3Dlabs

GLINT MX™

Programmer’ s Reference
Manual

Issue 5

GLINT MX Programmer’s Reference Manual

The materiad in this document is the intellectual property of 3Dlabs. It is provided solely
for information. 'Y ou may not reproduce this document in whole or in part by any

means. While every care has been taken in the preparation of this document, 3Dlabs
accepts no liability for any consequences of itsuse. Our products are under continual
improvement and we reserve the right to change their specification without notice.

3Dlabs products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.

3Dlabsis the worldwide trading name of 3Dlabs Inc. Ltd.
3Dlabs, GLINT and PERMEDIA are registered trademarks of 3Dlabs.

OpenGL isatrademark of Silicon Graphics, Inc. The X Window System and PEX are
trademarks of the Massachusetts Institute of Technology. UNIX isaregistered
trademarks of UNIX System Laboratories. Microsoft Windows, Win32, Microsoft
Windows 95 and Microsoft Windows NT are trademarks of Microsoft Corp. Macintosh
and QuickDraw are trademarks of Apple Computers Inc.

All other trademarks are acknowledged.

© Copyright 3Dlabs Inc. Ltd. 1997. All rights reserved worldwide.

Email: info@3Dlabs.com
WWW: http://www.3Dlabs.com

3Dlabs Inc.

181 Metro Drive, Suite 520,
San Jose, CA 95110
United States
Tel: (408) 436 3455
Fax: (408) 436 3458

3Dlabs Ltd.
Meadlake Place
Thorpe Lea Road. Egham
Surrey, TW20 8HE
United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3Dlabs

Proprietary and Confidential i

GLINT MX Programmer’s Reference Manual

Change History
Documen |Issue |Date Change
t
148.2.1 1 New Manua
148.2.1 2& 3 Minor corrections and style changes.
148.2.1 4 Typographical changes. First print run.
148.2.1 5 13 Dec 97 | Fixed 5.3.7 and 5.3.8 with respect to GLINT 300SX.
Corrected 5.5.3. Minor typographical changes.

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Contents

Contents
I I 1 0T [V Tox o o PSSR 1
1.1 HOW tO USE thiSMENUALcveeeieieee et e nne e 1
1.2 FUIher REAAINGcoiiieeiieeee ettt st 2
2. AT CRITECTUI € OVEN VIBW.....c..ee ettt sttt te e steeae e s e beentesneesreenseeneenseennenneenns 3
2.1 FUNCLIONEL OVEINVIBW ..ottt sttt saeesae e e sneesbesneesreeneeennens 3
3. Programming MOEooioiiie et sre et e e ne e reenneene e 6
3.1 GLINT @S aREQISIEN Il .ot 6
B2 GLINT /O INEITACE ..ottt 9
G ® 01 g [01 1o SRR 19
I3RS Y 10 (10114 1 o o S 19
3.5 HOSt FramebUFfer BYPaSS.......cooeeierieiieieeiesiie ettt et s 20
3.6 HOSt LOCAIDUITEr BYPASS.....iceeitieiecie st ettt eee et ae e ae e s e e 21
3.7 RegISter REA DACKcoivieieiieie ettt 22
Rl = VA (SRS TIT= o] o1 oo 22
3.9 Red and BlUE SWaPPINGcooeiiiiiiieiesieesieeee sttt sae e sbe e e 23
4. Hardwar € Data SEFUCLUE S......ccueciueiiesieeie e sieese e eestesee e e saeeeessaesseeseesseesseessesseesseensesneeses 25
o= 0 | 1 = S PSRPR 25
A = 011= o1 1 = S 33
4.3 DOUDIE BUFFEITNG. ..ttt sttt sbe e e 41
R T =T] a1 Toisy oo =10 010 011 o S 48
5.1 The GraphicS HYPErPIPEIINEcoiiiiiicieeee e 48
5.2 A Gouraud Shaded Triangle.........ccoooeieeieeeceere e 51
5.3 RESLENZEN UNIT.....eiiiieieiieeeee ettt ettt b e e nbe e e 57
oIS o= o U o S 86
5.5 SHPPIE UNIT....ceieeiee et sttt st et e s sbe e nne e 89
S !o gl 51 7N U 1 9
A= U =31 F=To o 1 o SR 99
o381 oo U o OSSR 127
5.9 Antialias APPHCALION UNIT.......cciiiiiieiieieee et sne e 131
5.10 AIPhATESE UNIt...c.eoiiiiiiiiiiiiieieeese sttt 134
5.11 Localbuffer Read/WIte UNIt..........coiiiiiiiiiinee et 135
5.12 Pixel OWNErship TESE UNIt.....c.ccceiieeieieseee e e s sae et nne e 141
5.13 SEENCH TESE UNIt ..ottt et nne e 143
I A D= o 1 g I =S A o RSSO 147
5.15 Framebuffer Read/Write UNitcoooiiiiiriiie e 152
5.16 AIPhaBlend UNit...........ccceiieiiie ettt nne e 170
5.17 Color FOrmMat UNiT......cc.oiiiiieiieiesiee e st 176
5.18 LOQICal OP UNIt......ccieiieiiiiieie e steesie e e e e st ee e ae e sseeae s e e sseenaesneenseeneens 181
5.19 Framebuffer WITEmMasKS........c.ooiiirieeee et 184
5.20 HOSE OUL UNIT ...ttt sttt nn e 186
O N 1A= 172 o o OSSR 192

3Dlabs Proprietary and Confidential i

Contents GLINT MX Programmer’s Reference Manual

6.1 INItTAlIZING GLINT L. et nne e 192
6.2 SyStem INITTAlIZALION.ccueiieiieseee e et nne e 192
6.3 WINAOW INITTAlIZATON.cceiieiiiie st 197
6.4 APPliCatioN INITIAlIZALION........cc.eiieeieeeeieee et s nre e 199
7. MUITI-GLINT SYSLEIMS ..ottt b b e ens 200
7.1 OVEBIVIBIW ...ttt sttt sttt ettt s e st e et st e s be e te s ae e sbeebesneesbeenbesneesreensennnans 200
7.2 Setting up the GraphiCS PrOCESSOT.........ccveiiiiieieee et ee e nae e 201
7.3 The HOSt CONNECLION.ccuiiiiriiesieeie ettt st be et ne e sreenne e 203
7.4 The Vide0 CONNECHION.......cciiieiereistesieste sttt e b e e se e st sbesresnenneas 203
7.5 PEITOMMANCE. ..ottt s e e beenbe s e e sreenbenneens 203
7.6 A Gereral Purpose Dual GLINT SySteM......ccccoieieieieee et eee et 204
8. PEr TOrMANCE TIPS .tieuiiitieiteeie ettt ettt s et e st e s be e besae e sbeebe s st e sbeenbesneesreenseennens 205
8.1 VRAM BIOCK WIILES.coueiuirieeieieiesie sttt st 205
8.2 Fast double buffering in @WINAOW ... e 206
8.3 Improving PCI bus bandwidth for Programmed I/O and DMAccccoovevevieeieennnne 206
8.4 PCI burst transfers under Programmed /Oooeeiiiiinieie e 206
8.5 Using PCI Disconnect under Programmed /Occocceveevenieeseeie e 207
8.6 Using bus Mastership (DIMA) ...t sne e 207
8.7 Disabling UNITS NOL IN USE.....cueeiueiieiieeiieeiesteesieseesteee s e essae e sseeae e e sseenaesneesseeneens 207
8.8 Rapidly clearing the localbUITer - L.......cooiiiiieee e 208
8.9 Rapidly clearing the |oCalbUITEr - 2........cooiiee e 208
8.10 Rapid clear of the localbuffer & framebuffer..........ccoviiiiriiec e 208
8.11 Use of the framebuffer (or localbuffer) bypass.........ccccvvevevcevenie e 208
8.12 Loading registers in UNit OFQEYcccooeeiieienie et 209
8.13 Avoiding Unnecessary Register UPAaLes.........ccovevueeeeieeiieneesieeseseesie e see e 209
8.14 Miscellaneous Generic GraphiCS TiPS.......vevereereriieniesee et 209
Appendix A. Graphics Register REFEINENCEccvveeiiee e 211
Appendix B. PSeUdOCOdE DEFINITIONScc.oieiiieiiiiesiee et 336
Appendix C. Screen WidthS TabIe.......c.ooviieiiee e 338
ApPpPendiX D. REGISLEr TADIEcouieiecieeee et s 339
Appendix E. Software CompatibDility.......ccccceiieiiiierice e 347
AppendiX F. ACCUrate RENAENTNGcoiuiiiiiieiieie ettt s 348
(] 01 YU 356
T = SRR 359

v Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Contents

Figures

Figure 2.1 High level blocksin the GLINT architeCture............ccccevveeieeiesceseee e 4
Figure 3.1 DMA Tag DeSCription FOIMAEL.........cccuieeriieiierie e see st ie e see s s nee e 12
Figure 3.2 INdeXed FOIMELccuiiieiece ettt e e te e e saeenteenaesneenneennens 14
Figure 4.1 LocalBUffer Dala FOMMELcocueiiiiiiiienieeie ettt s nne e 26
Figure 4.2 Typical Part Population of the LOCAIBUFTEYccccveeiieiecie e 26
Figure 4.3 Example Memory Organi ZaHION..........c.couereeriereereenie e steesiesee s seesseeseeseesreesaesneans 34
FIQUrE 5.1 HYPEIPIPEIINE ..ottt ettt esae e teenaesneenneennens 49
Figure 5.2 EXampPle TrHaNgIe.......c.eo ittt sttt s 51
Figure 5.3 Screen aligned trapezoid and flat topped triangle........c.cccveeeveveeiecce e 51
Figure 5.4 Dominant and Subordinate Sides of aTrangle.........ccceveeiernnienenesee e 52
Figure 5.5 RaSteriZiNg @triangle.coveoiieericie e e s te e sreenneeneens 58
FIQUIE 5.6 POIYIING ...ttt sttt ae et s s reenne e 60
Figure 5.7 ANLaliaSed LINEccveiecieece et e sttt esaa e teenaesneenneeneens 62
Figure 5.8 Antialiased POINE...........coiiiiirie ettt sbe e s sreenne e 64
Figure 5.9 Relationship between Bitmask and Scanning DIreCtionscccovevvereesveinseenennens 68
Figure 5.10 GLINT COPY OPEIaLIONcccueieerieeiiaeesteeieseesieeseesseessesssessessseessesessseessessesssesssesssnns 72
Figure 5.11 Real Coordinate REPreSENtaliONccevveiiereereerieeeeseeiesee e e e ee e e e eeesseeneeeneens 75
Figure 5.12 Screen SCissor and USer SCISSOI TESES......cccuviiirieerieeeesieeie st siee e sree e e 87
FiQUre 5.13 SCISSON REJISIENcuecieeteeieeiesee st este e e e e e re e te e teetesseesse e seeseesseenteenaesreensennnens 87
Figure 5.14 LineStippl M OGEREGISIESooeiiiiiiiiieieee et s 90
Figure 5.15 AreaStippleM OJEREGISLENccueiieeeeereee e e e e e e e sre e aesreenneennens 91
Figure 5.16 LoadLineStippleCOUNTEr SIEQISLENccccoiieiierierieeie et ie st sae e 91
Figure 5.17 GLINT Color REPIESENTALIONcvveveeeeeieeieceesieeteeeesteesieseesree e eeesseesseeaesseesseeneens 9
Figure 5.18 Color INtErPOIaLiON........c.eeiieieiieseee et sreenae e 94
Figure 5.19 Fixed Point ColOr FOMMELcccoiveiieieiieie e seesie et eee e se e aeeaesneenneeneens 95
Figure 5.20 COlOrDDAMOUEREGISIEScoiieiieiieieesieeie ettt st st sbeeseesneesreenaesneens 96
Figure 5.21 TextureAddresSSMOGEREGISLEScccevieiirieiiee e 104
Figure 5.22 Texture PatCh EXaMPIE........cc.ooiiieee e e 109
Figure 5.23 TextureReadM OUEREJISLENcccueiieieee e e e e 115
Figure 5.24 TextureFOrMatREJISIENcoeiiiiiee e 115
Figure 5.25 TextureColorMOUEREJISIENcccuviiecece et 120
Figure 5.26 Fog Interpolation OVer A TrHaNGI@coce i e 127
Figure 5.27 Fog Interpolant Fixed POint FOIMEL............ccooveieieereeie e 128
Figure 5.28 RGBA FOQQING .. .eevtiueeierierieesieeieseesteseesieeste e sseestesessseesseseesseessesseesseensesnsessesnes 129
Figure 5.29 FOOMOAEREJISIENcoiuieieieecie ettt e esreenneeneenneenes 129
Figure 5.30 POlYgON ANTIAli@SiNg.......ccceeeereriieiiesieeie ettt see e s e sneesneeeas 132
Figure 5.31 AntialiaSMOUEREJISLENcceeieeieeieieee et ae e sneees 132
Figure 5.32 AlphaTeStMOUEREGISLENcoiiiiiieeieeie e s 134
Figure 5.33 LBREAOM OUEREGISLENcoieeieeeieceesie e sieesteete st eee e saeeee e aeeneesneenneeneesneeneas 138
Figure 5.34 LBWIHEMOUEREGISIENcoiiiieiiicieeee et st 139
Figure 5.35 LBReadFormat/ LBWriteFormatRegister Layoutceoveeeeeeenveeeseeseeee e 139
Figure 5.36 WINAOW REJISIESc.coiiiiiiiiieee ettt sttt nne s 141
Figure 5.37 StENCIIM OUEREGISLENccveieeese et e et sae e e nne e sneenes 145
Figure 5.38 SENCIIDalaREGISIENcveeeeieeesieeeeee ettt sre e 145
(T[T CRSRCIC N BI= o1 1 g1 = g'0T0] K= 1 o o S 148
Figure 5.40 Depth Derivative FOrMEL.ccocoiieienieiieieeieeee e e 148

