes Yes Yes
TYPE Yes Yes
INDEX_GPR No Note'
ELEM_SIZE No Yes
ARRAY_BASE Yes Yes
ARRAY_SIZE Yes
SEL_[X,Y,Z,W] Yes
COMP_MASK Note™
BURST_COUNT Yes Yes
RW_GPR Yes Yes
RW_REL Yes Yes

a. CF ALU instructions contain the string “CF_INST_ALU_".

b. CF texture-fetch instructions contain the string “CF_INST_TEX".

c. CF vertex-fetch instructions contain the string “CF_INST_VTX_”.

d. CF export instructions contain the string “CF_INST_EXPORT".

e. CF memory instructions contain the string “CF_INST_MEM_".

f.  CF branch or loop instructions include LOOP*, PUSH*, POP*, CALL*, RETURN*, JUMP, and ELSE.

g. CF other instructions include NOP, EMIT_VERTEX, EMIT_CUT_VERTEX, CUT_VERTEX, and KILL.

h. Some flow control instructions accept an address for another CF instruction.

i.

j.

3T x

A few fields are available in the majority of CF microcode formats. These include:

* END_OF_PROGRAM Field—A program will terminate after executing an instruction with the
END_OF_PROGRAM bit set, even if the instruction is conditional and no pixels are active during
the execution of the instruction. The stack must be empty when the program encounters this bit;
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otherwise, results are undefined when the program restarts on new data or a new program starts.
Thus, instructions inside of loops or subroutines must not be marked with END_OF_PROGRAM.

* BARRIER Field—This expresses dependencies between instructions and allows parallel
execution. If the BARRIER bit is set, all prior instructions will complete before the current
instruction begins. If the BARRIER bit is cleared, the current instruction may co-issue with other
instructions. Instructions of the same clause type never co-issue, but instructions in a texture-fetch
clause and an ALU clause, for example, can co-issue if the BARRIER bit is cleared. If in doubt, set
the BARRIER bit; results are identical whether it is set or not, but using it only when required can
increase program performance.

* VALID_PIXEL_MODE Field—If set, instructions in the clause are executed as if invalid pixels are
inactive. This field is the complement to the WHOLE_QUAD_MODE field. Only one of
WHOLE_QUAD_MODE or VALID_PIXEL_MODE should be set at any one time.

» WHOLE_QUAD_MODE Field—If set, instructions in the clause are executed as if all pixels are
active and valid. This field is the complement to the VALID_PIXEL_MODE field. Only one of
WHOLE_QUAD_MODE or VALID_PIXEL_MODE should be set at any one time.

3.3 Clause-Initiation Instructions

Table 3-2 shows the clause-initiation instructions for the three types of clauses that can be used in a
program. Every clause-initiation instruction contains in its microcode format an address field, ADDR
(ignored for vertex clauses), that specifies the beginning of the clause in memory. The ADDR field
specifies a quadword (64-bit) aligned address, but there are varying alignment restrictions for clause-
initiation instructions, as described in Table 3-2. ADDR is relative to the program base, (configured in
the PGM_START_* register by the host). There is also a COUNT field in the CF_DWORDI1
microcode format that indicates the size of the clause; the interpretation of COUNT is specific to the
type of clause being executed, as shown in Table 3-2. The actual value stored in the COUNT field is
the number of slots or instructions to execute, minus one. Any clause type may be executed by any
thread type.

Table 3-2. Types of Clause-Initiation Instructions

Clause Type CF Instructions COUNT Meaning %2:::J ADDR Alignment Restriction
Varies (64-bit alignment is
*a b
ALU ALU Number of ALU slots [1, 128] sufficient)
Texture Fetch TEXC Number of instructions [1, 8] Double quadword (128-bit)
Vertex Fetch vTX*d Number of instructions [1, 8] Double quadword (128-bit)

a. These instructions use the CF_ALU_DWORDI0,1] microcode formats, described in Section 8.1 on page 261.
b. See Section 4.3 on page 40 for a description of ALU slots.

c. These instructions use the CF_DWORD][0,1] microcode formats, described in Section 8.1 on page 261.

d. These instructions use the CF_DWORD][0,1] microcode formats, described in Section 8.1 on page 261.
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3.3.1 ALU Clause initiation

ALU¥* control-flow instructions! (such as ALU, ALU_BREAK, ALU_POP_AFTER, etc.) initiate an
ALU clause. ALU clauses may contain OP2_INST_PRED_SET* instructions (hereafter abbreviated
“PRED_SET*” instructions) that set new predicate bits for the processor’s control logic. The various
ALU control-flow instructions control how the predicates are applied for future flow control.

ALU* control-flow instructions are encoded using the ALU_DWORD]IO0, 1] microcode formats, which
are described in Section 8.1 on page 261. The ALU instructions within an ALU clause are described in
Section 4 on page 39 and Section 7.2 on page 110.

The USES_WATERFALL bit in an ALU* control-flow instruction is used to mark clauses that may
use constant waterfalling. The bit allows the processor to take scheduling restrictions into account.
This bit must be set for clauses that contain an instruction that writes to the address register (AR),
which include all MOV A* instructions. Setting this option on a clause that does not use the AR
register results in decreased performance. The contents of the AR register are not valid past the end of
the clause; the register must be written in every clause before it is read.

ALU* control-flow instructions support locking up to four pages in the constant registers. The
KCACHE_* fields control constant-cache locking for this ALU clause; the clause does not begin
execution until all pages are locked, and the locks will be held until the clause completes. There are
two banks of 16 constants available for KCACHE locking; once locked, the constants are available
within the ALU clause using special selects. See Section 4.6.4 on page 45 for more about ALU
constants.

3.3.2 Vertex-Fetch Clause Initiation and Execution

The VTX and VTX_TC control-flow instructions initiate a vertex-fetch clause, starting at the double-
quadword-aligned (128-bit) offset in the ADDR field and containing COUNT + 1 instructions. The
VTX_TC instruction issues the vertex fetch through the texture cache (TC) and is useful for systems
that lack a vertex cache (VC).

The VTX and VTX_TC control-flow instructions are encoded using the CF_DWORD]IO0,1] microcode
formats, which are described in Section 8.1 on page 261. The vertex-fetch instructions within a vertex-
fetch clause are described in Section 5 on page 67 and Section 7.3 on page 227.

3.3.3 Texture-Fetch Clause Initiation and Execution

The TEX control-flow instruction initiates a texture-fetch or constant-fetch clause, starting at the
double-quadword-aligned (128-bit) offset in the ADDR field and containing COUNT + 1 instructions.
There is only one instruction for texture fetch, and there are no special fields in the instruction for
texture clause execution.

The TEX control-flow instruction is encoded using the CF_DWORDI0,1] microcode formats, which
are described in Section 8.1 on page 261. The texture-fetch instructions within a texture-fetch clause
are described in Section 6 on page 69 and Section 7.4 on page 230.

1. An asterisk (*) after a mnemonic string indicates that there are additional characters in the string that define variants.
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3.4 Allocation, Import, and Export Instructions

Allocation means reserving storage space for data in an output memory buffer or for data in an input
memory buffer prior to writing or reading data or addresses to or from that buffer. Importing and
exporting mean reading and writing certain kinds of memory buffers. Importing refers to reading data
from an input buffer (a scratch buffer, ring buffer, or reduction buffer) to GPRs. Exporting means
writing data from GPRs to an output buffer (a scratch buffer, ring buffer, stream buffer, or reduction
buffer), or writing an address for data inputs from a scratch or reduction buffer.

For ring buffers, allocation is done automatically at program initialization. For importing and
exporting, allocation is specified in the same instruction as the import or export. Allocations, imports,
and exports are implemented using the CF_ALLOC_IMP_EXP_DWORDO and
CF_ALLOC_IMP_EXP_DWORDI1_{BUF, SWIZ} microcode formats. There are nine instructions
for allocation, import, and export. Two instructions, EXPORT and EXPORT_DONE, are used for
normal pixel, position, and parameter-cache imports and exports. The remaining instructions, MEM*,
are used for memory operations to one of the four buffer types.

3.4.1 Normal Exports (Pixel, Position, Parameter Cache)

Most exports from a vertex shader (VS) and a pixel shader (PS) use the EXPORT and
EXPORT_DONE instructions. The last export of a particular type (pixel, position, or parameter) uses
the EXPORT_DONE instruction to signal hardware that the thread is finished with output for that
type. These import and export instructions may use the CF_ALLOC_IMP_EXP_DWORDI1_SWIZ
microcode format, which provides optional swizzles for the outputs. These instructions may only be

used by VS and PS threads; GS and DC threads must use one of the memory export instructions,
MEM*.

Software indicates the type of export to perform by setting the TYPE field of the
CF_ALLOC_IMP_EXP_DWORDO microcode format equal to one of the following values:

* EXPORT_PIXEL—Pixel value output (from PS shaders). Send the output to the pixel cache.
*  EXPORT_POS—Position output (from VS shaders). Send the output to the position buffer.

* EXPORT_PARAM—Parameter cache output (from VS shaders). Send the output to the parameter
cache.

The RW_GPR and RW_REL fields indicate the GPR address (first_gpr) from which to read the first
value or to which to write the first value (the GPR address may be relative to the loop index (al.). The
value BURST_COUNT + 1 is the number of GPR outputs being written (the BURST_COUNT field
stores the actual number minus one). The Nth export value is read from GPR (first_gpr + N). The
ARRAY_BASE field specifies the export destination of the first export and may take on one of the
values shown in Table 3-3, depending on the TYPE field. The value increments by one for each
successive export.
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Table 3-3. Possible ARRAY_ BASE Values

ARRAY_BASE .
TYPE _ _ Interpretation
Field ‘ Mnemonic
) Frame Buffer multiple render
7:0 CF_PIXEL_MRT[7,0] target (MRT), no fog.
EXPORT_PIXEL ) Frame Buffer multiple render
23:16 CF_PIXEL_MRT[7,0]_FOG target (MRT), with fog.
61 CF_PIXEL_Z Computed Z.
EXPORT_POS 63:60 CF_POS_[3,0] Position index of first export.
EXPORT_PARAM 31:0 Parameter index of first export.

Each memory write may be swizzled with the fields SEL_[X,Y,Z,W]. To disable writing an element,
write SEL_[X,Y,Z,W] =SEL_MASK.

3.4.2 Memory Reads and Writes

All imports from and exports to memory use one of the following instructions:

¢  MEM_SCRATCH—Scratch buffer (read and write).
¢  MEM_REDUCTION—Reduction buffer (read and write).

* MEM_STREAM]JO0,3]—Stream buffer (write-only), for DirectX10 compliance, used by VS output
for up to four streams.

*  MEM_RING—Ring buffer (write-only), used for DC and GS output.

These instructions always use the CF_ALLOC_IMP_EXP_DWORD1_BUF microcode format, which
provides an array size for indexed operations and an element mask for writes (there is no element mask
for reads from memory). No arbitrary swizzle is available; any swizzling must be done in a nearby
ALU clause. These instructions may be used by any program type.

There is one scratch buffer available for imports or exports per program type (four scratch buffers in
total). There is only one reduction buffer available; any program type may use the reduction buffer, but
only one program at a time can make use of the reduction buffer. Stream buffers are available only to
VS programs; ring buffers are available to GS, DC, and PS programs, and to VS programs when no GS
and DC are present. Pixel-shader frame buffers use the ring buffer (MEM_RING).

The operation performed by these instructions is modified by the TYPE field, which may be one of the
following:

e  EXPORT_WRITE—Write to buffer.
EXPORT_WRITE_IND—Write to buffer, using offset supplied by INDEX_GPR.
e IMPORT_READ—Read from buffer (scratch and reduction buffers only).

e IMPORT_READ_IND—Read from buffer using offset supplied by INDEX_GPR (scratch and
reduction only).
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The RW_GPR and RW_REL fields indicate the GPR address (first_gpr) to read the first value from, or
write the first value to (the GPR address may be relative to the loop register). The value
(BURST_COUNT + 1) * (ELEM_SIZE + 1) is the number of outputs, in doublewords, being written.
The BURST _COUNT and ELEM_SIZE fields store the actual number minus one. ELEM_SIZE must
be three (representing four doublewords) for scratch and reduction buffers, and it is intended that
ELEM_SIZE = 0 (doubleword) for stream-out and ring buffers.

The memory address is based off of the value in the ARRAY_BASE field (see Table 3-3 on page 26).
If the TYPE field is set to EXPORT_*_IND (use_index == 1), then the value contained in the register
specified by the INDEX_GPR field, multiplied by (ELEM_SIZE + 1), is added to this base. The final
equation for the first address in memory to read or write from (in doublewords) is:

first_mem = (ARRAY_BASE + use_index * GPR[INDEX_GPR]) * (ELEM_SIZE + 1)

The ARRAY_SIZE field specifies a point at which the burst will be clamped; no memory will be read
or written past (ARRAY_BASE + ARRAY_SIZE) * (ELEM_SIZE + 1) doublewords. The exact units
of ARRAY_BASE and ARRAY_SIZE differ depending on the memory type; for scratch and
reduction buffers, both are in units of four doublewords (128 bits); for stream and ring buffers, both are
in units of one doubleword (32 bits).

Indexed GPRs may stray out of bounds; if the index takes a GPR address out of bounds, then the rules
specified for ALU GPR reads and writes govern, except for a memory read in which the result is
written to GPRO. See Section 4.6.3 on page 44.

3.5 Synchronization with Other Blocks

Three instructions, EMIT_VERTEX, EMIT_CUT_VERTEX, and CUT_VERTEX, are used to notify
the processor’s primitive-handling blocks that new vertices are complete or primitives finished. These
instructions should always follow the corresponding export operation that produces a new vertex:
 EMIT_VERTEX indicates that a vertex has been exported.

e EMIT_CUT_VERTEX indicates that a vertex has been exported and that the primitive should be
cut after the vertex.

* CUT_VERTEX indicates that the primitive should be cut, but does not indicate a vertex has been
exported by itself.

These instructions use the CF_DWORD[0,1] microcode formats and may be executed only by a GS
program; they are invalid in other programs.

3.6 Conditional Execution

The remaining CF instructions involve conditional execution and manipulation of the branch-loop
states. This section discusses how conditional execution operates; the following sections discuss the
specific instructions.
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3.6.1 Pixel State

Every pixel has three bits of state associated with it that can be manipulated by a program: a 1-bit valid
mask and a 2-bit per-pixel state. The valid mask is set for any pixel that is covered by the original
primitive and has not been killed by an ALU KILL operation. The per-pixel state reflects the pixel’s
active status as conditional instructions are executed; it may take on the following states:

* Active—The pixel is currently executing.
* [Inactive-branch—The pixel is inactive due to a branch (ALU PRED_SET¥*) instruction.
* Inactive-continue—The pixel is inactive due to a ALU_CONTINUE instruction inside a loop.

* Inactive-break—The pixel is inactive due to a ALU_BREAK instruction inside a loop.

Once the valid mask is cleared, it can never be restored. The per-pixel state may change during the
lifetime of the program in response to conditional-execution instructions. Pixels that are invalid at the
beginning of the program are put in one of the inactive states and will not normally execute (but they
can be explicitly enabled, see below). Pixels that are killed during the program maintain their current
active state (but they can be explicitly disabled, see below).

Branch-loop instructions may push the current pixel state onto the stack. This information is used to
restore pixel state when leaving a loop or conditional instruction block. CF instructions allow
conditional execution in one of the following ways:

* Perform a condition test for each pixel based on current processor state:

- The condition test is used to determine which pixels execute the current instruction, and per-
pixel state is unmodified, or

- The per-pixel state is modified; pixels that pass the condition test are put into the active state,
and pixels that fail the condition test are put into one of the inactive states, or

- If at least one pixel passes, push the current per-pixel state onto the stack, then modify the per-
pixel state based on the results of the test. If all pixels fail the test, jump to a new location.
Some instructions can also pop the stack multiple times and change the per-pixel state to the
result of the last pop, otherwise the per-pixel state is left unmodified.

* Pop per-pixel state from the stack, replacing the current per-pixel state with the result of the last
pop. Then perform a condition test for each pixel based on the new state. Update the per-pixel state
again based on the results of the test.

The condition test is computed on each pixel based on the current per-pixel state and optionally the
valid mask. Instructions may execute in whole quad mode or valid pixel mode, which include the
current valid mask in the condition test. This is controlled with the WHOLE_QUAD_MODE and
VALID_PIXEL_MODE bits in the CF microcode formats, as described in the section immediately
below. The condition test may also include the per-pixel state and a boolean constant, controlled by the
COND field.
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3.6.2 WHOLE_QUAD_MODE and VALID_PIXEL_MODE

A quad is a set of four pixels arranged in a 2-by-2 array, such as the pixels representing the four
vertices of a quadrilateral. The whole quad mode accommodates instructions in which the result may
be used by a gradient operation. Any instruction with the WHOLE_QUAD_MODE bit set will begin
execution as if all pixels are active. This takes effect before a condition specified in the COND field is
applied (if available). For most CF instructions it does not affect the active mask; inactive pixels return
to their inactive state at the end of the instruction. Some branch-loop instructions that update the active
mask reactivate pixels that were previously disabled by flow control or invalidation. These parameters
can be used to assert whole quad mode for multiple CF instructions without setting the
WHOLE_QUAD_MODE bit every time. Details for the relevant branch-loop instructions are
described in Section 3.7 on page 32. In general, instructions that may compute a value used in a
gradient computation should be executed in whole quad mode. All CF instructions support this mode.

In certain cases during whole quad mode, it may be useful to deactivate invalid pixels. This might
occur in two cases:

* The program is in whole quad mode, computing a gradient. Related information not involved in
the gradient calculation needs to be computed. As an optimization, the related information can be
calculated without completely leaving whole quad mode by deactivating the invalid pixels.

* The ALU executes a KILL instruction. Killed pixels remain active because the processor does not
know if the pixels are currently involved in computing a result that is used in a gradient
calculation. If the recently invalidated pixels are not involved in a gradient calculation they can be
deactivated.

Invalid pixels can be deactivated by entering valid pixel mode. Any instruction with the
VALID_PIXEL_MODE bit set begin execution as if all invalid pixels are inactive. This takes effect
before a condition specified in the COND field is applied (if available). For most CF instructions it
does not affect the active mask; however, as in whole quad mode, it influences the active mask for
branch-loop instructions that update the active mask. These instructions can be used to permanently
disable pixels that were recently activated. Valid pixel mode is not normally used to exit whole quad
mode; normally it is exited automatically upon reaching the end of scope for the branch-loop
instruction that began whole quad mode.

Instructions using the CF_DWORD]J0,1] or the CF_ALLOC_IMP_EXP_DWORD]J0,1] microcode
formats have VALID PIXEL_ MODE fields. ALU clause instructions behave as if the
VALID_PIXEL_MODE bit is cleared. Valid pixel mode is not the default mode; normal programs
that do not contain gradient operations would clear the VALID_PIXEL_MODE bit. The valid pixel
mode is only used to deactivate pixels invalidated by a KILL instruction and to temporarily inhibit the
effects of whole quad mode. At most, only one of the WHOLE_QUAD_MODE and
VALID_PIXEL_MODE bits should be set.

Branch-loop instructions that pop from the stack interpret the valid pixel mode slightly differently. If
the mode is set on an instruction that pops the stack, then pixels that are invalid are deactivated after
the active mask is restored from the stack. This can be used to make the effect of the valid pixel mode
permanent for a killed pixel that is executed inside a conditional branch. By default, the per-pixel
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active state are overwritten with the stack contents on each pop, without regard for the current active
state, but when VALID_PIXEL_MODE is set the invalid pixels are deactivated even though they were
active going into the conditional scope.

3.6.3 The Condition (COND) Field

Instructions that use the CF_DWORD]0,1] microcode formats have a COND field that allows them to
be conditionally executed. The COND field can have one of the following values:

e CF_COND_ACTIVE—Pixel currently active. Non-branch-loop instructions may use only this
setting.

* CF_COND_BOOL—Pixel currently active, and the boolean referenced by CF_CONST is one.

* CF_COND_NOT_BOOL—Pixel currently active, and the boolean referenced by CF_CONST is
Zero.

For most CF instructions, COND is used only to determine which pixels are executing that particular
instruction; the result of the test is discarded after the instruction completes. Branch-loop instructions
that manipulate the active state may use the result of the test to update the new active mask; these cases
are described below. Non-branch-loop instructions may use only the CF_COND_ACTIVE setting.
Generally, branch-loop instructions that push pixel state onto the stack will push the original pixel
state before beginning the instruction, and will use the result of COND to write the new active state.
Some instructions that pop from the stack may pop the stack first, then evaluate the condition code and
update the per-pixel state based on the result of the pop and the condition code.

Instructions that do not have a COND field will behave as if CF_COND_ACTIVE is used. ALU
clauses do not have a COND field; they execute pixels based on the current active mask. ALU clauses
may update the active mask using PRED_SET* instructions, but changes to the active mask will not be
observed for the remainder of the ALU clause (however, the clause may use the predicate bits to
observe the effect). Changes to the active mask from the ALU take effect at the beginning of the next
CF instruction.

3.6.4 Computation of Condition Tests

The COND, WHOLE_QUAD_MODE, and VALID_PIXEL_MODE fields all combine to form the
condition test results as shown in Table 3-4.
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Table 3-4. Condition Tests

COND Default WHOLE_QUAD_MODE | VALID_PIXEL_MODE

CF_COND_ACTIVE Trqe if and only if pixel is | True |_f and iny |f quad True if a.nd only if plxel is
active. contains active pixel. both active and valid.
True if and only if pixel is | True if quad contains True if and only if pixel is
active and boolean active pixel and boolean both active and valid, and

CF_COND_BOOL referenced by referenced by CF_CONST | boolean referenced by
CF_CONST is one. is one. CF_CONST is one.
True if and only if pixel is | True if quad contains True if and only if pixel is
active and boolean active pixel and boolean both active and valid, and

CF_COND_NOT_BOOL referenced by referenced by CF_CONST |boolean referenced by
CF_CONST is one. is one. CF_CONST is one.

The following steps loosely illustrate how the per-pixel state may be updated during a CF instruction
that does not unconditionally pop the stack:

1. Evaluate the condition test for each pixel using current state, COND, WHOLE_QUAD_MODE,
and VALID_PIXEL_MODE.

2. Execute the CF instruction for pixels passing the condition test.

If the CF instruction is a PUSH, push per-pixel active state onto the stack before updating the
state.

4. If the CF instruction updates the per-pixel state, update per-pixel state using results of condition
test.

ALU clauses that contain multiple PRED_SET* instructions may perform some of these operations
more than once. Such clause instructions push the stack once per PRED_SET* operation.

The following steps loosely illustrate how the active mask (per-pixel state) may be updated during a
CF instruction that pops the stack. These steps only apply to instructions that unconditionally pop the
stack; instructions that may jump or pop if all pixels fail the condition test do not use these steps:

1. Pop the per-pixel state from the stack (may pop zero or more times). Change the per-pixel state to
the result of the last POP.

2. Evaluate the condition test for each pixel using new state, COND, WHOLE_QUAD_MODE, and
VALID_PIXEL_ MODE.

3. Update the per-pixel state again using results of condition test.

3.6.5 Stack Allocation

Each program type has a stack for maintaining branch and other program state. The maximum number
of stack entries available is controlled by a host-written register or by the hardware implementation of
the processor. The minimum number of stack entries required to correctly execute a program is
determined by the deepest control-flow instruction.
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Each stack entry contains a number of subentries. The number of subentries per stack entry varies,
based the number of thread groups (simultaneously executing threads on a SIMD pipeline) per
program type that are supported by the target processor. If a processor that supports 64 thread groups
per program type is configured logically to use only 48 thread groups per program type, the stack
requirements for a 64-item processor still apply. Table 3-5 shows the number of subentries per stack
entry, based on the physical thread-group width of the processor.

Table 3-5. Stack Subentries

Physical Thread-Group Width of Processor
16 32 48 64
Subentries per Entry 8 8 4 4

The CALL*, LOOP_START?*, and PUSH* instructions each consume a certain number of stack
entries or subentries. These entries are released when the corresponding POP, LOOP_END, or
RETURN instruction is executed. The additional stack space required by each of these flow-control
instructions is described in Table 3-6.

Table 3-6. Stack Space Required for Flow-Control Instructions

. Stack Size per Physical Thread-Group Width
Instruction Comments
16 32 48 64
If any PUSH instruction is
PUSH, PUSH_ELSE when invoked, two subentries on
. one one one one
whole quad mode is not set, subentr subent subent subent the stack must be reserved
and ALU_PUSH_BEFORE y Y Y "Y' |to hold the current active
(valid) masks.
PUSH, PUSH_ELSE when one ent one ent one entr one ent
whole quad mode is set Y Y y Y
LOOP_START* one entry |one entry |one entry |one entry
A 16-bit-wide processor
Wo one one one needs two subentries
CALL, CALL_FS subentries |subent subent subent because the program
Y Y Y counter has more than 16
bits.

At any point during the execution of a program, if A is the total number of full entries in use, and B is
the total number of subentries in use, then STACK_SIZE should be:

A+ B/

3.7

(# of subentries per entry)

Branch and Loop Instructions

<= STACK_SIZE

Several CF instructions handle conditional execution (branching), looping, and subroutine calls. These
instructions use the CF_DWORD[0,1] microcode formats and are available to all thread types. The
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branch-loop instructions are listed in Table 3-7, along with a summary of their operations. The

instructions listed in this table implicitly begin with “CF_INST_".

Table 3-7. Branch-Loop Instructions

Condition
Instruction Test Push Pop Jump Description
Computed
If all pixels fail condition test,
pop POP_COUNT entries
. from the stack and jump to the
Yes, if a . . . .
Yes, before | pixel Y_es, if a!l Y-es, if a!l jump addre_ss. Otherwise,
PUSH ' pixels fail |pixels fail |push per-pixel state (execute
push. passes
test. test. mask) onto stack. After the
test. . . .
push, active pixels that failed
the condition test transition to
the inactive-branch state.
Push current per-pixel state
(execute mask) onto the stack
Yes. before | Yes Yes, if all |and compute new execute
PUSH_ELSE pusr’l alwa,ys No. pixels fail | mask. The instruction can be
’ ' test. used to implement the ELSE
part of a higher-level IF
statement.
Pop POP_COUNT entries
POP Yes, before No. Yes. Yes from .tr_1e stack. Also, jump if
pop. condition test fails for all
pixels.
Yes, if a
LOOP_START Atbeginning. pixel  —fyes ifan |ves,ifall |, -
LOOP_START NO_AL AII pixels fail |passes pixels fail |pixels fail Be-gm a loop. Failing pixels go
LOOP START DX10 !f loop count |test. test. test. to inactive-break.
- - is zero. Pushes
loop state.
At beginning. Yes, ifall |Yes,ifany |End a loop. Pixels that have
LOOP_END AII pixels fail No. pixels fail |pixel not explicitly l:_>roken out_ of the
if loop count test. Pops | passes loop are reactivated. Exits loop
is one. loop state. |test. if all pixels fail condition test.
Pixels passing test go to
Yes, ifall |Yes, ifall |inactive-continue. In the event
I pixels pixels of a jump, the stack is popped
LOOP_CONTINUE Atbeginning. | No. done with |done with |back to the original level at the
iteration. |iteration. |beginning of the loop; the
POP_COUNT field is ignored.
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Condition
Instruction Test Push Pop Jump Description
Computed
Pixels passing test go to
Yes, ifall |Yes, ifall |inactive-break. In the event of
I pixels pixels a jump, the stack is popped
LOOP_BREAK Atbeginning. | No. done with |done with |back to the original level at the
iteration. |iteration. |beginning of the loop; the
POP_COUNT field is ignored.
Yes, ifall |Yes, if all . . .
JUMP At beginning. | No. pixels fail | pixels fail Jump to A.DDR it all pixels fail
the condition test.
test. test.
Yes, if all |Pop the stack, then invert
pixels are |status of active or inactive-
After last : . .
ELSE o No. Yes. inactive branch pixels that pass
Pop- after conditional test and were
ELSE. active on last PUSH.
Y_es, it 2 : Call a subroutine if any pixel
pixel Yes, if any .
: passes the condition test and
CALL After last passes pixel ) T
CALL FS o test Yes. asses the maximum call depth limit is
- Pop- | P not exceeded. POP_COUNT
Pushes test.
must be zero.
address.
:gj;ezzps Yes, if all
RETURN No. No. from stack a(':t/ve Return from a subroutine.
RETURN_FS if jump pixels
taken. pass test.
PRED_SET* with exec mask
ALU No. No. No. N/A update will put active pixels in
to the inactive-branch state.
Before
ALU_PUSH_BEFORE No. ALU No. N/A Equivalent to PUSH; ALU.
clause.
ALU_POP_AFTER Equivalent to ALU; POP;
ALU_POP2_AFTER No. No. Yes. N/A (POP;)
Change active pixels masked
by ALU to inactive-continue.
ALU_CONTINUE No. No. No. N/A Equivalent to PUSH; ALU:
ELSE; CONTINUE; POP.
Change active pixels masked
by ALU to inactive-break.
ALU_BREAK No. No. No. N/A Equivalent to PUSH; ALU:
ELSE; CONTINUE; POP.
ALU_ELSE_AFTER No. No. Yes. N/A Equivalent to ALU; POP.
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3.7.1 ADDR Field

The address specified in the ADDR field of a CF instruction is a quadword-aligned (64 bit) offset from
the base of the program (host-specified PGM_START_* register) at which execution will continue.
Branch-loop instructions typically implement conditional jumps, so execution will either continue at
the next CF instruction, or at the CF instruction located at the ADDR address.

3.7.2 Stack Operations and Jumps

Several stack operations are available in the CF instruction set: PUSH, POP, and ELSE. In addition,
there is a JUMP instruction that jumps if all pixels fail a condition test.

The PUSH instruction pushes current per-pixel state from hardware-maintained registers onto the
stack, then updates the per-pixel state based on the condition test. If all pixels fail the test, PUSH does
not push anything onto the stack; instead it performs POP_COUNT number of pops (may be zero), and
then jumps to a specified address if all pixels fail the test.

The POP instruction pops per-pixel state from the stack to from hardware-maintained registers; it pops
the POP_COUNT number of entries (may be zero). POP can apply the condition test to the result of
the POP; this is useful for disabling pixels that are killed within a conditional block. To disable such
pixels, set the POP instruction’s VALID_PIXEL_MODE bit and set the condition to
CF_COND_ACTIVE. If POP_COUNT is zero, the POP instruction simply modifies the current per-
pixel state based on the result of the condition test. Pop instructions never jump.

The ELSE instruction performs a conceptual else operation. It starts by popping POP_COUNT entries
(may be zero) from the stack. Then, it inverts the sense of active and branch-inactive pixels for pixels
that are both active (as of the last surviving PUSH operation) and pass the condition test. The ELSE
operation will then jump to the specified address if all pixels are inactive.