3Dlabs Proprietary and Confidential v

Contents GLINT MX Programmer’s Reference Manual

Figure 5.41 DepthMOGEREGISESooiiiieieee e et 149
Figure 5.42 FBREadMOUEREGISIENoiueiieiiiceeiee e et 161
Figure 5.43 PatterNRAMM OU0EREGISIEccueeieiieiiee e eie e sae e reenae e e sneeneas 162
Figure 5.44 FBWIITEMOUEREJISIENoiiiiiiiiiieerieeie ettt s 162
Figure 5.45 AlphaBlendMOGEREJISIENcc.eeieiiecece e 172
Figure 5.46 DIitherMOGEREGISIENooiiiieieee e e sre s 179
Figure 5.47 LogiCalOPMOUEREGISIENcoieeieeeere ettt et sne e 182
Figure 5.48 FItErMOUEREGISIENccueiieieeieeie ettt bt s sre e 189
Figure 5.49 StatiStiCMOUEREJISIENcoieeieeecees et enneenas 189

Vi Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Contents

Tables

Table 4.1 Lengths/Positions of the Local Buffer Supported Fields..........cooeviieiieniininicee 25
TaDIE 4.2 COlOr FOMMEES.c.eiiieieeite ittt sttt bbb bt e e nee b et naesbenreas 38
Table 5.1 Command Register DESCIIPLIONS.........coieiuiiiiiieierie et snee e 77
Tabhle 5.2 RaSIENI ZEN REJISLEIS.......ccieeieeeesteeiieete st e ste et e e e e s reesae e e sse e beeseesseesseensesneesseeneenneenns 79
Table 5.3 Render Command Register FIalAS........oooiiiiiiiiiice e e 83
Table 5.4 Rasterizer MOOE REJISIENc.cciieiecee et enee e 85
Table 5.5 Color INterpolation REJISIEIScoiiiiiieieeee et 96
Table 5.6 Texture Interpolation REJISIENS.coveiieerice et 105
Table 5.7 OpenGL Flter MOUEScccoiiiieiie ettt sre e 106
Table 5.8 TextureReadM OJEREGISIENc.evieieee e 108
Table 5.9 Texel FOrmat REJISIENccci it 111
Table 5.10 Supported TEXEl FOIMELScccceeieeeeeesie e e e e e re e sreenne e 112
Table 5.11 One Component TEXEIS CONVEISIONcccuirieriereeieneesieseesee e see e sieseesseeseesneens 112
Table 5.12 Other Texture Read REJISLENSccveieeeeeece et 116
Table 5.13 TeXIUre FITEING. ...c.co it e see e 116
Table 5.14 AlphaMapTest ENADIE..........cooiiiieeeer e e 117
Table 5.15 Other Texture Color REQISLEIScooeriireeieie ettt e sae e 122
Table5.16 AlphaTest COmMPariSON TESISccueiierieeeerieeieseeste e e seeee e e e e sre e sreesseeneens 134
Table 5.17 Localbuffer Read/Write MOES.........cooiieiriiriirieseeesee s s 137
Table 5.18 Localbuffer CONfiQUIaLioNScoiveiirieerice e see s ee e nne e 138
Table 5.19 SEENCH FUNCHIONScueiiiieiiecie ettt e be e s nae e 143
Table 5.20 Possible Update Operations for Stencil Planes.........ccooceveeceiieveece e 143
Table 5.21 SLENCIl OPEIAiONScciuiieirieeiierie ettt ettt sre e re et seesbesneesreeseeeneens 144
Table 5.22 SEENCIH SOUMCES.......oiuiiiiieeiecieeee ettt b b sr e be e 144
Table 5.23 Depth CompPariSON MOUES..........ooieiiriiiierieeie ettt sree e enee s 147
Tahle 5.24 DEPIN SOUICES.ocueeieeeiieeesie ettt sttt ae e te e e e s te e sseesseeneeeseesseeneesneenseeneens 147
Table 5.25 Depth Interpolation REQISLENS........coieriiiierieie et 150
Table 5.26 Framebuffer Read/WIite MOUES..........ccooiriiirirceesiese e e 153
Table 5.27 PatterNRAMMOUE.........cooiieirieie ettt e be e sreesae e 156
Table 5.28 Pattern RAM shift and mask VaIUES............cccceririiiiiieeee e 159
Table 5.29 Source Blending FUNCLIONScooiiiiiiriee e 170
Table 5.30 Destination Blending FUNCLIONScccocueiirieiiesece e ee e s enae e 170
Table 5.31 Source Blending FUNCLIONSccoiiiiiiiiiieie e 171
Table 5.32 GLINT COlOr MOUES.......ccoiiiiiieiesie sttt sttt 174
Table 5.33 GLINT COlOr MOES.......ccciiieieiiesieeie sttt be e sreesae e 177
Table 5.34 DIther MENOUS..........ccoiiiee s s 178
Table 5.35 Ordered Dither MatriCes, 4X4 aNd 2X2.ccceveereeieneesieeiee e see s s see e 178
Table 5.36 LOGICal OPEraliONScceiiueieeiieiieseesteseesteeeeseesseesesseesseesesseesseesesseessesssesseessesnsens 182
TaDIe 5.37 FILEr MOUES........eoieieieie ettt st be et esreesee e 187

3Dlabs Proprietary and Confidential vii

GLINT MX Programmer’s Reference Manual Introduction

1.1

Introduction

The GLINT family of high performance graphics processors combine workstation class
3D graphics acceleration and state of the art 2D performance in asingle chip. All 3D
rendering operations are accelerated by GLINT, including Gouraud shading, depth
buffering, antidiasing, apha blending and texture mapping.

Implemented around a scaleable memory architecture, GLINT reduces the cost and
complexity of delivering high performance 3D graphics within awindowing
environment - making it ideal for awide range of graphics products from PC boardsto
high end workstation accelerators.

This document has been written as the reference for programmers and system designers
who wish to develop software to drive the GLINT MX. For convenience, the GLINT
MX isreferred to throughout simply as GLINT. There are separate manuals for the
GLINT 300SX, 500TX, GLINT Deltaand GLINT Gamma processors.

Familiarity with the OpenGL Specification will be useful when reading this document.

How to use this manual

Chapter 2 gives an overview of GLINT, its capabilities and architecture, and highlights
the key differences between the GLINT 500TX and GLINT MX.

Chapter 3 details the programming model for the chip, including the DMA interface, and
the host framebuffer and localbuffer bypass route.

Chapter 4 describes the hardware data structures that GLINT supports in the framebuffer
and the localbuffer.

Chapter 5 describes how to use GLINT for graphics rendering.
Chapter 6 describesthe initialization of GLINT.

Chapter 7 discusses programming systems with multiple GLINT chips.
Chapter 8 provides some programming performance tips.

Appendix A detailsthe GLINT graphics registers, their format and use.

Appendix B givesthe format used in the pseudocode examples throughout the
document.

Appendix C gives atable used to set up common screen widths.

Appendix D tabulatesthe GLINT registers showing the groupings which may be used to
improve performance when using DMA.

Appendix E details software compatibility issues between the GLINT 500TX and MX.
Appendix F gives example code for rendering atriangle accurately.

A Glossary of technical terms follows the Appendices.

An Index isincluded at the back of this manual.

3Dlabs

Proprietary and Confidential 1

Introduction

GLINT MX Programmer’s Reference Manual

1.2

Further Reading

GLINT MX Hardware Reference Manual, 3Dlabs
GLINT MX Architecture Overview, 3Dlabs

OpenGL Programming Guide, Jackie Neider et al, Reading MA:
Addison-Wesley

OpenGL Reference Manual, Jackie Neider et a, Reading MA:
Addison-Wesley

The OpenGL Graphics System: A Specification (Version 1.1), Mark
Segal and Kurt Akeley, SGI (see below)

PCI Local Bus Specification Rev2.1, 1Jun95, PCI Special Interest
Group, PO Box 14070, Hillsboro, Oregon 97214 (503-797-4207)

Multiprocessor Methods For Computer Graphics Rendering, Scott
Whitman, ISBN 0-86720-229-7

Microsoft WIN32 Software Development Kit 3.1, Microsoft

Windows NT 3.1 Graphics Programming, Emeryville CA, Ziff-Davis
Press

The X Window System, Sebastopol CA, O'Reilly & Associates Inc.

The X Window System Server, Elias Isragl and Erik Fortune, Digital
Press

Computer Graphics: Principles and Practice, James D. Foley et a,
Reading MA: Addison-Wesley

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Architecture Overview

2. Architecture Overview
2.1 Functional Overview
GLINT isasingle chip 3D graphics processor. It fully implements the functionality of
"The OpenGL Machine" from edge walk and span interpolation downwards through
fragment level processing including:
» Point, Line, Triangle and Bitmap primitives
* Hat and Gouraud shading
* Textureand Fog
* Antialiasing
e Scissor and Stipple
* Alphatest, Stencil test, Depth (Z) buffer test
* AlphaBlending
» Dithering
* Logica Operations
* Writemasks
Systemsusing GLINT can easily be configured to address a wide range of price,
performance and functionality points by smply tuning the externad memory design.
GLINT supports 4, 8, 16, 20 or 32-bit RGBA and 4 and 8-bit color index framebuffers.
The framebuffer can be a maximum of 32Mbytesin size.
3Dlabs Proprietary and Confidential 3

Architecture Overview

GLINT MX Programmer’ s Reference Manual

211 Block Diagram

Bus

BEPROM
Controls

Video Logic
Contrals

Localbuffer

Sared
Framdouffer
Control Sgnals

Framdouffer

Timing
Cortrd
Sgnals

GLINT MX Graphics Processor BExpanson
ROM Interface
Localbuffer External Video
Bypass Logic Interface
DMA Cocapatg Meamory
Conird Interface
Data Input
Fometter 7| FIFO [| _ Sared
Graphics Framebuffer
Core
Output Interface
FIFO
Framebuffer Framebuffer Mamory
VTG Video Timing
Interface Gagao
Figure2.1 High leve blocksin the GLINT architecture

The GLINT architecture consists of a Graphics Core augmented by 1/0 and memory
interfaces as shown in Figure 2.1 There are three external interfacesto GLINT: the Host
Bus Interface (PCl Local Bus), the Locabuffer Interface and the Framebuffer Interface.

The framebuffer incorporates:

Color buffer (optionally including back, left and right buffersin
addition to the front buffer) up to 32 bit RGBA

Overlay (optional)
Underlay (optional)

Window control buffer (optional)

The localbuffer (any or al of which can be duplicated for the overlays) incorporates:
Depth (2) buffer (optional) up to 32 bits
Stencil buffer (optional) up to 8 bits

Fast Clear Planes (optional) up to 8 planes
Pixel Ownership buffer (for optional Graphic IDs) up to 4 bits, to

support per pixel clipping

Texture Map Storage

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Architecture Overview

212

213

214

Host Interface

Conceptually GLINT can be viewed as aregister file. Control registers are primed with
the information required for a primitive, and then to start the chip drawing awriteis
made to a Command register.

Data can be provided to GLINT either using programmed 1/O through the FIFO, or
using the internal DMA channel. In addition to being able to set any of the standard
graphics registers, the GLINT DMA controller accepts data for some common groups of
registersin an auto-increment mode to maximize bandwidth. The DMA mode aso
allows a sequence of data entries to be written to the same register.

The chip also supports a bypass route to the framebuffer and to the localbuffer to allow
direct read/write of pixels, and implementation of algorithms not directly supported by
GLINT.

Task Switching

Where multiple applications wish to make simultaneous accessto GLINT, it isthe
responsibility of the software driving the chip to handle the loading of the correct state.
GLINT has been designed to support a number of different software architectures. For
instance some of the facilities available are:

» Synchronous operation means that a new task can load its context without waiting for
current rendering to complete

» All loadable state can be read back
» Sync command to flush al rendering which can be polled or return an interrupt

The GLINT Family

The GLINT MX is pin and software compatible with the GLINT 500TX. GLINT MX is
fully compatible with the GLINT Deltaand GLINT Gamma geometry pipeline
processors. The mgor enhancementsin the GLINT MX over the GLINT 500TX are:

Clock speed rated at 66 MHz

Gouraud shaded, Z buffered, 25 pixel polygon rate increased to 1M polygons/sec

Full hardware acceleration for per pixel, trilinear mipmapping

33M perspective correct mipmapped pixels/sec

16.5M perspective correct trilinear mipmapped pixels/sec

Full hardware compliance with OpenGL 1.1

Full hardware support for Direct3D and QuickDraw 3D

Support for HDTV screen resolutions, e.g. 1920x1080

Texture LUT increased in size to 256 entries

Bypass write access to Framebuffer increased to 100M bytes/sec
- Support for PCI 2.1 at 66MHz when connected to the GLINT Gamma secondary bus
The GLINT MX registers are a superset of those in the GLINT 500TX.

3Dlabs

Proprietary and Confidential 5

Programming Model GLINT MX Programmer’s Reference Manual

3.1

311

Programming Model

This chapter describes the programming model for GLINT. It describes the interface
conceptually rather than detailing specific registers and their exact usage. In depth
descriptions of how to program GLINT for specific drawing operations may be found in
later chapters.

GLINT as a Register file

The simplest way to view the interface to GLINT isasaflat block of memory-mapped
registers (i.e. aregister file). Thisregister file appears as part of Region 0 of the PCI
address map for GLINT. Seethe GLINT MX Hardware Reference Manual for details of
this address map.

When a GLINT host software driver isinitialized it can map the register file into its
address space. Each register has an associated address tag, giving its offset from the base
of the register file (since al registers reside on a 64-bit boundary, the tag offset is
measured in multiples of 8 bytes). The most straightforward way to load avalueinto a
register isto write the data to its mapped address. In redlity the chip interface comprises
a 32 entry deep FIFO, and each write to aregister causes the written value and the
register’ s address tag to be written as a new entry in the FIFO.

Programming GLINT to draw a primitive consists of writing initial values to the
appropriate registers followed by awrite to acommand register. The last write triggers
the start of rendering.

GLINT has afew hundred registers. All registers are 32 bits wide and should be 32-bit
addressed. Many registers are split into bit fields.

Note: bit Oistheleast significant bit.

This document describesin detail the graphics registers shown in the text as bold font
(for example: AlphaBlendMode). In addition there are registers related to initialization
and 1/0, which are documented in the GLINT MX Hardware Reference Manual. Where
these registers are referred to in the text of this manual, they are shown initalic font, for
example: InFIFOSpace.

In future chip revisions the register file may be extended and currently unused bitsin
certain registers may be assigned new meanings. Software devel opers should ensure that
only defined registers are written to and that undefined bitsin registers are aways
written as zeros. The only exception to thisruleisthat in certain registersit’s convenient
to allow sign extended values to be written. These fields are marked "not used” in
Appendix A.

Register Types

GLINT has three main types of register:
* Control Registers

e Command Registers

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

* Interna Registers

Control Registers are updated only by the host - the chip effectively uses them as read-
only registers. Examples of control registers are the Scissor Clip unit min and max
registers. Once initialized by the hogt, the chip only reads these registers to determine
the scissor clip extents.

Command Registers are those which, when written to, typically cause the chip to start
rendering (some command registers such as ResetPickResult or Sync do not initiate
rendering). Normally, the host will initialize the appropriate control registers and then
write to a command register to initiate drawing. There are two types of command
registers. begin-draw and continue-draw. Begin-draw commands cause rendering to start
with those values specified by the control registers. Continue draw commands cause
drawing to continue with internal register values as they were when the previous
drawing operation completed. Making use of continue-draw commands can significantly
reduce the amount of data that has to be loaded into GLINT when drawing multiple
connected objects such as polylines. Examples of command registers include the Render
and ContinueNewL ine registers.

Note: For convenience in this document we often refer to "sending a Render command to
GLINT" rather than saying "the Render Command register is written to, which
initiates drawing".

Internal Registers are not accessible to host software. They are used internaly by the
chip to keep track of changing values. Some control registers have corresponding
internal registers. When a begin-draw command is sent and before rendering starts, the
internal registers are updated with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not happen and drawing continues
with the current values in the internal registers. For example, if alineis being drawn
then the StartXDomand StartY control registers specify the (X, y) coordinates of the first
point in the line. When a begin-draw command is sent these values are copied into
internal registers. Asthe line drawing progresses these internal registers are updated to
contain the (x, y) coordinates of the pixel being drawn. When drawing has completed the
internal registers contain the (X, y) coordinates of the next point that would have been
drawn. If a continue-draw command is now given thesefina (x, y) internal values are
not modified and further drawing uses these values. If a begin-draw command had been
used the internal registers would have been re-loaded from the StartXDomand StartY
registers.

For the most part internal registers can be ignored. It is helpful to appreciate that they
exist in order to understand the continue-draw commands.

3.1.2 Efficiency Issues and Register Types

Software devel opers wishing to write device drivers for GLINT should become familiar
with the different types of registers. Some control registers such as the StartX and StartY
registers have to be updated for almost every primitive whereas other control registers
such asthe ScissorMaxXY or the Logica OpMode can be updated much less frequently.
Pre-loading of the appropriate control registers can reduce the amount of data that has to
be loaded into the chip for a given primitive thus improving efficiency. In addition, as

3Dlabs Proprietary and Confidential 7

Programming Model GLINT MX Programmer’s Reference Manual

described above, the final valuesin internal registers can sometimes be used for
subsequent drawing operations.

Thetable in Appendix D lists the graphics registers according to their type.

Due to the structure of the internal HyperPipeline, when several graphics control
registers are being loaded, it is dightly more efficient to load them in the order listed in
Appendix D. For instance registers in the rasterizer should be loaded before registersin

the GID/Stencil/Depth unit.

8 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

3.2

321

322

GLINT /O Interface

There are anumber of ways of loading GLINT registers for a given context:
* Thehost writes a value to the mapped address of the register

* The host writes address-tag/data pairs into a host memory buffer and
uses the on-chip DMA to transfer this data to the FIFO.

* Thehost can perform a Block Command Transfer by writing address
and data values to the FIFO interface registers.

In cases where the host writes data values directly to the chip (viathe register file) it has
to worry about FIFO overflow (unless PCI Disconnect is enabled). The InFIFOSpace
register indicates how many free entries remain in the FIFO. Before writing to any
register the host must ensure that there is enough space left in the FIFO. The valuesin
this register can be read at any time. When using DMA, the DMA controller will
automatically ensure that there is room in the FIFO before it performs further transfers.
Thus a buffer of any size up to 64K, 32bit words, can be passed to the DMA controller.
The FIFO and DMA controller are described in more detail below.

PCI Disconnect

The PCI bus protocol incorporates a feature known as PCI Disconnect, which is
supported by GLINT. PCI Disconnect is enabled by writing to bit zero of the
DisconnectControl register which is at offset 0x68 in PCI Region0. Once the GLINT is
in thismode, if the host processor attempts to write to the full FIFO then instead of the
write being lost, the GLINT chip will assert PCI Disconnect which will cause the host
processor to keep retrying the write cycle until it succeeds.

Thisfeature allows faster download of datato GLINT, since the host need not poll the
InFIFOSpace register but should be used with care since whenever the PCI Disconnect
is asserted the bus is effectively hogged by the host processor until such time as the
GLINT freesup an entry inits FIFO. In genera this mode should only be used either for
operations where it is known that the GLINT can consume data faster than the host can
generate it, or where there are no time critical peripherals sharing the PCI bus.

Note: If a GLINT Delta or GLINT Gamma geometry processor isin front of the GLINT
MX then the PCl Disconnect must always be set on the GLINT MX for the
secondary PCI bus. This means that the host PClI bus Disconnect is then
controlled by the GLINT Delta, whose DisconnectControl register is at 0x868 in
PCI Region 0 of the GLINT Delta.

FIFO control

The description above considered the GLINT interface to be aregister file. More
precisely, when a data value is written to aregister this value and the address tag for that
register are combined and put into the FIFO as a new entry. The actua register is not
updated until GLINT processes this entry. In the case where GLINT is busy performing
atime consuming operation (e.g. drawing alarge polygon), and not draining the FIFO
very quickly, it is possible for the FIFO to become full. If awriteto aregister is

3Dlabs

Proprietary and Confidential 9

Programming Model GLINT MX Programmer’s Reference Manual

323

performed when the FIFO is full no entry is put into the FIFO and that writeis
effectively lost (unless PCI Disconnect is enabled as described above).

Theinput FIFO is 32 entries deep and each entry consists of atag/data pair. The
InFIFOSpace register can be read to determine how many entries are free. The value
returned by this register will never be greater than 32.

An example of loading GLINT registers using the FIFO is given below. The pseudocode
fillsaseries of rectangles. Details of the conventions used in the pseudocode examples
may be found in Appendix B.

Assume that the data to draw a single rectangle consists of 8 words (including the
Render command).

Note: Some data values arein 16.16 fixed point format.
for (i = 0; i < nrects; ++i) {
whil e (*InFl FOSpace < 8)
; /!l wait for room

Start XDon(rect ->x1 << 16);

Start XSub(rect->x2 << 16);

dXDom(0x0) ;

dXSub(0x0) ;

Count (rect->y2 - rect->yl);

YStart(rect->yl << 16);

dY(1 << 16);

Render (GLI NT_TRAPEZO D_PRI M TI VE) ;
}

To check the status of the FIFO before every writeis very inefficient so it is checked
before loading the datafor each rectangle. Since the FIFO is 32 entries deep, afurther
optimization isto wait for all 32 entries to be free after every second rectangle. Further
optimizations can be made by moving dXDom, dXSub and dY outside the loop (as they
are constant for each rectangle) and doing the FIFO wait after every third rectangle.

The InFIFOSpace FIFO control register contains a count of the number of entries
currently freein the FIFO. The chip increments this register for each entry it removes
from the FIFO and decrements it every time the host puts an entry in the FIFO.

The DMA Interface

Loading registers directly viathe FIFO is often an inefficient way to download data to
GLINT. Given that the FIFO can accommodate only a small number of entries, GLINT
has to be frequently interrogated to determine how much spaceis left. Also, consider the
situation where a given API function requires alarge amount of data to be sent to
GLINT. If the FIFO iswritten directly then areturn from this function is not possible
until amost al the data has been consumed by GLINT. This may take sometime
depending on the types of primitives being drawn.

To avoid these problems GLINT provides an on-chip DMA controller which can be used
to load data from arbitrary sized (< 64K 32-bit words) host buffersinto the FIFO. At
chip reset the MasterEnable bit in the CFGCommand register must be set to allow DMA

10

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

to operate (see the GLINT MX Hardware Reference Manual for further details). Then,
for the smplest form of DMA, the host software has to prepare a host buffer containing
register address tag descriptions and data values. The host then writes the base address
of this buffer to the DMAAddress register and the count of the number of words to
transfer to the DMACount register. Writing to the DMACount register starts the DMA
transfer and the host can now perform other work. In generd, if the complete set of
rendering commands required by a given call to adriver function can be loaded into a
single DMA buffer, then the driver function can return. Meanwhile, in parallel, GLINT
is reading data from the host buffer and loading it into its FIFO. FIFO overflow never
occurs since the DMA controller automatically waits until there is room in the FIFO
before doing any transfers.

The only restriction on the use of DMA control registersisthat before attempting to
reload the DMACount register the host software must wait until previous DMA has
completed. It isvalid to load the DMAAddress register while the previous DMA isin
progress since the address is latched internally at the start of the DMA transfer. Many
display driver functions can be implemented using the following skeleton structure:

do any pre-work

DMAAddr ess(address of dma_buffer);

whil e (*DMACount != 0)

; [l wait for DVA to conplete
/1 note use a backoff algorithm here

copy render data into DMA buffer

DMACount (nurmber of words in DMA buffer)

return

Using DMA leaves the host free to return to the application, whilein parallel, GLINT is
performing the DMA and drawing. This can increase performance significantly over
loading a FIFO directly. In addition, some algorithms require that data be loaded
multiple times (e.g. drawing the same object across multiple clipping rectangles). Since
the GLINT DMA only reads the buffer data, it can be downloaded many times ssmply

by restarting the DMA. This can be very beneficia if composing the buffer dataisatime
consuming task.