The JUMP instruction is used to jump over blocks of code that no pixel wants to execute. JUMP first
pops POP_COUNT entries (may be zero) from the stack. Then it applies the condition test to all pixels.
If all pixels fail the test, then it jumps to the specified address. Otherwise, it continues execution on the
next instruction.

3.7.3 DirectX9 Loops

DirectX9-style loops are implemented with the LOOP_START and LOOP_END instructions. Both
instructions specify the DirectX9 integer constant using the CF_CONST microcode field. This field
specifies the integer constant to use for the loop’s trip count (maximum number of loops), beginning
value (loop index initializer), and increment (step). The constant is a host-written vector, and the three
loop parameters are stored as three elements of the vector. The COND field may also refer to the
CF_CONST field for its boolean value. It is not be possible to conditionally enter a loop based on a
boolean constant unless the boolean constant and integer constant have the same numerical address.

The LOOP_START instruction jumps to the address specified in the instruction’s ADDR field if the
initial loop count is zero. Software normally sets the ADDR field to the CF instruction following the
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matching LOOP_END instruction. If LOOP_START does not jump, hardware sets up the internal
loop state. Loop-index-relative addressing (as specified by the INDEX_MODE field of the
ALU_DWORDO microcode format) is well-defined only within the loop. If multiple loops are nested,
relative addressing refers to the loop register of the innermost loop. The loop register of the next-outer
loop is automatically restored when the innermost loop exits.

The LOOP_END instruction jumps to the address specified in the instruction’s ADDR field if the loop
count is nonzero after it is decremented, and at least one pixel hasn’t been deactivated by a
LOOP_BREAK instruction. Software normally sets the ADDR field to the CF instruction following
the matching LOOP_START. The LOOP_END instruction will continue to the next CF instruction
when the processor exits the loop.

DirectX9-style break and continue instructions are supported. The LOOP_BREAK instruction
disables all pixels for which the condition test is true. The pixels remain disabled until the innermost
loop exits. LOOP_BREAK jumps to the end of the loop if all pixels have been disabled by this (or a
prior) LOOP_BREAK or LOOP_CONTINUE instruction. Software normally sets the ADDR field to
the address of the matching LOOP_END instruction. If at least one pixel hasn’t been disabled by
LOOP_BREAK or LOOP_CONTINUE yet, execution continues to the next CF instruction.

The LOOP_CONTINUE instruction disables all pixels for which the condition test is true. The pixels
remain disabled until the end of the current iteration of the loop, and are re-activated by the innermost
LOOP_END instruction. The LOOP_CONTINUE instruction jumps to the end of the loop if all pixels
have been disabled by this (or a prior) LOOP_BREAK or LOOP_CONTINUE instruction. The ADDR
field points to the address of the matching LOOP_END instruction. If at least one pixel hasn’t been
disabled by LOOP_BREAK or LOOP_CONTINUE yet, the program continues to the next CF
instruction.

Each instruction is capable of manipulating the stack. LOOP_START pushes the current per-pixel
state and the prior loop state onto the stack. If LOOP_START does not enter the loop, it pops
POP_COUNT entries (may be zero) from the stack, similar to the behavior of the PUSH instruction
when all pixels fail. The LOOP_END instruction evaluates the condition test at the beginning of the
instruction. If all pixels fail the test it exits the loop. LOOP_END pops loop state and one set of per-
pixel state from the stack when it exits the loop. It ignores POP_COUNT. The LOOP_BREAK and
LOOP_CONTINUE instructions pop POP_COUNT entries (may be zero) from the stack if the jump is
taken.

3.7.4 DirectX10 Loops

DirectX10 loops are implemented with the LOOP_START_DX10 and LOOP_END instructions. The
LOOP_START_DX10 instruction enters the loop by pushing the stack. The LOOP_END instruction
jumps to the address specified in the ADDR field if at least one pixel has not yet executed a LOOP
_BREAK instruction. The ADDR field points to the CF instruction following the matching LOOP
_START_DX10 instruction. The LOOP _END instruction continues to the next CF instruction, at
which the processor exits the loop. The LOOP _BREAK and LOOP _CONTINUE instructions are
allowed in DirectX10-style loops.
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Manipulations of the stack are the same for LOOP_{START_DX10,END} instructions as those for
LOOP_{START,END} instructions.

3.7.5 Repeat Loops

Repeat loops are implemented with the LOOP_START_NO_AL and LOOP_END instructions. These
loops do not push the loop index (alL) onto the stack, nor do they update al.. They are otherwise
identical to LOOP_{START,END} instructions.

3.7.6 Subroutines

The CALL and RETURN instructions implement subroutine calls and the corresponding returns. For
CALL, the ADDR field specifies the address of the first CF instruction in the subroutine. The ADDR
field is ignored by the RETURN instruction (the return address is read from the stack). Calls have a
nesting depth associated with them that is incremented on each CALL instruction via the
CALL_COUNT field. The nesting depth is restored on a RETURN instruction. If the program would
exceed the maximum nesting depth (32) on the subroutine call (current nesting depth +
CALL_COUNT > 32), then the call is ignored. Setting CALL_COUNT to zero prevents the nesting
depth from being updated on a subroutine call. Execution of a RETURN instruction when the program
is not in a subroutine is illegal.

The CALL_FS instruction calls a fetch subroutine (FS) whose address is relative to the address
specified in a host-configured register. The instruction also activates the fetch-program mode, which
affects other operations until the corresponding RETURN instruction is reached. Only a vector shader
(VS) program can call an FS subroutine, as described in Section 2.1 on page 5.

The CALL and CALL_FS instructions may be conditional. The subroutine is skipped if and only if all
pixels fail the condition test or the nesting depth would exceed 32 after the call. The POP_COUNT
field should be zero for CALL and CALL_FS.

3.7.7 ALU Branch-Loop Instructions

Several instructions execute ALU clauses:

e ALU

e ALU_PUSH_BEFORE

e ALU_POP_AFTER

e ALU_POP2_AFTER

e ALU_CONTINUE

e ALU_BREAK

e ALU_ELSE_AFTER

The ALU instruction performs no stack operations. It is the most common method of initiating an

ALU clause. Each PRED_SET* operation in the ALU clause manipulates the per-pixel state directly,
but no changes to the per-pixel state are visible until the clause completes execution.
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The other ALU* instructions correspond to their CF-instruction counterparts. The
ALU_PUSH_BEFORE instruction performs a PUSH operation before each PRED_SET* in the
clause. The ALU_POP{,2}_AFTER instructions pop the stack (once or twice) at the end of the ALU
clause. The ALU_ELSE_AFTER instruction pops the stack, then performs an ELSE operation at the
end of the ALU clause. And the ALU_{CONTINUE,BREAK} instructions behave similarly to their
CF-instruction counterparts. The major limitation is that none of the ALU* instructions can jump to a
new location in the CF program. They can only modify the per-pixel state and the stack.
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4 ALU Clauses

Software initiates an ALU clause with one of the CF_INST_ALU?* control-flow instructions, all of
which use the CF_ALU_DWORD][O0,1] microcode formats. Instructions within an ALU clause are
called “ALU instructions”. They perform operations using the scalar ALU.[X,Y,Z,W] and ALU.Trans
units, which are described in this chapter.

4.1 ALU Microcode Formats

ALU instructions are implemented with ALU microcode formats that are organized in pairs of two 32-
bit doublewords. The doubleword layouts in memory are shown in Figure 4-1, in which “+0” and “+4”
indicate the relative byte offset of the doublewords in memory, “{OP2, OP3}” indicates a choice
between the strings “OP2” and “OP3” (which specify two or three source operands), and “LSB”
indicates the least-significant (low-order) byte.

31 24 23 16 15 8 7 0
ALU_DWORD1_{OP2, OP3} +4
ALU_DWORDO +0

< LSB >

Figure 4-1. ALU Microcode-Format Pair

4.2 Overview of ALU Features

An ALU vector is 128 bits wide and consists of four 32-bit elements. The data elements need not be
related. The elements are organized in GPRs as shown in Figure 4-2. Element ALU.X is the least-
significant (low-order) element, and element ALU.W is the most-significant (high-order) element.

127 96 95 64 63 32 31 0

ALU.W ALU.Z ALU.Y ALU.X

Figure 4-2. Organization of ALU Vector Elements in GPRs

The processor contains multiple sets of five scalar ALUs. Four ALUs in each set can perform scalar
operations on up to three 32-bit data elements each, with one 32-bit result. The ALUs are called
ALU.X, ALU.Y, ALU.Z, and ALU.W—or simply ALU.[X,Y,Z,W]. A fifth unit, called ALU.Trans,
performs one scalar operation, the same as those that the ALU.[X,Y,Z,W] units perform, plus
additional operations for transcendental and advanced integer functions, and it can replicate the result
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across all four elements of a destination vector. Although the processor has multiple sets of these five
scalar ALUs, R600 software can assume that, within a given ALU clause, all instructions will be
processed by a single set of five ALUs.

Software issues ALU instructions in variable-length groups—called instruction groups—that perform
parallel operations on different elements of a vector, as described in Section 4.3 on page 40. The
ALU.[X,Y,Z,W] units are nearly identical in their functions. They differ only in which vector
elements they write their result to at the end of the instruction, and in certain reduction operations (see
Section 4.8.2 on page 60). The ALU.Trans unit can write to any vector element and can evaluate
additional functions.

ALU instructions can access 256 constants from the constant registers and 128 GPRs (each thread
accesses its own set of 128 GPRs). Constant-register addresses and GPR addresses can be absolute,
relative to the loop index (aL), or relative to an index GPR. In addition to reading constants from the
constant registers, an ALU instruction can refer to elements of a literal constant that is embedded in the
instruction group. Instructions also have access to two temporary registers that contain the results of
the previous instruction groups. The previous vector (PV) register contains a 4-element vector that is
the previous result from the ALU.[X,Y,Z,W] units, and the previous scalar (PS) register contains a
scalar that is the previous result from the ALU.Trans unit.

Each instruction has its own set of source operands—SRCO and SRC1 for instructions using the
ALU_DWORDI1_OP2 microcode format, and SRCO, SRC1, and SRC2 for instructions using the
ALU_DWORD1_OP3 microcode format. An instruction group that operates on a 4-element vector is
specified as (at a minimum) four independent scalar instructions, one for each vector element. As a
result, vector operations may perform a complex mix of vector-element and constant swizzles, and
even swizzles across GPR addresses (subject to read-port restrictions, see below). Traditional floating-
point and integer constants for common values (for example, 0, -1, 0.0, 0.5, and 1.0) may be specified
for any source operand.

Each ALU.[X,Y,Z,W] unit writes to an instruction-specified GPR at the end of the instruction. The
GPR address may be absolute, relative to the loop index, or relative to an index GPR. The
ALU.[X,Y,Z,W] units always write to their corresponding vector element, but each unit may write to a
different GPR address. The ALU.Trans unit may write to any vector element of any GPR address. The
outputs of each ALU unit may be clamped to the range [0.0, 1.0] prior to being written, and some
operations may multiply the output by a factor of 2.0 or 4.0.

4.3 Encoding of ALU Instruction Groups

An ALU instruction group is illustrated in Table 2-4 on page 11. Each group consists of one to five
ALU instructions, optionally followed by one or two literal constants, each of which can hold two
vector elements. Each instruction is 64 bits wide (composed of two 32-bit microcode formats). Two
elements of a literal constant are also 64 bits wide. Therefore, the basic memory unit for an ALU
instruction group is a 64-bit slot, which is a position for an ALU instruction or an associated literal
constant. An instruction group consists of one to seven slots, depending on the number of instructions
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and literal constants. The ALU clause size in the CF program is specified as the total number of slots
occupied by the ALU clause.

An ALU instruction group consists of up to five slots. Each instruction in the group has a LAST bit
that is set only for the last instruction in the group. The LAST bit delimits instruction groups from one
another, allowing the R600 hardware to implement parallel processing for each instruction group.
Each instruction has the same bit fields in its microcode format, and each instruction is distinguished
by the destination vector element to which it writes. An instruction is assigned to the ALU.Trans unit if
a prior instruction in the group writes to the same vector element of a GPR, or the instruction is a
transcendental operation.

Up to four of the five instruction slots in an instruction group may be omitted, and the instructions
must be in the following order:

Scalar instruction for ALU.X unit.
Scalar instruction for ALU.Y unit.
Scalar instruction for ALU.Z unit.

Scalar instruction for ALU.W unit.

A S e

Scalar instruction for ALU.Trans unit.

In addition, if any instructions refer to a literal constant by specifying the ALU_SRC_LITERAL value
for a source operand, the first, or both, of the following 2-element literal constant slots must be
provided (the second of these two slots cannot be specified alone):

6. X, Y elements of literal constant (X is the first doubleword).

7. Z, W elements of literal constant (Z is the first doubleword).

There is no LAST bit for literal constants. The number of the literal constants is known from the
operations specified in the instruction.

Given the options described above, the size of an ALU instruction group can range from 64 bits to 448
bits, in increments of 64 bits.

4.4 Assignment to ALU.[X,Y,Z,W] and ALU.Trans Units

Assignment of instructions to the ALU.[X,Y,Z,W] and ALU.Trans units is observable by software,
since it will determine the values PV and PS hold at the end of an instruction group. In some cases
there is an unambiguous assignment to ALUs based on the instructions and destination operands. In
other cases, the last slot in an instruction group is ambiguous. It could be assigned to either the
ALU.[X,Y,Z,W] unit or the ALU.Trans unit.!

1. This ambiguity is resolved by a bit in the processor state, CONFIG.ALU_INST_PREFER_VECTOR, that is program-
mable only by the host. When the bit is set, ambiguous slots are assigned to ALU.Trans. When cleared (default),
ambiguous slots are assigned to one of ALU.[X,Y,Z,W]. This setting applies to all thread types.
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The following algorithm illustrates the assignment of instruction-group slots to ALUs. The instruction
order described in Section 4.3 on page 40 must be observed. As a consequence, if the ALU.Trans unit
is specified, it must be done with an instruction that has its LAST bit set.

begin
ALU_[X,Y,Z,W] := undef;
ALU_TRANS := undef;
for $i = 0 to number of instructions - 1
Selem := vector element written by instruction $1i;
if instruction $i is transcendental only instruction
Strans := true;
elsif instruction $i is vector-only instruction
Strans := false;

elsif defined(ALU_Selem) or (mot CONFIG.ALU_INST PREFER_VECTOR and
instruction $i is LAST)

Strans := true;
else
Strans := false;

if Strans
if defined (ALU_TRANS)
assert “ALU.Trans has already been allocated,
cannot give to instruction $i.”;
ALU_TRANS := $1i;
else
if defined(ALU_Selem)
assert “ALU.Selem has already been allocated,
cannot give to instruction $i.”;
ALU_Selem := S$i;
end

After all instructions in the instruction group are processed, any ALU.[X,Y,Z,W] or ALU.Trans
operation that is unspecified implicitly executes a NOP instruction, thus invalidating the values in the
corresponding elements of the PV and PS registers.

4.5 OP2 and OP3 Microcode Formats

To keep the ALU slot size at 64 bits while not sacrificing features, the microcode formats for ALU
instructions have two versions: ALU_DWORD1_OP2 (page 280) and ALU_DWORDI1_OP3
(page 286). The OP2 format is used for instructions that require zero, one, or two source operands plus
destination operand. The OP3 format is used for the smaller set of instructions requiring three source
operands plus destination operand.

Both versions have an ALU_INST field which specifies the instruction opcode. The
ALU DWORDI1_OP2 format has a 10-bit instruction field, and ALU_DWORD1_OP3 format has a
5-bit instruction field. The fields are aligned such that their MSBs overlap. In the OP2 version, the
ALU_INST field uses a 7-bit opcode, and the high three bits are always 000b. In the OP3 version, at
least one of the high three bits of the ALU_INST field is nonzero.
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4.6 GPRs and Constants

Within an ALU clause, instructions can access to up to 127 GPRs and 256 constants from the constant
registers. Some GPR addresses may be reserved for clause temporaries. These are temporary values
typically stored at GPR[124,127]? that do not need to be preserved past the end of a clause. This gives
a program access to temporary registers that do not count against its GPR count (the number of GPRs
that a program can use), thus allowing more programs to be running simultaneously.

For example, if the result of an instruction is required for another instruction within a clause, but not
needed after the clause executes, a clause temporary may be used to hold the result. The first
instruction would specify GPR[124, 127] as its destination while the second instruction would specify
GPR[124, 127] as its source. After the clause executes, GPR[124, 127] could be used by another
clause.

Any constant-register address can be absolute, relative to the loop index, or relative to one of four
elements in the address register (AR) which is loaded by a prior MOV A* instruction in the same
clause. Any GPR (source or destination) address can be absolute, relative to the loop index, or relative
to the X element in the address register (AR) which is loaded by a prior MOV A* instruction in the
same clause. A clause using AR must be initiated by a CF instruction with the USES_WATERFALL
bit set.

In addition to reading constants from the constant registers, any operand may refer to an element in a
literal constant, as described in Section 4.3 on page 40.

Constants may also come from one of two banks of constants (called kcache constants) that are read
from memory before the clause executes. Each bank is a set of 16 constants that are locked into the
cache for the duration of the clause by the CF instruction that started the clause.

4.6.1 Relative Addressing

Each instruction can use only one index for relative addressing. Relative addressing is controlled by
the SRC_REL and DST_REL fields of the instruction’s microcode format. The index used is
controlled by the INDEX_MODE field of the instruction’s microcode format. Each source operand in
the instruction then declares whether it is absolute or relative to the common index. The index used
depends on the operand type and the setting of INDEX_MODE, as shown in Table 4-1.

2. The number of clause temporaries can be programed only by the host processor using the configuration-register field
GPR_RESOURCE_MGMT_1.NUM_CLAUSE_TEMP_GPRS. A typical setting for this field is 4. If the field has N >
0, then GPR[127 — N + 1, 127] are set aside as clause temporaries.
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Table 4-1. Index for Relative Addressing

INDEX_MODE GPR Operand Conséa::raR:gister Kcache Operand
INDEX_AR_X AR.X AR.X not valid
INDEX_AR_Y AR.X AR.Y not valid
INDEX_AR_Z AR.X AR.Z not valid
INDEX_AR_W AR.X ARW not valid
INDEX_LOOP Loop Index (aL) Loop Index (aL) Loop Index (aL)

The term flow-control loop index refers to the DirectX9-style loop index. Each instruction gets its own
INDEX_MODE control, so a single instruction group may still refer to more than one type of index.

When using an AR index, the index must be initialized by a MOV A* operation that is present in a prior
instruction group of the same clause. As a consequence, AR indexing is never valid on the first
instruction of a clause.

An AR index cannot be used in an instruction group that executes a MOV A* instruction in any slot.
Any slot in an instruction group with a MOV A* instruction using relative constant addressing may use
only an INDEX_MODE of INDEX_LOOP. To issue a MOVA* from an AR-relative source, the
source must be split into two separate instruction groups, the first performing a MOV from the relative
source into a temporary GPR, and the second performing a MOV A* on the temporary GPR.

Only one AR element can be used per instruction group. For example, it is not legal for one slot in an
instruction group to use INDEX_AR_X, and another slot in the same instruction group to use
INDEX_AR_Y. Also, AR cannot be used to provide relative indexing for a kcache constant. kcache
constants may use only the INDEX_LOOP mode for relative indexing.

GPR clause temporaries may not be indexed.

4.6.2 Previous Vector (PV) and Previous Scalar (PS) Registers

Instructions may read from two additional temporary registers—previous vector (PV) and previous
scalar (PS)—that contain the results from the ALU.[X,Y,Z,W] and ALU.Trans units, respectively, of
the previous instruction group. These registers, together, provide five 32-bit elements; PV contains a
4-element vector originating from the ALU.[X,Y,Z,W] output, and PS contains a single scalar value
from the ALU.Trans output. The registers may be used freely in an ALU instruction group (although
using one in the first instruction group of the clause makes no sense). NOP instructions do not preserve
PV and PS values, nor are PV and PS values preserved past the end of the ALU clause.

4.6.3 Out-of-Bounds Addresses

GPR and constant-register addresses may stray out of bounds after relative addressing is applied.
Some cases where the address strays out of bounds have well-defined behavior, documented here.
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Assume N GPRs are declared per thread and K clause temporaries are also declared. The GPR base
address specified in SRC*_SEL must be in either the interval [0, N — 1] (normal clause GPR) or [128 —
K, 127] (clause temporary), before any relative index is applied. If SRC*_SEL is a GPR address and
does not fall into either of these intervals, the resulting behavior is undefined. You cannot, for
example, write code that generates GPRN[-1] to read from the last GPR in a program.

If a GPR read with base address in [0, N — 1] is indexed relatively, and the base plus the index is
outside the interval [0, N — 1], then the value read will always be GPRO (including for texture- and
vertex-fetch instructions and imports and exports). If a GPR write with base address in [0, N — 1] is
indexed relatively, and the base plus the index is outside the interval [0, N — 1], then the write will be
inhibited (including for texture- and vertex-fetch instructions), unless the instruction is a memory read.
If the instruction is a memory read, the result will be written to GPRO. Relative addressing on GPR
clause temporaries is illegal. Therefore, the behavior is undefined if a GPR with base address in the
range [128 — K, 127] is used with a relative index.

A constant-register base address is always be in-bounds. If a constant-register read is indexed
relatively, and the base plus the index is outside the interval [0, 255], then the value read is NaN
(7FFFFFFFh).

If a kcache base address refers to a cache line that is not locked, the result is undefined. You cannot
refer to kcache constants [0, 15] if the mode (as set by the CF instruction initiating the ALU clause) is
KCACHE_NOQOP, and you cannot refer to kcache constants [16, 31] if the mode is KCACHE_NOP or
KCACHE_LOCK_]1. If a kcache read is indexed relatively and one cache line is locked with
KCACHE_LOCK_1, and the base plus the index is outside the interval [0, 15], then the value read is
NaN (7FFFFFFFh). If a kcache read is indexed relatively and two cache lines are locked, and the base
plus the index is outside the interval [0, 31], then the value read is NaN (7FFFFFFFh).

4.6.4 ALU Constants

Each ALU instruction can reference up to two constants: one inline constant (literal), and one constant
read from the on-chip constant file. All ALU constants are four 32-bit values. In addition, the constants
0, 1, and 0.5 may be swapped for any GPR element as a swizzle option.

The ALU constants are available in one of two modes: DX9 (constant file) or DX10 (constant cache).
In DX9 mode, the PS and VS each have 256 ALU constants available (both set_constant and
def_constant versions). In DX10 mode, there is a constant cache with 256 ALU constants for each of
PS, VS or ES, and GS. In this mode, the constant-file is not available.

Each program can use up to 256 ALU constants from the constant file. The processor actually stores
twice this number for each program: one set for “set_constant” constants and one for “def_constant”.
There is a 256-bit mask that each program must initialize which determines for each constant whether
to use the set_constant or def constant for this shader.

Constant Cache. Each ALU clause can lock up to four sets of constants into the constant cache.
Each set (one cache line) is 16 128-bit constants. These are split into two groups. Each group can be
from a different constant buffer (out of 16 buffers). Each group of two constants consists of either
[Line] and [Line+1] or [line + loop_ctr] and [line + loop_ctr +1].
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Literal (in-line) Constants. Literal constants are stored in the instruction store immediately after the
instruction that uses it, and they count against the 16-32 instruction maximum for a clause. Although
only one constant is supplied, multiple arguments in the instruction can reference this constant with
different swizzles. These constants are four 32-bit values and cannot be swizzled.

Statically-indexed Constant Access. The constant-file entries can be accessed either with absolute
addresses, or addresses relative to the current loop index (al.) (static indirect access). In both cases, all
pixels in the vector pick the same constant to use and there is no performance penalty. Swizzling is
allowed.

Dynamically-Indexed Constant Access (AR-relative, constant waterfalling). In order to support
DX9 vertex shaders, we provide dynamic indexing of constant-file constants. This means that a GPR
value is used as the index into the constant file. Since the value comes from a GPR, it may be unique
for each pixel. In the worst case, it may take 64 times as long to execute this instruction since up to 64
constant-file reads may be required.

Dynamic indexing requires two instructions:

* MOVA: Move the four elements of a GPR into the Address Register (AR) to be used as the index
value.

* <anyALU instruction>: Use the indices from the MOV A and perform the indirect lookup.
There is a two-instruction delay slot between loading and using the GPR index value. The processor
sends the four elements at different times, so that it can optimize for receiving the X element three

cycles before the W element. The GPR indices loaded by a MOV A instruction only persist for one
clause; at the end of the clause they are invalidated.

4.7 Scalar Operands

For each instruction, the operands src0, srcl, and src2 are specified in the instruction’s SRC*_SEL and
SRC*_ELEM fields. GPR and constant-register addresses may be relative-addressed, as specified in
the SRC*_REL and INDEX_MODE fields. In the OP2 microcode format, src2 is undefined.

The data source address is specified in the SRC*_SEL field. This may refer to one of:

e A GPR address, GPR[0, 127] with values [0, 127].

* A kcache constant in bank 0, kcache0[0, 31] with values [128, 159]; kcache0O[16, 31] are accessible
only if two cache lines have been locked.

¢ A kcache constant in bank 1, kcache1[0, 31] with values [160, 191]; kcachel[16, 31] are accessible
only if two cache lines are locked.

* A constant-register address, c[0, 255] with values [256, 511].
e The previous vector or scalar result, PV and PS.
e A literal constant (two constants are present if any operand uses a Z or W constant).

e A floating-point inline constant (0.0, 0.5, 1.0).
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* Aninteger inline constant (-1, 0, 1).

If the SRC*_SEL field specifies a GPR or constant-register address, then the relative index specified
by the INDEX_MODE field is added to the address if the SRC*_REL bit is set.

The definitions of the selects for PV, PS, literal constant, and the special inline constant values are
given in the microcode specification. In addition, the following constant values are defined to assist in
encoding and decoding the SRC*_SEL field:

e ALU _SRC_GPR_BASE = 0—DBase value for GPR selects.

¢ ALU _SRC_KCACHEO _BASE = 128—Base value for kcache bank O selects.

¢ ALU SRC_KCACHE1 BASE = 144—Base value for kcache bank 1 selects.

e ALU_SRC_CFILE_BASE =256—Base value for constant-register address selects.

The SRC*_ELEM field specifies which vector element of the source address to read from. It is ignored
when PS is specified. If a literal constant is selected, and SRC*_ELEM specifies the Z or W element,
then both slots of the literal constant must be specified at the end of the instruction group.

Each input operand may be slightly modified. The modifiers available are identity (pass-through),
negate, absolute value, and absolute-then-negate, and are specified using SRC*_NEG and
SRC*_ABS. The modifiers are meaningful only for floating-point inputs. Integer inputs should always
use the pass-through modifier. If both the SRC*_NEG and SRC*_ABS bits are set, the absolute value
is performed first. Instructions with three source operands have only the negation function,
SRC*_NEG, for operands. Absolute value, if desired, must be performed by a separate instruction
with two source operands.

A simplified data flow for the ALU operands is given in Figure 4-3. The data flow is discussed in more
detail in the following sections.
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Figure 4-3. ALU Data Flow

4.7.1 GPR Read Port Restrictions

In hardware, the X, Y, Z, and W elements are stored in separate memories. Each element memory has
three read ports per instruction. As a result, an instruction can refer to at most three distinct GPR
addresses (after relative addressing is applied) per element. The processor automatically shares a read
port for multiple operands that use the same GPR address or element. For example, all scalar srcO
operands may refer to GPR2.X with only one read port. Thus, there are only 12 GPR source elements
available per instruction (three for each element). Additional GPR read restrictions are imposed for
both ALU.[X,Y,Z,W] and ALU.Trans, as described below.

4.7.2 Constant Register Read Port Restrictions

Software can read any four distinct elements from the constant registers in one instruction group, after
relative addressing is applied. They can be from four different addresses, and can all come from the
same element, e.g. an instruction group may access C0.X, C1.X, C2.X, C3.X. No more than four
distinct elements can be read from the constant file in one instruction group.
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Each ALU.Trans operation may reference at most two constants of any type. For example, all of the
following are legal, and the four slots shown may occur as a single instruction group:

GPR0O.X <= C0.X + GPRO0O.X

GPRO.Y <= 1.0 + C1.Y // Can mix cfile and non-cfile in one instruction group.
GPR0O.Z <= C2.X + GPR0.Z // Multiple reads from cfile X bank are OK.

GPRO.W <= C3.Z + CO.X // Reads from four distinct cfile addresses are OK.

4.7.3 Literal Constant Restrictions

A literal constant is fetched if any source operand refers to the literal constant, regardless of whether
the operand is used by the instruction group, so be sure to clear unused operands in instruction fields. If
all operands referencing the literal refer only to the X and Y vector elements, a 2-element literal (one
slot) will be fetched. If any operand referencing the literal refers to the Z or W vector elements, a 4-
element literal (two slots) will be fetched. An ALU.Trans operation may reference at most two
constants of any type.

4.7.4 Cycle Restrictions for ALU.[X,Y,Z,W] Units

For ALU.[X,Y,Z,W] operations, source operands src0, srcl, and src2 are loaded during three cycles.
At most one GPR.X, one GPR.Y, one GPR.Z and one GPR.W can be read per cycle. The GPR values
requested on cycle N are assembled into a 4-element vector, CYCLEN_GPR. In addition, four
constant elements are sent to the pipeline from a combination of sources: the constant-register
constant, a literal constant, and the special inline constants. The constant elements sent on cycle N are
assembled into a 4-element vector, CYCLEN_K. Collectively, these two vectors are referred to as
CYCLEN_DATA.

The values in CYCLEN_DATA are used to populate the logical operands src[0, 2]. The mapping of
CYCLEIO, 2]_DATA to src[0, 2] must be specified in the microcode, using the BANK_SWIZZLE
field. Read port restrictions must be respected across the instructions in an instruction group, described
below. Each slot has its own BANK_SWIZZLE field, and these fields can be coordinated to avoid the
read port restrictions.