A further optimization is to use a double buffered mechanism with two DMA buffers.
This allows the second buffer to be filled before waiting for the previous DMA to
complete thus further improving the parallelism between host and GLINT processing.

do any pre-work

get free DMA buffer and mark as in use

put render data into this new buffer

DMAAddr ess(addr ess of new buffer)

whil e (*DMACount != 0)

; [l wait for DVA to conplete
/! using a back off algorithm

DMACount (nurmber of words in new buffer)

mark the old buffer as free

return

In general the DMA buffer format consists of a 32-bit address tag description word
followed by one or more datawords. The DMA buffer consists of one or more sets of

3Dlabs Proprietary and Confidential 11

Programming Model GLINT MX Programmer’s Reference Manual

these formats. The following paragraphs describe the different types of tag description
words that can be used.

DMA Tag Description Format

When DMA is performed each 32-bit tag description in the DMA buffer conformsto the
following format.

31 24 16 8 0

Count or Mask reserved Address Tag

Mode
0=Holdtag

1 = Increment tag
2 =Indexed tag

3 = Resarved

Figure3.1 DMA Tag Description For mat

There are 3 different tag addressing modes for DMA: hold, increment and indexed. The
different DMA modes are provided to reduce the amount of data which needs to be
transferred, hence making better use of the available DMA bandwidth. Each of theseis
described in the following sections. Each row in the following diagrams represents a 32-
bit value in the DMA buffer. The address tag for each register is given in the Graphics
Register Reference Appendix A.

Hold Format

address-tag with Count=n-1, Mode=0
value 1

valuen

In this format the 32-bit tag description contains atag value and a count specifying the
number of datawords following in the buffer. The DMA controller writes each of the
data words to the same address tag. For example, thisis useful for image download
where pixel datais continuously written to the Color register. The bottom 9 bits specify
the register to which the data should be written; the high-order 16 bits specify the
number of data words (minus 1) which follow in the buffer and which should be written
to the address tag

Note: The 2-bit mode field for this format is zero so a given tag vaue can smply be
loaded into the low order 16 bits).

A special case of thisformat is where the top 16 bits are zero indicating that asingle
data value follows the tag (i.e. the 32-bit tag description is simply the address tag value
itself). This allows ssmple DMA buffers to be constructed which consist of tag/data
pairs. For example to render a horizontal span 10 pixels long starting from (2,5) the
DMA buffer could look like this:

12

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

StartXDom
2<<16
StartY
5<<16
StartXSub
12 << 16
Count

1
Render

(trapezoid render command)

I ncrement Format

address-tag with Count=n-1, Mode=1
value 1

valuen

Thisformat is similar to the hold format except that as each data value is loaded the
address tag isincremented (the value in the DMA buffer is not changed; GLINT updates
an internal copy). Thus, this mode allows contiguous GLINT registers to be loaded by
specifying asingle 32-bit tag value followed by a data word for each register. The low-
order 9 bits specify the address tag of the first register to be loaded. The 2 bit mode field
isset to 1 and the high-order 16 bits are set to the count (minus 1) of the number of
registers to update. To enable use of thisformat, the GLINT register file has been
organized so that registers which are frequently loaded together have adjacent address
tags. For example, the 32 AreaStipplePattern registers can be loaded as follows:
AreaStipplePattern0, Count=31, Mode=1
row O bits

row 1 bits

row 31 bits

Indexed Format

GLINT addresstags are 9 bit values. For the purposes of the Indexed DMA Format they
are organized into major groups and within each group there are up to 16 tags. The low-
order 4 bits of atag give its offset within the group. The high-order 5 bits give the major
group number. Appendix D Register Table, lists the individual registers with their Mg or
Group and Offset.

8 4 0
Major Group Offset

Figure 3.2 Indexed Format

3Dlabs Proprietary and Confidential 13

Programming Model

Thisformat allows up to 16 registers within a group to be loaded while still only
specifying a single address tag description word.
address tag with Mask, Mode=2
value 1

valuen

If the Mode of the address tag description word is set to indexed mode then the high-
order 16 hits are used as a mask to indicate which registers within the group are to be
used. The bottom 4 bits of the address tag description word are unused. The group is
specified by bits 4 to 8. Each bit in the mask is used to represent a unique tag within the
group. If abit is set then the corresponding register will be loaded. The number of bits
set in the mask determines the number of data words that should be following the tag
description word in the DMA buffer. The datais stored in order of increasing
corresponding address tag. For example,
0x003280F0

value 1

value 2

value 3

The Mode bits are set to 2 so thisisindexed mode. The Mask field (0x0032) has 3 bits
set so there are three data words following the tag description word. Bits 1, 4 and 5 are
set so thetag offsetsare 1, 4 and 5. The magjor group is given by the bits 4-8 which are
OxOF (in indexed mode bits 0-3 are ignored). Thus the actual registers to update have
address tags OxOF1, 0xOF4 and OxOF5. These are updated with value 1, value 2 and
value 3 respectively.

DMA Example

The following pseudo-code shows the previous example of drawing a series of
rectangles but this time using the DMA controller. This example uses asingle DMA
buffer and the ssmplest Hold Mode for the tag description words in the buffer.

Ul NT32 *pbuf ;

DMAAddr ess(physi cal address of dma_buffer)
whil e (*DMACount != 0)

; /!l wait for DMA to conplete
pbuf = dnma_buffer;

*pbuf ++ = A i nt TagdXDom

*pbuf ++ = 0;

*pbuf ++ = d i nt TagdXSub;

*pbuf ++ = 0;

*pbuf ++ = d i nt Tagdy;

*pbuf ++ = 1 << 16;

for (i = 0; i < nrects; ++i) {

GLINT MX Programmer’s Reference Manual

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

*pbuf ++ = d i nt TagSt art XDom

*pbuf ++ = rect->x1 << 16; // Start doni nant edge
*pbuf ++ = dint TagSt art XSub

*pbuf ++ = rect->x2 << 16; // Start of subordinate
*pbuf ++ = d i nt TagCount ;

*pbuf ++ = rect->y2 - rect->yl;

*pbuf ++ = dint TagYStart;

*pbuf ++ = rect->yl << 16;

*pbuf ++ = d i nt TagRender;

*pbuf ++ = GLI NT_TRAPEZO D_PRI M TI VE;

}
/[l initiate DVA
DMACount ((i nt) (pbuf - dma_buffer))

The example assumes that a host buffer has been previoudy allocated and is pointed at
by “dma_buffer”.

DMA Buffer Addresses

Host software must generate the correct DMA buffer address for the GLINT DMA
controller. Normally, this means that the address passed to GLINT must be the physical
address of the DMA buffer in host memory. The buffer must also reside at contiguous
physical addresses as accessed by GLINT. On a system which uses virtua memory for
the address space of atask, some method of allocating contiguous physical memory, and
mapping this into the address space of atask, must be used.

If the virtual memory buffer maps to norcontiguous physical memory then the buffer
must be divided into sets of contiguous physical memory pages and each of these sets
transferred separately. In such a situation the whole DMA buffer cannot be transferred in
one go; the host software must wait for each set to be transferred. Often the best way to
handle these fragmented transfersis via an interrupt handler.

DMA Interrupts

GLINT providesinterrupt support, as an alternative means of determining when aDMA
transfer is complete. If enabled, the interrupt is generated whenever the DMA Count
register changes from having a non-zero to having a zero value. Since the DMA Count
register is decremented every time adataitem is transferred from the DMA buffer this
happens when the last dataitem is transferred from the DMA buffer.

To enable the DMA interrupt, the DM AlnterruptEnable bit must be set in the IntEnable
register. The interrupt handler should check the DMAFIag bit in the IntFlags register to
determine that a DMA interrupt has actually occurred. To clear the interrupt aword
should be written to the IntFags register with the DMAFIag bit set to one.

A typical use of DMA interrupts might be as follows:

prepare DVA buffer

DMACount (n) ; /] start a DMA transfer

prepare next DMA buffer

while (*DMACount !'= 0) {
mask interrupts
set DVA Interrupt Enable bit in IntEnable register
sl eep on interrupt handl er wake up

3Dlabs Proprietary and Confidential 15

Programming Model GLINT MX Programmer’s Reference Manual

324

unmask interrupts

}
DMACount (n) /]l start the next DMA sequence

Theinterrupt handler could then be:

if (*IntFlags & DMA Flag bit) {
reset DMA Flag bit in IntFl ags
send wake up to main task

}

Interrupts are complicated and depend on the facilities provided by the host operating
system. The above pseudocode only hints at the system detalls.

This scheme frees the processor for other work while DMA is being completed. Since
the overhead of handling an interrupt is often quite high for the host processor, the
scheme should be tuned to alow a period of polling before leeping on the interrupt.

Output FIFO and Graphics Processor FIFO Interface

To read data back from GLINT an output FIFO is provided. Each entry in thisFIFO is
32-bitswide and it can hold tag or data values. Thusits format is unlike the input FIFO
whose entries are aways tag/data pairs (we can think of each entry in the input FIFO as
being 41 bits wide — 9 hits for the tag and 32 bits for the data). The type of data written
by GLINT to the output FIFO is controlled by the FilterMode register. This register
allowsfiltering of output data in various categories including the following:

» Depth: output in this category results from an image upload of the
Depth buffer.

» Stencil: output in this category results from an image upload of the
Stencil buffer.

» Color: output in this category results from an image upload of the
framebuffer.

» Synchronization: synchronization datais sent in response to a Sync
command.

The data for the FilterMode register consists of 2 bits per category. If the least
significant of these two bitsis set (0x1) then output of the register tag for that category is
enabled; if the most significant bit is set (0x2) then output of the data for that category is
enabled. Both tag and data output can be enabled at the same time. In this case thetag is
written first to the FIFO followed by the data. The FilterMode register isdescribed in
more detail in section 85.20.

For example, to perform an image upload from the framebuffer, the FilterM ode register
should have data output enabled for the Color category. Then, the rectangular areato be
uploaded should be described to the rasterizer. Each pixel that isread from the
framebuffer will then be placed into the output FIFO. If the output FIFO becomes full,
then GLINT will block internally until space becomes available. It isthe programmer’s
responsibility to read all data from the output FIFO. For example, it isimportant to know

16

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

how many pixels should result from an image upload and to read exactly this many from
the FIFO.

To read data from the output FIFO the OutputFIFOWords register should first be read to
determine the number of entriesin the FIFO (reading from the FIFO when it is empty
returns undefined data). Then this many 32-bit data items are read from the FIFO. This
procedure is repeated until al the expected data or tag items have been read. The address
of the output FIFO is described below.

NB all expected data must be read back. GLINT will block if the FIFO becomes full.
Programmers must be careful to avoid the deadlock condition that will result if the host
iswaiting for space to become free in the input FIFO while GLINT iswaiting for the
host to read data from the output FIFO.

Graphics Processor FIFO Interface

GLINT has a sequence of 1K x 32 bit addresses in the PCI Region 0 address map called
the Graphi cs Processor FIFO Interface. To read from the output FIFO any addressin this
range can be read (normally a program will choose the first address and use this as the
address for the output FIFO). All 32-bit addresses in this region perform the same
function — the range of addressesis provided for data transfer schemes which force the
use of incrementing addresses.

Writing to alocation in this address range provides raw access to the input FIFO. Again,
the first addressis normally chosen. Thus the same address can be used for both input
and output FIFOs. Reading gives access to the output FIFO; writing gives access to the
input FIFO.

Writing to the input FIFO by this method is different from writing to the memory

mapped register file. Since the register file has a unique address for each register,
writing to this unique address allows GLINT to determine the register for which the
write isintended. This allows atag/data pair to be constructed and inserted into the input
FIFO. When writing to the raw FIFO address an address tag description must first be
written followed by the associated data. In fact, the format of the tag descriptions and the
data that follows isidentical to that described above for DMA buffers. Instead of using
the GLINT DMA it ispossibleto transfer datato GLINT by constructing a DMA-style
buffer of data and then copying each item in this buffer to the raw input FIFO address.
Based on the tag descriptions and data written GLINT constructs tag/data pairs to enter
asrea FIFO entries. The DMA mechanism can be thought of as an automatic way of
writing to the raw input FIFO address.