For ALU.[X,Y,Z,W] operations, BANK_SWIZZLE specifies which cycle each operand’s data comes
from, if the operand’s source is GPR data. Constant data for srcN is always from CYCLEN_K. The
setting, ALU_VEC_012, is the identity setting that loads operand N using data in CYCLEN_GPR:

BANK_SWIZZLE srcO srci src2
ALU_VEC_012 CYCLEO_GPR CYCLE1_GPR CYCLE2_GPR
ALU_VEC_021 CYCLEO_GPR CYCLE2_GPR CYCLE1_GPR
ALU_VEC_120 CYCLE1_GPR CYCLE2_GPR CYCLEO_GPR
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BANK_SWIZZLE src0 srci src2
ALU_VEC_102 CYCLE1_GPR CYCLEO_GPR CYCLE2_GPR
ALU_VEC_201 CYCLE2_GPR CYCLEO_GPR CYCLE1_GPR
ALU_VEC_210 CYCLE2_GPR CYCLE1_GPR CYCLEO_GPR

In this configuration, if an operand is referenced more than once in a scalar operation, it must be
loaded in two different cycles, sacrificing two read ports. For example:

Instruction BANK_SWIZZLE | CYCLEO GPR | CYCLE1_GPR | CYCLE2 GPR

GPRO.X <= GPR1.X*GPR2X+ |\ ; VEC 012 GPR1.X GPR2.X GPR1.X
GPR1.X

GPRO.Y <=GPR1.Y*GPR2.Y + |\ ; vEG 012 GPR1.Y GPR2.Y GPR1.Y

GPR1.Y

However, as a special case, if srcO and srcl in an instruction refer to the same GPR element, only one
read port will actually be used, on the cycle corresponding to srcO in the bank swizzle. This
optimization exists to facilitate squaring operations (MUL* x, x, and DOT* v, v). The following
example illustrates the use of this optimization to perform square operations that do not consume more
than one read port per GPR element.

Instruction BANK_SWIZZLE | CYCLEO_GPR | CYCLE1_GPR | CYCLE2_GPR
GPR0.X <= GPR1.X * GPR1.X ALU_VEC_012 GPR1.X — —
GPRO.Y <= GPR1.Y * GPR1.Y ALU_VEC_120 —* GPR1.Y —

*

src1 is shared and fetches its data on the same cycle that src0 fetches. No actual read port is used up in the marked
cycles.

In the above example, the swizzle selects for srcO are used to determine which cycle to load the shared
operand on. The swizzle selects for srcl are ignored. The following programming is legal, even though
at first glance the bank swizzles might suggest it is not.

Instruction BANK_SWIZZLE | CYCLEO_GPR | CYCLE1_GPR | CYCLE2_GPR
GPR0.X <= GPR1.X * GPR1.X ALU_VEC_012 GPR1.X — —
GPRO.Y <= GPR1.Y * GPR1.Y ALU_VEC_102 —* GPR1.Y —
GPRO0.Z <= GPR2.Y * GPR2.X ALU_VEC_012 GPR2.Y GPR2.X —

*

src1 is shared and fetches its data on the same cycle that src0 fetches. No actual read port is used up in the marked
cycles.
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This optimization only applies when srcO and src1 share the same GPR element in an instruction. It
does not apply when srcO and src2, nor when srcl and src2, share a GPR element.

Software cannot read two or more values from the same GPR vector element on a single cycle. For
example, software cannot read GPR1.X and GPR2.X on cycle 0O (this restriction does not apply to
constant registers or literal constants). For example, the following programming is illegal:

Instruction BANK_SWIZZLE | CYCLEO_GPR | CYCLE1_GPR | CYCLE2_GPR
GPRO0.X <= GPR1.X * GPR2.X ALU_VEC_012 invalid GPR2.X —
GPRO.Y <= GPR3.X * GPR1.Y ALU_VEC_012 invalid GPR1.Y —
GPRO0.Z <= GPR2.X * GPR1.Y ALU_VEC_012 invalid GPR1.Y** —

Software can use BANK _SWIZZLE to work around this limitation, as shown below.

Instruction BANK_SWIZZLE | CYCLEO_GPR | CYCLE1_GPR | CYCLE2_GPR
GPRO0.X <= GPR1.X * GPR2.X ALU_VEC_012 GPR1.X GPR2.X —
GPRO.Y <= GPR3.X * GPR1.Y ALU_VEC_201 GPR1.Y — GPR3.X
GPRO0.Z <= GPR2.X * GPR1.Y ALU_VEC_102 GPR1.Y** GPR2.X** —

** The above examples illustrate that once a value is read into CYCLEN_DATA, multiple instructions can reference that
value.
The temporary registers PV and PS have no cycle restrictions. Any element in PV or PS can be
accessed on any cycle. Constant operands can be accessed on any cycle.

4.7.5 Cycle Restrictions for ALU.Trans

The ALU.Trans unit is not subject to the close tie between srcN and cycle N that the ALU.[X,Y,Z,W]
units have. It is able to opportunistically load GPR-based operands on any cycle. The downside is that
the ALU.Trans unit must share the GPR read ports used by the ALU.[X,Y,Z,W] units. If one of the
ALU.[X,Y,Z,W] units loads an operand that an ALU.Trans operand needs, then it may be possible to
load the ALU.Trans operand on the same cycle. If not, the ALU.Trans hardware must find a cycle with
an unused read port to load its operand.

The ALU.Trans slot also has a BANK_SWIZZLE field, but it interprets the field differently from
ALU.[X,Y,Z,W]. The BANK_SWIZZLE field is used to determine which of CYCLEJO, 2]_GPR each
src[0, 2] operand gets its data from. It may take on one of the following values:
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BANK_SWIZZLE src0 src src2
ALU_SCL_210 CYCLEO_DATA CYCLE1_DATA CYCLE2_DATA
ALU_SCL_122 CYCLE1_DATA CYCLE2_DATA CYCLE2_DATA
ALU_SCL_212 CYCLE2_DATA CYCLE1_DATA CYCLE2_DATA
ALU_SCL_221 CYCLE2_DATA CYCLE2_DATA CYCLE1_DATA

Multiple operands in ALU.Trans may read from the same cycle (this differs from the ALU.[X,Y,Z,W]
case). Not all possible permutations are available. If needed, the unspecified permutations can be
obtained by applying an appropriate inverse mapping on the ALU.[X,Y,Z,W] slots.

Here is an example illustrating how ALU.Trans operations may use unused read ports from GPR
instructions (in all of the following examples, the last instruction in an instruction group is always an
ALU.Trans operation):

Instruction BANK_SWIZZLE | CYCLEO_GPR | CYCLE1_GPR | CYCLE2_GPR
GPRO0.X <= GPR1.X * GPR2.X ALU_VEC_012 GPR1.X GPR2.X —
GPRO.Y <= GPR3.X * GPR1.Y ALU_VEC_210 — GPR1.Y GPR3.X
GPR1.X <= GPR3.Z * GPR3.W ALU_SCL_221 — — GPR83.[ZW]

When an operand is used by one of ALU.[X,Y,Z,W] units, it may also be used to load an operand into
the ALU.Trans unit:

Instruction BANK_SWIZZLE | CYCLEO_GPR | CYCLE1_GPR | CYCLE2_GPR
GPRO0.X <= GPR1.X * GPR2.X ALU_VEC_210 — GPR2.X GPR1.X
GPRO.Y <= GPR3.X * GPR1.Y ALU_VEC_012 GPR3.X GPR1.Y —
GPR1.X <= GPR1.X * GPR1.Y ALU_SCL_210 — GPR1.Y GPR1.X

Any element in PV or PS can be accessed by ALU.Trans, and generally it will be loaded as soon as
possible. PV or PS can be loaded on any cycle, but when constant operands are present the available
bank swizzles may be constrained (see below).

Bank Swizzle with Constant Operands. If the transcendental operation uses a single constant
operand (any type of constant), then the remaining GPR operands must not be loaded on cycle 0. The
instruction group:

GPR0O.X <= GPR1.X * GPR2.Y + CFILEOQ.Z

may use any of the following bank swizzles:
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* ALU_SCL_210—no operand loaded on cycle O

e ALU_SCL_122

e ALU_SCL_212—synonymous with 210 swizzle in this case
e ALU_SCL_221

However, the instruction group:

GPR0.X <= CFILEO.Z * GPR1.X + GPR2.Y

may only use the following swizzles:

e ALU_SCL_122

e ALU_SCL_212

e ALU_SCL_221

Similarly, when a single constant operand is used, any PV or PS operand cannot be loaded on cycle 0.
The instruction group:

GPRO.X <= CFILEO.Z * PV.X + PS

may only use the following swizzles:

e ALU_SCL_122

e ALU_SCL_212

e ALU_SCL_221

If the transcendental operation uses two constant operands (any types of constants), then the remaining
GPR operand must be loaded on cycle 2. The instruction group:

GPRO.X <= CFILEO.X * CFILEO.Y + GPR1.Z

may only use one of the following bank swizzles:
e ALU_SCL_122
e ALU_SCL_212—synonymous with 122 swizzle in this case

Similarly, when two constant operands are used, any PV or PS operand must be loaded on cycle 2. The
instruction group:

GPR0.X <= CFILEO.X * CFILEO.Y + PV.Z

may only use one of the following bank swizzles:

e ALU_SCL_122
e ALU_SCL_212—synonymous with 122 swizzle in this case

The transcendental operation may not reference constants in all three of its operands.
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4.7.6 Read-Port Mapping Algorithm

This section describes the algorithm that determines what combinations of source operands are
permitted in a single instruction. For this algorithm, let HW_GPR[0,1,2]_[X,Y,Z,W] store addresses
for the [0, 2] GPR read port reservations. Let HW_CFILE[0,1,2,3]_ADDR represent a constant-
register address, and HW_CFILE[O0,1,2,3]_ELEM represent an element (X, Y, Z, W) for the [0, 3]
constant-register read port reservation. For simplicity, this algorithm ignores relative addressing; if
relative addressing is used, address references below are after the relative index is applied.

The function, cycle_for_bank_swizzle($swiz, $sel), returns the cycle number that the operand $sel
should be loaded on, according to the bank swizzle $swiz. The return value is shown in Table 4-2

Table 4-2. Example Function’s Loading Cycle

$swiz $sel==0 $sel==1 $sel==2
ALU_VEC_012 0
ALU_VEC_o021
ALU_VEC_120
ALU_VEC_102
ALU_VEC_201
ALU_VEC_210
ALU_SCL_210
ALU_SCL_122
ALU_SCL_212
ALU_SCL_221

—_
N

NN =] N N N = = O
Nl = N =] =] O] O M| N
=[N N O] O] =| M| O =

The following procedure is executed on initialization:

procedure initialize

begin
HW_GPR[0,1,2]_[X,Y,Z,W] := undef;
HW_CFILE[O,1,2,3]_ADDR := undef;
HW_CFILE[O,1,2,3]_ELEM := undef;
end

The following procedure attempts to reserve the GPR read for address $sel and vector element $elem
on cycle number $cycle:

procedure reserve_gpr ($Ssel, Selem, Scycle)
if !defined (HW_GPRScycle _Selem)
HW_GPRScycle _Selem := $sel;
elsif HW_GPRScycle_Selem != $sel
assert “Another instruction has already used GPR read port Scycle
for vector element Selem”;
end
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The following procedure attempts to reserve the constant file read for address $sel and vector element
Selem:

procedure reserve_cfile($Ssel, Selem)

begin
Sresmatch := undef;
Sresempty := undef;

for $res in {3, 2, 1, 0}
if !defined(HW _CFILES$res ADDR)

Sresempty := Sres;
elsif HW CFILESres ADDR == S$sel and HW _CFILESres ELEM == Selem
Sresmatch := Sres;

if defined($Sresmatch)

// Read for this scalar element already reserved, nothing to do here.
elsif defined(Sresempty)

HW_CFILESresempty_ ADDR Ssel;

HW_CFILESresempty ELEM := Selem;
else

assert “All cfile read ports are used, cannot reference CS$sel,

vector element Selem.”;

end

The following procedure is executed for each ALU.[X,Y,Z,W] operation specified in the instruction
group:

procedure check_vector

begin
for $src in {0, ..., number_of_operands (ALU_INST) }
Ssel := SRCS$src_SEL;
Selem := SRCSsrc_ELEM;
if isgpr($sel)
Scycle := cycle_for_bank_swizzle (BANK_SWIZZLE, $src);
if Ssrc == 1 and $sel == SRCO_SEL and Selem == SRCO_ELEM
// Nothing to do; special-case optimization,
second source uses first source’s reservation
else
reserve_gpr(Ssel, Selem, Scycle);
elsif isconst($sel)
// Any constant, including literal and inline constants
if iscfile($sel)
reserve cfile(Ssel, Selem);
else
// No restrictions on PV, PS
end
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Finally, the following procedure is executed for an ALU.Trans operation, if it is specified in the
instruction group. The ALU.Trans unit will attempt to reuse an existing reservation whenever
possible. The constant unit cannot use cycle 0 for GPR loads if one constant operand is specified, and
must use cycle 2 for GPR load if two constant operands are specified.

procedure check_scalar

begin
Sconst_count := 0;
for $src in {0, ..., number_of_operands (ALU_INST) }
Ssel := SRCS$src SEL;
Selem := SRCSsrc_ELEM;

if isconst($sel)
// Any constant, including literal and inline constants
if Sconst_count >= 2
assert “More than two references to a constant in transcendental oper-
ation.”;
Sconst_count++;
if iscfile($sel)
reserve_cfile(Ssel, Selem);
for $src in {0, ..., number_of_operands (ALU_INST) }
Ssel := SRCS$src SEL;
Selem := SRCS$Ssrc_ELEM;
if isgpr($sel)
Scycle := cycle_for_bank_swizzle (BANK_SWIZZLE, S$src);
if Scycle < Sconst_count
assert “Cycle Scycle for GPR load conflicts with constant
load in transcendental operation.”;
reserve_gpr(Ssel, Selem, Scycle);
elsif isconst ($sel)
// Constants already processed
else
// No restrictions on PV, PS
end
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4.8 ALU Instructions

This section gives a brief summary of ALU instructions. See Section 7.2 on page 110 for details about
the instructions.

4.8.1 Instructions for All ALU Units

The instructions shown in Table 4-3 are valid for all ALU units—ALU.[X,Y,Z,W] units and
ALU.Trans units. All of the instruction mnemonics in this table have an “OP2_INST_"or
“OP3_INST_” prefix that is not shown here.

Table 4-3. ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units)

Mnemonic ‘ Description
Integer Operations
ADD_INT Integer add based on signed or unsigned integer elements.
AND_INT Logical bit-wise AND.
CMOVE_INT Integer conditional move equal based on integer (either signed or unsigned)

CMOVGE_INT

Integer conditional move greater than equal based on signed integer values.

CMOVGT_INT

Integer conditional move greater than based on signed integer values.

MAX_INT Integer maximum based on signed integer elements
MAX_UINT Integer maximum based on unsigned integer elements
MIN_INT Integer minimum based on signed integer elements
MIN_UINT Integer minimum based on signed unsigned integer elements
MOV Single-operand move.

NOP No operation.

NOT_INT Logical bit-wise NOT

OR_INT Logical bit-wise OR

PRED_SETE_INT Integer predicate set equal. Update predicate register.

PRED_SETE_PUSH_INT Integer predicate counter increment equal. Update predicate register.

PRED_SETGE_INT Integer predicate set greater than or equal. Update predicate register.

Integer predicate counter increment greater than or equal. Update predicate
PRED_SETGE_PUSH_INT

register.
PRED_SETGT_INT Integer predicate set greater than. Updates predicate register.
PRED_SETGT_PUSH_INT Integer predicate counter increment greater than. Update predicate register.
PRED_SETLE_INT Integer predicate set if less than or equal. Updates predicate register.
PRED_SETLE_PUSH_INT Predicate counter increment less than or equal. Update predicate register.
PRED_SETLT_INT Integer predicate set if less than. Updates predicate register.
PRED_SETLT_PUSH_INT Predicate counter increment less than. Update predicate register.
PRED_SETNE_INT Scalar predicate set not equal. Update predicate register.
PRED_SETNE_PUSH_INT Predicate counter increment not equal. Update predicate register.
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Table 4-3. ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) (continued)

Mnemonic Description
SETE_INT Integer set equal based on signed or unsigned integers.
SETGE_INT Integer set greater than or equal based on signed integers.

SETGE_UINT

Integer set greater than or equal based on unsigned integers.

SETGT_INT Integer set greater than based on signed integers.

SETGT_UINT Integer set greater than based on unsigned integers.
SETNE_INT Integer set not equal based on signed or unsigned integers.
SUB_INT Integer subtract based on signed or unsigned integer elements.
XOR_INT Logical bit-wise XOR

Floating-Point Operations

ADD Floating-point add.

CEIL Floating-point ceiling function.

CMOVE Floating-point conditional move equal.

CMOVGE Floating-point conditional move greater than equal.

CMOVGT Floating-point conditional move greater than.

FLOOR Floating-point floor function.

FRACT Floating-point fractional part of Src 1.

KILLE Floating-point kill equal. Set kill bit.

KILLGE Floating-point pixel kill greater than equal. Set kill bit.

KILLGT Floating-point pixel kill greater than. Set kill bit.

KILLNE Floating-point pixel kill not equal. Set kill bit.

MAX Floating-point maximum.

MAX_ DX10 Floating-point maxi.mum. DX10 implies slightly different handling of Nans.
See the SP Numeric spec for details.

MIN Floating-point minimum.

MTN,_DX10 Floating-point minimum. DX10 implies slightly different handling of Nans.
See the SP Numeric spec for details.

MUL Floating-point multiply. 0*anything = 0.

MUL_IEEE IEEE Floating-point multiply. Uses IEEE rules for 0*anything.

MULADD Floating-point multiply-add (MAD).

MULADD_D2 Floating-point multiply-add (MAD), followed by divide by 2.

MULADD_M2 Floating-point multiply-add (MAD), followed by multiply by 2.

MULADD_M4 Floating-point multiply-add (MAD), followed by multiply by 4.

MULADD_TIEEE

Floating-point multiply-add (MAD). Uses IEEE rules for 0*anything

MULADD_IEEE_D2

IEEE Floating-point multiply-add (MAD), followed by divide by 2. Uses IEEE
rules for 0*anything.

MULADD_IEEE M2

IEEE Floating-point multiply-add (MAD), followed by multiply by 2. Uses
IEEE rules for 0*anything.
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Table 4-3. ALU Instructions (ALU.[X,Y,Z,W] and ALU.Trans Units) (continued)

Mnemonic Description

IEEE Floating-point multiply-add (MAD), followed by multiply by 4. Uses

MULADD_LEEE_Md IEEE rules for 0*anything.

PRED_SET_CLR Predicate counter clear. Update predicate register.

PRED_SET_INV Predicate counter invert. Update predicate register.

PRED_SET_POP Predicate counter pop. Updates predicate register.

PRED_SET_RESTORE Predicate counter restore. Update predicate register.

PRED_SETE Floating-point predicate set equal. Update predicate register.

PRED_SETE_PUSH Predicate counter increment equal. Update predicate register.

PRED_SETGE Floating-point predicate set greater than equal. Update predicate register.

PRED_SETGE_PUSH Predicate counter increment greater than equal. Update predicate register.

PRED_SETGT Floating-point predicate set greater than. Update predicate register.

PRED_SETGT_PUSH Predicate counter increment greater than. Update predicate register.

PRED_SETNE Floating-point predicate set not equal. Update predicate register.

PRED_SETNE_PUSH Predicate counter increment not equal. Update predicate register.

RNDNE Floating-point Round-to-Nearest-Even Integer

SETE Floating-point set equal.

SETE_DX10 S?;ig%fomt equal based on floating-point arguments. The result, however

SETGE Floating-point set greater than equal.

SETGE_ DX10 Floating-point gr_ee?ter than or equal based on floating-point arguments. The
result, however is integer.

SETGT Floating-point set greater than.

SETGT_DX10 El)ov\ellg\r;grpl)::rr\& é;ézf.ter than based on floating-point arguments. The result,

SETNE Floating-point set not equal.

SETNE_DX10 E(I)ovsgcgrrl);m ;;;rtlequal based on floating-point arguments. The result,

TRUNC Floating-point integer part of SrcO.

KILL and PRED_SET* Instruction Restrictions. Only a pixel shader (PS) program can execute a
pixel kill (KILL) instruction. This instruction is illegal in other program types. A KILL instruction
should always be the last instruction in an ALU clause, because the remaining instructions executed in
the clause will not reflect the updated valid state after the kill operation. Two KILL instructions cannot
be co-issued.

The term “PRED_SET*” is used to describe any instruction that computes a new predicate value that
may update the local predicate or execute mask. Two PRED_SET* instructions cannot be co-issued.
Also, PRED_SET* and KILL instructions cannot be co-issued. Behavior is undefined if any of these
co-issue restrictions are violated.
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4.8.2 Instructions for ALU.[X,Y,Z,W] Units Only

The instructions shown in Table 4-4 may only be used in a slot in the instruction group that is destined
for one of the ALU.[X,Y,Z,W] units. None of these instructions are legal in an ALU.Trans unit. All of
the instruction names in Table 4-4 are preceded by “OP2_INST_".

Table 4-4. ALU Instructions (ALU.[X,Y,Z,W] Units Only)

Mnemonic | Description

Reduction Operations

Cubemap instruction. It takes two source operands (SrcA = Rn.zzxy, SrcB =
CUBE Rn.yxzz). All four vector elements must share this instruction. Output clamp
and modifier does not affect FacelD in the result W vector element.

4-element dot product. The result is replicated in all four vector elements. All
four vector elements must share this instruction. Only the PV.X register
element holds the result, and the processor is responsible for selecting this
swizzle code in the bypass operation.

DOT4

4-element dot product.The result is replicated in all four vector elements.
Uses IEEE rules for 0*anything. All four ALU.[X,Y,Z,W] instructions must
DOT4_IEEE share this instruction. Only the PV.X register element holds the result, and
the processor is responsible for selecting this swizzle code in the bypass
operation.

4-element maximum.The result is replicated in all four vector elements.

All four vector elements must share this instruction. Only the PV.X register
element holds the result, and the processor is responsible for selecting this
swizzle code in the bypass operation.

MAX4

Non-Reduction Operations

Round floating-point to the nearest integer in the range [-256, +255] and

MOVA copy to address register (AR) and to a GPR.

Truncate floating-point to the nearest integer in the range [-256, +255] and
MOVA_FLOOR copy to address register (AR) and to a GPR.
MOVA_INT Clamp signed integer to the range [-256, +255] and copy to address register

(AR) and to a GPR.

Reduction Instruction Restrictions. When any of the reduction instructions (DOT4, DOT4_IEEE,
CUBE, and MAX4) is used, it must be executed on all four elements of a single vector. Reduction
operations only compute one output, so the values in the OMOD and CLAMP fields should be the
same for all four instructions.

MOVA* Restrictions. All MOV A* instructions, shown in Table 4-4, write vector elements of the
address register (AR). They do not need to execute on all of the ALU.[X,Y,Z,W] operands at the same
time. One ALU.[X,Y,Z,W] unit may execute a MOV A* operation while other ALU.[X,Y,Z,W] units
execute other operations. Software can issue up to four MOV A instructions in a single instruction
group to change all four elements of the AR register. MOV A* issued in ALU.X will write AR.X
regardless of any GPR write mask used.
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Predication is allowed on any MOV A* instruction.

MOV A* instructions must not be used in an instruction group that uses AR indexing in any slot (even
slots that are not executing MOV A*, and even for an index not being changed by MOV A*). To
perform this operation, split it into two separate instruction groups—the first performing a MOV with
GPR-indexed source into a temporary GPR, and the second performing the MOV A* on the temporary
GPR.

MOV A* instructions produce undefined output values. To inhibit the GPR destination write, clear the
WRITE_MASK field for any MOV A* instruction. Do not use the corresponding PV vector element(s)
in the following ALU instruction group.

4.8.3 Instructions for ALU.Trans Units Only

The instructions in Table 4-5 are legal only in an instruction-group slot that is destined for the
ALU.Trans unit. If any of these instructions is executed, the instruction-group slot is immediately
allocated to the ALU.Trans unit. An ALU.Trans operation must be specified as the last instruction slot
in an instruction group, so using one of these instructions effectively marks the end of the instruction

group.

Table 4-5. ALU Instructions (ALU.Trans Units Only)

Mnemonic | Description

Integer Operations

Scalar arithmetic shift right. The sign bit is shifted into the vacated locations.
ASHR_INT Src1 is interpreted as an unsigned integer. If Src1 is > 31, then the result is
either 0x0 or -0x1, depending on the sign of SrcO.

Floating-point input is converted to a signed integer value using truncation.

FLT_TO_INT If the value does fit in 32 bits, the low-order bits are used.
The input is interpreted as a signed integer value and converted to a
INT_TO_FLT ) ;
floating-point value.
LSHL INT Scalar logical shift left. Zero is shifted into the vacated locations. Src1 is
- interpreted as an unsigned integer. If Src1 is > 31, then the result is 0x0.
LSHR INT Scalar logical shift right. Zero is shifted into the vacated locations. Src1 is
- interpreted as an unsigned integer. If Src1 is > 31, then the result is 0xO0.
Scalar multiplication. The arguments are interpreted as signed integers. The
MULHI_INT

result represents the high-order 32 bits of the multiply result.

Scalar multiplication. The arguments are interpreted as unsigned integers.

MULHT_UTNT The result represents the high-order 32 bits of the multiply result.

Scalar multiplication. The arguments are interpreted as signed integers. The

MORLO_INT result represents the low-order 32 bits of the multiply result.

Scalar multiplication. The arguments are interpreted as unsigned integers.

MUBLO_UINT The result represents the low-order 32 bits of the multiply result.

Scalar integer reciprocal. The argument is interpreted as a signed integer.
RECIP_INT The result should be interpreted as a fractional signed integer. The result for
0x0 is undefined.
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Table 4-5. ALU Instructions (ALU.Trans Units Only) (continued)

Mnemonic

Description

RECIP_UINT

Scalar unsigned integer reciprocal. The argument is interpreted as an
unsigned integer. The result should be interpreted as a fractional unsigned
integer. The result for Ox0 is undefined.

UINT_TO_FLT

The input is interpreted as an unsigned integer value and converted to a
float.

Floating-Point Operations

Ccos

Scalar cosine function. Valid input domain [-PI, +PlI].

EXP_IEEE

Scalar Base2 exponent function.

LOG_CLAMPED

Scalar Base2 log function.

LOG_IEEE Scalar Base2 log function.
Scalar multiply. The h result replicated in all four vector elements. It is used
MUL_LIT primarily when emulating a LIT operation (Blinn's lighting equation).Zero

times anything is zero. Instruction takes three inputs.

MUL_LIT_D2

MUL_LIT operation, followed by divide by 2.

MUL_LIT_M2

MUL_LIT operation, followed by multiply by 2.

MUL_LIT_ M4

MUL_LIT operation, followed by multiply by 4.

RECIP_CLAMPED

Scalar reciprocal.

RECIP_FF

Scalar reciprocal.

RECIP_TIEEE

Scalar reciprocal.

RECIPSQRT CLAMPED

Scalar reciprocal square root.

RECIPSQRT_FF

Scalar reciprocal square root.

RECIPSQRT_IEEE

Scalar reciprocal square root.

SIN Scalar sin function. Valid input domain [-PI, +PI].

SQRT_IEEE Scalar square root. Useful for normal compression.

ALU.Trans Instruction Restrictions. At most one of the transcendental and integer instructions
shown in Table 4-5 may be specified in a given instruction group, and it must be specified in the last
instruction slot.

4.9 ALU Outputs

Each ALU output passes through an output modifier before being written to the PV and PS registers
and the destination GPRs. This output modifier works for floating-point outputs only.

The first part of the output modifier is to scale the result by a factor of 2.0 (either multiply or divide) or
4.0 (multiply only). For instructions with two source operands, this output modifier is specified in the
instruction’s OMOD field. For instructions with three source operands, the modifier is specified as
part of the opcode, and as a result is only available for certain instructions. The modifier works with
floating-point values only; it is not valid for integer operations. For non-reduction operations, each
instruction may specify a different value for OMOD. Reduction operations compute only one output.
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Each instruction for a reduction operation must use the same OMOD value (for instructions with two
source operands).

The second part of the output modification is to clamp the result to [0.0, 1.0]. This is controlled by the
instruction’s CLAMP field. The CLAMP modifier works only with floating-point values; it is not
valid and should be disabled for integer operations. For non-reduction operations, each instruction
may specify a different value for CLAMP. Reduction operations only compute one output. Each
instruction for a reduction operation must use the same CLAMP value.

The results are written to PV or PS and to the destination GPR specified in the DST_GPR field of the
instruction. The destination GPR may be relative to an index. To enable this, set the DST_REL bit and
specify an appropriate INDEX_MODE. The INDEX_MODE parameter is shared with the input
operands for the instruction. If the resulting GPR address is not in [0, GPR_COUNT - 1], which are
the declared GPRs for this thread, and are not in [127 — N + 1, 127], which are the N temporary GPRs,
then no GPR write is performed; only PV and PS are updated.

Instructions with two source operands have a write mask, WRITE_MASK, that controls whether the
result is written to a GPR. The PV or PS result is updated even if WRITE_MASK is 0. Instructions
with three source operands have no write mask. However, you can specify an out-of-bounds GPR
destination to inhibit their write. For example, if the thread is using four clause temporaries and less
than 124 GPRs, then it is safe to use DST_GPR = 123 to ignore the result. Otherwise, you’ll need to
sacrifice one of the temporary GPRs for instructions with three source operands. The PV or PS result is
updated for instructions with three source operands even if the destination GPR address is invalid.

Two instructions running on the ALU.[X,Y,Z,W] units cannot write to the same GPR element.
However, it is possible for ALU.Trans to write to the same GPR element as one of the operations
running in ALU.[X,Y,Z,W]. This can be done either explicitly, as in:

GPRO.X <= GPR1.X
GPRO.X <= GPR2.X

or implicitly via relative addressing. If the ALU.Trans unit and one of the ALU.[X,Y,Z,W] units try to
write to the same GPR element, the transcendental operation dominates, and the ALU.Trans result is
written to the GPR element. This affects the GPR write only; PV will still reflect only the vector result.

4.9.1 Predicate Output

Instructions with two source operands that affect the internal predicate have two additional bits,
UPDATE_PRED and UPDATE_EXECUTE_MASK. The UPDATE_PRED bit determines whether
to write the updated predicate results internally (only valid until the end of the clause). If
UPDATE_PRED is set, the new predicate takes effect on the next ALU instruction group. The
UPDATE_EXECUTE_MASK bit determines whether to send the new predicate result back to the CF
program. The execute mask persists across clauses and is used by the CF program, but does not affect
in the current ALU clause. UPDATE_PRED and UPDATE_EXECUTE_MASK must be cleared for
instructions that do not compute a new predicate result.
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4.9.2 NOP Instruction

NOP instructions perform no writes to GPRs, and they invalidate PV and PS.

4.9.3 MOVA Instructions

MOV A* instructions update the constant register and AR. They are not designed to write values into
the GPR registers. The write to PV and PS and any write to a GPR has undefined results. It is strongly
recommended that software clear the WRITE_MASK bit for any MOV A* instruction, and do not
attempt to use the corresponding PV or PS value in the following instruction.