Note: When writing to the raw FIFO address the FIFO full condition must still be
checked by reading the InFIFOSpace register. However, writing tag descriptions
does not cause any entries to be entered into the FIFO — such a write simply
establishes a set of tags to be paired with the subsequent data. Thus, free space
need be ensured only for actual data items that are written (not the tag values).
For example, in the simplest case where each tag is followed by a single data item,
assuming that the FIFO is empty, then 32 writes are possible before checking
again for free space.

Seethe GLINT MX Hardware Reference Manual for more details of the Graphics
Processor FIFO Interface address range.

3Dlabs Proprietary and Confidential 17

Programming Model GLINT MX Programmer’s Reference Manual

3.3 Other Interrupts
GLINT also provides interrupt facilities for the following:

* Sync: If aSync command is sent and the Sync interrupt has been
enabled then once al rendering has been completed, adatavalueis
entered into the Host Out FIFO, and a Sync interrupt is generated when
this value reaches the output end of the FIFO. Synchronization is
described further in the next section.

» Externd: this provides the capability for external hardware on a
GLINT board (such as an external video timing generator) to generate
interrupts to the host processor.

» Error: if enabled the error interrupt will occur when GLINT detects
certain error conditions, such as an attempt to write to afull FIFO.

» Vertical Retrace: if enabled avertical retrace interrupt is generated at
the start of the video blank period.

Each of these are enabled and cleared in asimilar way to the DMA interrupt. See the
GLINT MX Hardware Reference Manual for more details.

3.4 Synchronization
There are three main cases where the host must synchronize with GLINT:

» before reading back from registers

» before directly accessing the framebuffer or the localbuffer viathe
bypass mechanism

» framebuffer management tasks such as double buffering (though this
may be better handled using the SuspendUntil FrameBlank command)

Synchronizing with GLINT implies waiting for any pending DMA to complete and
waiting for the chip to complete any processing currently being performed. The
following pseudo-code shows the genera scheme:

GintData data;

/1l wait for DMA to conplete

whil e (*DMACount != 0) {

poll or wait for interrupt

}

while (*InFl FOSpace < 2) {

; /1 wait for free space in the FIFO

}

/1 enable sync output and send the Sync conmand

data. Wrd = 0;

data. Filter Mode Synchroni zation = 0x1;

FilterMde(data. Wrd);

Sync(0x0) ;

18 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

3.5

/* wait for the sync output data */
do {
while (*Qut FI FOMrds == 0)
; /! poll waiting for data in output FIFO
} while (*QutputFIFO != Sync_tag);

Initially, we wait for DMA to complete as normal. We then have to wait for spaceto
become free in the FIFO (since the DMA controller actually loads the FIFO). We need
space for 2 registers. one to enable generation of an output sync value, and the Sync
command itself. The enable flag can be set at initialization time. The output value will
be generated only when a Sync command has actually been sent, and GLINT has then
completed all processing.

Rather than polling it is possible to use a Sync interrupt as mentioned in the previous
section. Aswell as enabling the interrupt and setting the filter mode, the data sent in the
Sync command must have the most significant bit set in order to generate the interrupt.
Theinterrupt is generated when the tag or data reaches the output end of the Host Out
FIFO. Use of the Sync interrupt has to be considered carefully as GLINT will generally
empty the FIFO more quickly than it takes to set up and handle the interrupt.

Host Framebuffer Bypass

Normally, the host will access the framebuffer indirectly viacommands sent to the
GLINT FIFO interface. However, GLINT does provide the whole framebuffer as part of
its address space so that it can be memory mapped by an application. Accessto the
framebuffer via this memory mapped route is independent of the GLINT FIFO.

Drivers may choose to use direct access to the framebuffer for agorithms which are not
supported by GLINT. The framebuffer bypass supports big-endian, little-endian and
GIB-endian formats. These are described in alater section.

A driver making use of the framebuffer bypass mechanism should synchronize
framebuffer accesses made through the FIFO, with those made directly through the
memory map. If datais written to the FIFO and then an access is made to the
framebuffer, it is possible that the framebuffer access will occur before the commandsin
the FIFO have been fully processed. Thislack of tempora ordering is generally not
desirable.

Once mapped in, the framebuffer can be read or written with 8, 16 or 32-bit accesses.
GLINT does not use bank switching sinceit is a PCI device and the PCI bus provides a
32 bit address spacel. With GLINT the complete framebuffer is mapped in as alinear
32-bit addressable memory region.

The framebuffer is accessible via Regions 2 and 4 of the PCl address map for GLINT.

10n address limited buses such as | SA, devices limit the amount of address space that they occupy by using bank
switching hardware. Thistypically provides a 64K byte window through which part of the framebuffer isvisible.
Hardware registers control which part of the framebuffer is visible through this window.

3Dlabs

Proprietary and Confidential 19

Programming Model GLINT MX Programmer’s Reference Manual

351

3.6

Framebuffer Dimensions and Depth

At reset time the hardware stores the size of the framebuffer in the FBMemoryControl
register. Thisregister can be read by software to determine the amount of VRAM on the
display adapter. For agiven amount of VRAM, software can configure different screen
resolutions and off-screen memory regions.

The framebuffer width must be set up in the FBReadMode register. Thefirst 9 bits of
this register define 3 partial products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked out at initialization time and
acopy kept in software. When this register needs to be modified the software copy is
retrieved and any other bits modified before writing to the register.

Once the offset from one scanline to the next has been established, determining the
visible screen width and height becomes a clipping issue. The visible screen width and
height are set up in the ScreenSize register and enabled by setting the
ScreenScissorEnabl e bit in the ScissorMode register.

The framebuffer depth (8, 16 or 32-bit) is controlled by the PixelSize register. This
register provides a 2 bit field to control which of the three pixel depthsis being used.
The pixel depth can be changed at any time without the need for any synchronization.

The pixel depth must be set at initialization time. On the GLINT 500TX it was useful to
change the pixel depth temporarily to optimize certain 2D rendering operations. Thisis
no longer necessary on the GLINT MX due to the introduction of the span operations
discussed later. However code written to use this technique will still work as long as the
pixel sizeis set using the Pixel Size register. See Appendix E for further details.

Host Localbuffer Bypass

As with the framebuffer, the localbuffer can be mapped in and accessed directly. The
host should synchronize with GLINT before making any direct access to the localbuffer.

At reset time the hardware saves the size of the localbuffer in the LBMemoryControl
register (localbuffer visible region size). In bypass mode the number of bits per pixel is
either 32 or 64. Thisinformation is aso set in the LBMemoryControl register
(localbuffer bypass packing). This pixel packing defines the memory offset between one
pixel and the next. A further set of 3 bits (local buffer width) in the LBMemoryControl
register defines the number of valid bits per pixel. A typical localbuffer configuration
might be 48 bits per pixel but in bypass mode the data for each pixel starts on a 64-bit
boundary. In this case valid pixel datawill be contained in bits O to 47. Software must
set the LBReadFormat, and LBWriteFormat registersto tell GLINT how to interpret
these valid bits.

Host software must set the width in pixels of each scanline of the localbuffer in the
LBReadMode register. Thefirst 9 bits of this register define 3 partia products which
determine the offset in pixels from one scanline to the next. As with the framebuffer
partial products, these values will usually be worked out at initialization time and a copy
kept in software. When this register needs to be modified the software copy is retrieved
and any other bits modified before writing to the register. If the system is set up so that
each pixel in the framebuffer has a corresponding pixel in the localbuffer then thiswidth
will be the same as that set for the framebuffer.

20

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Programming Model

3.7

3.8

The localbuffer is accessible via Regions 1 and 3 of the PCl address map for GLINT.
The localbuffer bypass supports big-endian and little-endian formats. These are
described in alater section.

Register Read back

Under some operating environments, multiple tasks will want accessto the GLINT chip.
Sometimes a server task or driver will want to arbitrate accessto GLINT on behalf of
multiple applications. In these circumstances, the state of the GLINT chip may need to
be saved and restored on each context switch. To facilitate this, the GLINT registers can
be read back. For details of which registers are readabl e, see the Graphics Register
Reference Appendix A. Internal and command registers cannot be read back.

To perform a context switch the host must first synchronize with GLINT. This means
waiting for outstanding DMA to complete, sending a Sync command and waiting for the
sync output data to appear in the output FIFO. After this the registers can be read back.

Toread aGLINT register the host reads the same address which would be used for a
write, i.e. the base address of the register file plus the offset value for the register.

Note: Since internal registers cannot be read back care must be taken when context
switching a task which is making use of continue-draw commands. Continue-draw
commandsrely on the internal registers maintaining previous state. This state will
be destroyed by any rendering work done by a new task. To prevent this, continue-
draw commands should be performed via DMA since the context switch code has
to wait for outstanding DMA to complete. Alternatively, continue-draw commands
can be performed in a non-preemptable code segment.

Normally, reading back individual registers should be avoided. The need to synchronize
with the chip can adversely affect performance. It is usually more appropriate to keep a
software copy of the register which is updated when the actual register is updated.

Byte Swapping

Internally GLINT operatesin little-endian mode. However, GLINT is designed to work
with both big- and little-endian host processors. Since the PCI Bus specification defines
that byte ordering is preserved regardless of the size of the transfer operation, GLINT
provides facilities to handle byte swapping. Each of the Configuration Space, Control
Space, Framebuffer Bypass and Localbuffer Bypass memory areas have both big and
little endian mappings available. The mapping to use typically depends on the endian
ordering of the host processor.

The Configuration Space may be set by aresistor in the board design to be either little
endian or big endian.

The Control Spacein PCl addressregion 0, is 128K bytesin size, and consists of two
64K sized spaces. Thefirst 64K provides little endian access to the control space
registers; the second 64K provides big endian access to the same registers.

The framebuffer bypass consists of two PCI address regions: Region 2 and Region 4.
Each isindependently configurable by the Aperture0 and Aperturel control registers
respectively, to one of three modes: no byte swap, 16-bit swap, full byte swap.

3Dlabs

Proprietary and Confidential 21

Programming Model GLINT MX Programmer’s Reference Manual

3.9

The 16 bit modeis needed for the following reason. If the framebuffer is configured for
16-bit pixels and the host is big-endian then simply byte swapping is not enough when a
32-bit accessis made (to write two pixels). In this case, the required effect isthat the
bytes are swapped within each 16-bit word, but the two 16-bit halves of the 32-bit word
are not swapped. This preserves the order of the pixelsthat are written as well asthe
byte ordering within each pixel. The 16 bit mode is referred to as GIB-endian in the PCI
Multimedia Design Guide, version 1.0.

The localbuffer bypass consists of two PCl address regions: Region 1 and Region 3.
Each isindependently configurable by the ApertureO and Aperturel control registers
respectively, to one of two modes. no byte swap, full byte swap.

To save on the size of the address space required for GLINT, board vendors may choose
to turn off access to the big endian regions (3 and 4) by the use of resistors on the board.

Thereisabit available in the DMAControl control register to enable byte swapping of
DMA data. Thusfor big-endian hosts, this control bit would normally be enabled.

Seethe GLINT MX Hardware Reference Manual for more details of these control
registers.

Additional support is provided within the graphics core of the chip to byte swap images
and bitmasks as they are transferred to and from the host. These are documented in the
relevant sections of chapter 5.

Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will usually force agiven
interpretation for true color pixel vaues. For example, 32-bit pixels will be interpreted
as either ARGB (alphaat byte 3, red at byte 2, green at byte 1 and blue at byte 0) or
ABGR (blue at byte 2 and red at byte 0). The byte position for red and blue may be
important for software which has been written to expect one byte order or the other, in
particular when handling image data stored in afile.

GLINT provides two registers to specify the byte positions of blue and red internally. In
the Alpha Blend Unit the AlphaBlendMode register contains a 1-bit field called
ColorOrder. If thisbit is set to zero then the byte ordering is ABGR,; if the bit is set to
one then the ordering is ARGB. Aswell as setting this bit in the Alpha Blend unit, it
must also normally be set in the Color Formatting unit, though in some cases it may be
useful to set them differently. In this unit the DitherMode register contains a Color Order
bit with the same interpretation. The order appliesto al of the true color pixel formats,
regardless of the pixel depth. See 8 5.16 and § 5.17 for more details of the Alpha Blend
and Color Formatting units.

Image and bitmask data can aso be optionally byte/word swapped as part of the
download process by setting the appropriate bit in the RasterizerMode register. Finally
image data can be optionally byte/word swapped by setting the appropriate bit in the
FilterMode register of the Host Out unit. These operations are controlled independently
of DMA byte swapping operations.