410 Predication and Branch Counters

The processor maintains one predicate bit per pixel within an ALU clause. This predicate initially
reflects the execute mask from the processor, and the predicate may be updated during the ALU clause
using various PRED_SET* and stack operations. The predicate bit does not persist past the end of an
ALU clause. To carry a predicate across clauses, an ALU instruction group may update the execute
mask that is used for subsequent clauses, as described in Section 4.9.1.

Each instruction can be conditioned on the predicate, using the instruction’s PRED_SEL field.
Different instructions in the same instruction group may be predicated differently. The predicate
condition may be one of three values:

* PRED_SEL_OFF—Always execute the instruction.
PRED_SEL_ZERO—Execute the instruction if the pixel’s predicate bit is currently zero.
* PRED_ZEL_ONE—Execute the instruction if the pixel’s predicate bit is currently one.

If an instruction is disabled by the predicate bit, then no GPR value is written, and PV and PS are not
updated. Also, the PRED_SET*, MOV A, and KILL instructions, which have an effect on non-register
state, have no effect for that pixel. An instruction that modifies the ALU predicate (e.g. PRED_SET*)
may choose to update the predicate bit using UPDATE_PRED, and it may separately choose to send a
new execute mask based on the computed predicate using UPDATE_EXECUTE_MASK. An
instruction may compute a new predicate and choose to update only the processor’s execute mask. In
this case, the processor sees the computed predicate, not the old predicate that will persist.

Instruction groups that do not compute a new predicate result must clear the UPDATE_PRED and
UPDATE_EXECUTE_MASK fields of their instructions. At most one instruction in an instruction
group may be a PRED_SET#* instruction, therefore at most one instruction may have either of these
bits set.

In addition to predicates, flow control relies on maintenance of branch counters. Branch counters are
maintained in normal GPRs and are manipulated by the various predicate operations. Software can
inhibit branch-counter updating by simply disabling the GPR write for the operation, using the
instruction’s WRITE_MASK field.
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4.11 Adjacent-Instruction Dependencies

Register write or read dependencies can exist between two adjacent ALU instruction groups. When an
ALU instruction group writes to a GPR, the value is not immediately available for reading by the next
instruction group. In most cases, the processor avoids stalling by detecting when the second instruction
group references a GPR written by the first instruction group and substituting the dependent register
read with a reference to the previous ALU.[X,Y,Z,W] or ALU.Trans result (PV or PS). If the write is
predicated, a special override is used to ensure the value is read from the original register or PV or PS
depending on the previous predication. A compiler does not need to do anything special to enable this
behavior. However, there are cases where this optimization is not available, and the compiler must
either insert a NOP or otherwise defer the dependent register read for one instruction group.

Application software does not need to do anything special in any of the following cases. These are
cases in which the processor explicitly detects a dependency and optimizes the instruction-group pair
to avoid a stall:

e Write to RN or RN[LOOP_INDEX], followed by read from RM or RM[LOOP_INDEX]; N may or
may not equal M.

e Write to RN[GPR_INDEX], followed by read from RM|[gpr_index]; N may or may not equal M.
Application software also does not need to do anything special in the following cases. In these cases,

the processor does nothing special, but the pairing is legal because there is no real aliasing or
dependency:

*  Write to RN, followed by read from RM[GPR_INDEX]. The compiler ensures N != M +
GPR_INDEX.

e Write to RN[LOOP_INDEX], followed by read from RM[GPR_INDEX]. The compiler ensures N
+ loop_index != M + GPR_INDEX.

e Write to RN[GPR_INDEX], followed by read from RM. The compiler ensures N + GPR_INDEX
=M.

e Write to RN[GPR_INDEX], followed by read from RM[LOOP_INDEX]. The compiler ensures N
+ GPR_INDEX !=M + LOOP_INDEX.

To illustrate, the following example instruction-group pairs are legal:

R1 = RO;

R2 = R1;// rewritten to R2 = PV/PS.

R2 = RO;

R2 = R1 predicated;

R3 = R2;// rewritten to R3 = PV/PS, override for R2.

Rl [gpr_index] = RO;

R2 = Rl[gpr_index];// rewritten to R2 = PV/PS.

R2 [gpr_index] = RO;

R2 [gpr_index] = R1 predicated;

R3 = R2[gpr_index];// rewritten to R3 = PV/PS, override for R2[GPR_INDEX].
Rl[gpr_index] = RO;// compiler guarantees GPR_INDEX != 0.
R2 = R1l;// never a dependent read.

Rl[loop_index] = RO;// LOOP_INDEX might be 0.
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R2 = R1l;// can be dependent, the processor will detect if it is.

The following example instruction-group pairs are illegal:

Rl[gpr_index] = R0O;// GPR_INDEX might be =zero.

R2 = R1;// can be dependent, the processor doesn’t catch this.
R1l[gpr_index] = RO;// GPR_INDEX can equal loop_index.

R2 = Rl[loop_index];// can be dependent, the processor doesn’t catch this.
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5 Vertex-Fetch Clauses

Software initiates a vertex-fetch clause with the VIX or VIX_TC control-flow instructions, both of
which use the CF_DWORD]0,1] microcode formats. Vertex-fetch instructions within the clause use
the VTX_DWORDO, VITX_DWORDI1_{SEM, GPR}, and VTX_DWORD?2 microcode formats, with
a fourth (high-order) doubleword of zeros.

A vertex-fetch clause consists of instructions that fetch vertices from the vertex buffer based on a GPR
address. A vertex-fetch clause can be at most eight instructions long. Vertex fetches using a semantic
table use the VTX_DWORDI1_SEM microcode format to specify the 9-bit semantic ID. This ID is
looked up in the semantic table to determine which GPR to write data to. All other vertex fetches use
the VITX_DWORDI1_GPR microcode format, which specifies the destination GPR directly.

Each vertex-fetch instruction within the vertex-fetch clause has a BUFFER_ID field that specifies the
buffer containing the vertex-fetch constants and an OFFSET field for the offset into the buffer at
which reading is to begin. The instruction reads the index to start reading at from SRC_GPR, the
address of which may be absolute or relative to the loop index (aL), using the SRC_REL bit. The result
of non-semantic fetches is written to DST_GPR, the address of which may be absolute or relative to
the loop index (aL), using the DST_REL bit. Semantic fetches determine the destination GPR by
reading the entry in the semantic table that is specified by the instruction’s SEMANTIC_ID field. The
source index and the 4-element result from memory may be swizzled.

The source value can be fetched from any element of the source GPR using the instruction’s
SRC_SEL_X field. Unlike texture instructions, the SRC_SEL_X field may not be a constant; it must
refer to a vector element of a GPR. The destination swizzle is specified in the DST_SEL_[X,Y,Z,W]
fields; the swizzle may write any of the fetched elements, the value 0.0, or the value 1.0. To disable an
element write, set the DST_SEL_[X,Y,Z,W] fields to the SEL.__MASK value

Individual vertex-fetch instructions cannot be predicated; predicated vertex fetches must be done at
the CF level by making the vertex-fetch clause instruction conditional. All vertex instructions in the
clause are executed with the conditional constraint specified by the CF instruction.

5.1 Vertex-Fetch Microcode Formats

Vertex-fetch microcode formats are organized in 4-tuples of 32-bit doublewords. The doubleword
layouts in memory are shown Figure 5-1, in which “+0”, “+4”, “+8”, and “+12” indicate the relative
byte offset of the doublewords in memory, “{SEM, GPR}” indicates a choice between the strings
“SEM” and “GPR”, “LSB” indicates the least-significant (low-order) byte, and the high-order
doubleword is padded with zeros.
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31 24 23 16 15 8 7 0
ojo0/j0j0|j0|0|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]|0O]| +12
VTX_DWORD2 +8
VTX_DWORD1_{SEM, GPR} +4
VTX_DWORDO +0
< LSB >

Figure 5-1. Vertex-Fetch Microcode-Format 4-Tuple
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6 Texture-Fetch Clauses

Software initiates a texture-fetch clause with the TEX control-flow instruction, which uses the
CF_DWORDIO0 1] microcode formats. Texture-fetch instructions within the clause use the
TEX_DWORDIO0,1,2] microcode formats, with a fourth (high-order) doubleword of zeros.

A texture-fetch clause consists of instructions that lookup texture elements, called zexels, based on a
GPR address. Texture instructions are used for both texture-fetch and constant-fetch operations. A
texture clause can be at most eight instructions long.

Each texture instruction has a RESOURCE_ID field, which specifies an ID for the buffer address, size,
and format to read, and a SAMPLER_ID field, which specifies an ID for filter and other options. The
instruction reads the texture coordinate from the SRC_GPR, the address of which may be absolute or
relative to the loop index (aL), using the SRC_REL bit. The result is written to the DST_GPR, the
address of which may be absolute or relative to the loop index (al.), using the DST_REL bit. Both the
fetch coordinate and the resulting 4-element data from memory may be swizzled. The source elements
for the swizzle are specified with the SRC_SEL_[X,Y,Z,W] fields; a source element may also use the
swizzle constants 0.0 and 1.0. The destination elements for the swizzle are specified with the
DST_SEL_[X,Y,Z,W] fields; it may write any of the fetched elements, the value 0.0, or the value 1.0.
To disable an element write, set the DST_SEL_[X,Y,Z,W] fields to the SEL_MASK value.

Individual texture instructions cannot be predicated; predicated texture fetches must be done at the CF
level, by making the texture-clause instruction conditional. All texture instructions in the clause are
executed with the conditional constraint specified by the CF instruction.

6.1 Texture-Fetch Microcode Formats

Texture-fetch microcode formats are organized in 4-tuples of 32-bit doublewords. The doubleword
layouts in memory are shown Figure 6-1, in which “+07, “+4”, “+8”, and “+12” indicate the relative
byte offset of the doublewords in memory, “LSB” indicates the least-significant (low-order) byte, and
the high-order doubleword is padded with zeros.
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31 24 23 16 15 8 7 0
ojo0/j0j0|j0|0|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]|0O]| +12
TEX_DWORD2 +8
TEX_DWORD1 +4
TEX_DWORDO +0
< LSB >

Figure 6-1. Texture-Fetch Microcode-Format 4-Tuple

6.2 Constant-Fetch Operations

The buffer ID space, specified in the RESOURCE_ID field of the TEX_DWORDO microcode format,
is eight bits wide, allowing constant and texture fetch to coexist in the same ID space. The two types of
fetches differ according to the manner in which their resources are organized.
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7 Instruction Set

This section summarizes the instruction set used by assemblers. The instructions are organized
alphabetically, by mnemonic, according to the clauses in which they are used. All of the instructions
have mnemonic prefixes, such as “CF_INST_”, “OP2_INST_", or “OP3_INST_". In this section’s
instruction list, only the portion of the mnemonic following the prefix is shown, although the full
prefix is described in the text. The opcode and microcode formats for each instruction are also given.
The microcode formats are described in Section 8 on page 259, where the instructions are ordered by
their microcode formats rather than alphabetically by mnemonic. The microcode field-name acronyms
are also defined in that chapter.

7.1 Control Flow (CF) Instructions

All of the instructions in this section have a mnemonic that begins with “CF_INST_" in the
“CF_INST” field of their microcode formats.
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Initiate ALU Clause

Initiates an ALU clause. If the clause issues PRED_SET?* instructions, each PRED_SET* instruction

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on

page 110.
Microcode
W U K
B|Q CF_INST W COUNT KCACHE_ADDR1 KCACHE_ADDRO M +4
M 1
K K K
M B B ADDR +0
0 1 0

Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).

Instruction Field: CF_INST == CF_INST_ALU, opcode 8 (8h).
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ALU BREAK Initiate ALU Clause,
Loop Break

Initiates an ALU clause. If the clause issues PRED_ SET#* instructions, each PRED_SET* instruction
causes a break operation on the unmasked pixels. The instruction takes the address to the
corresponding LOOP_END instruction.

ALU_BREAK is equivalent to PUSH; ALU; ELSE; CONTINUE; POP.

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on
page 110.

Microcode
w U K
B|Q| CFINST | COUNT KCACHE_ADDRH KCACHE_ADDRO M +4
M 1
K K K
M B B ADDR +0
0 1 0

Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).
Instruction Field: CF_INST == CF_INST_ALU_BREAK, opcode 14 (Eh).
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Initiate ALU Clause,

Continue Unmasked Pixels

Initiates an ALU clause. If the clause issues PRED_ SET#* instructions, each PRED_SET* instruction
causes a continue operation on the unmasked pixels. The instruction takes an address to the

ALU_CONTINUE is equivalent to PUSH; ALU; ELSE; CONTINUE; POP.

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on

page 110.
Microcode
W U K
B|Q CF_INST w COUNT KCACHE_ADDR1 KCACHE_ADDRO M +4
M 1
K K K
M B B ADDR +0
0 1 0

Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).
Instruction Field: CF_INST == CF_INST_ALU_CONTINUE, opcode 13 (Dh).
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ALU _ELSE AFTER Initiate ALU Clause,
Stack Push and Else After

Initiates an ALU clause. If the clause issues PRED_ SET#* instructions, each PRED_SET* instruction
causes a stack push first, then updates the hardware-maintained active state, then performs an ELSE
operation to invert the pixel state after the clause completes execution.

The instruction can be used to implement the ELSE part of a higher-level IF statement.

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on
page 110.

Microcode
w U K
B|Q| CFINST | COUNT KCACHE_ADDRH KCACHE_ADDRO M +4
M 1
K K K
M B B ADDR +0
0 1 0

Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).
Instruction Field: CF_INST == CF_INST_ALU_ELSE_AFTER, opcode 15 (Fh).
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ALU_POP_AFTER
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Initiate ALU Clause,

Pop Stack After

Initiates an ALU clause, and pops the stack after the clause completes execution.

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on

page 110.

Microcode

w
B|Q CF_INST
M

sc

COUNT

KCACHE_ADDRH1

KCACHE_ADDRO

+4

==X

K
B
1

o= X

o WX

ADDR

+0

Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).

Instruction Field: CF_INST == CF_INST_ALU_POP_AFTER, opcode 10 (Ah).
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ALU_POP2_AFTER
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Initiate ALU Clause,
Pop Stack Twice After

Initiates an ALU clause, and pops the stack twice after the clause completes execution.

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on

page 110.

Microcode

W U K
B|Q CF_INST W COUNT KCACHE_ADDR1 KCACHE_ADDRO |\1/| +4
M
K K K
M B B ADDR +0
0 1 0
Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).
Instruction Field: CF_INST == CF_INST_ALU_POP2_AFTER, opcode 11 (Bh).
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ALU_PUSH_BEFORE

causes a stack push first, then updates the hardware-maintained active execution state.
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Initiate ALU Clause,

Stack Push Before

Initiates an ALU clause. If the clause issues PRED_ SET#* instructions, each PRED_SET* instruction

The ALU instructions within an ALU clause are described in Section 4 on page 39 and Section 7.2 on

page 110.
Microcode
W U K
B|Q CF_INST w COUNT KCACHE_ADDR1 KCACHE_ADDRO M +4
M 1
K K K
M B B ADDR +0
0 1 0

Formats: CF_ALU_DWORDO (page 267) and CF_ALU_DWORDI1 (page 268).

Instruction Field: CF_INST == CF_INST_ALU_PUSH_BEFORE, opcode 9 (%h).
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CALL Call Subroutine

Execute a subroutine call (push call variables onto stack). The ADDR field specifies the address of the
first CF instruction in the subroutine.

Calls may be conditional (only pixels satisfying a condition perform the instruction). A
CALL_COUNT field specifies the amount by which to increment the call nesting counter. This field is
interpreted in the range [0,31]. The instruction is skipped if the current nesting depth +
CALL_COUNT > 32. CALLs may be nested. Setting CALL_COUNT to zero prevents the nesting
depth from being updated on a subroutine call.

The POP_COUNT field should be zero for CALL.

Microcode
W VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_CALL, opcode 13 (Dh).
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CALL_FS Call Fetch Subroutine

Execute a fetch subroutine (FS) whose address is relative to the address specified in a host-configured
register. The instruction also activates the fetch-program mode, which affects other operations until
the corresponding RETURN instruction is reached. Only a vector shader (VS) program can call an FS
subroutine, as described in Section 2.1 on page 5.

Calls may be conditional (only pixels satisfying a condition perform the instruction). A
CALL_COUNT field specifies the amount by which to increment the call nesting counter. This field is
interpreted in the range [0,31]. The instruction is skipped if the current nesting depth +
CALL_COUNT > 32. The subroutine is skipped if and only if all pixels fail the condition test or the
nesting depth would exceed 32 after the call.

The POP_COUNT field should be zero for CALL_FS.

Microcode
W VI|E p
B|Q CF_INST PO | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_CALL_FS, opcode 15 (Fh).
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CUT_VERTEX End Primitive Strip,
Start New Primitve Strip

Emit an end-of-primitive strip marker. The next emitted vertex will start a new primitive strip.
Indicates that the primitive should be cut, but does not indicate that a vertex has been exported by
itself. The instruction should always follow the corresponding export operation that produces a new
vertex.

Microcode
W VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_CUT_VERTEX, opcode 20 (14h).
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ELSE
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Else

Pop POP_COUNT entries (may be zero) from the stack, then invert the status of active and branch-
inactive pixels for pixels that are both active (as of the last surviving PUSH operation) and pass the

condition test. Control then jumps to the specified address if all pixels are inactive.

The operation may be conditional.

Microcode
W V| E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI (page 263).

Instruction Field: CF_INST == CF_INST_ELSE, opcode 17 (11h).

82

ELSE

Instruction Set



AMDA
ProductiD—Rev. 0.31—May 2007 AMD R600 Technology

EMIT_CUT_VERTEX Emit Vertex,
End Primitive Strip

Emit a vertex and an end-of-primitive strip marker. The next emitted vertex will start a new primitive
strip. Indicates that a vertex has been exported and that the primitive should be cut after the vertex. The
instruction should always follow the corresponding export operation that produces a new vertex

Microcode
W V|E p
B|Q CF_INST PO | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_EMIT_CUT_VERTEX, opcode 19 (13h).
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EMIT_VERTEX

produces a new vertex

Microcode

ProductiD—Rev. 0.31—May 2007

Vertex Exported to Memory

Signal that a geometry shader (GS) has finished exporting a vertex to memory. Indicates that a vertex
has been exported. The instruction should always follow the corresponding export operation that

W
B|Q CF_INST
M

So<

Tom

Rsvd

CALL_COUNT COUNT

COND

CF_CONST

ADDR

+0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).

Instruction Field: CF_INST == CF_INST_EMIT_VERTEX, opcode 18 (12h).
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EXPORT Export from VS or PS

Export from or import to a vertex shader (VS) or a pixel shader (PS). Used for normal pixel, position,
and parameter-cache exports and imports. The instruction supports optional swizzles for the outputs.
The instruction may only be used by VS and PS programs; GS and DC programs must use one of the
CF memory-export instructions, MEM*.

Microcode
W VI|E B E
B|Q CF_INST P|O COMP_MASK ARRAY_SIZE +4
(o] L
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +0
Or,
W V|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X +4
C L
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or CF_ALLOC_IMP_EXP_DWORDI1_SWIZ
(page 274).

Instruction Field: CF_INST == CF_INST_EXPORT, opcode 39 (27h).
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EXPORT_DONE
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Export Last Data

Export the last of a particular data type from a vertex shader (VS) or a pixel shader (PS). Used for
normal pixel, position, and parameter-cache imports and exports. The instruction supports optional
swizzles for the outputs. The instruction may only be used by VS and PS programs; GS and DC
programs must use one of the CF memory-export instructions, MEM*.

Microcode
W V|E B E
B|Q CF_INST P|O COMP_MASK ARRAY_SIZE
C L
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE
Or,
W VI|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X
C L
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either

+4

+0

+4

+0

CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or CF_ALLOC_IMP_EXP_DWORDI1_SWIZ

(page 274).

Instruction Field: CF_INST == CF_INST_EXPORT_DONE, opcode 40 (28h).
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JUMP Jump to Address

Jump to a specified address, subject to an optional condition test for pixels. It first pops POP_COUNT
entries (may be zero) from the stack to. Then it applies the condition test to all pixels. If all pixels fail
the test, then it jumps to the specified address. Otherwise, it continues execution on the next
instruction. The instruction may not be used to leave an if/else, subroutine, or loop operation.

Microcode
W VI|E p
B|Q CF_INST PO | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_JUMP, opcode 16 (10h).
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KILL Kill Pixels Conditional

Kill (prevent rendering of) pixels that pass a condition test. Jump if all pixels are killed. Only a pixel
shader (PS) can execute this instruction; the instruction is illegal in other program types. A KILL
instruction should always be the last instruction in an ALU clause, because the remaining instructions
executed in the clause will not reflect the updated valid state after the kill operation. Two KILL
instructions cannot be co-issued.

Killed pixels remain active because the processor does not know if the pixels are currently involved in
computing a result that is used in a gradient calculation. If the recently invalidated pixels are not
involved in a gradient calculation they can be deactivated. The valid pixel mode
(VALID_PIXEL_MODE bit) is used to deactivate pixels invalidated by a KILL instruction.

Microcode
W VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_KILL, opcode 21 (15h).
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LOOP_BREAK Break Out Of Innermost Loop

Break out of an innermost loop. The instructions disables all pixels for which a condition test is true.
The pixels remain disabled until the innermost loop exits. The instruction takes an address to the
corresponding LOOP_END instruction. In the event of a jump, the stack is popped back to the original
level at the beginning of the loop; the POP_COUNT field is ignored.

If all pixels have been disabled by this (or a prior) LOOP_BREAK or LOOP_CONTINUE instruction,
LOOP_BREAK jumps to the end of the loop and pops POP_COUNT entries (may be zero) from the
stack. If at least one pixel has not been disabled by LOOP_BREAK or LOOP_CONTINUE yet,
execution continues to the next instruction.

Microcode
W V|E p
B|Q CF_INST PO | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_LOOP_BREAK, opcode 9 (5h).
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LOOP_CONTINUE Continue Loop

Continue a loop, starting with the next iteration of the innermost loop. Disables all pixels for which a
condition test is true. The pixels remain disabled until the end of the current iteration of the loop, and
they are re-activated by the innermost LOOP_END.

Control jumps to the end of the loop if all pixels have been disabled by this (or a prior) LOOP_BREAK
or LOOP_CONTINUE instruction. In the event of a jump, the stack is popped back to the original
level at the beginning of the loop; the POP_COUNT field is ignored. The ADDR field points to the
address of the matching LOOP_END instruction. If at least one pixel hasn’t been disabled by
LOOP_BREAK or LOOP_CONTINUE instruction, the program continues to the next instruction.

Microcode
W V|E p
B|Q CF_INST PO | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_LOOP_CONTINUE, opcode 8 (8h).
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LOOP_END End Loop

Ends a loop if all pixels fail a condition test. Execution jumps to the specified address if the loop
counter is non-zero after it is decremented, and at least one pixel hasn’t been deactivated by a
LOOP_BREAK instruction. Software normally sets the ADDR field to the CF instruction following
the matching LOOP_START instruction. Execution continues to the next CF instruction if the loop is
exited.

LOOP_END pops loop state and one set of per-pixel state from the stack when it exits the loop. It
ignores POP_COUNT.

Microcode
w VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI (page 263).
Instruction Field: CF_INST == CF_INST_LOOP_END, opcode 5 (5h).
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LOOP_START Start Loop

Begin a loop. The instruction pushes the internal loop state onto the stack. A condition test is
computed. All pixels fail the test if the loop count is zero. Pixels that fail the test go inactive. If all
pixels fail the test, the instruction does not enter the loop, and it pops POP_COUNT entries (may be
zero) from the stack.

The instruction reads one of 32 constants, specified by the CF_CONST field, to get the loop’s trip
count (maximum number of loop iterations), beginning value (loop index initializer), and increment
(step), which are maintained by hardware. The instruction jumps to the address specified in the
instruction’s ADDR field if the initial loop index value is zero. Software normally sets the ADDR field
to the instruction following the matching LOOP_END instruction. Control jumps to the specified
address if the initial loop count is zero. If LOOP_START does not jump, it sets up the hardware-
maintained loop state.

Loop register-relative addressing is well-defined only within the loop. If multiple loops are nested,
relative addressing refers to the state of the innermost loop. The state of the next-outer loop is
automatically restored when the innermost loop exits.

Microcode
W VI|E p
B|Q CF_INST P | O | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_LOOP_START, opcode 4 (4h).
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LOOP_START_DX10 Start Loop (DirectX 10)

Enters a DirectX10 loop by pushing control-flow state onto the stack. Hardware maintains the current
break count and depth-of-loop nesting. Stack manipulations are the same as those for LOOP_START.

Microcode
W VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_LOOP_START_DX10, opcode 4 (4h).
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LOOP_START_NO_AL
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Enter Loop If Zero, No Push

Same as LOOP_START but do not push the loop index (alL) onto the stack or update al.. Repeat loops
are implemented with LOOP_START_NO_AL and LOOP_END.

Microcode
W VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI (page 263).

Instruction Field: CF_INST == CF_INST_LOOP_START_NO_AL, opcode 7 (7h).
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MEM_REDUCTION

Perform a memory read or write on a reduction buffer.

AMD R600 Technology

Access Reduction Buffer

Microcode
W VI|E B E
B|Q CF_INST P|O c L COMP_MASK ARRAY_SIZE +4
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +0
Or,
W V|E B E
B|Q CF_INST P|O c L Reserved SEL_W SEL_Z SEL_Y SEL_X +4
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +0
Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).
Instruction Field: CF_INST == CF_INST_MEM_REDUCTION, opcode 37 (25h).
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MEM_RING Write Ring Buffer

Perform a memory write on a ring buffer. Used for DC and GS output.

Microcode
W VI|E B E
B|Q CF_INST P|O COMP_MASK ARRAY_SIZE +4
(o] L
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +0
Or,
W V|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X +4
C L
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).

Instruction Field: CF_INST == CF_INST_MEM_RING, opcode 38 (26h).
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MEM_SCRATCH

Perform a memory read or write on the scratch buffer.
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Access Scratch Buffer

Microcode
W VI|E B E
B|Q CF_INST P|O c L COMP_MASK ARRAY_SIZE +4
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +0
Or,
W V|E B E
B|Q CF_INST P|O c L Reserved SEL_W SEL_Z SEL_Y SEL_X +4
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +0
Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).
Instruction Field: CF_INST == CF_INST_MEM_SCRATCH, opcode 36 (24h).
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MEM_STREAMO Write Steam Buffer 0

Write vertex or pixel data to stream buffer O in memory (write-only). Used by vertex shader (VS)
output for DirectX10 compliance.

Microcode
W VI|E B E
B|Q CF_INST P|O c L COMP_MASK ARRAY_SIZE +4
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0
Or,
W VI|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X +4
C L
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +O

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).

Instruction Field: CF_INST == CF_INST_MEM_STREAMO, opcode 32 (20h).

98 MEM_STREAMO Instruction Set



AMDA
ProductiD—Rev. 0.31—May 2007 AMD R600 Technology

MEM_STREAM1 Write Steam Buffer 1

Write vertex or pixel data to stream buffer 1 in memory (write-only). Used by vertex shader (VS)
output for DirectX10 compliance.

Microcode
W VI|E B E
B|Q CF_INST P|O c L COMP_MASK ARRAY_SIZE +4
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0
Or,
W VI|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X +4
C L
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +O

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).

Instruction Field: CF_INST == CF_INST_MEM_STREAM1, opcode 33 (21h).
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MEM_STREAM2 Write Steam Buffer 2

Write vertex or pixel data to stream buffer 2 in memory (write-only). Used by vertex shader (VS)
output for DirectX10 compliance.

Microcode
W VI|E B E
B|Q CF_INST P|O c L COMP_MASK ARRAY_SIZE +4
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0
Or,
W VI|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X +4
C L
M M| P
g INDEX_GPR E RW_GPR TYPE ARRAY_BASE +O

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).

Instruction Field: CF_INST == CF_INST_MEM_STREAM?2, opcode 34 (22h).
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MEM_STREAM3 Write Steam Buffer 3

Write vertex or pixel data to stream buffer 3 in memory (write-only). Used by vertex shader (VS)
output for DirectX10 compliance.

Microcode
W VI|E B E
B|Q CF_INST P|O COMP_MASK ARRAY_SIZE +4
(o] L
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0
Or,
W V|E B E
B|Q CF_INST P|O Reserved SEL_W SEL_Z SEL_Y SEL_X +4
C L
M M| P
g INDEX_GPR S RW_GPR TYPE ARRAY_BASE +0

Formats: CF_ALLOC_IMP_EXP_DWORDO (page 270) and either
CF_ALLOC_IMP_EXP_DWORDI1_BUF (page 272) or
CF_ALLOC_IMP_EXP_DWORDI1_ SWIZ (page 274).

Instruction Field: CF_INST == CF_INST_MEM_STREAM3, opcode 35 (32h).
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instruction with a disabled write mask.

See the ALU version of NOP on page 171.
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No Operation

No operation. It ignores all fields in the CF_DWORD[0,1] microcode formats, except the CF_INST,
BARRIER, and END_OF_PROGRAM fields. The instruction does not preserve the current PV or PS
value in the slot in which it executes. Instruction slots that are omitted implicitly execute NOPs in the
corresponding ALU. As a consequence, slots that are unspecified do not preserve PV or PS for the next
instruction. To preserve PV or PS and perform no other operation in an ALU clause, use a MOV

Microcode
w VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI (page 263).

Instruction Field: CF_INST == CF_INST_NOP, opcode 0 (Oh).
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POP Pop From Stack

Pops POP_COUNT number of entries (may be zero) from the stack. POP can apply a condition test to
the result of the pop. This is useful for disabling pixels that are killed within a conditional block. To
disable such pixels, set the POP instruction’s VALID_PIXEL_MODE bit and set the condition to
CF_COND_ACTIVE. If POP_COUNT is zero, the POP instruction simply modifies the current per-
pixel state based on the result of the condition test.

POP instructions never jump.

Microcode
W VI|E p
B|Q CF_INST P | O | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_POP, opcode 12 (Ch).
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Push State To Stack

If all pixels fail a condition test, pop POP_COUNT entries from the stack and jump to the specified
address. Otherwise, push the current per-pixel state (execute mask) onto the stack. After the push,
active pixels that failed the condition test transition to the inactive-branch state in the new execute

mask.
Microcode
W VI|E p
B|Q CF_INST PO | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).

Instruction Field: CF_INST == CF_INST_PUSH, opcode 10 (Ah).
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PUSH _ELSE Push State To Stack and Invert State

Push current per-pixel state (execute mask) onto the stack and compute new execute mask. The
instruction can be used to implement the ELSE part of a higher-level IF statement.

Microcode

i
B|Q CF_INST Rsvd CALL_COUNT COUNT | COND CF_CONST P +4
M

2u<
Tom

ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_PUSH_ELSE, opcode 11 (Bh).
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Return From Subroutine

Return from subroutine. Pops the return address from the stack to program counter. Paired only with
the CALL instruction. The ADDR field is ignored; the return address is read from the stack.

Microcode
W VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI (page 263).

Instruction Field: CF_INST == CF_INST_RETURN, opcode 14 (Eh).
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TEX Initiate Texture-Fetch Clause

Initiates a texture-fetch or constant-fetch clause, starting at the double-quadword-aligned (128-bit)
offset in the ADDR field and containing COUNT + 1 instructions. There is only one instruction for
texture fetch, and there are no special fields in the instruction for texture clause execution. The texture-
fetch instructions within a texture-fetch clause are described in Section 6 on page 69 and Section 7.4
on page 230.

Microcode
W VI|E p
B|Q CF_INST P | O | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).
Instruction Field: CF_INST == CF_INST_TEX, opcode 1 (1h).
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Initiate Vertex-Fetch Clause

Initiate a vertex-fetch clause, starting at the double-quadword-aligned (128-bit) offset in the ADDR
field and containing COUNT + 1 instructions. The VTX_TC instruction issues the vertex fetch
through the texture cache (TC) and is useful for systems that lack a vertex cache (VC). The vertex-
fetch instructions within a vertex-fetch clause are described in Section 5 on page 67 and Section 7.3 on

page 227.
Microcode
W VI|E p
B|Q CF_INST P | O | Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI1 (page 263).

Instruction Field: CF_INST == CF_INST_VTX, opcode 2 (2h).

108

VTX

Instruction Set



AMDA
ProductiD—Rev. 0.31—May 2007 AMD R600 Technology

VTX TC Initiate Vertex-Fetch Clause
Through Texture Cache

Initiate a vertex-fetch clause, starting at the double-quadword-aligned (128-bit) offset in the ADDR
field and containing COUNT + 1 instructions. It is used for systems lacking a vertex cache (VC). The
VTX_TC instruction issues the vertex fetch through the texture cache (TC) and is useful for systems
that lack a vertex cache (VC). The vertex-fetch instructions within a vertex-fetch clause are described
in Section 5 on page 67 and Section 7.3 on page 227.

Microcode
w VI|E p
B|Q CF_INST P | O| Rsvd CALL_COUNT COUNT COND CF_CONST c +4
M M| P
ADDR +0

Formats: CF_DWORDO (page 262) and CF_DWORDI (page 263).
Instruction Field: CF_INST == CF_INST_VTX_TC, opcode 3 (3h).
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7.2 ALU Instructions

All of the instructions in this section have a mnemonic that begins with “OP2_INST_” or
“OP3_INST _” in the “ALU_INST” field of their microcode formats.
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ADD Add Floating-Point

Floating-point add.

Result = SrcO0 + Srcl;

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_ADD, opcode 0 (Oh).
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ADD_INT

Integer add, based on signed or unsigned integer operands.

Result = SrcO0 + Srcl;
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Add Integer

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_ADD_INT, opcode 52 (34h).
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AND_INT

Logical bit-wise AND.

Result = SrcO & Srcl;

AMD R600 Technology

AND Bitwise

Microcode
c| B |D DST_GPR ALU_INST omon | F [W|Y|E g +4
E |R - - M MIP |4 A
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_AND_INT, opcode 48 (30h).
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Scalar Arithmetic Shift Right

Scalar arithmetic shift right. The sign bit is shifted into the vacated locations. Srcl is interpreted as an
unsigned integer. If Srcl is > 31, then the result is either Oh or -1h, depending on the sign of SrcO.

Result = SrcO0 >> Srcl
Microcode
uls|s
c 2 g DST_GPR ALU_INST OMOD |5| V,\X Ule|T]o +4
P
M|A|A
o | s| s |s s| s |s
L] ¢ " 101 | SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_ASHR_INT, opcode 112 (70h).
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CEIL

Floating-point ceiling.

Result = TRUNC (SrcO0) ;

AMD R600 Technology

Floating-Point Ceiling

If ( (SrcO > 0.0f) && (SrcO != Result) ) {
Result += 1.0f;
}
Microcode
ululs]s

c| 2 |2 DST_GPR 5 ALU_INST omop | [ | ¥ PlE|T|0 +4

b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0

N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_CEIL, opcode 18 (12h).
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CMOVE Floating-Point Conditional Move
If Equal
Floating-point conditional move if equal.

If (SrcO == 0.0f) {
Result = Srcl;

}
Else {
Result = Src2;

3

Compares the first source operand with floating-point zero, and copies either the second or third
source operand to the destination operand based on the result. Execution can be conditioned on a
predicate set by the previous ALU instruction group. If the condition is not satisfied, the instruction
has no effect and control is passed to the next instruction.

The instruction specifies which one of four data elements in a 4-element vector is operated on, and the
result can be stored in any of the four elements of the destination GPR. Operands can be accessed
using absolute addresses or an index in a GPR or the address register (AR).

The source operands are 32-bit data elements in a GPR, in a constant register, in the previous vector
(PV) or previous scalar (PS) register, or they can be a standard constant (0, -1, 0.0, 0.5, or 1.0), a literal
constant included in the instruction group, or the absolute value or negated value of the source. The
elements of each source-operand vector can be swizzled prior to computation.

The destination operand is a 32-bit data element in a GPR. Output to the destination can be masked, or
it can be modified by multiplying by 2.0 or 4.0, dividing by 2.0, or clamped to the range [0.0, 1.0]. A
fog value can be exported by merging a transcendental ALU result into the low-order bits of the vector
destination. The execute mask and predicate bit can be updated by the result.

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " " SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_CMOVE, opcode 24 (18h).
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CMOVE_INT Integer Conditional Move
If Equal

Integer conditional move if equal, based on signed or unsigned integer operand. Compare
“CMOVE” on page 116.

If (SrcO == 0x0) {
Result = Srcl;
}
Else {
Result = Src2;
}

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) NE LR
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_CMOVE_INT, opcode 28 (1Ch).
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CMOVGE Floating-Point Conditional Move
If Greater Than Or Equal
Floating-point conditional move if greater than or equal. Compare “CMOVE” on page 116.

If (SrcO0 >= 0.0f) {
Result = Srcl;

}

Else {
Result = Src2;

}

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_CMOVGE, opcode 26 (1Ah).
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CMOVGE_INT
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Integer Conditional Move
If Greater Than Or Equal

Integer conditional move if greater than or equal, based on signed integer operand. Compare
“CMOVE” on page 116.

If (SrcO0 >= 0x0)

Result = Srcl;

}
Else {

Result = Src2;

}

Microcode
s| s |s
c E g DST_GPR ALU_INST 2| 2 |2 SRC2_SEL +4
(11000) NE IR
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).

Instruction Field: ALU_INST == OP3_INST_CMOVGE_INT, opcode 30 (1Eh).
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CMOVGT Floating-Point Conditional Move
If Greater Than

Floating-point conditional move if greater than. Compare “CMOVE” on page 116.

If (SrcO > 0.0f) {
Result = Srcl;
}
Else {
Result = Src2;
}

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_CMOVGT, opcode 25 (19h).
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CMOVGT_INT Integer Conditional Move
If Greater Than

Integer conditional move if greater than, based on signed integer operand. Compare “CMOVE” on
page 116.

If (SrcO0> 0x0) {
Result = Srcl;
}
Else {
Result = Src2;
}

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) NE LR
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_CMOVGT_INT, opcode 29 (1Dh).
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COS

Scalar cosine. Valid input domain [-PI, +P1].

Result = ApproximateCos (SrcO) ;
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Scalar Cosine

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_COS, opcode 111 (6Fh).
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CUBE Cube Map

Cubemap, using two operands (SrcO = Rn.zzxy, Srcl = Rn.yxzz). This reduction instruction must be
executed on all four elements of a single vector. Reduction operations compute only one output, so the
values in the output modifier (OMOD) and output clamp (CLAMP) fields must be the same for all four
instructions. OMOD and CLAMP do not affect the Direct3D FacelD in the result W vector element.

This instruction is not available in the ALU.Trans unit.

Result.W = FacelD;
Result.z = 2.0f * MajorAxis;
Result.Y = S cube coordinate;
Result.X = T cube coordinate;
Microcode
Uu|s|s
c| 2|2 DST_GPR 5 ALU_INST omo | £ |\ YlEl1 |0 +4
P
M|A|A
p I S S S S S S
L| M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_CUBE, opcode 82 (52h).
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DOT4 Four-Element Dot Product

Four-element dot product. This reduction instruction must be executed on all four elements of a single
vector. Reduction operations compute only one output, so the values in the output modifier (OMOD)

and output clamp (CLAMP) fields must be the same for all four instructions.

Only the PV.X register element holds the result of this operation, and the processor selects this swizzle

code in the bypass operation.

This instruction is not available in the ALU.Trans unit.

Result = SrcA.W * SrcB.W +
SrcA.Z * SrcB.zZ +
SrcA.Y * SrcB.Y +
SrcA.X * SrcB.X;
Microcode
uls|s
cl 2|3 DST_GPR g ALU_INST omo | & | 1 VIE|T]o +4
P
M|A|A
P | s| s |s s| s |s
L] ¢ M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO, page 278.

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_DOT4, opcode 80 (50h).
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DOT4_IEEE Four-Element Dot Product, IEEE

Four-element dot product that uses IEEE rules for zero times anything. This reduction instruction must
be executed on all four elements of a single vector. Reduction operations compute only one output, so
the values in the output modifier (OMOD) and output clamp (CLAMP) fields must be the same for all
four instructions.

Only the PV.X register element holds the result of this operation, and the processor selects this swizzle
code in the bypass operation.

This instruction is not available in the ALU.Trans unit.

Result = SrcA.W * SrcB.W +
SrcA.Z * SrcB.Z +
SrcA.Y * SrcB.Y +
SrcA.X * SrcB.X;
Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R S MIMIPIulala
P | s| s |s s| s |s
L] o M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N| E |R N E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_DOT4_IEEE, opcode 81 (51h).
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EXP_IEEE

Scalar base-2 exponent.

If (SrcO == 0.0f) {
Result = 1.0f;

}
Else {
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Scalar Base-2 Exponent, IEEE

Result = Approximate2ToX (Src0) ;

}

Microcode
ulsl|s
c EE’ g DST_GPR ALU_INST OMOD ,\'jl ‘,{A" VIE|T]o +4
Plm|ala
o | s| s |s s| s |s
Ll & " 101 |1 SRCA1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO, page 278.

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_EXP_IEEE, opcode 97 (61h).
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FLOOR

Floating-point floor.

Result = TRUNC (SrcO0) ;

If ( (SrcO < 0.0f) && (SrcO != Result) ) {
Result += -1.0f;

}

AMD R600 Technology

Floating-Point Floor

Microcode
c| B |D DST_GPR B ALU_INST omon | F [W|Y|E g +4
E |R - S - M MIP |4 A
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_FLOOR, opcode 20 (14h).
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FLT_TO_INT

bits, the low-order bits are used.
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Floating-Point To Integer

Floating-point input is converted to a signed integer value using truncation. If the value does fit in 32

Result = (int)SrcO
Microcode
uls|s
c 2 g DST_GPR ALU_INST OMOD |5| V,\X Ule|T]o +4
P
M|A|A
o | s| s |s s| s |s
L] ¢ " 101 | SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INS

== OP2_INST_FLT_TO_INT, opcode 107 (6Bh).
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FRACT Floating-Point Fractional

Floating-point fractional part of source operand.

Result = SrcO0 + -FLOOR(SrcO) ;

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_FRACT, opcode 16 (10h).
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point value.
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Integer To Floating-Point

Integer to floating-point. The input is interpreted as a signed integer value and converted to a floating-

Result = (float) SrcO
Microcode
uls|s
c 2 g DST_GPR ALU_INST OMOD |5| V,\X Ule|T]o +4
P
M|A|A
o | s| s |s s| s |s
L] ¢ " 101 | SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INS

== OP2_INST_INT_TO_FLT, opcode 108 (6Ch).
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KILLE Floating-Point Pixel Kill
If Equal

Floating-point pixel kill if equal. Set kill bit. A KILL* operation should always be the last instruction
in an ALU clause, because the remaining instructions executed in the clause will not reflect the
updated valid state after the kill operation. Only a pixel shader (PS) can execute this instruction; the
instruction is ignored in other program types.

If (SrcO0 == Srcl) {
Result = 1.0f;
Killed = TRUE;

}

Else {

Result = 0.0f;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_KILLE, opcode 44 (2Ch).
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KILLGE Floating-Point Pixel Kill
If Greater Than Or Equal

Floating-point pixel kill if greater than or equal. Set kill bit. A KILL* operation should always be the
last instruction in an ALU clause, because the remaining instructions executed in the clause will not
reflect the updated valid state after the kill operation. Only a pixel shader (PS) can execute this
instruction; the instruction is ignored in other program types.

If (SrcO >= Srcl) {

Result = 1.0f;
Killed = TRUE;
}
Else {
Result = 0.0f;
}
Microcode
Uu|s|s
D D B Flwlu
c E R DST_GPR s ALU_INST OMOD | I m | p 5' /1 /(_)\ +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_KILLGE, opcode 46 (2Eh).
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KILLGT Floating-Point Pixel Kill
If Greater Than

Floating-point pixel kill if greater than. Set kill bit. A KILL* operation should always be the last
instruction in an ALU clause, because the remaining instructions executed in the clause will not reflect
the updated valid state after the kill operation. Only a pixel shader (PS) can execute this instruction;
the instruction is ignored in other program types.

If (SrcO0 > Srcl) {

Result = 1.0f;
Killed = TRUE;
}
Else {
Result = 0.0f;
}
Microcode
Uu|s|s
D D B Flwlu
c E R DST_GPR s ALU_INST OMOD | I m | p 5' /1 /(_)\ +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_KILLGT, opcode 45 (2Dh).
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KILLNE Floating-Point Pixel Kill
If Not Equal

Floating-point pixel kill if not equal. Set kill bit. A KILL* operation should always be the last
instruction in an ALU clause, because the remaining instructions executed in the clause will not reflect
the updated valid state after the kill operation. Only a pixel shader (PS) can execute this instruction;
the instruction is ignored in other program types.

If (SrcO != Srcl) {
Result = 1.0f;
Killed = TRUE;
}
Else {
Result = 0.0f;
}
Microcode
Uu|s|s
D D B Flw]|uU
C E R DST_GPR s ALU_INST OMOD | I m | p 5' }\ /(_)\ +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_KILLNE, opcode 47 (2Fh).
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LOG_CLAMPED

Scalar base-2 log.

If (SrcO == 1.0f) {
Result = 0.0f;
}
Else {
Result = LOG_IEEE (SrcO0)
// clamp result

AMD R600 Technology

Scalar Base-2 Log

if (Result == -INFINITY) ({
Result = -MAX FLOAT;
}
Microcode
ululs]s

c| 2 |2 DST_GPR 5 ALU_INST omop | [ [ ¥ PlE|T|O +4

b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0

N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_LOG_CLAMPED, opcode 98 (62h).
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LOG_IEEE Scalar Base-2 IEEE Log

Scalar Base-2 IEEE log.

If (SrcO == 1.0f) {
Result = 0.0f;
}
Else {
Result = ApproximateLog2 (Src0) ;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM{PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_LOG_IEEE, opcode 99 (63h).
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LSHL_INT Scalar Logical Shift Left

Scalar logical shift left. Zero is shifted into the vacated locations. Src1 is interpreted as an unsigned
integer. If Srcl is > 31, then the result is O.

Result = Src0 << Srcl
Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]oO +4
E |R S M[M|P
M|A|A
o | s| s |s s| s |s
L] ¢ " 101 | SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_LSHL_INT, opcode 114 (72h).
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LSHR_INT
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Scalar Logical Shift Right

Scalar logical shift right. Zero is shifted into the vacated locations. Src1 is interpreted as an unsigned
integer. If Srcl is > 31, then the result is O.

Result = Src0 << Srcl
Microcode
uls|s
c 2 g DST_GPR ALU_INST OMOD |5| V,\X Ule|T]o +4
P
M|A|A
o | s| s |s s| s |s
L] ¢ " 101 | SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INS

== OP2_INST_LSHR_INT, opcode 113 (71h).
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MAX

Floating-point maximum.

If (SrcO >= Srcl) {
Result = SrcO0;

}

Else {
Result = Srcl;

}

AMD R600 Technology

Floating-Point Maximum

Microcode
uls|s
c| 2 |2 DST_GPR 5 ALU_INST omop | [ [ ¥ g El1]o +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MAX, opcode 3 (3h).
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MAX_DX10

If (SrcO >= Srcl) {
Result = SrcO0;

}

Else {
Result = Srcl;

}

ProductiD—Rev. 0.31—May 2007

Floating-Point Maximum, DirectX 10

Floating-point maximum. This instruction uses the DirectX 10 method of handling of NaN’s.

Microcode
ulsl|s
c EE’ g DST_GPR ALU_INST OMOD ,\'jl ‘,{A" VIE|T]o +4
Plm|ala
o | s| s |s s| s |s
Ll & " 101 |1 SRCA1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_MAX_DX10, opcode 5 (5h).
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MAX_INT

Integer maximum, based on signed integer operands.

If (SrcO >= Srcl) {
Result = SrcO0;

}

Else {
Result = Srcl;

}

AMD R600 Technology

Integer Maximum

Microcode
uls|s
c| 2 |2 DST_GPR 5 ALU_INST omop | [ [ ¥ g El1]o +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MAX_INT, opcode 54 (36h).
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Unsigned Integer Maximum

Integer maximum, based on unsigned integer operands.

If (SrcO >= Srcl) {
Result = SrcO0;

}

Else {
Result = Srcl;

}

Microcode
ulsl|s
c EE’ g DST_GPR ALU_INST OMOD ,\'jl ‘,{A" VIE|T]o +4
Plm|ala
o | s| s |s s| s |s
Ll & " 101 |1 SRCA1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_MAX_UINT, opcode 56 (38h).
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MAX4 Four-Element Maximum

Four-element maximum. The result is replicated in all four vector elements. This reduction instruction
must be executed on all four elements of a single vector. Reduction operations compute only one
output, so the values in the output modifier (OMOD) and output clamp (CLAMP) fields must be the
same for all four instructions.

Only the PV.X register element holds the result of this operation, and the processor selects this swizzle
code in the bypass operation.

This instruction is not available in the ALU.Trans unit.

Result = max(SrcA.W, SrcA.Z, SrcA,Y, SrcA.X);

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MAX4, opcode 83 (53h).
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MIN

Floating-point minimum.

If (SrcO0 < Srcl) {
Result = SrcO0;
}
Else {
Result = Srcl;
}

ProductiD—Rev. 0.31—May 2007

Floating-Point Minimum

Microcode
ulsl|s
c EE’ g DST_GPR ALU_INST OMOD ,\'jl ‘,{A" VIE|T]o +4
Plm|ala
o | s| s |s s| s |s
Ll & " 101 |1 SRCA1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_MIN, opcode 4 (4h).
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MIN_DX10 Floating-Point Minimum, DirectX 10

Floating-point minimum. This instruction uses the DirectX 10 method of handling of NaN’s.

If (SrcO0 < Srcl) {
Result = SrcO0;
}
Else {
Result = Srcl;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM{PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MIN_DX10, opcode 6 (6h).
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MIN_INT

Integer minimum, based on signed integer operands.

If (SrcO0 < Srcl) {
Result = SrcO0;
}
Else {
Result = Srcl;
}

ProductiID—Rev. 0.31—May 2007

Signed Integer Minimum

Microcode
ulsl|s
c EE’ g DST_GPR ALU_INST OMOD ,\'jl ‘,{A" VIE|T]o +4
Plm|ala
o | s| s |s s| s |s
Ll & " 101 |1 SRCA1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_MIN_INT, opcode 55 (37h).
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MIN_UINT Unsigned Integer Minimum
Integer minimum, based on unsigned integer operands.

If (SrcO0 < Srcl) {
Result = SrcO0;
}
Else {
Result = Srcl;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM{PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MIN_UINT, opcode 57 (35h).
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Copy a single operand from a GPR, constant, or previous result to a GPR.

Copy To GPR

MOV can be used as an alternative to the NOP instruction. Unlike NOP, which does not preserve the
current PV or PS value in the slot in which it executes, a MOV can be made to preserve PV and PS if
the MOV is performed with a disabled write mask.

Result = SrcO

Microcode
uls|s
c E g DST_GPR ALU_INST OMOD |5| V,\X Ylel1]o +4
P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_MOV, opcode 25 (15h).
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MOVA Copy Rounded Floating-Point
To Integer in AR and GPR

Round floating-point to the nearest integer in the range [-256, +255] and copy result to address register
(AR) and to a GPR.

When the destination is a GPR, the destination contains a 1-element scalar address that is used for GPR-
relative addressing in the ALU. This GPR-index state only persists for one ALU clause, and it is only
available for relative addressing within the ALU (it is not available for relative texture-fetch, vertex-
fetch, or export addressing).

When the destination is the AR register, the instruction copies the four elements of a source GPR into
the AR register, to be used as the index value for constant-file relative addressing (constant
waterfalling). The MOV A* instructions write vector elements of the AR register. They do not need to
execute on all of the ALU.[X,Y,Z,W] operands at the same time. One ALU.[X,Y,Z,W] unit may
execute a MOV A* operation while other ALU.[X,Y,Z,W] units execute other operations. Software
can issue up to four MOV A* instructions in a single instruction group to change all four elements of
the AR register. MOV A* issued in ALU.X will write AR.X regardless of any GPR write mask used.
Predication is supported.

MOV A* instructions must not be used in an instruction group that uses GPR or AR indexing in any
slot (even slots that are not executing MOV A*, and even for an index not being changed by MOV A*).
To perform this operation, split it into two separate instruction groups—the first performing a MOV
with GPR-indexed source into a temporary GPR, and the second performing the MOV A* on the
temporary GPR.

MOV A* instructions produce undefined output values. To inhibit a GPR destination write, clear the
WRITE_MASK field for the MOV A* instruction. Do not use the corresponding PV vector element(s)
in the following ALU instruction group.

Result = Undefined
ResultF = FLOOR(SrcO + 0.5f);
If (ResultF >= -256.0f) {
ResultF = ResultF;
}
Else {
ResultF = -256.0f;
}
If (ResultF > 255.0f) {
ResultF = -256.0f;
}
ResultI = truncate_to_int (ResultF) ;
Export (ResultI); // signed 9-bit integer
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Microcode
UlSsS|S
c| b |D DST GPR ALU_INST omop | E{WI{YlE]|T]o +4
E R - - MIM|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_MOVA, opcode 21 (15h).
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MOVA_FLOOR Copy Truncated Floating-Point
To Integer in AR and GPR

Truncate floating-point to the nearest integer in the range [-256, +255] and copy result to address
register (AR) and to a GPR. See “MOVA” on page 149 for additional details.

Result = Undefined
ResultF = FLOOR(SrcO) ;
If (ResultF >= -256.0f) {
ResultF = ResultF;
}
Else {
ResultF = -256.0f;
}
If (ResultF > 255.0f) {
ResultF = -256.0f;
}
ResultI = truncate_ to_int (ResultF) ;
Export (ResultI); // signed 9-bit integer

Microcode
ulsl|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MOVA_FLOOR, opcode 22 (16h).
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MOVA_INT Copy Signed Integer
To Integer in AR and GPR

Clamp signed integer to the range [-256, +255] and copy result to address register (AR) and to a GPR.
See “MOVA” on page 149 for additional details.

Result = Undefined;

ResultI = Src0;

If (ResultI < -256) {
ResultI = 0x800; //-256

}

If (ResultI > Oxff) {
ResultI = 0x800 //-256

}
Export (ResultI); // signed 9-bit integer

Microcode
ulsl|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MOVA_INT, opcode 24 (18h).
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MUL

Floating-point multiply. Zero times anything equals zero.

Result = SrcO0 * Srcl;

AMD R600 Technology

Floating-Point Multiply

Microcode
uls|s
c| 2 |2 DST_GPR 5 ALU_INST omop | [ | ¥ g El1]o +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MUL, opcode 1 (1h).
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MUL_IEEE Floating-Point Multiply, IEEE

Floating-point multiply. Uses IEEE rules for zero times anything.

Result = SrcO0 * Srcl;

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MUL_IEEE, opcode 2 (2h).
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MUL_LIT Scalar Multiply
Emulating LIT Operation

Scalar multiply with result replicated in all four vector elements. It is used primarily when emulating a
LIT operation. Zero times anything is zero.

A LIT operation takes an input vector containing information about shininess and normals to the light,
and it computes the diffuse and specular light components using Blinn's lighting equation, which is
implemented as follows:

tl.y = max (src.x, 0)

tl.x w -= 1

tl.z log_clamp( src.y)

tl.w mul_lit( src.z, tl.z, src.x)
tl.z = exp(tl.z)

result = tl

The pseudocode for the MUL_LIT instruction is:

If ((Srcl
(Srcl =

(Srcl is NaN) ||

(Src2 <= 0.0f) ||

(Src2 is NaN)) {

Result = -MAX_FLOAT;

= -MAX_FLOAT) ||
-INFINITY) ||

}
Else {

Result = SrcO * Srcl;
}

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) NDE LR
P | s| s |s s| s |s
L] ¢ M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MUL_LIT, opcode 12 (Ch).
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Scalar Multiply Emulating LIT,
Divide By 2

A MUL_LIT operation, followed by divide by 2.

Microcode
s| s |s
c| B |D DST_GPR ALU_INST 2| 2 |2 SRC2_SEL +4
E |R (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).

Instruction Field: ALU_INST == OP3_INST_MUL_LIT_D2, opcode 15 (Fh).
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MUL_LIT_M2 Scalar Multiply Emulating LIT,
Multiply By 2
A MUL_LIT operation, followed by multiply by 2.

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MUL_LIT_M2, opcode 13 (Dh).
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Scalar Multiply Emulating LIT,
Multiply By 4

A MUL_LIT operation, followed by multiply by 4.

Microcode
s| s |s
c| B |D DST_GPR ALU_INST 2| 2 |2 SRC2_SEL +4
E |R (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).

Instruction Field: ALU_INST == OP3_INST_MUL_LIT_M4, opcode 14 (Eh).
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MULADD Floating-Point Multiply-Add
Floating-point multiply-add (MAD).

Result = SrcO0 * Srcl + Src2;

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) =l & |a
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MULADD, opcode 16 (10h).
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MULADD_D2 Floating-Point Multiply-Add,
Divide by 2
Floating-point multiply-add (MAD), followed by divide by 2.
Microcode
cl 2[R DST_GPR AEL:B'A“OS)T E E 2 SRC2_SEL +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).

Instruction Field: ALU_INST == OP3_INST_MULADD_D?2, opcode 19 (13h).
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MULADD_M2 Floating-Point Multiply-Add,
Multiply by 2

Floating-point multiply-add (MAD), followed by multiply by 2.

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MULADD_M?2, opcode 17 (11h).
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MULADD_M4 Floating-Point Multiply-Add,
Multiply by 4

Floating-point multiply-add (MAD), followed by multiply by 4.

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) 2l 2 |z
o | s| s |s s| s |s
Ll & " 101 ] SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MULADD_M4, opcode 18 (12h).
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MULADD_IEEE IEEE Floating-Point Multiply-Add
Floating-point multiply-add (MAD). Uses IEEE rules for zero times anything.

Result = Src0O0 * Srcl+ Src2;

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) =l & |a
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MULADD_IEEE, opcode 20 (14h).

Instruction Set MULADD IEEE 163



AMDAQ

AMD R600 Technology

MULADD_IEEE_D2

ProductiD—Rev. 0.31—May 2007

IEEE Floating-Point Multiply-Add,
Divide by 2
Floating-point multiply-add (MAD), followed by divide by 2. Uses IEEE rules for zero times

anything.
Microcode
s| s |s
c| B |D DST_GPR ALU_INST 2| 2 |2 SRC2_SEL +4
E |R (11000) NlE IR
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).

Instruction Field: ALU_INST == OP3_INST_MULADD_IEEE_D?2, opcode 23 (17h).
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MULADD_IEEE_M2 IEEE Floating-Point Multiply-Add,
Multiply by 2

Floating-point multiply-add (MAD), followed by multiply by 2. Uses IEEE rules for zero times
anything.

Microcode
s| s |s
c| B |D DST_GPR B ALU_INST 2| 2 |2 SRC2_SEL +4
E |R s (11000) NlE LR
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).
Instruction Field: ALU_INST == OP3_INST_MULADD_IEEE_M2, opcode 21 (15h).
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MULADD_IEEE_M4
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IEEE Floating-Point Multiply-Add,
Multiply by 4
Floating-point multiply-add (MAD), followed by multiply by 4. Uses IEEE rules for zero times

anything.
Microcode
s| s |s
c| B |D DST_GPR ALU_INST 2| 2 |2 SRC2_SEL +4
E |R (11000) NlE IR
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP3 (page 286).

Instruction Field: ALU_INST == OP3_INST_MULADD_IEEE_M4, opcode 22 (16h).
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MULHIL_INT Signed Scalar Multiply,
High-Order 32 Bits

Scalar multiplication. The arguments are interpreted as signed integers. The result represents the high-
order 32 bits of the multiply result.

Result = SrcO * Srcl // high-order bits

Microcode
uls|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MULHI_INT, opcode 116 (74h).

Instruction Set MULHI_INT 167



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

MULHI_UINT Unsigned Scalar Multiply,
High-Order 32 Bits

Scalar multiplication. The arguments are interpreted as unsigned integers. The result represents the
high-order 32 bits of the multiply result.

Result = SrcO * Srcl // high-order bits

Microcode
uls|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MULHI_UINT, opcode 118 (76h).
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MULLO_INT Signed Scalar Multiply,
Low-Order 32-Bits

Scalar multiplication. The arguments are interpreted as signed integers. The result represents the low-
order 32 bits of the multiply result.

Result = SrcO0 * Srcl // low-order bits

Microcode
uls|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MULLO_INT, opcode 115 (73h).
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MULLO_UINT Unsigned Scalar Multiply,
Low-Order 32-Bits

Scalar multiplication. The arguments are interpreted as unsigned integers. The result represents the
low-order 32 bits of the multiply result.

Result = SrcO0 * Srcl // low-order bits

Microcode
uls|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_MULLO_UINT, opcode 117 (75h).
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NOP No Operation

No operation. The instruction slot is not used. NOP instructions perform no writes to GPRs, and they
invalidate PV and PS.

After all instructions in an instruction group are processed, any ALU.[X,Y,Z,W] or ALU.Trans operation that is
unspecified implicitly executes a NOP instruction, thus invalidating the values in the corresponding elements of
the PV and PS registers.

See the CF version of NOP on page 102.