22

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

4.1

Hardware Data Structures

Localbuffer

The localbuffer holds per pixel information corresponding to each displayed pixel. The
per pixel information held in the localbuffer are Graphic ID (GID), Depth, Stencil and
Frame Count Planes (FCP). The possible formats for each of these fields, and their use
are covered individually in the following sections.

In addition spare localbuffer memory may be used to store texture maps. Thisis
discussed further in section 4.1.6.

The maximum width of the localbuffer is 48 bits, however this can be reduced by
changing the external memory configuration, albeit at the expense of reducing the
functionality or dynamic range of one or more of the fields.

The localbuffer memory can be from 16 bits (assuming a depth buffer is aways needed)
to 48 bitswide in steps of 4 bits. The alowed lengths and positions of the four fields
supported in the localbuffer are shown in Table 4.1.

Field Lengths Start bit positions
Depth 16,24,32 |0
Stencil 0,4,8 16, 20, 24, 28, 32

FrameCount |0, 4, 8 16, 20, 24, 28, 32, 36, 40

GID 0,4 16, 20, 24, 28, 32, 36, 40, 44, 48

Table4.1 L engthg/Positions of the L ocalBuffer Supported Fields

In addition there is a compact mode for a 32bit wide localbuffer with depth(24bit),
stencil (1bit), FrameCount(4bits) and GID(3bits).

The order of the fields is as shown with the depth field at the least significant end and
GID field at the most significant end. The GID is at the most significant end so that
various combinations of the Stencil and FrameCount field widths can be used on a per
window basis without the position of the GID fields moving. If the GID fieldisina
different positions in different windows then the ownership tests become impossible to

do.
The localbuffer datais always formatted into a consistent internal format which is:

48 40 32 24 16 8 0

GID | FrameCount Stencil Depth

Figure 4.1 LocalBuffer Data Format

3Dlabs

Proprietary and Confidential 23

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

41.1

The GID, FrameCount, Stencil and Depth fields in the localbuffer are converted into the
internal format by right justification if they are less than their internal widths, i.e. the
unused bits are the most significant bits and they are set to O.

The format of the localbuffer is specified in two places: the LBReadFormat register and
the LBWriteFormat register.

31 24 16 8 2
reserved
Compact32 p%:,qoln
GID Position | Stencil Width
GID Width FrameCount Width
FrameCount Position Depth Width

Figure4.2 Typical Part Population of the L ocalBuffer

Itisstill possible to part populate the localbuffer so other combinations of the field
widths are possible (i.e. depth field width of 0).

Any non-bypass read or write to the localbuffer always reads or writes all 48 bits
simultaneoudly.

GID field

The 4 bit GID field is used for pixel ownership teststo alow per pixel window clipping.
Each window using this facility is assigned one of the GID values, and the visible pixels
in the window have their GID field set to thisvalue. If the test is enabled the current

GID (set to correspond with the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel belongs to the window so the
localbuffer and framebuffer at this coordinate may be updated.

Using the GID field for pixel ownership testsis optional and other methods of achieving
the sameresult are:

» clip the primitive to the window's boundary (or rectangular tileswhich
make up the window's area) and render only the visible parts of the
primitive

» usethe scissor test to define the rectangular tiles which make up the

window's visible area and render the primitive once per tile (This may
be limited to only those tiles which the primitive intersects).

The GID field can be 0 or 4 bitswide. More details on the GID field and these registers
may be found in the Graphics Programming chapter.

Note: GID planes are distinct from and serve a different purpose o Window ID planes
which are described later.

24

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

4.1.2

4.1.3

414

Depth Field

The depth field holds the depth (Z) value associated with a pixel and can be 16, 24 or 32
bits wide.

Stencil Field

The stencil field holds the stencil value associated with a pixel and can be O, 4 or 8 bits
wide, or 1bit wide in the Compact32 mode.

The width of the stencil buffer is aso stored in the StencilMode register and is needed
for clamping and masking during the update methods. The stencil compare mask should
be set up to exclude any absent bits from the stencil compare operation.

FrameCount Field

The Frame Count Field holds the frame count value associated with apixel and can be
0, 4 or 8 bitswide. It is used during animation to support afast clear mechanism to aid
the rapid clearing of the depth and/or stencil fields needed at the start of each frame.

The fast clear mechanism provides a method where the cost of clearing the depth and
stencil buffers can be amorti zed over anumber of clear operations issued by the
application. Thisworks as follows:

The system must be configured with 4 or 8 FrameCount planes, such that each pixel has
storage for its own corresponding FrameCount value.

The Clear

The areathat the application is rendering to comprising say S pixels, isdivided up inton
regions, where n is the range of the frame counter (for a system with 4 FrameCount
planes n=24=16, with 8 FrameCount planes n=256). Every time the application issues a
clear command the reference FrameCount is incremented (and allowed to roll over if it
exceeds the maximum value n) and only the ith region is cleared.

The clear of theith region updates the depth(Z) and/or stencil buffersto their
corresponding new values - typicaly this might be infinity for the depth(Z) and zero for
the stencil buffer. At the same time the FrameCount buffer for every pixel in the ith
region is updated with the latest reference FrameCount value. Theregion is smaller than
the full region the application specifies to be cleared, so only S/n pixels need to be

written. This takes of order 1/nth as long as clearing the full S pixels.

Lastly the latest reference FrameCount is stored in the Window register, and the
depth(Z) and/or stencil value(s) used in the clear , are stored FastClearDepth register and
the StencilData register for later use as detailed below.

Drawing the Next Frame

Now the application starts to render the ith frame. When the localbuffer isread for a
depth(Z) comparison, or stencil operation, the FrameCount value for the pixel isaso
read by the chip and tested against the reference FrameCount in the Window register. If
the FrameCount values are found to be the same, then the localbuffer datais used
directly.

3Dlabs

Proprietary and Confidential 25

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

4.1.5

However, whenever the FrameCount is found to be different from the reference
FrameCount, the data which would have been written if al S pixelsin the locabuffer
had been cleared (contained in the FastClearDepth and/or StencilData registers), is
substituted by the chip for the stale data returned from the read.

In any new writes to the localbuffer, the chip will set the FrameCount to the reference
value held in the Window register, thus the next read on this pixel will not return stale
data and will not result in a substitution.

Other Considerations

The fast clear mechanism does not present atotal solution as the application can elect to
clear just the stencil planes or just the depth planes, or both. The situation where the
stencil planesonly are 'cleared' using the fast clear method, then some rendering is done
and then the depth planes are 'cleared’ using the fast clear will leave ambiguous pixelsin
the localbuffer. The driver software will need to catch this situation, and fall back to
using a per pixel write to do the second clear. Which field(s) the frame count plane
refersto isrecorded in the Window register.

When clear datais substituted for real memory data (during normal rendering
operations) the depth writemask and stencil writemasks are ignored to mimic the
operation of clearing under OpenGL.

In addition to the fast clear mechanism the extent of all updates to the local buffer and
framebuffer can be recorded (MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the bounding box of the smallest
areato clear. For some applications thiswill be significantly smaller than the whole
window or screen, and hence faster.

Texture Map Storage

To achieve high texture mapping performance, GLINT stores the texture mapsin a
texture store within the localbuffer. The texture store occupies the spare localbuffer
entries after each pixel has alocated an entry for depth, stencil etc., i.e. the texture store
and the per pixel buffers occupy distinct address spaces.

Each entry in the texture store contains 32 bits. If localbuffer entries contain more than
32 hits, then the extra bits will not be used for texture storage. If atexture map isless
than 32 bits deep, then the entries will be packed into the 32 bit words, e.g. if atexture
map is 8 bits deep, then each 32 bit word in the texture store will contain 4 texture map
entries.

Increasing the size of the texture store will increase both image quality (larger textures
may be used) and rendering performance (textures will not have to be swapped in and
out of the texture store). Hence GLINT based designs should include as much texture
store as possible within the given design and price constraints. Typical high end graphics
workstations contain 4 Mbytes of texture store.

The localbuffer should optimally be organized as two separate physical banks, with the
Depth(Z) buffer configured by software to be in one bank, and texture storage allocated
in the other bank. Thisis because the GLINT supports two pagemode detectors,

allowing Depth(Z) buffered texture mapped rendering to be carried out without forcing a
page break on every localbuffer memory access.

26

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

416 Cadculating The Required Locabuffer Size
The required localbuffer size can be calculated using the following steps:

1. Choose the number of bitsin the depth field. The typical options are 16 or 24 hits.

2. Choose the number of bitsin the stencil field. If the design should support
OpenGL, then the typical choiceis4 bits.

3. Choose the number of bitsin the fast clear control field. Thisisoptional but is
typically 4 bits.

4. Choose the number of bitsin the Graphics ID field. For designs which support X
Windows this may be 4 and otherwise it’ stypicaly zero.

5. Add the answers from steps 1 to 4 together. This gives aminimum number of bits
for each localbuffer entry.

6. If the value from step 5 is greater than 32, then use this value as the number of bits
for each localbuffer entry, otherwise use 32.

7. Determine the maximum screen resolution. The localbuffer should contain an entry
for each pixel on the screen. So the maximum screen resolution and the number of
bits for each localbuffer entry give a minimum size for the localbuffer.

For example, if the maximum screen resolution is 1024 x 768 and the number of
bits for each localbuffer entry is 32, then the minimum local buffer sizeis
1024 x 768 x 4 bytes = 3 Mbytes.

8. Space should now be alocated for the texture store. This space should typically be
4 Mbytes. The texture storage space plus the value from step 7 give the required
localbuffer size.

Here is an example configuration:

Max screen resolution 1152 x 900
Depth field 24 bits
Stencil field 4 bits

Fast Clear Control 4 bits
GraphicsID None
Texture Store Entry 32 bits
Texture Store Size 4 Mbytest
Localbuffer Size 8 Mbytes

(e.g. four 2M x 8 bit devices)
Inamulti-GLINT design the localbuffer storage may be duplicated.

4.1.7 Cadculating the Available Texture Memory

On agiven typical board, the localbuffer will be 32-bits per pixel wide. For each visible
pixel on the screen a 32-bit localbuffer pixel should be assigned. The remaining memory
isavailable for use as texture memory. Here is an example configuration:

1 The available texture store size will increase if alower screen resolution is used with the same size local buffer

3Dlabs Proprietary and Confidential 27

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

4.1.8

Max screen resolution 1152 x 900

Depth field 24 bits

Stencil field 4 bits

Fast Clear Control 4 bits

Graphics 1D None

Texture Store Entry 32 bits

Texture Store Size 4 Mbytes The avail able texture store size will increase if alower
screen resolution is used with the same size localbuffer.

Locabuffer Size 8 Mbytes (e.g. four 2M x 8 hit devices)
Localbuffer Coordinates

The coordinates generated by the rasterizer! are 16 bit 2's complement numbers, and so
have the range +32767 to -32768. The rasterizer will produce valuesin this range,
however any which have a negative coordinate, or exceed the screen width or height (as
programmed into the ScreenSize register) are discarded.

Coordinates can be defined window relative or screen relative and thisis only relevant
when the coordinate gets converted to an actual physical addressin the localbuffer. In
generd it is expected that the windowing system will use absolute coordinates and the
graphics system will use relative coordinates (to be independent of where the window
realy is).

GUI systems (such as Microsoft Windows, Microsoft Windows NT and The X Window
System) usualy have the origin of the coordinate system at the top left corner of the
screen but thisis not true for al graphics systems. For instance OpenGL uses the bottom
left corner asits origin. The WindowOQrigin bit in the LBReadM ode register selects the
top left (0) or bottom left (1) asthe origin.

Assuming localbuffer patching is disabled, then the actua equations used to calculate
the localbuffer address to read and write are:
Bottom left origin

Destination address = LBWndowBase - Y/S * W+ X

Source address = LBWndowBase - Y/S * W+ X + LBSourceO fset
Top left origin

Destination address = LBWndowBase + Y/S * W+ X

Source address = LBWndowBase + Y/S * W+ X + LBSourceO f set

1 Theinput co-ordinates to the rasterizer arein 16.16 fixed point format.

28

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

where:
X isthe pixel's X coordinate.
Y isthe pixel's Y coordinate.

LBW ndowBase holds the base address in the localbuffer of the current window.

LBSour ceCf f set isnormally zero except during a copy operation where datais read
from one address and written to another address. The offset between
source and destination is held in the L BSourceOffset register.

S isthe Scanline interval for multi-GLINT systems

w isthe screen width. Only a subset of widths are supported and these
are encoded into the PPO, PP1 and PP2 fields in the LBReadM ode
register. See the table in Appendix C for more details.

These address calculations translate a 2D address into alinear address.

Note: Turning on Patch addressing introduces additional complexity into the address
calculation which is beyond the scope of this manual. Locabuffer bypass accesses
are not recommended when Patch mode addressing is enabled.

The Screen width is specified as the sum of selected partial products so a full multiply
operation is not needed. The partial products are selected by the fields PPO, PP1, PP2
and PP3 in the LBReadMode register. The range of widths supported by this technique
are tabulated in Appendix C, together with the values for each of the PP fields. This
table holds all the common screen widths.

For arbitrary width screens, for instance bitmaps in 'off screen' memory, the next largest
width from the table must be chosen. The difference between the table width and the
bitmap width will be an unused strip of pixels down the right hand side of the bitmap.

Note: that such bitmaps can be copied to the screen only as a series of scanlines rather
than as a rectangular block. However, often windowing systems store offscreen
bitmaps in rectangular regions which use the same stride as the screen. In this
case normal bitblts can be used.

3Dlabs Proprietary and Confidential 29

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

4.2

4.2.1

Framebuffer

The framebuffer is aregion of memory where the information produced during
rasterization is written prior to being displayed. Thisinformation is not restricted to
color but can include window control datafor LUT management and double buffering?.

The framebuffer region can hold up to 32MBytes and there are very few restrictions on
the format and size of the individua buffers which make up the video stream. Typical
buffersinclude:

» True color or color index main planes,

* Overlay planes,

» Underlay planes,

* Window ID planesfor LUT and double buffer management,
» Cursor planes.

Any combination of these planes can be supported up to a maximum of 32MBytes, but
usualy it isthe video level processing which isthe limiting factor. The remainder of this
section examines the options and choices available from GLINT for rendering, copying,
etc. datato these buffers. The necessary video hardware, and how it is controlled is
outside the scope of this document.

To access dternative buffers either the FBPixel Offset register can be loaded, or the base
address of the window held in the FBWindowBase register can be redefined. Thisis
described in more detail below.

Buffer Organization

Each buffer resides at an address in the framebuffer memory map. For rendering and
copying operations the actual buffer addresses can be on any pixel boundary. Display
hardware will place some restrictions on thisas it will need to access the multiple
buffersin parallel to mix the buffers together depending on their relative priority,
opacity and double buffer selection. For instance, visible buffers (rather than offscreen
bitmaps) will typically need to be on a page boundary.

Consider the following highly configured example with a 1280x1024 double buffered
system with 32 bit main planes (RGBA), 8 bit overlay and 4 bits of window control
information (WID). The framebuffer memory map for this example is shown below:

Combining the WID and overlay planes in the same 32 bit pixel has the advantage of
reducing the amount of data to copy when awindow moves, as only two copies are
required - one for the main planes and one for the overlay and WID planes.

Note the position of the overlay and WID planes. This was not an arbitrary choice but
one imposed by the (presumed) desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conversion of the internal color
format to the externa one stored in the framebuffer depends on the size and position of

1 Although the term 'double buffering' is used here everything is just as applicableto single or double buffered
stereoscopic displays.

30

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

4.2.2

the component. The possible formats are given in Figure 4.3. Note that GLINT does not
support all possible configurations. For example; if the overlay and WID bits were
swapped, then eight bit color index starting at bit 4 would be required to render to the
overlay, but thisis not supported.

am 181 123 (15 {7 0 Bit
™
6M
Unpopulated WID Buffer
5M
A = Overlay Buffe
am
Unpopulated
3M
Back Buffer
2M
Unpopulated
M
Front Buffer

Figure4.3 Example memory or ganization

Framebuffer Coordinates

Coordinate generation for the framebuffer is ssimilar to that for the localbuffer, however,
there are some key differences.

Aswas mentioned before, the coordinates generated by the rasterizer! are 16 bit 2's
complement numbers. Coordinates can be defined as window relative or screen relative,
though thisis only relevant when the coordinate gets converted to an actual physica
address in the framebuffer. The WindowOrigin bit in the FBReadMode register selects
top left (0) or bottom left (1) asthe origin for the framebuffer.

1 Theinput co-ordinates to the rasterizer arein 16.16 format.

3Dlabs

Proprietary and Confidential 31

Hardware Data Structures

GLINT MX Programmer’ s Reference Manual

The actual equations used to calculate the framebuffer address to read and write are:

Bottom left origin
Desti nati on address = FBW ndowBase - Y/S * W+ X +

Sour ce address

Top left origin
Desti nati on address = FBW ndowBase + Y/S * W+ X +

Sour ce address

where;

X
Y
S
FBW ndowBase

FBPi xel O f set

FBSour cer f set

FBPi xel O f set

FBW ndowBase - Y/S * W+ X + FBPi xel O fset +
FBSour ceOr f set

FBPi xel O f set

= FBW ndowBase + Y/S * W+ X + FBPi xel O fset +

FBSour ceOr f set

isthe pixel's X coordinate,
isthe pixel's Y coordinate,
isthe scanline interval for multi-GLINT systems

holds the base address in the framebuffer of the current
window.

isnormally zero except when multi-buffer writes are needed!
when it gives away to access pixelsin aternative buffers
without changing the FBWindowBase register. Thisis useful
as the window system may be asynchronoudly changing the
window's position on the screen. It isheld in the
FBPixelOffset register.

isnormally zero except during a copy operation where datais
read from one address and written to another address. The
FBSourceOffset is held in the FBSourceOffset register.

isthe screen width. Only a subset of widths are supported and
these are encoded into the PPO, PP1 and PP2 fields in the
FBReadMode register. See the table in Appendix C for more
details.

These address calculations trandate a 2D addressinto alinear address so non power of
two framebuffer widths (i.e. 1280) are economical in memory.

1 OpenGL, for example, allows any combination of the Front, Back, Left and Right color buffersto be updated
simultaneously.

32

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

4.2.3

The width is specified as the sum of selected partial products so afull multiply operation
is not needed. The partial products are selected by the fields PPO, PP1 PP2 and PP3in
the FBReadM ode register. Thisis the same mechanism asis used to set the width of the
localbuffer, however the widths may be set independently. The range of widths
supported by this technique are tabulated in Appendix C, together with the values for
each of the PP fields. Thistable holds al the common screen widths.

For arbitrary screen sizes, for instance when rendering to 'off screen’ memory such as
bitmaps, the next largest width from the table must be chosen. The difference between
the table width and the bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only as a series of scanlines rather
than as arectangular block. However, often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the screen. In this case normal bitblts
can be used.

Color Formats

The contents of the framebuffer can be regarded in two ways:

Asacollection of fields of up to 32 bits with no meaning or assumed format as far as
GLINT isconcerned. Bit planes may be allocated to control cursor, LUT, multi-buffer
visibility or priority functions. In this case GLINT will be used to set and clear bit
planes quickly but not perform any color processing such as interpolation or dithering.
All the color processing can be disabled so that raw reads and writes are done and the
only operations are writemasking and logical ops. This allows the control planesto be
updated and modified as necessary. Obviously this technique can aso be used for
overlay buffers, etc. providing color processing is not required.

As acollection of one or more color components. All the processing of color
components, except for the final writemask and logical ops are done using the internal
color format of 8 bits per red, green, blue and alpha color channels. The final stage
before writemask and logical ops processing converts the internal color format to that
required by the physical configuration of the framebuffer and video logic. The range of
supported formats are given in Table 4.2. The nomenclature n@m means this
component is n bits wide and starts at bit position min the framebuffer. The least
significant bit position is 0 and a dash in a column indicates that this component does
not exist for this mode. The ColorOrder is specified by abit in the DitherMode
register.

Some important points to note:

The alpha channel is aways associated with the RGB color channels rather than being
aseparate buffer. Thisallowsit to be moved in parallel and to work correctly in multi-
buffer updates and double buffering. If the framebuffer is not configured with an apha
channel (e.g. 24 bit framebuffer width with 8:8:8:8 RGB format) then some of the
rendering modes which use the retained alpha buffer cannot be used. In these cases the
NoAlphaBuffer bit in the AlphaBlendMode register should be set so that an alpha
value of 255 is substituted. For the RGB modes where no alpha channel is present

(e.g. 3:3:2) then this substitution is done automatically.

3Dlabs

Proprietary and Confidential 33

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

For the Front and Back modes the data value is replicated into both buffers. Note
though the Front and Back modes are identical, the redundant modes are included for
symmetry with the Color format field of the AlphaBlendMode register.

All writes to the framebuffer try to update all 32 bits irrespective of the color format.
This may not matter if the memory planes don't exist, but if they are being used (as
overlay planes, for example) then the writemasks (FB SoftwareWriteMask or
FBHardwareWriteMask) must be set up to protect the alternative planes.

Internal Color Channel
Format Name R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:.4.4 4@0 4@4 4@8 4@12
Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255
6 3:3:2Back 3@8 3@11 2014 255
7 1:2:1Front 1@0 201 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
Color 3 4:4:4:4Front | 4@16 4@8 4@0 4@24
Order: 4 4:4:4:4Back | 4@20 4@12 4@4 4@28
RGB 5 3:3:2Front 3@5 3@2 2@0 255
6 3:3:2Back 3@13 3@10 2@8 255
7 1:2:1Front 1@3 201 1@0 255
8 1:2:1Back 1@7 2@5 1@4 255
13 5:5:5Back 5@26 5@21 5@16 255
Cl 14 CI8 8@0 0 0 0
15 Cl4 4@0 0 0 0

Table4.2 Color Formats

When reading the framebuffer RGBA components are scaled to their internal width of
8 hits, if needed for apha blending.

Cl values are | eft justified with the unused bits (if any) set to zero and are subsequently
processed as the red component. The result is replicated into each of the streams G,B
and A giving four copies for CI8 and eight copies for Cl4.

The 5:5:5 Back format is designed to support multiple independent 15bpp double
buffered windows, on systems which have a RAMDAC that can select the front and
back buffer on a per pixel basis based on the top bit of the 32bit pixel stream. The front
or back buffer may be selected for writing using writemasking.

The 4:4:4:4 Front and Back formats are designed to support 12 bit double buffering
with 4bit Alpha, in a 32 bit system.

34 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

4.2.4

4.2.5

The 3:3:2 Front and Back formats are designed to support 8 bit double buffering in a
16 bit system.

The 1:2:1 Front and Back formats are designed to support 4 bit double buffering in an
8 hit system.

It is possible to have a color index buffer at other positions as long as reduced
functionality is acceptable. For example a4 bit Cl buffer at bit position 16 can be
achieved using writemasking and 4:4:4:4 Front format with color interpolation,
however dithering islost.

The format information needs to be stored in two places. the DitherM ode register and
the AlphaBlendMode register.

Overlays and Underlays

In a GUI system there are two possible relationships between the overlay planes (or
underlay) and the main planes.

The overlay planes are fixed to the main planes, so that if the window is moved then
both the data in the main planes and overlay planes move together.

The overlay planes are not fixed to the main planes but floating, so that moving a
window only moves the associated main or overlay planes.

In the fixed case both planes can share the same GID. The pixel offset is used to redirect
the reads and writes between the main planes and the overlay (underlay) buffer. The
pixel ownership tests using the GID field in the localbuffer work as expected.

In the floating case different GIDs are the best choice, because the same GID planesin
the localbuffer can not be used for pixel ownership tests. The alternatives are not to use
the GID based pixel ownership tests for one of the buffers but rely on the scissor
clipping, or to install a second set of GID planes so each buffer hasit's own set. GLINT
allows either approach.

If rendering operations to the main and overlay planes both need the depth or stencil
buffers, and the windows in each overlap then each buffer will need its own exclusive
depth and/or stencil buffers. Thisis easily achieved with GLINT by assigning different
regions in the localbuffer to each of the buffers. Typically this would double the
localbuffer memory requirements.

One scenario where the above two considerations do not cause problems, is when the
overlay planes are used exclusively by the GUI system, and the main planes are used for

the 3D graphics.
VRAM Modes

High performance systems will typically use VRAM for the framebuffer and the
extended functionality of VRAM over DRAM can be used to enhance performance for

many rendering tasks.

3Dlabs

Proprietary and Confidential 35

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

Hardware Writemasks.

These allow writemasking in the framebuffer without incurring a performance penalty.
If hardware writemasks are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the writemask, and write it back.

To use hardware writemasking, the required writemask is written to the
FBHardwareWriteM ask register, the FBSoftwareWriteM ask register should be set to all
1's, and the number of framebuffer readsis set to O (for normal rendering). Thisis
achieved by clearing the ReadSource and ReadDestination enablesin the FBReadM ode
register.

To use software writemasking, the required writemask is written to the
FBSoftwareWriteM ask register and the number of framebuffer readsis set to 1 (for
normel rendering). Thisis achieved by setting the ReadDestination enable in the
FBReadMode register.