Result is Undefined.
Previous Result is preserved

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_NOP, opcode 26 (1Ah).
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NOT _INT Bit-Wise NOT
Logical bit-wise NOT.
Result = ~SrcO
Microcode
D D Elwlu UlS|S
cl & |n DST_GPR ALU_INST OMOD | v [ wi | b ’\E/I /1 2 +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_NOT_INT, opcode 51 (33h).
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OR_INT Bit-Wise OR
Logical bit-wise OR.
Result = Src0 | Srcl
Microcode
c| 2 |D DST_GPR ALU_INST omon | F[W[U|E 5 +4
E R - - M|M|P M A
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_OR_INT, opcode 49 (31h).
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PRED_SET _CLR

Predicate counter clear. Updates predicate register.

Result = +MAX_FLOAT;
SetPredicateReg (Skip)

Microcode

Formats: ALU_DWORDO, page 278.

ProductiID—Rev. 0.31—May 2007

Predicate Counter Clear

uls|s
c| B |D DST_GPR ALU_INST omop | E{WI{YlE]|T]o +4
E |R M| M| P
M|A|A
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_PRED_SET_CLR, opcode 38 (26h).
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PRED SET INV Predicate Counter Invert

Predicate counter invert. Updates predicate register.

If (SrcO == 1.0f) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {

If (SrcO0 == 0.0f) {
Result = 1.0f;
}
Else {
Result = SrcO0;
}
SetPredicateReg (Skip) ;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SET_INV, opcode 36 (24h).
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PRED_SET_POP Predicate Counter Pop

Pop predicate counter. This updates the predicate register.

If (SrcO <= Srcl) {
Result = 0.0f;
SetPredicateReg (Execute) ;
}
Else {
Result = Result;
SetPredicateReg (Skip) ;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SET_POP, opcode 37 (25h).
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PRED SET RESTORE Predicate Counter Restore

Predicate counter restore. Updates predicate register.

If (SrcO0 == 0.0f) {
Result = 0.0f;
SetPredicateReg (Execute) ;
}
Else {
Result = SrcO;
SetPredicateReg (Skip) ;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SET_RESTORE, opcode 39 (27h).
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PRED_SETE Floating-Point Predicate Set
If Equal
Floating-point predicate set if equal. Updates predicate register.
If (Src0 == Srcl) {
Result = 0.0f;
SetPredicateReg (Execute) ;
} Else {
Result = 1.0f;
SetPredicateReg (Skip) ;
3
Microcode
C g g DST_GPR ALU_INST OMOD l\'jl \,(/IV g ’\ll-E:I i § +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_PRED_SETE, opcode 32 (20h).

178

PRED_SETE

Instruction Set



AMDA

ProductiD—Rev. 0.31—May 2007

PRED_SETE_INT

Integer predicate set if equal. Updates predicate register.

If (SrcO0 == Srcl) {
Result = 0.0f;
SetPredicateKillReg (Execute) ;
}
Else {
Result = 1.0f;
SetPredicateKillReg (Skip);
}

Microcode

AMD R600 Technology

Integer Predicate Set
If Equal

DST_GPR ALU_INST

+4

Flw]|U
OMOD M

=EmcC
>owm

S S S
1 1 SRC1_SEL
N E R

—_
Zow
mow

SRCO_SEL +0

JTow

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_PRED_SETE_INT, opcode 66 (42h).
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PRED_SETE_PUSH Floating-Point Predicate Counter
Increment If Equal

Floating-point predicate counter increment if equal. Updates predicate register.

If ( (Srcl == 0.0f) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETE_PUSH, opcode 40 (28h).
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PRED_SETE_PUSH_INT Integer Predicate Counter Increment

If Equal
Integer predicate counter increment if equal. Updates predicate register.
If ( (Srcl == 0x0) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;
3
Else {
Result = SrcO0 + 1.0f;
SetPredicateReg (Skip) ;
3
Microcode
ulsl|s
D |D B Flwlu
cl & |n DST_GPR < ALU_INST OMOD | |y [ p|E[1]0 +4
b | s| s |s s| s |s
L s " 1] 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |[R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETE_PUSH_INT, opcode 74 (4Ah).
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Floating-Point Predicate Set

Floating-point predicate set if greater than or equal. Updates predicate register.

If (SrcO >= Srcl) {
Result = 0.0f;

SetPredicateReg (Execute) ;

} Else {
Result = 1.0f;

SetPredicateReg (Skip) ;

3

If Greater Than Or Equal

Microcode
UlS|S
C 2 g DST_GPR ALU_INST OMOD l\'jl \,(/IV u E |1 0 +4
PIm|AalA
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_PRED_SETGE, opcode 34 (22h).
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PRED_SETGE_INT Integer Predicate Set
If Greater Than Or Equal

Integer predicate set if greater than or equal. Updates predicate register.

If (SrcO >= Srcl) {
Result = 0.0f;
SetPredicateKillReg (Execute) ;
}
Else {
Result = 1.0f;
SetPredicateKillReg (Skip);
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETGE_INT, opcode 68 (44h).
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PRED SETGE PUSH Predicate Counter Increment
If Greater Than Or Equal

Predicate counter increment if greater than or equal. Updates predicate register.

If ( (Srcl >= 0.0f) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETGE_PUSH, opcode 42 (2Ah).
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PRED_SETGE_PUSH_INT Integer Predicate Counter Increment
If Greater Than Or Equal

Integer predicate counter increment if greater than or equal. Updates predicate register.

If ( (Srcl >= 0x0) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETGE_PUSH_INT, opcode 76 (4Ch).
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PRED_SETGT Floating-Point Predicate Set
If Greater Than

Floating-point predicate set if greater than. Updates predicate register.

If (SrcO > Srcl) {
Result = 0.0f;
SetPredicateReg (Execute) ;
}
Else {
Result = 1.0f;
SetPredicateReg (Skip) ;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETGT, opcode 33 (21h).
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PRED_SETGT_INT

AMD R600 Technology

Integer Predicate Set

If Greater Than
Integer predicate set if greater than. Updates predicate register.
If (SrcO0 > Srcl) {
Result = 0.0f;
SetPredicateKillReg (Execute) ;
}
Else {
Result = 1.0f;
SetPredicateKillReg (Skip);
}
Microcode
uls|s
D |D B Flw]|u
c|l ¢ |r DST_GPR 5 ALU_INST omoD | vl | e 5' /1 /(_)\ +4
b | s| s |s s| s |s
L o " 11 | SRC1_SEL o| o |o SRCO_SEL +0
Nl E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_PRED_SETGT_INT, opcode 67 (43h).
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PRED SETGT PUSH Predicate Counter Increment
If Greater Than

Predicate counter increment if greater than. Updates predicate register.

If ( (Srcl > 0.0f) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO.W + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETGT_PUSH, opcode 41 (2%h).
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PRED_SETGT_PUSH_INT Integer Predicate Counter Increment
If Greater Than

Integer predicate counter increment if greater than. Updates predicate register.

If ( (Srcl > 0x0) && (SrcO0 == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETGT_PUSH_INT, opcode 75 (4Bh).
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PRED_SETLE_INT Integer Predicate Set
If Less Than Or Equal

Integer predicate set if less than or equal. Updates predicate register.

If (SrcO <= Srcl) {
Result = 0.0f;
SetPredicateKillReg (Execute) ;
}
Else {
Result = 1.0f;
SetPredicateKillReg (Skip);
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETLE_INT, opcode 71 (47h).
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PRED SETLE_ PUSH INT Predicate Counter Increment
If Less Than Or Equal

Predicate counter increment if less than or equal. Updates predicate register.

If ( (Srcl <= 0x0) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETLE_PUSH_INT, opcode 79 (4Fh).
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PRED_SETLT_INT

Integer predicate set if less than. Updates predicate register.

If (SrcO < Srcl) {
Result = 0.0f;
SetPredicateKillReg (Execute) ;
}
Else {
Result = 1.0f;
SetPredicateKillReg (Skip);
}

ProductiD—Rev. 0.31—May 2007

Integer Predicate Set
If Less Than Or Equal

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_PRED_SETLT_INT, opcode 70 (46h).
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PRED SETLT PUSH INT Predicate Counter Increment
If Less Than

Predicate counter increment if less than. Updates predicate register.

If ( (Srcl < 0x0) && (SrcO0 == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETLT_PUSH_INT, opcode 78 (4Eh).
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PRED_SETNE Floating-Point Predicate Set
If Not Equal

Floating-point predicate set if not equal. Updates predicate register.

If (SrcO != Srcl) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}
Else {
Result = 1.0f;
SetPredicateReg (Skip) ;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETNE, opcode 35 (23h).
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PRED_SETNE_INT

Scalar predicate set if not equal. Updates predicate register.

If (SrcO != Srcl) {
Result = 0.0f;

SetPredicateKillReg (Execute) ;

}
Else {
Result = 1.0f;
SetPredicateKillReg (Skip);
}

AMD R600 Technology

Scalar Predicate Set
If Not Equal

Microcode
C 2 g DST_GPR g ALU_INST OMOD l\'jl \,(/IV g lI-EJ ? g +4
M|IA]|A
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETNE_INT, opcode 69 (45h).
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PRED SETNE PUSH Predicate Counter Increment
If Not Equal

Predicate counter increment if not equal. Updates predicate register.

If ( (Srcl != 0.0f) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETNE_PUSH, opcode 43 (2Bh).
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PRED SETNE PUSH_ INT Predicate Counter Increment
If Not Equal

Predicate counter increment if not equal. Updates predicate register.

If ( (Srcl != 0x0) && (SrcO == 0.0f) ) {
Result = 0.0f;
SetPredicateReg (Execute) ;

}

Else {
Result = SrcO + 1.0f;
SetPredicateReg (Skip) ;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_PRED_SETNE_PUSH_INT, opcode 77 (4Dh).
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RECIP_CLAMPED

Scalar reciprocal.

If (SrcO0 == 1.0f) {
Result = 1.0f;

}

Else {
Result =

}

// clamp result

If (Result == -INFINITY) {
Result = -MAX FLOAT;

}

If (Result == +INFINITY) ({

RECIP_TIEEE (SrcO) ;

ProductiD—Rev. 0.31—May 2007

Scalar Reciprocal,
Clamp to Maximum

Result = +MAX_FLOAT;
}
Microcode
UlS|S
C 2 g DST_GPR ALU_INST OMOD l\'jl \,(/IV u E |1 0 +4
PIm|AalA
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_RECIP_CLAMPED, opcode 100 (64h).
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RECIP_FF Scalar Reciprocal,
Clamp to Zero

Scalar reciprocal.

If (SrcO0 == 1.0f) {
Result = 1.0f;
}
Else {
Result = RECIP_IEEE(SrcO) ;
}

// clamp result

if (Result == -INFINITY) {
Result = -ZERO;

}

if (Result == +INFINITY) {

Result = +ZERO;
}

Microcode
U S
C D D DST_GPR B ALU_INST OMOD Flwiu E 0
E |R S M|MIP|y A
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_RECIP_FF, opcode 101 (65h).

+4

+0
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RECIP_IEEE Scalar Reciprocal,
IEEE Approximation
Scalar reciprocal.
If (SrcO0 == 1.0f) {
Result = 1.0f;
3
Else {
Result = ApproximateRecip (Src0) ;
3
Microcode
D D Elwlu uls|s
C E R DST_GPR ALU_INST OMOD MIM|P 5' ,1A 2 +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_RECIP_IEEE, opcode 102 (66h).
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RECIP_INT Signed Integer Scalar Reciprocal

Scalar integer reciprocal. The source is a signed integer. The result is a fractional signed integer. The
result for 0 is undefined.

Result = ApproximateRecip (Src0) ;

Microcode
ulsl|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]oO +4
E |R s M|M|P
M|A|A
o | s| s |s s| s |s
Ll £ " 11 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_RECIP_INT, opcode 119 (77h).
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RECIP_UINT
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Unsigned Integer Scalar Reciprocal

Scalar unsigned integer reciprocal. The source is an unsigned integer. The result is a fractional
unsigned integer. The result for O is undefined.

Result = ApproximateRecip (Src0) ;

Microcode
ulsl|s
c 2 g DST_GPR ALU_INST OMOD |5| V,\X Ule|T]o +4
P
M|A|A
o | s| s |s s| s |s
Ll £ " 11 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INS

== OP2_INST_RECIP_UINT, opcode 120 (78h).
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RECIPSQRT_CLAMPED Scalar Reciprocal Square Root,
Clamp to Maximum

Scalar reciprocal square root.

If (SrcO0 == 1.0f) {
Result = 1.0f;
}
Else {
Result = RECIPSQRT_IEEE (SrcO);
}

// clamp result

if (Result == -INFINITY) ({
Result = -MAX_FLOAT;

3

if (Result == +INFINITY) {

Result = +MAX_ FLOAT;
3

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E |R S MIMIP|lulala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_RECIPSQRT_CLAMPED, opcode 103 (67h).
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RECIPSQRT_FF Scalar Reciprocal Square Root,
Clamp to Zero
Scalar reciprocal square root.

If (SrcO0 == 1.0f) {
Result = 1.0f;
}
Else {
Result = RECIPSQRT_IEEE (SrcO);
}

// clamp result

if (Result == -INFINITY) {
Result = -ZERO;

}

if (Result == +INFINITY) {

Result = +ZERO;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E |R S MIMIP|lulala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_RECIPSQRT_FF, opcode 104 (68h).
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RECIPSQRT_IEEE

AMD R600 Technology

Scalar Reciprocal Square Root,

IEEE Approximation
Scalar reciprocal square root.
If (SrcO0 == 1.0f) {
Result = 1.0f;
3
Else {
Result = ApproximateRecipSgrt (SrcC) ;
3
Microcode
D |D Flwlul|Y S
C E R DST_GPR ALU_INST OMOD MIM|P I\EI 2 +4
s| s |s s| s |s
Ll £ " 11 | SRC1_SEL o| o |o SRCO_SEL +0
N E R N E R
Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_RECIPSQRT_IEEE, opcode 105 (69h).
Instruction Set RECIPSQRT_IEEE 205



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

RNDNE Floating-Point Round To
Nearest Even Integer

Floating-point round to nearest even integer.

Result = FLOOR(SrcO + 0.5f);

If ( (FLOOR(Src0)) == Even) && (FRACT(SrcO == 0.5f)){
Result -= 1.0f
}
Microcode
Uu|s|s

D D B Flw]|uU
c E R DST_GPR s ALU_INST OMOD | 1 I m | p 5' /1 /(_)\ +4

p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0

N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_RNDNE, opcode 19 (13h).
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SETE Floating-Point Set If Equal

Floating-point set if equal.

If (SrcO0 = Srcl) {
Result = 1.0f;
}
Else {
Result = 0.0f;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM{PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETE, opcode 8 (8h).
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SETE_DX10 Floating-Point Set If Equal

DirectX 10

Floating-point set if equal, based on floating-point source operands. The result, however, is an integer.

If (SrcO0 == Srcl) {
Result = Oxffffffff;
}
Else {
Result = 0x0;

3

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETE_DX10, opcode 12 (Ch).
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SETE_INT Integer Set If Equal

Integer set if equal, based on signed or unsigned integer source operands.

If (SrcO = Srcl) {
Result = Oxffffffff;
}
Else {
Result = 0x0;
}

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]o +4
E |R s MIM{PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETE_INT, opcode 58 (3Ah).
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SETGE Floating-Point Set
If Greater Than Or Equal

Floating-point set if greater than or equal.

If (SrcO >= Srcl) {
Result = 1.0f;

}

Else {
Result = 0.0f;

}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETGE, opcode 10 (Ah).
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SETGE_DX10 Floating-Point Set
If Greater Than Or Equal, DirectX 10

Floating-point set if greater than or equal, based on floating-point source operands. The result,
however, is an integer.

If (SrcO >= Srcl) {
Result = Oxffffffff;
}
Else {
Result = 0x0;
}

Microcode
ulsl|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETGE_DX10, opcode 14 (Eh).
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SETGE_INT
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Signed Integer Set

Integer set if greater than or equal, based on signed integer source operands.

If (SrcO >= Srcl) {

Result = Oxffffffff;

}
Else {
Result = 0x0;

3

If Greater Than Or Equal

Microcode
UlS|S
C 2 g DST_GPR ALU_INST OMOD l\'jl \,(/IV u E |1 0 +4
PIm|AalA
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_SETGE_INT, opcode 60 (3Ch).
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SETGE_UINT Unsigned Integer Set
If Greater Than Or Equal
Integer set if greater than or equal, based on unsigned integer source operands.

If (SrcO >= Srcl) {
Result = Oxffffffff;
}
Else {
Result = 0x0;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETGE_UINT, opcode 63 (3Fh).
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SETGT Floating-Point Set
If Greater Than

Floating-point set if greater than.

If (SrcO > Srcl) {
Result = 1.0f;
}
Else {
Result = 0.0f;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETGT, opcode 9 (9h).
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SETGT_DX10 Floating-Point Set
If Greater Than, DirectX 10

Floating-point set if greater than, based on floating-point source operands. The result, however, is an
integer.

If (SrcO0 > Srcl) |
Result = Oxffffffff;
}
Else {
Result = 0x0;
}

Microcode
ulsl|s
c E g DST_GPR B ALU_INST omop | FIWIYIE|T]o0 +4
S M|[M|P
M|A|A
o | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETGT_DX10, opcode 13 (Dh).
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SETGT_INT Signed Integer Set
If Greater Than
Integer set if greater than, based on signed integer source operands.
If (SrcO0 > Srcl) {
Result = Oxffffffff;
3
Else {
Result = 0x0;
3
Microcode
D D Elwlu uls|s
C E R DST_GPR ALU_INST OMOD MIM|P SI A 2 +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_SETGT_INT, opcode 59 (3Bh).
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SETGT_UINT Unsigned Integer Set
If Greater Than
Integer set if greater than, based on unsigned integer source operands.
If (SrcO0 > Srcl) {
Result = Oxffffffff;
3
Else {
Result = 0x0;
3
Microcode
C D D DST_GPR ALU_INST OMOD Flwlu lI-EJ g +4
E |R M MIP |\ A
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_SETGT_UINT, opcode 62 (3Eh).
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SETNE Floating-Point Set
If Not Equal

Floating-point set if not equal.

If (SrcO != Srcl) {
Result = 1.0f;

}

Else {

Result = 0.0f;
}

Microcode
UlS|S
C D D DST_GPR B ALU_INST OMOD Flwiu E |1 0 +4
E R S M|M|P Mmlala
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETNE, opcode 11 (Bh).
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SETNE_DX10 Floating-Point Set
If Not Equal, DirectX 10

Floating-point set if not equal, based on floating-point source operands. The result, however, is an
integer.

If (SrcO !'= Srcl) {
Result = Oxffffffff;
}
Else {
Result = 0x0;
}
Microcode
uls|s
D |D B Flwlu
cl £ |r DST_GPR s ALU_INST omMoD | b lmlpE]1]0 +4
M|A|A
b | s| s |s s| s |s
Ll o M 1 1 1 SRC1_SEL o] o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SETNE_DX10, opcode 15 (Fh).
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SETNE_INT

Integer set if not equal, based on signed or unsigned integer source operands.

If (SrcO != Srcl) {
Result = Oxffffffff;

}

Else {

Result = 0x0;
}

ProductiD—Rev. 0.31—May 2007

Integer Set
If Not Equal

Microcode
UlS|S
C 2 g DST_GPR ALU_INST OMOD l\'jl \,(/IV u E |1 0 +4
PIm|AalA
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +O
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_SETNE_INT, opcode 61 (3Dh).
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SIN Scalar Sine

Scalar sine. Valid input domain [-PI, +PI].

Result = ApproximateSin (SrcO);

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SIN, opcode 110 (6Eh).
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SQRT_IEEE Scalar Square Root,
IEEE Approximation
Scalar square root. Useful for normal compression.
If (SrcO0 == 1.0f) {
Result = 1.0f;
3
Else {
Result = ApproximateRecipSgrt (SrcC) ;
3
Microcode
C 2 B DST_GPR g ALU_INST OMOD l\'jl \,(/IV g '\ll-E:I i E +4
b | s| s |s s| s |s
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORD1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_SQRT_IEEE, opcode 106 (6Ah).
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SUB_INT Integer Subtract

Integer subtract, based on signed or unsigned integer source operands.

Result = Srcl - Src0;

Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{W{YlE]|T]o +4
E |R s MIM|PIglAlS
o | s| s |s s| s |s
L & " 1 1 |1 SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_SUB_INT, opcode 53 (35h).
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TRUNC Floating-Point Truncate
Floating-point integer part of source operand.
Result = trunc(SrcO);
Microcode
D D Elwlu uls|s
cl & |n DST_GPR ALU_INST OMOD | v [ wi | b '5' /1 2 +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_TRUNC, opcode 17 (11h).
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UINT_TO_FLT Unsigned Integer To Floating-point

Unsigned integer to floating-point. The source is interpreted as an unsigned integer value, and it is
converted to a floating-point result.

Result = (float) SrcO
Microcode
uls|s
c| B |D DST_GPR B ALU_INST omop | E{WI{YlE]|T]oO +4
E |R S M[M|P
M|A|A
o | s| s |s s| s |s
L] ¢ " 101 | SRC1_SEL ol o |o SRCO_SEL +0
N| E |R N| E |R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).
Instruction Field: ALU_INST == OP2_INST_UINT_TO_FLT, opcode 109 (6Dh).
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XOR_INT Bit-Wise XOR
Logical bit-wise XOR.
Result = Src0 ~ Srcl
Microcode
D D Elwlu UlS|S
cl & |n DST_GPR ALU_INST OMOD | v [ wi | b ’\E/I /1 2 +4
p | S S S S S S
L s M 1 1 1 SRC1_SEL 0 0 0 SRCO_SEL +0
N E R N E R

Formats: ALU_DWORDO (page 278) and ALU_DWORDI1_OP2 (page 280).

Instruction Field: ALU_INST == OP2_INST_XOR_INT, opcode 50 (32h).
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7.3 Vertex-Fetch Instructions

All of the instructions in this section have a mnemonic that begins with “VTX_INST_” in the
“VTX_INST” field of their microcode formats.
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FETCH Vertex Fetch

Vertex fetch (X = unsigned integer index). These fetches specify the destination GPR directly.

Microcode
ojofojofo|jojofojofojojo|jojofjoj|o0fojojo|jojofjojojojojo|jojofojojojo +12
M g E
Reserved F g s OFFSET +8

S|F| N U D D D D b
M|C| F DATA_FORMAT c s S s s R DST_GPR +4
AlA| A F w z % X

M S |g FI ok

F S SRC_GPR BUFFER_ID w VTX_INST +0

c x |R al T

Formats: VITX_DWORDO (page 290), VITX_DWORDI1_GPR (page 294), and VTX_DWORD?2
(page 296).

Instruction Field: VTX_INST == VTX_INST_FETCH, opcode 0 (Oh).
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SEMANTIC

AMD R600 Technology

Semantic Vertex Fetch

Semantic vertex fetch. These fetches specify the 9-bit semantic ID that is looked up in a table to
determine the GPR to which the data will be written.

Microcode

C
M|B
Reserved FIN OFFSET
S
S| F N U D D D D
M| C F DATA_FORMAT C S S S S SEMANTIC_ID
AlA A F W z Y X
M S s F
F S R SRC_GPR BUFFER_ID W VTX_INST
C X Q

+12

+8

+4

+0

Formats: VTX_DWORDO (page 290), VIX_DWORDI1_SEM (page 292), and VITX_DWORD?2

(page 296).

Instruction Field: VTX_INST == VTX_INST_SEMANTIC, opcode 1 (1h).

Instruction Set

SEMANTIC

229



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

7.4 Texture-Fetch Instructions

All of the instructions in this section have a mnemonic that begins with “TEX_INST_” in the
“TEX_INST” field of their microcode formats.
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GET _BORDER COLOR FRAC Get Border Color Fraction

Retrieve border color fraction.

Microcode
o|jojo0(0f(0O0|lO0O|jO|O|O|O|OfO|O|0O|0OfO|O|O|O|0OfO|0O|O|O|O|O|0OfO|0O|0O|0O]O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_GET_BORDER_COLOR_FRAC, opcode 5 (5h).
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GET_COMP_TEX_LOD

Computed level of detail (LOD) for all pixels in quad.
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Get Computed Level of Detail

For Pixels

Microcode
olojo|o|o|o|o|o]O o/ojo|o|o|o|lo|o|Oo|0|0O]|O olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_GET_COMP_TEX_LOD, opcode 6 (6h).

232

GET _COMP_TEX_LOD

Instruction Set



AMDA
ProductiD—Rev. 0.31—May 2007 AMD R600 Technology

GET_GRADIENTS_H Get Slopes Relative To Horizontal
Retrieve lopes relative to horizontal: X = dx/dh, Y = dy/dh, Z = dz/dh, W = dw/dh.

Microcode
o|jojo0(0f(0O0|lO0O|jO|O|O|O|OfO|O|0O|0OfO|O|O|O|0OfO|0O|O|O|O|O|0OfO|0O|0O|0O]O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_GET_GRADIENTS_H, opcode 7 (7h).
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GET_GRADIENTS V
Retrieve slopes relative to vertical: X = dx/dv, Y = dy/dv, Z = dz/dv, W = dw/dv.
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Get Slopes Relative To Vertical

Microcode
o|jojojofofl0o|0]|0O]|O 0|0|0]O o|jo(ojofojof|o o|jo0(0|0O|0O|l0O]|Of0O]|O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_GET_GRADIENTS_V, opcode 8 (8h).
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GET_LERP_FACTORS Get Linear-Interpolation Weights

Retrieve linear interpolation (LERP) weights used for bilinear fetch, X = horizontal lerp, Y = vertical
lerp.

Microcode
o|jojo0(0fl0O0|lO|O|O|O|O|OfO|O|O|O|O|O|O|O|OfO|O|O|O|O|O|OfO|0O|0O|0O]O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s ) R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved ~ SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_GET_LERP_FACTORS, opcode 9 (9h).
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GET_TEXTURE_RESINFO

Retrieve width, height, depth, and number of mipmap levels.
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Get Texture Resolution

Microcode
o|jojojofofl0o|0]|0O]|O 0|0|0]O o|jo(ojofojof|o o|jo0(0|0O|0O|l0O]|Of0O]|O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_GET_TEXTURE_RESINFO, opcode 4 (4h).
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GET_WEIGHTS Get Bilinear-Fetch Weights

Retrieve weights used for bilinear fetch, X = TL weight, Y = TR weight, Z = BL weight, W = BR
weight.

Microcode
o|jojo0(0fl0O0|lO|O|O|O|O|OfO|O|O|O|O|O|O|O|OfO|O|O|O|O|O|OfO|0O|0O|0O]O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s ) R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved ~ SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_GET_WEIGHTS, opcode 10 (Ah).
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LD
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Load Texture Elements

Load texture element (texel). The elements X, Y, Z, W are unsigned integers.

Microcode
o|jojojofofl0o|0]|0O]|O 0|0|0]O o|jo(ojofojof|o o|jo0(0|0O|0O|l0O]|Of0O]|O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_LD, opcode 3 (3h).
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PASS

Returns the address read in memory.

AMD R600 Technology

Return Memory Address

Microcode
o|jojojofofl0o|0]|0O]|O 0|0|0]O o|jo(ojofojof|o o|jo0(0|0O|0O|l0O]|Of0O]|O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_PASS, opcode 13 (Dh).
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SAMPLE
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Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
olojo|o|o|o|o|o]O o|lojo]|o ojojo|o|o|o]|oO olo|o|o|o|o|o|o|0] +12
s s s s
s S s S SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clclc|c D D D D b
TIT|T|T LOD_BIAS s s s ) R DST_GPR +4
wlz|y|x w z Y X
s F B
Reserved R SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE, opcode 16 (10h).
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SAMPLE_C Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

SAMPLE_C compares the reference value passed through the W element with the sampled value from
memory. The reference value is converted to the source format before the compare. NANs are honored
in the comparisons for formats supporting them, otherwise, they are converted to 0 or +/-MAX. A
passing compare puts a 1.0 in the red element. A failing compare puts a 0.0 in the red element.

Microcode
o/ojo|o|o|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|O|O|O|O|O|O|O|O|O|O|O|O|O| +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_C, opcode 24 (18h).

Instruction Set SAMPLE C 241



AMDAQ

AMD R600 Technology

SAMPLE_C_G

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.
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Sample Texture

Microcode
olojo|o|o|o|o|o]O o|lojo]|o o|lojlojo|o|o]oO olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_G, opcode 28 (1Ch).
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SAMPLE_C _G_L Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_G_L, opcode 29 (1Dh).
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SAMPLE_C_G_LB
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Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
olojo|o|o|o|o|o]O o/ojo|o|o|o|lo|o|Oo|0|0O]|O olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_G_LB, opcode 30 (1Eh).
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SAMPLE_C _G_LZ Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_G_LZ, opcode 31 (1Fh).
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SAMPLE_C_L

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.
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Sample Texture

Microcode
olojo|o|o|o|o|o]O o|lojo]|o o|lojlojo|o|o]oO olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_L, opcode 25 (15h).
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SAMPLE_C_LB Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_LB, opcode 26 (1Ah).
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SAMPLE_C_LZ

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.
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Sample Texture

Microcode
olojo|o|o|o|o|o]O o/ojo|o|o|o|lo|o|Oo|0|0O]|O olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_C_LZ, opcode 27 (1Bh).
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SAMPLE_G Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_G, opcode 20 (14h).
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SAMPLE_G_L

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.
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Sample Texture

Microcode
olojo|o|o|o|o|o]O o|lojo]|o o|lojlojo|o|o]oO olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_G_L, opcode 21 (15h).
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SAMPLE_G_LB Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_G_LB, opcode 22 (16h).
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SAMPLE_G_LZ

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

ProductiD—Rev. 0.31—May 2007

Sample Texture

Microcode
olojo|o|o|o|o|o]O o/ojo|o|o|o|lo|o|Oo|0|0O]|O olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_G_LZ, opcode 23 (17h).
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SAMPLE_L Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_L, opcode 17 (11h).
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SAMPLE_LB

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

ProductiD—Rev. 0.31—May 2007

Sample Texture

Microcode
olojo|o|o|o|o|o]O o|lojo]|o o|lojlojo|o|o]oO olo|o|o|o|o|o|o|0] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SAMPLE_LB, opcode 18 (12h).
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SAMPLE_LZ Sample Texture

Fetch a texture sample and do arithmetic on it. The RESOURCE_ID field specifies the texture sample.
The SAMPLER_ID field specifies the arithmetic.

Microcode
o/ojo|ojo|o|o|o|o|o|o|lo|o|lo|o|o|o|o|0|0|O|O|O|O|O|O|O|O|O|O|O|O] +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D o
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved N SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI1 (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SAMPLE_L.Z, opcode 19 (13h).
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SET_GRADIENTS_H

ProductiID—Rev. 0.31—May 2007

Set Horizontal Gradients

Set horizontal gradients specified by X, Y, Z coordinates.

Microcode
o|jojojofofl0o|0]|0O]|O 0|0|0]O o|jo(ojofojof|o o|jo0(0|0O|0O|l0O]|Of0O]|O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).

Instruction Field: TEX_INST == TEX_INST_SET_GRADIENTS_H, opcode 11 (Bh).
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SET GRADIENTS V Set Vertical Gradients

Set vertical gradients specified by X, Y, Z coordinates

Microcode
o|jojo0(0f(0O0|lO0O|jO|O|O|O|OfO|O|0O|0OfO|O|O|O|0OfO|0O|O|O|O|O|0OfO|0O|0O|0O]O +12
s s S s
s s S s SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X +8
w z Y X
clc|c|c D D D D b
TIT|T|T LOD_BIAS s s s s R DST_GPR +4
wlz|vy|x w z Y X
s F B
Reserved A SRC_GPR RESOURCE_ID w F TEX_INST +0
Q M

Formats: TEX_DWORDO (page 298), TEX_DWORDI (page 301), and TEX_DWORD?2 (page 303).
Instruction Field: TEX_INST == TEX_INST_SET_GRADIENTS_V, opcode 12 (Ch).
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8 Microcode Formats

This section specifies the microcode formats. The definitions may be used to simplify compilation by
providing standard templates and enumeration names for the various instruction formats. Table 8-1
summarizes the microcode formats and their widths. The sections that follow provide details.

Table 8-1. Summary of Microcode Formats

Microcode Formats Reference W'.dth Function
(bits)
Control Flow (CF) Instructions
CF_DWORDO and page 262 o Lrgrﬁ’t'f;‘ﬁgcj general
CF_DWORD1 page 263 instructions.
CF_ALU_DWORDO and page 267 "
CF_ALU_DWORD/ page 268 64 Initiates ALU clauses.
Initiates and
CF_ALLOC_IMP_EXP_DWORDO and page 270 64 implements allocation,
CF_ALLOC_IMP_EXP_DWORD1_{BUF, SWIZ} | page 272, page 274 import, and export
instructions.
ALU Clause Instructions
ALU_DWORDO and page 278 64 Implements ALU
ALU_DWORD1_OP2 or ALU_DWORD1_OP3 page 280, page 286 instructions.
Texture-Fetch Clause Instructions
TEX_DWORDO and page 298 96, Mol is text
TEX_DWORD1 and page 301 padded |,Piements texiure-
fetch instructions.
TEX_DWORD2 page 303 to 128
Vertex-Fetch Clause Instructions
VTX_DWORDO and page 290 96, Imol ‘ ;
VTX_DWORD1_{GPR, SEM} and page 292, page 294 | padded |, Piements vertex-
fetch instructions.
VTX_DWORD2 page 296 to 128

The field-definition tables that accompany the descriptions in the sections below use the following
notation:
* int(2)—A 2-bit field that specifies an integer value.

* enum(7)—A 7-bit field that specifies an enumerated set of values (in this case, a set of up to 27
values). The number of valid values may be less than the maximum.

» VALID_PIXEL_MODE (VPM)—Refers to a field named “VALID_PIXEL_MODE” that is
indicated in the accompanying format diagram by the abbreviated symbol “VPM”.
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Unless otherwise stated, all fields are readable and writable (the CF_INST fields of the
CF_ALLOC_IMP_EXP_DWORDI1_BUF or the CF_ALLOC_IMP_EXP_DWORDI1_SWIZ formats
are the only exceptions). The default value of all fields is zero.
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8.1 Control Flow (CF) Instructions

Control flow (CF) instructions include:

* General control flow instructions (conditional jumps, loops, subroutines).
* Allocate, import, or export instructions.

¢ (Clause-initiation instructions for ALU, texture-fetch, vertex-fetch clauses.

All CF microcode formats are 64 bits wide.
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CF_DWORDO

ProductiD—Rev. 0.31—May 2007

Control Flow
Doubleword 0

This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
CF_DWORDI0,1]. This format pair is the default format for CF instructions.

Access: Read-write.

31

ADDR

Field

Bits

Format

Description

ADDR

31:0

int(32)

* For clause instructions: Bits 34:3 of the byte offset
(producing a quadword-aligned value) of the
beginning of the clause in memory.

* For control flow instructions: Bits 34:3 of the byte
offset (producing a quadword-aligned value) of the
control flow address to jump to (instructions that
can jump).

Offsets are relative to the byte address specified in the

host-written PGM_START_* register. Texture and

Vertex clauses must start on 16-byte aligned

addresses.

Related Microcode Formats

CF_DWORD1
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CF _DWORD1 Control Flow
Doubleword 1

This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
CF_DWORDI0,1]. This format pair is the default format for CF instructions.

Access: Read-write.

31 30 29 23 22 21 20 19 18 13 12 10 9 8 7 3 2 0
W V|E P
B|Q CF_INST P | O | Rsvd CALL_COUNT COUNT |COND| CF_CONST c
M M| P
Field (symbol) Bits Format Description

Specifies the number of entries to pop from the stack,
in the range [0, 7]. Only used by certain CF
instructions that pop the stack. May be zero, to
indicate no pop operation.

POP_COUNT (PC) 2:0 int(3)

Specifies the CF constant to use for flow control
statements.

For LOOP_START_* and LOOP_END, this specifies
the integer constant to use for the loop’s trip count
(maximum number of loops), beginning value (loop
index initializer), and increment (step). The constant is
CF_CONST 7:3 int(5) a host-written vector, and the three loop parameters
are stored as three elements of the vector. The loop
index (aL) is maintained by hardware in the aL
register.

For instructions using the COND field, this specifies
the index of the boolean constant.

See Section 3.7.3 on page 35 for details.

Microcode Specification CF_DWORD1 263



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

Field (symbol) Bits Format Description

Specifies how to evaluate the condition test for each
pixel. Not used by all instructions. May reference
CF_CONST:

0 CF_COND_ACTIVE: condition test passes for
active pixels. (Non-branch-loop instructions may
use only this setting.)

1 CF_COND_FALSE: condition test fails for all
pixels.

2 CF_COND_BOOL: condition test passes iff
pixel is active and boolean referenced by
CF_CONST is true.

3 CF_COND_NOT_BOOL: condition test passes
iff pixel is active and boolean referenced by
CF_CONST is false.

COND 9:8 enum(2)

Number of instruction slots in the range [1,8] to
COUNT 12:10 int(3) execute in the clause, minus one (clause instructions

only).

Amount to increment call nesting counter by when
executing a CALL statement; a CALL is skipped if the
CALL_COUNT 18:13 int(6) current nesting depth + CALL_COUNT > 32. This field
is interpreted in the range [0,31], and has no effect for
other instruction types.

0 This instruction is not the last instruction of the
CF program.

END_OF_PROGRAM .

(EOP_) - 21 int(1) 1 This instruction is the last instruction of the CF
program. Execution ends after this instruction is

issued.

0 Execute the instructions in this clause as if
invalid pixels are active.

1 Execute the instructions in this clause as if
X/AA'I:A?_PIXEL_MODE 22 int(1) invalid pixels are inactive. This is the antonym of
WHOLE_QUAD_MODE. Caution:
VALID_PIXEL_MODE is not the default mode;
this bit should be cleared by default.
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Field (symbol) Bits Format Description

Instruction:

0 CF_INST_NOP: perform no operation.

1 CF_INST_TEX: execute texture-fetch or con-
stant-fetch clause.

2 CF_INST_VTX: execute vertex-fetch clause

3 CF_INST_VTX_TC: execute vertex-fetch clause
through the texture cache (for systems lacking
VC).

4 CF_INST_LOOP_START: execute DirectX9
loop start instruction (push onto stack if loop
body executes).

5 CF_INST_LOOP_END: execute DirectX9 loop
end instruction (pop stack if loop is finished).

6 CF_INST_LOOP_START_DX10: execute
DirectX10 loop start instruction (push onto stack
if loop body executes).

7 CF_INST_LOOP_START_NO_AL: same as
LOOP_START but don't push the loop index
(aL) onto the stack or update aL.

CF_INST 29:23 | enum(7) | 8 CF_INST_LOOP_CONTINUE: execute con-
tinue statement (jump to end of loop if all pixels
ready to continue).

9 CF_INST_LOOP_BREAK: execute a break
statement (pop stack if all pixels ready to break).

10  CF_INST_PUSH: push current per-pixel active
state onto the stack.

11 CF_INST_PUSH_ELSE: execute push/else
statement. Always pushes per-pixel state onto
the stack.

12  CF_INST_POP: pop current per-pixel state from
the stack.

183  CF_INST_CALL: execute subroutine call
instruction (push onto stack).

14  CF_INST_RETURN: execute subroutine return
instruction (pop stack). Pair with
CF_INST_CALL only.

15  CF_INST_CALL_FS: call fetch program. The
address to call is stored in a host-written regis-
ter.
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Field (symbol) Bits Format Description

16  CF_INST_JUMP: execute jump statement (may
be conditional).

17  CF_INST_ELSE: execute else statement (may
be conditional).

18  CF_INST_EMIT_VERTEX: signal that GS has
finished exporting a vertex to memory.

19  CF_INST_EMIT_CUT_VERTEX: emit a vertex

CF_INST 29:23 | enum(7) and an end of primitive strip marker. The next
emitted vertex will start a new primitive strip.

20 CF_INST_CUT_VERTEX: emit an end of primi-
tive strip marker. The next emitted vertex will
start a new primitive strip.

21 CF_INST_KILL: kill pixels that pass the condi-
tion test (may be conditional). jump if all pixels
are killed.

Active pixels:

0 Do not execute this instruction as if all pixels are
active and valid.

WHOLE_QUAD_MODE 30 int(1) 1 Execute this instruction as if all pixels are active
(wam) and valid.

This is the antonym of the VALID_PIXEL_MODE field.

Only one of these bits, WHOLE_QUAD_MODE or

VALID_PIXEL_MODE, should be set at any one time.

Synchronization barrier:

0 This instruction may run in parallel with prior

BARRIER (B) 31 int(1) instructions.
1 All prior instructions must complete before this
instruction executes.
Related Microcode Formats
CF_DWORDO
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CF_ALU DWORDO Control Flow ALU
Doubleword 0

This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
CF_ALU_DWORDI0,1]. The instructions specified with this format are used to initiate ALU clauses.
The ALU instructions that execute within an ALU clause are described in Section 8.2 on page 277.

Access: Read-write.

31 30 29 26 25 22 21 0
K K K
M B B ADDR
0 1 0
Field (symbol) Bits Format Description

Bits 24:3 of the byte offset (producing a quadword-
aligned value) of the clause to execute. The offset is

ADDR 21:0 int(22) relative to the byte address specified by
PGM_START_* register.

KCACHE_BANKO (KBO) 05:00 int(4) Bank (gonstant buffer number) for first set of locked
cache lines.

KCACHE_BANK1 (KB1) 29:26 int(4) Bank (constant buffer number) for second set of

locked cache lines.

Mode for first set of locked cache lines:

0 CF_KCACHE_NOP: do not lock any cache
lines.

1 CF_KCACHE_LOCK_1: lock cache line
KCACHE_BANK][0.1], ADDR.

2 CF_KCACHE_LOCK_2: lock cache lines

KCACHE_MODEO (KMO) 31:30 | enum(2) KCACHE_BANK]0.1], ADDR and
KCACHE_BANK][0.1], ADDR+1.

3 CF_KCACHE_LOCK_LOOP_INDEX: lock
cache lines KCACHE_BANK]O0.1],
LOOP/16+ADDR and KCACHE_BANK]O0.1],
LOOP/16+ADDR+1, where LOOP is the current
loop index (aL).

Related Microcode Formats

CF_ALU_DWORDI1
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CF_ALU_DWORD1
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Control Flow ALU
Doubleword 1

This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
CF_ALU_DWORDI0,1]. The instructions specified with this format are used to initiate ALU clauses.
The instructions that execute within an ALU clause are described in Section 8.2 on page 277.

Access: Read-write.

31 30 29 26 25 24 18 17 10 9 2 1 0
W U K
B|Q CF_INST W COUNT KCACHE_ADDR1 KCACHE_ADDRO M
M 1
Field (symbol) Bits Format Description
Mode for second set of locked cache lines:
0 CF_KCACHE_NOP: do not lock any cache
lines.
1 CF_KCACHE_LOCK_1: lock cache line
KCACHE_BANK]JO0.1], ADDR.
KCACHE_MODE1 (KM1) 1:0 enum(2) 2 CF_KCACHE_LOCK_2 lock cache lines
KCACHE_BANK]J0.1], ADDR+1.
3 CF_KCACHE_LOCK_LOOP_INDEX: lock
cache lines KCACHE_BANK]0.1],
LOOP/16+ADDR and KCACHE_BANK]O0.1],
LOOP/16+ADDR+1, where LOOP is current
loop index (aL).
Constant buffer address for first set of locked cache
KCACHE_ADDRO 9:2 int(8) lines. In units of cache lines where a line holds 16 128-
bit constants (byte addr[15:8]).
KCACHE_ADDRH 1710 int(8) Consta_nt buffer address for second set of locked
cache lines.
COUNT 24:18 int(7) Number of mstructl'on slots (64-bit _slots) in the range
[1,128] to execute in the clause, minus one.
0 This ALU clause does not use waterfall con-
tants.
USES_WATERFALL (UW) 25 int(1) stanis

This ALU clause uses waterfall constants (GPR-
based indexing).
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Field (symbol) Bits Format Description

Instruction:

8 CF_INST_ALU: each PRED_SET* instruction
updates the active state but does not update the
stack.

9 CF_INST_ALU_PUSH_BEFORE: each
PRED_SET* causes a stack push first; then
updates the active state.

10  CF_INST_ALU_POP_AFTER: pop the stack
after the clause completes execution.

11 CF_INST_ALU_POP2_AFTER: pop the stack

CE_INST 29:26 | enum(4) twice after the clause completes execution.

12 Reserved

13  CF_INST_ALU_CONTINUE: each PRED_SET*
causes a continue operation on the unmasked
pixels.

14  CF_INST_ALU_BREAK: each PRED_SET*
causes a break operation on the unmasked pix-
els.

15  CF_INST_ALU_ELSE_AFTER: behaves like
PUSH_BEFORE, but also performs an ELSE
operation after the clause completes execution,
which inverts the pixel state.

Active pixels:

0 Do not execute this clause as if all pixels are
active and valid.

WHOLE_QUAD_MODE 30 int(1) 1 Execute this clause as if all pixels are active and
(wam) valid.

This is the antonym of the VALID_PIXEL_MODE field.

Only one of these bits, WHOLE_QUAD_MODE or

VALID_PIXEL_MODE, should be set at any one time.

Synchronization barrier:

0 This instruction may run in parallel with prior

BARRIER (B) 31 int(1) instructions.
1 All prior instructions must complete before this
instruction executes.
Related Microcode Formats
CF_ALU_DWORDO
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CF_ALLOC_IMP_EXP_DWORDO Control Flow Allocate,
Import, or Export
Doubleword 0

This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
CF_ALLOC_IMP_EXP_DWORDO and CF_ALLOC_IMP_EXP_DWORDI1_{BUF, SWIZ}. It is
used to reserve storage space in an input or output buffer, write data from GPRs into an output buffer,
or read data from an input buffer into GPRs. Each instruction using this format pair can use either the
BUF or the SWIZ version of the second doubleword—all instructions have both BUF and SWIZ
versions. The instructions specified with this format pair are used to initiate allocation, import, or
export clauses.

Access: Read-write.

31 30 29 23 22 21 15 14 13 12 0
E INDEX_GPR g RW_GPR TYPE ARRAY_BASE
Field (symbol) Bits Format Description

e For scratch or reduction input or output, this is the
base address of the array in multiples of four
doublewords [0,32764].

¢ For stream or ring output, this is the base address
of the array in multiples of one doubleword [0,8191].

¢ For pixel or Z output, this is the index of the first
export (frame buffer, no fog: [0, 7]; frame buffer,
with fog: [16, 23]; computed Z: 61).

¢ For parameter output, this is the parameter index of
the first export [0,31].

¢ For position output, this is the position index of the
first export [60,63].

ARRAY_BASE 12:0 int(13)
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Field (symbol)

Bits

Format

Description

TYPE

14:13

enum(2)

Type of allocation, import, or export. In the types
below, the first value (PIXEL, POS, PARAM) is used
with CF_INST_EXPORT* instruction, and the second
value (WRITE, WRITE_IND, READ, and READ_IND)
is used with CF_INST_MEM* instruction:

0 EXPORT_PIXEL: write pixel.
EXPORT_WRITE: write to memory buffer.

1 EXPORT_POS: write position.
EXPORT_WRITE_IND: write to memory buffer,
use offset in INDEX_GPR.

2 EXPORT_PARAM: write parameter cache.
IMPORT_READ: read from memory buffer
(scratch and reduction buffers only).

3 Unused.

IMPORT_READ_IND: read from memory buffer,
use offset in INDEX_GPR (scratch and reduc-
tion buffers only).

RW_GPR

21:15

int(7)

GPR register to read data from or write data to.

RW_REL (RR)

22

enum(1)

Indicates whether GPR is an absolute address, or
relative to the loop index (alL):

0 ABSOLUTE: no relative addressing.

1 RELATIVE: add current loop index (aL) value to
this address.

INDEX_GPR

29:23

int(7)

For any indexed import or export, this GPR contains
an index that will be used in the computation for
determining the address of the first import or export.
The index is multiplied by (ELEM_SIZE + 1). Only the
X element is used (other elements ignored, no swizzle
allowed).

ELEM_SIZE (ES)

31:30

int(2)

Number of doublewords per array element, minus
one. This field is interpreted as a value in [1,4]. The
value from INDEX_GPR and the loop index (alL) are
multiplied by this factor, if applicable. Also,
BURST_COUNT is multiplied by this factor for
CF_INST_MEM*. This field is ignored for
CF_INST_EXPORT*. Normally, ELEMSIZE = 4
doublewords for scratch and reduction, one
doubleword for other types.

Related Microcode Formats

CF_ALLOC_IMP_EXP DWORDI1_BUF

CF_ALLOC_IMP_EXP_DWORDI1_SWIZ
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CF_ALLOC_IMP_EXP _DWORD1_BUF Control Flow Allocate,
Import, or Export
Doubleword 1 Buffer

This is one of the high-order (most-significant) doublewords in the 64-bit microcode-format pair
formed by CF_ALLOC_IMP_EXP_DWORDO and CF_ALLOC_IMP_EXP_DWORDI1_{BUF,
SWIZ}. Each instruction using this format pair can use either the BUF or the SWIZ version of the
second doubleword—all related instructions have both BUF and SWIZ versions.

Bits 31:16 of this format are identical to those in the CF_ALLOC_IMP_EXP DWORD1 _SWIZ
format.

Access: Read-write, except for the CF_INST field, in which some values are write-only.

31 30 29 23 22 21 20 17 16 15 12 11 0
W V|E B E
B|Q CF_INST PO COMP_MASK ARRAY_SIZE
C L
M M| P
Field Bits Format Description

Array size, in ELEM_SIZE units. Represents values
[1,4096] when ELEM_SIZE = 0, and [4,16384] when
ELEM_SIZE = 3. See Section 3.4.2 on page 26 for
details.

ARRAY_SIZE 11:0 | int(12)

XYZW element mask (X is the LSB). Write the
COMP_MASK 15:12 int(4) element iff the corresponding bit is one. Applies only
to writes, not reads.

0 Do not add ((ELEM_SIZE + 1) * aL) to the
address.

ELEM_LOOP (EL) 16 int1) |1  Add ((ELEM_SIZE + 1) * aL) to the address.

This field is ignored for CF_INST_EXPORT*
instructions.

Number of multiple render targets (MRTS), positions,
parameters, or logical export values to allocate or

BURST_COUNT (BC) 2017 int(4) export, minus one. This field is interpreted as a value
in[1,16].
0 This instruction is not the last instruction of the
CF program.
END_OF_PROGRAM .
(EOP_) - 21 int(1) 1 This instruction is the last instruction of the CF
program. Execution ends after this instruction is
issued.

272 CF ALLOC IMP_EXP_DWORD1_BUF Microcode Reference



AMDA

ProductiD—Rev. 0.31—May 2007 AMD R600 Technology
Field Bits Format Description
0 Execute this instruction or clause as if invalid
pixels are active.
1 Execute this instruction or clause as if invalid

VALID_PIXEL_MODE

(VPM) 22 int(1) pixels are inactive. Antonym of

WHOLE_QUAD_MODE.
Caution: VALID_PIXEL_MODE is not the 'default'
mode; this bit should be set to 0 by default.

Instruction. Some of the values for this field are write-

only, as noted below:

32 CF_INST_MEM_STREAMO: perform a memory
operation on the stream buffer 0 (write-only).

33 CF_INST_MEM_STREAM1: perform a memory
operation on the stream buffer 1 (write-only).

34  CF_INST_MEM_STREAM2: perform a memory
operation on the stream buffer 2 (write-only).

35 CF_INST_MEM_STREAMS: perform a memory
operation on the stream buffer 3 (write-only).

CF_INST 29:23 | enum(7) | 36  CF_INST_MEM_SCRATCH: perform a memory
operation on the scratch buffer (read-write).

37 CF_INST_MEM_REDUCTION: perform a mem-
ory operation on reduction buffer (read-write).

38 CF_INST_MEM_RING: perform a memory
operation on a ring buffer (write-only).

39 CF_INST_EXPORT: exportonly (notlast). Used
for PIXEL, POS, PARAM exports (write-only).

40 CF_INST_EXPORT_DONE: export only (last
export). Used for PIXEL, POS, PARAM exports

(write-only).
0 Do not execute this clause as if all pixels are
active and valid.
WHOLE_QUAD_MODE 30 int(1) 1 Exgcute this clause as if all pixels are active and
(wam) valid.
This is the antonym of the VALID_PIXEL_MODE field.
Set at most one of these bits.
Synchronization barrier:
0 This instruction may run in parallel with prior
BARRIER (B) 31 int(1) instructions.
1 All prior instructions must complete before this

instruction executes.

Related Microcode Formats
CF_ALLOC_IMP_EXP DWORDO
CF_ALLOC_IMP_EXP DWORDI1_SWIZ
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CF_ALLOC_IMP_EXP_DWORD1_SWIiZ Control Flow Allocate,
Import, or Export
Doubleword 1 Swizzle

This is one of the high-order (most-significant) doublewords in the 64-bit microcode-format pair
formed by CF_ALLOC_IMP_EXP_DWORDO and CF_ALLOC_IMP_EXP_DWORDI1_{BUF,
SWIZ}. Each instruction using this format pair can use either the BUF or the SWIZ version of the
second doubleword—all related instructions have both BUF and SWIZ versions.

Bits 31:16 of this format are identical to those in the CF_ALLOC_IMP_EXP DWORDI1_ BUF
format.

Access: Read-write.

31 30 29 23 22 21 20 17 16 15 12 11 9 8 6 5 3 2 0
w VI|E B E
B|Q CF_INST PO Reserved SEL_W SEL_Z SEL_Y SEL_X
C L
M M| P
Field Bits Format Description
Specifies the source for each element of the import or
export:
0 SEL_X: use X element.

SEL_X 2:0 enum(3) | 1 SEL_Y: use Y element.

SEL_Y 5:3 enum(3) | 2 SEL_Z: use Z element.

SEL_Z 8:6 enum(3) | 3 SEL_W: use W element.

SEL_W 11:9 enum(3) | 4 SEL_0: use constant 0.0.

5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.

Reserved 15:12 Must be zero
0 Do not add ((ELEM_SIZE + 1) * aL) to the

address.

ELEM_LOORP (EL) 16 int(1) 1 Add ((ELEM_SIZE + 1) * aL) to the address.
This field is ignored for CF_INST_EXPORT*
instructions.

Number of multiple render targets (MRTS), positions,

BURST COUNT (BC) 50:17 int(4) parameters, or qulcal import or export vglue_s, minus
one, to allocate, import, or export. This field is
interpreted as a value in [1,16].
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Field Bits Format Description

0 This instruction is not the last instruction of the

CF program.
END_OF_PR RAM .
(EOP_)O -PROG 21 int(1) 1 This instruction is the last instruction of the CF

program. Execution ends after this instruction is
issued.

0 Execute this instruction or clause as if invalid
pixels are active.

1 Execute this instruction or clause as if invalid

22 int(1) pixels are inactive. Antonym of
WHOLE_QUAD_MODE.

Caution: VALID_PIXEL_MODE is not the 'default'

mode; this bit should be cleared by default.

VALID_PIXEL_MODE
(VPM)

Instruction. Some of the values for this field are write-

only, as noted below:

32 CF_INST_MEM_STREAMO: perform a memory
operation on the stream buffer 0 (write-only).

33 CF_INST_MEM_STREAMT1: perform a memory
operation on the stream buffer 1 (write-only).

34  CF_INST_MEM_STREAM2: perform a memory
operation on the stream buffer 2 (write-only).

35 CF_INST_MEM_STREAMS3: perform a memory
operation on the stream buffer 3 (write-only).

36 CF_INST_MEM_SCRATCH: perform a memory

CF_INST 29:23 | enum(7) operation on the scratch buffer (read-write).

37 CF_INST_MEM_REDUCTION: perform a mem-
ory operation on the reduction buffer (read-
write).

38 CF_INST_MEM_RING: perform a memory
operation on a ring buffer (write-only).

39 CF_INST_EXPORT: export or import (not last).
Used for PIXEL, POS, PARAM exports (write-
only).

40 CF_INST_EXPORT_DONE: last export or
import. Used for PIXEL, POS, PARAM exports

(write-only).
Active pixels:
0 Do not execute this clause as if all pixels are

active and valid.
WHOLE_QUAD_MODE .
(WQM) - - 30 int(1) 1 Execute this clause as if all pixels are active and

valid.
This is the antonym of the VALID_PIXEL_MODE field.
Set at most one of these bits.
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Field Bits Format Description
Synchronization barrier:
0 This instruction may run in parallel with prior
BARRIER (B) 31 int(1) instructions.
1 All prior instructions must complete before this
instruction executes.

Related Microcode Formats

CF_ALLOC_IMP_EXP_DWORDO

CF_ALLOC_IMP_EXP DWORDI1_BUF

276

CF _ALLOC IMP_EXP_DWORD1_SWiz Microcode Reference



AMDA
ProductiD—Rev. 0.31—May 2007 AMD R600 Technology

8.2 ALU Instructions

ALU clauses are initiated using the CF_ALU_DWORDJ0,1] format pair, described in Section 8.1 on
page 261. After the clause is initiated, the instructions below can be issued. ALU instructions are used
to build ALU instruction groups, as described in Section 4.3 on page 40. All ALU microcode formats
are 64 bits wide.
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ALU DWORDO ALU Doubleword 0

This is the low-order (least-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_DWORDO and ALU_DWORDI1_{OP2, OP3}. Each instruction using this format pair has
either an OP2 or an OP3 version (not both).

Access: Read-write.

31 30 29 28 26 25 24 23 22 21 13 12 11 10 9 8 0

S S S S
L 1 SRC1_SEL 0
N E |R N

—_
—_

SRCO_SEL

mow
o

Field (symbol) Bits Format Description

Location or value of this source operand:

127:0 Value in GPR[127,0].

159:128 Kcache constants in bank 0.
191:160Kcache constants in bank 1.

248 ALU_SRC_0: the constant 0.0.

249 ALU_SRC_1: the constant 1.0 float.

250 ALU_SRC_1_INT: the constant 1 integer.
251  ALU_SRC_M_1_INT: the constant -1 integer.
252 ALU_SRC_0_5: the constant 0.5 float.

253 ALU_SRC_LITERAL: literal constant.

254 ALU_SRC_PV: the previous ALU.[X,Y,Z,W]
result.

255 ALU_SRC_PS: the previous ALU.Trans result.

SRCO_SEL 8.0 enum(9)
SRC1_SEL 21:13 | enum(9)

Addressing mode for this source operand:
SRCO_REL (SOR) 9 enum(1) | 0 ABSOLUTE: no relative addressing.

SRC1_REL (S1R) 22 enum(1) | 1 RELATIVE: add index from INDEX_MODE to
this address.

Vector element of this source operand:
0 ELEM_X: Use X element.

1 ELEM_Y: Use Y element.

2 ELEM_Z: Use Z element.

3 ELEM_W: Use W element.

SRCO_ELEM (SOE) 11:10 | enum(2)
SRC1_ELEM (S1E) 24:23 | enum(2)

Negation:
SRCO_NEG (SON) 12 int(1) 0 Do not negate input for this operand.

SRC1_NEG (S1N) 25 int(1) 1 Negate input for this operand. Use only for float-
ing-point inputs.
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Field (symbol) Bits Format Description
Relative addressing mode, using the address register
(AR, also called AQ) or the loop index (aL), for
operands that have the SRC_REL or DST_REL bit
set:
0 INDEX_AR_X:
- For constants: add AR.X.
- For registers: add AR.X.
1 INDEX_AR_Y:
INDEX_MODE (IM) 28:26 | enum(3) - For constants: add AR.Y.
- For registers: add AR.X.
2 INDEX_AR_Z:
- For constants: add AR.Z.
- For registers: add AR.X.
3 INDEX_AR_W:
- For constants: add AR.W.
- For registers: add AR.X.
4 INDEX_LOOP: add loop index (aL).
Predicate to apply to this instruction:
0 PRED_SEL_OFF: execute all pixels.
PRED_SEL (PS) 30:29 | enum(2) | 1 Reserved
2 PRED_SEL_ZERO: execute if predicate = 0.
3 PRED_SEL_ONE: execute if predicate = 1.
Last instruction in an instruction group:
0 This is not the last instruction in the current
LAST (L) 31 int(1) instruction group.
1 This is the last instruction in the current instruc-
tion group.
Related Microcode Formats
ALU_DWORDI1_OP2
ALU_DWORDI1_OP3
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ALU Doubleword 1
Zero to Two Source Operands

This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_DWORDO and ALU_DWORD1_{OP2, OP3}. Each instruction using this format pair has
either an OP2 or an OP3 version (not both). The OP2 version specifies ALU instructions that take zero
to two source operands, plus a destination operand.

Bits 31:18 of this format are identical to those in the ALU_DWORD1_OP3 format.

Access: Read-write.

31 30 29 28 27 21 20 18 17 8 7 6 5 4 3 2 10
U/ s|S
C D D DST_GPR B ALU_INST OMOD Flw U E{1]0
E R S M|{M|P
M|IA|A
Field (symbol) Bits Format Description
Absolute value:
0 Use the actual value of the input for this oper-

SRCO_ABS (S0A) 0 int(1) and.

SRC1_ABS (S1A) 1 int(1) 1 Use the absolute value of the input for this oper-
and. Use only for floating-point inputs. This
function is performed before negation.

Update execute mask:

UPDATE_EXECUTE_MASK _ 0 Dg npt upda_te the execute mask after executing

(UEM) 2 int(1) this instruction.

1 Update the execute mask after executing this
instruction, based on the current predicate.
Update predicate:

UPDATE_PRED (UP) 3 int(1) 0 Do not update the storgd predicate.

1 Update the stored predicate based on the pred-
icate operation computed here.

Write result to destination vector element:

0 Do not write this scalar result to the destination

WRITE_MASK (WM) 4 int(1) GPR vector element.

1 Write this scalar result to the destination GPR

vector element.
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Field (symbol) Bits Format Description
Export fog value:
0 Do not export fog value.

FOG_MERGE (FM) 5 int(1) 1 Export fog \(alue by merging thg transcendental
ALU result into the low-order bits of the vector
destination. The vector results will lose some
precision.

Output modifier:
0 ALU_OMOD_OFF: identity. This value must be
used for operations that produce an integer

OMOD 7:6 | enum(2) result.

1 ALU_OMOD_M2: multiply by 2.0.
2 ALU_OMOD_M4: multiply by 4.0.
3 ALU_OMOD_D2: divide by 2.0.
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Field (symbol) Bits Format Description

Instruction. The top three bits of this field must be
zero. Gaps in opcode values are not marked in the list
below. See Section 7 on page 71 for descriptions of
each instruction.
0 OP2_INST_ADD
1 OP2_INST_MUL
2 OP2_INST_MUL_IEEE
3 OP2_INST_MAX
4 OP2_INST_MIN
5 OP2_INST_MAX_DX10
6 OP2_INST_MIN_DX10
8 OP2_INST_SETE
9 OP2_INST_SETGT
10 OP2_INST_SETGE
11 OP2_INST_SETNE
12 OP2_INST_SETE_DX10
13  OP2_INST_SETGT_DX10
14  OP2_INST_SETGE_DX10
15  OP2_INST_SETNE_DX10
16  OP2_INST_FRACT

ALU_INST 17:8 | enum(10) | 17 OP2_INST_TRUNC
18  OP2_INST_CEIL
19  OP2_INST_RNDNE
20 OP2_INST_FLOOR
21 OP2_INST_MOVA
22  OP2_INST_MOVA_FLOOR
24  OP2_INST_MOVA_INT
25 OP2_INST_MOV
26 OP2_INST_NOP
32 OP2_INST_PRED_SETE
33 OP2_INST_PRED_SETGT
34  OP2_INST_PRED_SETGE
35 OP2_INST_PRED_SETNE
36 OP2_INST_PRED_SET_INV
37 OP2_INST_PRED_SET_POP
38 OP2_INST_PRED_SET_CLR
39 OP2_INST_PRED_SET_RESTORE
40 OP2_INST_PRED_SETE_PUSH
41 OP2_INST_PRED_SETGT_PUSH
42  OP2_INST_PRED_SETGE_PUSH
43  OP2_INST_PRED_SETNE_PUSH
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Field (symbol) Bits Format Description
44 OP2_INST_KILLE
45 OP2_INST_KILLGT
46 OP2_INST_KILLGE
47 OP2_INST_KILLNE
48 OP2_INST_AND_INT
49 OP2_INST_OR_INT
50 OP2_INST_XOR_INT
51 OP2_INST_NOT_INT
52 OP2_INST_ADD_INT
53 OP2_INST_SUB_INT
54 OP2_INST_MAX_INT
55 OP2_INST_MIN_INT
56 OP2_INST_MAX_UINT
57 OP2_INST_MIN_UINT
58 OP2_INST_SETE_INT
59 OP2_INST_SETGT_INT
60 OP2_INST_SETGE_INT
61 OP2_INST_SETNE_INT
62 OP2_INST_SETGT_UINT
63 OP2_INST_SETGE_UINT

ALU_INST 17:8 | enum(10) | o5 pp |NST_PRED_SETE_INT

67 OP2_INST_PRED_SETGT_INT
68 OP2_INST_PRED_SETGE_INT
69 OP2_INST_PRED_SETNE_INT
70 OP2_INST_PRED_SETLT_INT
71 OP2_INST_PRED_SETLE_INT
74 OP2_INST_PRED_SETE_PUSH_INT
75 OP2_INST_PRED_SETGT_PUSH_INT
76 OP2_INST_PRED_SETGE_PUSH_INT
77 OP2_INST_PRED_SETNE_PUSH_INT
78 OP2_INST_PRED_SETLT_PUSH_INT
79 OP2_INST_PRED_SETLE_PUSH_INT
80 OP2_INST_DOT4
81 OP2_INST_DOT4_IEEE
82 OP2_INST_CUBE
83 OP2_INST_MAX4
96 reserved
97 OP2_INST_EXP_IEEE
98 OP2_INST_LOG_CLAMPED
99 OP2_INST_LOG_IEEE
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Field (symbol)

Bits

Format

Description

ALU_INST

17:8

enum(10)

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

OP2_INST_RECIP_CLAMPED
OP2_INST_RECIP_FF
OP2_INST_RECIP_IEEE
OP2_INST_RECIPSQRT_CLAMPED
OP2_INST_RECIPSQRT_FF
OP2_INST_RECIPSQRT_IEEE
OP2_INST_SQRT_IEEE
OP2_INST_FLT_TO_INT
OP2_INST_INT_TO_FLT
OP2_INST_UINT_TO_FLT
OP2_INST_SIN
OP2_INST_COS
OP2_INST_ASHR_INT
OP2_INST_LSHR_INT
OP2_INST_LSHL_INT
OP2_INST_MULLO_INT
OP2_INST_MULHI_INT
OP2_INST_MULLO_UINT
OP2_INST_MULHI_UINT
OP2_INST_RECIP_INT
OP2_INST_RECIP_UINT

BANK_SWIZZLE (BS)

20:18

enum(3)

Specifies how to load source operands:

a b~ WODN-—=O

See Section 4.7.4 on page 49 for details.

ALU_VEC_012, ALU_SCL_210.
ALU_VEC_021, ALU_SCL_122.
ALU_VEC_120, ALU_SCL_212.
ALU_VEC_102, ALU_SCL_221.
ALU_VEC_201.
ALU_VEC_210.

DST_GPR

27:21

int(7)

Destination GPR address to which result is written.

DST_REL (DR)

28

enum(1)

Addressing mode for the destination GPR address:

0
1

ABSOLUTE: no relative addressing.

RELATIVE: add index from INDEX_MODE to
this address.

DST_ELEM (DE)

30:29

enum(2)

Vector element of DST_GPR to which the result is
written:

0

1
2
3

ELEM_X: write to X element.
ELEM_Y: write to Y element.
ELEM_Z: write to Z element.
ELEM_W: write to W element.
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Field (symbol) Bits Format Description
Clamp result:
0 Do not clamp the result.

CLAMP (C) 31 int(1) 1 Clamp the result to [0.0, 1.0]. Not mathemati-
cally defined for instructions that produce inte-
ger results.

Related Microcode Formats
ALU_DWORDO
ALU_DWORDI1_OP3
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ALU_DWORD1_OP3
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ALU Doubleword 1
Three Source Operands

This is the high-order (most-significant) doubleword in the 64-bit microcode-format pair formed by
ALU_DWORDO and ALU_DWORD1_{OP2, OP3}. Each instruction using this format pair has
either an OP2 or an OP3 version (not both). The OP3 version specifies ALU instructions that take

three source operands, plus a destination operand.

Bits 31:18 of this format are identical to those in the ALU_DWORD1_OP2 format.

Access: Read-write

31 30 29 28

21 20

18 17

1312 11 10 9 8

C

DST_GPR

ALU_INST 2

mn o

S
2 SRC2_SEL
R

Field

Bits

Format

Description

SRC2_SEL

8:0

enum(9)

Location or value of this source operand:

127:0 Value in GPR[127,0].

159:128Kcache constants in bank 0.
191:160Kcache constants in bank 1.

248 ALU_SRC_0: the constant 0.0.

249 ALU_SRC_1: the constant 1.0 float.

250 ALU_SRC_1_INT: the constant 1 integer.
251 ALU_SRC_M_1_INT: the constant -1 integer.
252 ALU_SRC_0_5: the constant 0.5 float.

253 ALU_SRC_LITERAL.: literal constant.

254 ALU_SRC_PV: previous ALU.[X,Y,Z,W] result.
255 ALU_SRC_PS: previous ALU.Trans result.

SRC2_REL

enum(1)

Addressing mode for this source operand:
0 ABSOLUTE: no relative addressing.
1 RELATIVE: add index from INDEX_MODE to

this address. See “ALU_DWORDO0” on
page 278 for the specification of INDEX_MODE.

SRC2_ELEM (S2E)

11:10

enum(2)

Vector element for this source operand:
0 ELEM_X: Use X element.

1 ELEM_Y: Use Y element.

2 ELEM_Z: Use Z element.

3 ELEM_W: Use W element.

286

ALU DWORD1_OP3

Microcode Reference



AMDA

ProductiD—Rev. 0.31—May 2007 AMD R600 Technology
Field Bits Format Description
Negation:
SRC2_NEG 12 int(1) 0 Do not r?egate mpgt for this operand.
1 Negate input for this operand. Use only for float-

ing-point inputs.

Instruction. Gaps in opcode values are not marked in
the list below. See Section 7 on page 71 for
descriptions of each instruction.

12 OPS3_INST_MUL_LIT

13  OP3_INST_MUL_LIT_M2

14  OPS3_INST_MUL_LIT_M4

15 OPS3_INST_MUL_LIT_D2

16  OP3_INST_MULADD

17  OPS3_INST_MULADD_M2

18 OPS3_INST_MULADD_M4

19  OP3_INST_MULADD_D2
ALU_INST 17:13 | enum(5) | 20  OP3_INST_MULADD_IEEE

21 OP3_INST_MULADD_IEEE_M2
22  OP3_INST_MULADD_IEEE_M4
23  OP3_INST_MULADD_IEEE_D2
24  OP3_INST_CMOVE

25  OP3_INST_CMOVGT

26 OP3_INST_CMOVGE

27 Reserved

28 OP3_INST_CMOVE_INT

29  OP3_INST_CMOVGT_INT

30 OP3_INST_CMOVGE_INT

31 Reserved

Specifies how to load operands:

0 ALU_VEC_012, ALU_SCL_210.

1 ALU_VEC_021, ALU_SCL_122.

2 ALU_VEC_120, ALU_SCL_212.
BANK_SWIZZLE (BS) 20:18 | enum(3) 3 ALU_VEC. 102, ALU_SCL_221.

4 ALU_VEC_201.

5 ALU_VEC_210.

See Section 4.7.4 on page 49.
DST_GPR 27:21 int(7) Destination GPR address to which result is written.

Addressing mode for the destination GPR address:

0 ABSOLUTE: no relative addressing.

DST_REL (DR) 28 enum(1) | 1 RELATIVE: add index from INDEX_MODE to
this address. See “ALU_DWORDO” on

page 278 for the specification of INDEX_MODE.
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Field Bits Format Description

Vector element of DST_GPR to which the result is
written:

DST ELEM (DE - 5 0 ELEM_X: write to X element.

—ELEM (DE) 30:29 | enum(2) | 4 E|EM_Y: write to Y element.

2 ELEM_Z: write to Z element.
3 ELEM_W: write to W element.
Clamp result:
0 Do not clamp the result.

CLAMP (C) 31 int(1) 1 Clamp the result to [0.0, 1.0]. Not mathemati-

cally defined for instructions that produce inte-
ger results.

Related Microcode Formats

ALU_DWORDO
ALU_DWORDI1_OP2
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8.3 Vertex-Fetch Instructions

Vertex-fetch clauses are specified in the CF_DWORDO and CF_DWORDI1 formats, described in
Section 8.1 on page 261. After the clause is specified, the instructions below can be issued. Graphics
programs typically use these instructions to load vertex data from off-chip memory into GPRs.
General-computing programs typically do not use these instructions; instead, they use texture-fetch
instructions to load all data.

All vertex-fetch microcode formats are 64 bits wide.
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VTX_DWORDO Vertex Fetch

Doubleword 0
This is the low-order (least-significant) doubleword in the 128-bit 4-tuple formed by
VTX_DWORDO, VTX_DWORDI_{SEM, GPR}, VTX_DWORD?2, plus a doubleword filled with
zeros, as described in Section 5 on page 67. Each instruction using this format 4-tuple has either an

SEM or an GPR version (not both) for its second doubleword. The instructions are specified in the
VTX_DWORDO doubleword.

Access: Read-write.

31 26 25 24 23 22 16 15 8 7 6 5 4 0
M S |g Fl e
F S R SRC_GPR BUFFER_ID w T VTX_INST
C X Q
Field (symbol) Bits Format Description
Instruction:
0 VTX_INST_FETCH: vertex fetch (X = uint32
VTX_INST 4:0 enum(5) index). Use VTX_DWORD1_GPR (page 294).

1 VTX_INST_SEMANTIC: semantic vertex fetch.
Use VTX_DWORD1_SEM (page 292).

Specifies which index offset to send to the vertex

cache:
FETCH_TYPE (FT) 6:5 enum(2) | O VTX_FETCH_VERTEX_DATA

1 VTX_FETCH_INSTANCE_DATA

2 VTX_FETCH_NO_INDEX_OFFSET

0 Texture instruction can ignore invalid pixels.
FETCH_WHOLE_QUAD 1 Texture instruction must fetch data for all pixels

7 int(1)

(FWQ) (result may be used as source coordinate of a
dependent read).
BUFEER_ID 15:8 int(8) Constant ID to use for this vertex fetch (indicates the
buffer address, size, and format).
SRC_GPR 22:16 int(7) Source GPR address to get fetch address from.

Specifies whether source address is absolute or
relative to an index:

SRC_REL (SR) 23 enum(1) | O ABSOLUTE: no relative addressing.

1 RELATIVE: add current loop index (aL) value to
this address.
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Field (symbol) Bits Format Description
Specifies which element of SRC to use for the fetch
address:
SRC SEL X (SSX o5:04 5 0 SEL_X: use X element.
—SEL_X(SSX) 5:24 | enum@) | 4y gE| y:use Y element.
2 SEL_Z: use Z element.
3 SEL_W: use W element.
For a mega-fetch, specifies the number of bytes to
MEGA_FETCH_COUNT 3126 int(6) fetch at once. For mini-fetch, number of bytes to fetch
(MFC) ' if the processor converts this instruction into a mega-
fetch. This value's range is [1,64].
Related Microcode Formats
VTX_DWORDI1_GPR
VTX_DWORDI1_SEM,
VTX_DWORD?2
Microcode Specification VTX_DWORDO 291



AMDA
AMD R600 Technology ProductiD—Rev. 0.31—May 2007

VTX_DWORD1_SEM Vertex Fetch
Doubleword 1
Semantic-Table Specification

This is the middle doubleword in the 128-bit 4-tuple formed by VITX_DWORDO,
VTX_DWORDI_{SEM, GPR}, VTX_DWORD?2, plus a doubleword filled with zeros, as described
in Section 5 on page 67. Each instruction using this format 4-tuple has either a SEM or GPR format
(not both) for its second doubleword. The instructions are specified in the VITX_DWORDO
doubleword. This SEM format is used by SEMANTIC instructions that specify a destination using a
semantic table.

Bits 31:8 of this format are identical to those in the VITX_DWORD1_GPR format.

Access: Read-write.

31 30 29 28 27 22 21 20 18 17 15 14 12 11 9 8 7 0
S|F N U D D D D
M|C F DATA_FORMAT C S S S S SEMANTIC_ID
AlA A F W Z Y X
Field Bits Format Description
Specifies a 8-bit semantic ID used to look up the
) . destination GPR in the semantic table. The semantic
SEMANTIC_ID 70 int(8) table is written by the host and maintained by
hardware.
Reserved 8

Specifies which element of the result to write to
DST.XYZW. Can be used to mask elements when
writing to the destination GPR:

SEL_X: use X element.
DST_SEL_X (DSX) 11:9 enum(3) SEL Y: use Y element.
DST_SEL_Y (DSY) 14:12 | enum(3) SEL Z: use Z element.
DST_SEL_Z (DS2) 17:15 | enum(3) SEL W: use W element.
DST_SEL_W (DSW) 20:18 | enum(3)

SEL_0: use constant 0.0.
SEL_1: use constant 1.0.
Reserved.

SEL_MASK: mask this element.

Use format given in this instruction.

Use format given in the fetch constant instead of
in this instruction.

USE_CONST_FIELDS
(UCF)

- O NOoO O WDN-—=O

21 int(1)
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Field Bits Format Description

Specifies vertex data format (ignored if

DATA_FORMAT 27:22 nt(6) | USE_ CONST FIELDS is set).

Format of returning data (N is the number of bits
derived from DATA_FORMAT and gamma) (ignored if
USE_CONST_FIELDS is set):

0 NUM_FORMAT_NORM: repeating fraction
number (0.N) with range [0,1] if unsigned, or [-1,
1] if signed.

1 NUM_FORMAT_INT: integer number (N.0) with
range [0, 2AN] if unsigned, or [-2AM, 2AM] if
signed (M =N - 1).

2 NUM_FORMAT_SCALED: integer number
stored as a S23E8 floating-point representation
(1 == 0x3f800000).

NUM_FORMAT_ALL (NFA) | 29:28 | enum(2)

Specifies sign of source elements (ignored if

FORMAT_COMP_ALL %0 .y | USE_CONST FIELDS = 1)
(FCA) enum(1) | 5 FORMAT COMP_UNSIGNED

1 FORMAT_COMP_SIGNED

Mapping to use when converting from signed RF to

float (ignored if USE_CONST_FIELDS is set):

0 SRF_MODE_ZERO_CLAMP_MINUS_ONE:

SRF_MODE_ALL (SMA) 31 enum(1) representation with two -1 representations (one
is slightly past -1 but clamped).

1 SRF_MODE_NO_ZERO: OpenGL format lack-
ing representation for zero.

Related Microcode Formats
VTX_DWORDO
VTX_DWORDI_GPR
VTX_DWORD?2
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VTX_DWORD1_GPR Vertex Fetch
Doubleword 1

GPR Specification

This is the middle doubleword in the 128-bit 4-tuple formed by VITX_DWORDO,
VTX_DWORDI_{SEM, GPR}, VTX_DWORD?2, plus a doubleword filled with zeros, as described
in Section 5 on page 67. Each instruction using this format 4-tuple has either a SEM or GPR format
(not both) for its second doubleword. The instructions are specified in the VITX_DWORDO
doubleword. This GPR format is used by FETCH instructions that specify a destination GPR directly.
See the next format for the semantic-table option.

Bits 31:8 of this format are identical to those in the VITX_DWORD1_SEM format.

Access: Read-write.

31 30 29 28 27 22 21 20 18 17 15 14 12 11 9 8 7 6 0
S|F N U D D D D D
M|C F DATA_FORMAT C S S S S R DST_GPR
AlA A F w Z Y X

Field (symbol) Bits Format Description
DST_GPR 6:0 int(7) Destination GPR address to which result is written.

Specifies whether destination address is absolute or
relative to an index:

DST_REL (DR) 7 enum(1) | O ABSOLUTE: no relative addressing.

1 RELATIVE: add current loop index (aL) value to
this address.

Reserved 8
Specifies which element of the result to write to
DST.XYZW. Can be used to mask elements when
writing to the destination GPR:

SEL_X: use X element.

DST_SEL_X (DSX) 11:9 enum(3) SEL Y: use Y element.

DST_SEL_Y (DSY) 14:12 | enum(3) SEL Z: use Z element.

DST_SEL_Z (DS2) 17:15 | enum(3) SEL W: use W element.

DST_SEL_W (DSW) 20:18 | enum(3)

SEL_0: use constant 0.0.
SEL_1: use constant 1.0.
Reserved.

SEL_MASK: mask this element.

NOoO Ok WD = O
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Field (symbol) Bits Format Description
0 Use format given in this instruction.
;JUS(EQCONST_FIELDS 21 int(1) 1 Use format given in the fetch constant instead of
in this instruction.
. . Specifies vertex data format (ignored if
DATA_FORMAT 2r:22 | int®) | ySE CONST FIELDS is set).
Format of returning data (N is the number of bits
derived from DATA_FORMAT and gamma) (ignored if
USE_CONST_FIELDS is set):
0 NUM_FORMAT_NORM: repeating fraction
number (0.N) with range [0,1] if unsigned, or [-1,
NUM_FORMAT_ALL (NFA) | 29:28 | enum(2) 1]t signed.
- - ' 1 NUM_FORMAT_INT: integer number (N.0) with
range [0, 2”AN] if unsigned, or [-2AM, 2~M] if
signed (M =N - 1).
2 NUM_FORMAT_SCALED: integer number
stored as a S23ES8 floating-point representation
(1 == 0x3f800000).
Specifies sign of source elements (ignored if
FORMAT _COMP_ALL 30 ] USE_CONST_FIELDS is set):
(FCA) enum(1) | 5 FORMAT COMP_UNSIGNED
1 FORMAT_COMP_SIGNED
Mapping to use when converting from signed RF to
float (ignored if USE_CONST_FIELDS is set):
0 SRF_MODE_ZERO_CLAMP_MINUS_ONE:
SRF_MODE_ALL (SMA) 31 enum(1) representation with two -1 representations (one
is slightly past -1 but clamped).
1 SRF_MODE_NO_ZERO: OpenGL format lack-
ing representation for zero.
Related Microcode Formats
VTX_DWORDO
VTX_DWORDI_SEM,
VTX_DWORD2
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VTX _DWORD2 Vertex Fetch
Doubleword 2

This is the high-order (most-significant) doubleword in the 128-bit 4-tuple formed by
VTX_DWORDO, VTX_DWORDI_{SEM, GPR}, VTX_DWORD?2, plus a doubleword filled with
zeros, as described in Section 5 on page 67.

Access: Read-write.

31 20 19 18 17 16 15 0
C
M| B E
Reserved FlN S OFFSET
S
Field (symbol) Bits Format Description
OFFSET 15:0 int(16) Offset to begin reading from. Byte-aligned.
Endian control (ignored if USE_CONST_FIELDS is
set):
0 ENDIAN_NONE: no endian swap (XOR by 0).
ENDIAN_SWAP (ES) 17:16 | enum(2) | 1 ENDIAN_8IN16: 8-bit swap in 16 bit word (XOR

by 1): AABBCCDD -> BBAADDCC.

2 ENDIAN_8IN32: 8-bit swap in 32 bit word (XOR
by 3): AABBCCDD -> DDCCBBAA.

0 Do not force stride to zero for constant buffer
CONST_BUF_NO_STRIDE 18 (1 fetches that use absolute addresses.
(CBNS) int(1) 1 Force stride to zero for constant buffer fetches
that use absolute addresses.
MEGA_FETCH (MF) 19 int(1) 0 Th!s !nstructfon fs a mini-fetch.
1 This instruction is a mega-fetch.

Related Microcode Formats
VTX_DWORDO
VTX_DWORDI1_GPR
VTX_DWORDI_SEM,
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8.4 Texture-Fetch Instructions

Texture-fetch clauses are initiated using the CF_DWORD|O0,1] formats, described in Section 8.1 on
page 261. After the clause is initiated, the instructions below can be issued. Graphics programs
typically use texture fetches to load texture data from memory into GPRs. General-computing
programs typically use texture fetches as conventional data loads from memory into GPRs that are
unrelated to textures.

All texture-fetch microcode formats are 96 bits wide, formed by three doublewords, and padded with
zeros to 128 bits.
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Texture Fetch
Doubleword 0

This is the low-order (least-significant) doubleword in the 128-bit 4-tuple formed by
TEX_DWORDI[0,1,2] plus a doubleword filled with zeros, as described in Section 6 on page 69.

Access: Read-write.

31 16 15 8 7 6 5 4 0
F B
Reserved SRC_GPR RESOURCE_ID W F TEX_INST
Q M
Field (symbol) Bits Format Description

Instruction:

0 Reserved.

1 Reserved.

2 Reserved.

3 TEX_INST_LD: fetch texel, XYZL are uint32.

4 TEX_INST_GET_TEXTURE_RESINFO:
retrieve width, height, depth, number of mipmap
levels.

TEX_INST 4:0 enum(5) 5 TEX_INST_GET_BORDER_COLOR_FRAC: X
= border color fraction.

6 TEX_INST_GET_COMP_TEX_LOD: X = com-
puted LOD for all pixels in quad.

7 TEX_INST_GET_GRADIENTS_H: slopes rela-
tive to horizontal: X = dx/dh, Y = dy/dh, Z =
dz/dh, W = dw/dh.

8 TEX_INST_GET_GRADIENTS_V: slopes rela-
tive to vertical: X = dx/dv, Y = dy/dv, Z = dz/dv,
W = dw/dv.
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Field (symbol) Bits Format Description

9 TEX_INST_GET_LERP_FACTORS: retrieve
weights used for bilinear fetch, X = horizontal
lerp, Y = vertical lerp.

10 TEX_INST_GET_WEIGHTS: retrieve weights
used for bilinear fetch, X = TL weight, Y = TR
weight, Z = BL weight, W = BR weight.

11 TEX_INST_SET_GRADIENTS_H: XYZ set hor-
izontal gradients.

12 TEX_INST_SET_GRADIENTS_V: XYZ set ver-
tical gradients.

13  TEX_INST_PASS: returns the address read in
memory.

14 Reserved.

15 Reserved.

16  TEX_INST_SAMPLE

TEX_INST 4:0 enum(5) | 17  TEX_INST_SAMPLE_L

18  TEX_INST_SAMPLE_LB

19  TEX_INST_SAMPLE_LZ

20 TEX_INST_SAMPLE_G.

21 TEX_INST_SAMPLE_G_L

22 TEX_INST_SAMPLE_G_LB

23  TEX_INST_SAMPLE_G_LZ

24  TEX_INST_SAMPLE_C

25  TEX_INST_SAMPLE_C_L

26 TEX_INST_SAMPLE_C_LB

27  TEX_INST_SAMPLE_C_LZ

28 TEX_INST_SAMPLE_C_G

29 TEX_INST_SAMPLE_C_G_L

30 TEX_INST_SAMPLE_C_G_LB

31 TEX_INST_SAMPLE_C_G_LZ

0 Do not force black texture data and white border

. to retrieve fraction of pixel that hits the border.
BC_FRAC_MODE (BFM) 5 int(1) 1 Force black texture data and white border to
retrieve fraction of pixel that hits the border.

0 Texture instruction can ignore invalid pixels.

FETCH_WHOLE_QUAD 7 int(1) 1 Texture instruction must fetch data for all pixels
(FWQ) (result may be used as source coordinate of a
dependent read).

Surface ID to read from (specifies the buffer address,

RESOURCE_ID 15:8 int(8) size, and format). 160 available for GS and PS
programs; 176 shared across FS and VS.
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Field (symbol) Bits Format Description
SRC_GPR 9216 int(7) Source GPR address to get the texture lookup
address from.
Indicate whether source address is absolute or
relative to an index:
SRC_REL (SR) 23 enum(1) | O ABSOLUTE: no relative addressing.

1 RELATIVE: add current loop index (aL) value to
this address.

Related Microcode Formats

TEX_DWORDI1
TEX_DWORD?2

300
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Texture Fetch
Doubleword 1

This is the middle doubleword in the 128-bit 4-tuple formed by TEX_DWORD]J0,1,2] plus a
doubleword filled with zeros, as described in Section 6 on page 69.

Access: Read-write.

31 30 29 28 27 21 20 18 17 15 14 12 11 9 8 7 6 0
c|c|C|C D D D D D
T|T|T|T LOD_BIAS S S S S R DST_GPR
W|IZ|Y|X W Z Y X
Field (symbol) Bits Format Description
DST_GPR 6:0 int(7) Destination GPR address to which result is written.
Specifies whether destination address is absolute or
relative to an index:
DST_REL (DR) 7 enum(1) | O ABSOLUTE: no relative addressing.
1 RELATIVE: add current loop index (aL) value to
this address.
Specifies which element of the result to write to
DST.XYZW. Can be used to mask elements when
writing to destination GPR:
0 SEL_X: use X element.
DST_SEL_X (DSX) 11:9 enum(3) y SEL_Y: use Y element.
DST_SEL_Y (DSY) 14:12 | enum(3) 5 SEL_Z: use Z element.
DST_SEL_Z (DS2) 17:15 | enum(3) 3 SEL_W: use W element.
DST_SEL_W (DSW) 20:18 | enum(3) 4 SEL_0: use constant 0.0.
5 SEL_1: use constant 1.0.
6 Reserved.
7 SEL_MASK: mask this element.
Constant level-of-detail (LOD) bias to add to the
LOD_BIAS 27:21 int(7) computed bias for this lookup. Twos-complement S3.4
fixed-point value with range [-4, 4).
COORD_TYPE_X (CTX) o8 enum(1) Specifies the type of source element: N .
COORD TYPE Y(OTY) | 25 | onumt) | O [EXUNNOTMALZED, Emertsin 0. dn)
COORD_TYPE_Z (CT2) 30 | enum(1) P Aabe.
1 TEX_NORMALIZED: Element is in [0,1]; repeat
COORD_TYPE_W (CTW) 31 enum(t) and mirror modes available.
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Related Microcode Formats
TEX_DWORDO
TEX _DWORD?2
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TEX_DWORD2
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Texture Fetch
Doubleword 2

This is the high-order (most-significant) doubleword in the 128-bit 4-tuple formed by
TEX_DWORDI[0,1,2] plus a doubleword filled with zeros, as described in Section 6 on page 69.

Access: Read-write.

31 29 28 26 25 23 22 20 19 15 14 10 9 5 4 0
S S S S
S S S S SAMPLER_ID OFFSET_Z OFFSET_Y OFFSET_X
W Z Y X
Field Bits Format Description
Value added to X element of texel address before
OFFSET_X 4:0 int(5) sampling (in texel space). S3.1 fixed-point value
ranging from [-8, 8).
Value added to Y element of texel address before
OFFSET_Y 9:5 int(5) sampling (in texel space). S3.1 fixed-point value
ranging from [-8, 8).
Value added to Z element of texel address before
OFFSET_Z 14:10 int(5) sampling (in texel space). S3.1 fixed-point value
ranging from [-8, 8).
SAMPLER_ID 19:15 int(5) _Sampler ID to use (specifies filter options, etc.). Value
in the range [0, 17].
Specifies the element source for SRC.XYZW:
SRC_SEL_X (SSX) 22:20 | enum(3) ? zgt—é zzz $ 2:222::
SRC_SEL_Y (SSY) 25:23 | enum(3) 5 SEL_Z: use 7 eIement.
SRC_SEL_Z (S8S2) 28:26 | enum(3) 3 SEL_W' use W elemer-n
SRC_SEL_W (SSW) 81:29 | enum(3) 4 SEL_O: use constant 0.0.
5 SEL_1: use constant 1.0.
Related Microcode Formats
TEX_DWORDO
TEX_DWORDI1
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