Block Writes

Block writes cause consecutive pixels in the framebuffer to be written smultaneoudly.
Thisisuseful when filling large areas but does have some restrictions:

* No depth, stencil or GID testing can be done

* All the pixels must be written with the same value so no color
interpolation, blending, dithering or logical ops can be done

Block writes are not restricted to rectangular areas and can be used for any trapezoid.
Hardware writemasking is available during block writes.

The FBBlockColor register with the value to write to each pixel needs to be set up
before block fills can be used

Sending a Render command with the PrimitiveType field set to "trapezoid" and the
FastFillEnable field set, will then cause block filling of the area. Note that during a block
fill of atrapezoid any inappropriate state isignored so even if color interpolation, depth
testing and logical ops, for example, are enabled they have no effect.

See the discussion on span operations later in this manual for further details.

36 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

4.3 Double Buffering

Double buffering is a technique used to achieve visually smooth animation, by rendering
ascene to an offscreen buffer, before quickly displayingit.

Which techniques are available will depend on the board design, however, this section
discusses how GLINT may be used to provide support for four common types of double
buffering, assuming that the framebuffer memory and LUT-DAC have the necessary
capabilities.

e BItBLT

» Full Screen

» Bitplane

» Colorspace

4.3.1 BitBIt Double Buffering

BLT double buffering in its simplest form requires a complete duplicate buffer of non-
displayed VRAM to be maintained. To swap buffersaBLT is performed onto the

displayable area. The features are:
 takes significant time to swap buffers
* the offscreen buffer requires as much VRAM asis displayed
» any number of windows can be independently double buffered
» pixel depthislimited only by the available VRAM.

4.3.2 Full Screen Double Buffering

This section describes how to implement full-screen double buffering with GLINT when
using theinterna timing generator. To perform full-screen double buffering the
available VRAM must be partitioned into two parts — buffer 0 and buffer 1 — each of
which contains enough memory to display afull screen of pixel information. The
partitioning consists of deciding the offset into VRAM at which agiven buffer starts.
This offset is used to program various GLINT registers. For a given resolution and pixel
depth there must be enough VRAM configured on the display adapter for thisto be
possible. For example, with 32 bit deep pixels and 4MB of VRAM it ispossibleto
implement full-screen double buffering at 800x600 resolution, but not at 1024x768.

There are two factors to consider for full-screen double buffering. Firstly, the video
output hardware must be configured to display the pixels from the correct buffer.
Secondly, the GLINT chip must be programmed to render into the correct buffer. To
achieve smooth animations, the buffer being rendered into is usualy different from the
buffer being displayed.

Some sample code to work out the location in VRAM of a second buffer for the
purposes of full-screen double buffering is given below.

3Dlabs Proprietary and Confidential 37

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

Video Output

To display a given buffer, the video output hardware must be programmed with the
offset of that buffer in VRAM. Inthe GLINT internal timing generator thisis controlled
by the VTGFrameRowAddr register located in the GLINT control space at offset
0x3068. It is updated immediately it iswritten, but is not used by the video hardware
until the start of the next frame. This register contains a count measured in RAS (row
address) length units. A RAS length unit is the number of bytes that make up aVRAM
row address line. Thisvalue will be board rather than GLINT specific, and may be
calculated as follows:

RLP =1024* (4/BYP) * IL
where:
RLP= RAS length in pixels
BYP= bytes per pixel
IL = 1 for norrinterleaved VRAMS

2 for 2 way interleaved VRAMSs
4 for 4 way interleaved VRAMs

For example on aboard which uses 2 way interleaved VRAMS the length in pixels
would be:

8bpp: 1024 * (4/1) * 2= 8K pixels
16bpp: 1024 * (4/2) * 2 =4K pixels
32bpp: 1024 * (4/ 4) * 2 = 2K pixels
The interleave value can be worked out by reading the FBModeSel control space

register. Thisis described in the GLINT MX Hardware Reference Manual. The value
1024 is related to the width of the video shift register and never changes.

Note that for a given board design RLP will depend on the pixel depth only and not the
resolution.

The value loaded into the VTGFrameRowAddress register is multiplied by the RASline
length to give an offset into VRAM at which to start scanning pixels for the currently
displayed buffer. This means that a given buffer must start on a RAS line boundary.

One common configuration for a double buffered system isto position buffer O at RAS
line 0, and buffer 1 at the first RAS boundary after the end of buffer 0. Note that in this
case the pixel coordinates of the start of buffer 1, may have an X coordinate which is not
zero. It depends on whether the pixel coordinate at the start of the first scanline past the
end of the screen lies on the correct boundary.

38 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

Here are some examples for 32 bit pixels on a 2 way interleaved board:

640x480: Buffer 0 at RAS 0, coordinates (0, 0).
Buffer 1 at RAS 150, coordinates (0, 480).

800x600: Buffer 0 at RAS 0, coordinates (O, 0).
Buffer 1 at RAS 235, coordinates (480, 601).

1024x768: Buffer 0 at RAS 0, coordinates (0O, 0).
Buffer 1 at RAS 384, coordinates (0, 768).

For most standard resolutions, except 800x600, the start of the first scanline after the
visible screen coincides with a RAS boundary. Hence, in the examples, the pixel
coordinates of the start of buffer 1 have an X valueof 0 and aY vaue equal to the
screen height.

The 800x600 resolution is different, since 800* 600 = 480000 is not divisible by 2K. In
this case the first RAS boundary after the end of buffer O lies at a pixel coordinate with
X =480 and Y = 601. In other words, from the end of buffer O, dightly more than one
and a half scanlines must be skipped to get to the next boundary. It does not matter that,
conceptualy, this position is not aligned with the left edge of the screen when buffer O is
being displayed.

To swapbuffers the VTGFrameRowAddress register is loaded with the RAS line value
for the buffer to be displayed.

GLINT Rendering

The video output hardware (when using the interna timing generator) restricts the
position of each buffer to be on a RAS boundary. When determining the VRAM location
of apixel being rendered GLINT works in screen coordinates. Thus we need to trandlate
the RAS address of the start of a buffer into a pixel position in screen coordinates. We
do thisasfollows:

Y =(RA*RLP)/WP
X =(RA* RLP) % WP

where;

= Y position in screen coordinates
= X position in screen coordinates
= RAS line value for the given buffer
RLP= RAS length in pixels
WP = width of the screen in pixels

For example, at a pixel depth of 32 and a screen resolution of 800x600, as noted above
RA =235 and RWP = 2048 pixels. So the (X, Y) coordinates of buffer 1 are:

Y =(235*2048)/800 =601

X =(235* 2048) % 800 = 480

3Dlabs

Proprietary and Confidential 39

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

Hence buffer 1 starts at (480, 601).

To simplify the calculation of pixel coordinates that are loaded into GLINT, this value
may be loaded into the FBPixel Offset register. The last thing GLINT does before
passing a pixel address to the framebuffer interface is to add the valuein the
FBPixelOffset register to its address. Thusit is possible to move the rendering origin to
any pixel location in VRAM. When swapping buffersit is normal to move this position
to be the pixd at which agiven buffer starts. Thus, in the example just given, to start
rendering into buffer 1, we would load (800 * 601) + 480 = 481280 into the
FBPixelOffset register.

To summarize, generally buffer O will be at RAS value 0 and screen coordinates (0, 0).
So to display buffer O we load 0 into VTGFrameRowAddress and to render into buffer O
we load 0 into the FBPixel Offset register. Buffer 1 will normally live at some offset into
VRAM. Asan example, for 32 bpp at 800x600 as worked out above, we load 235 into
VTGFrameRowAddress to display buffer 1 and we load 481280 into FBPixel Offset to
render into buffer 1.

These values can be pre-calculated at system startup ready to be loaded as required.

Synchronization

The commonest use of double buffering isto display one buffer (the front buffer) while
rendering into the other (the back buffer). When the rendering has been completed to
this buffer, the buffers are swapped and rendering continues into the new back buffer.
Asagenera rule, buffers should not be swapped until al rendering to the back buffer
has completed so that the buffer swap does not result in visible tearing, or screen
breakup.

GLINT reads the VTGFrameRowAddr register at the end of each vertical blanking
period to determine the starting pixel for the next frame to be displayed. Thus, in
principle, thisregister can be written at any time to swap buffers and will only take
effect on the next frame. The same is not true of loading the FBPixel Offset register. This
register gets updated as soon as the command to load it works its way through the input
FIFO. Hence, any rendering that takes place after the FBPixel Offset has been oaded
will occur in the new buffer. If care is not taken this can result in rendering being seen
before the buffers have been swapped. The following scheme would probably produce
picture break-up:

VTGFr ameRowAddr = 0 /1 display buffer O

FBPi xel Of fset = Bufl_Off set [l draw to buffer 1 now
Render Conmands /! draw next frame
VTGFr ameRowAddr = Buf 1_RAS /1 display buffer 1
FBPi xel Offset = 0 /! draw to buffer 1 now
Render Conmands /! draw next frame

There are two problems here. Firstly, even though the write to the VTGFrameRowAddr
register happensimmediately, GLINT does not actually swap the bufferstill the end of
the next vertical blanking period. Thus the start of rendering of the next frame may be
seen in the front buffer prior to the buffer swap. Secondly, once a command has been
loaded into the input FIFO the host is free to continue with other work, while GLINT
executes the command. Accesses to the VTGFrameRowAddr register bypass the FIFO so

40

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

it is possible for the host to update it, and for the buffer swap to happen, before GLINT
has completed rendering the last frame.

The GLINT MX includes the SuspendUntilFrameBlank command to solve these
problems without the need for the host synchronizing with GLINT. Hereis the correct
version of the above example:

SuspendUnti | FrameBl ankparaneters) // display buffer 0

FBPi xel Of fset = Bufl_Off set [l draw to buffer 1 now
Render Conmands /! draw next frame
SuspendUnti | FrameBl ank paraneters) // display buffer 1

FBPi xel Offset = 0 /!l draw to buffer 0 now
Render Conmands /! draw next frame

The SuspendUntil FrameBlank command will flush all outstanding reads and writes to
the framebuffer, and will prevent any further framebuffer memory accesses until after
the buffers have been swapped.

The data that isloaded into the SuspendUntilFrameBlank command enables GLINT to
swap the buffers automatically when the VBLANK occurs either by loading a new

buffer offset into the VTGFrameRowAddr register as discussed above, or by updating
one or more registersin the RAMDAC where colorspace double buffering is being used.
For full details see the detailed description in the register reference, Appendix A.

Thus a single command register access ensures that:
 al rendering has completed to the back buffer
* thechip will wait for VBLANK before carrying out the swap

* thehost can continue sending rendering commands to GLINT without risk of them
affecting the displayed buffer.

Asagenera performance note, it is best to send non-framebuffer related commands to
GLINT following the SuspendUntilFrameBlank command. For example, any commands
to clear the Z buffer between frames should be sent as these will not affect the
framebuffer and will be executed while GLINT waits for the VBLANK. This alows
better overlap between the host and GLINT. In general any commands that will not
cause rendering to the framebuffer to occur can be queued in the GLINT FIFO before
waiting on VBLANK.

Eventually more framebuffer rendering commands will be sent by the host, and the
GLINT will then stall its hyperpipeline until the buffer swap completes. Ideally the host
should use thistime to prepare additional DMA buffers, assuming that an interrupt
driven DMA driver is being used.

Using this scheme the host will not normally ever need to wait for VBLANK, unlessit is
making framebuffer memory accesses through the bypass.

To wait for VBLANK we can poll the VTGVLineNumber register (thereisaso a
VBLANK interrupt available). Thisregister isreset to 1 at the start of the VBLANK
period and is incremented by one for each scanline as the video scanner moves down the
screen. Thus polling for this register to have avalue of 1 indicates the start of VBLANK.
Sincethisregister alwayshasavaue? 1, it is better to wait for its value to be less than
some small positive integer such as 3 or 4. The vertical blanking period typically lasts

3Dlabs Proprietary and Confidential 41

Hardware Data Structures GLINT MX Programmer’ s Reference Manual

for 10 — 30 scanlines so this improves our hit rate but still leaves plenty of blanking time
for usto complete any work we have to do.

4.3.3 Bitplane Double Buffering

Bitplane double buffering is of use at 32bpp framebuffer depth using 32768 5:5:5:1 true
color mode. It relies on the board being designed with a RAMDAC whichwill select
between the high and low 16bits of itsinput stream based on whether bit31 is set or
clear. Effectively the front and back buffer for each pixel, become interleaved within the
same 32bit word in the framebuffer, i.e. buffer O becomes the lower 16bits and buffer 1
becomes the upper 16bits.

The buffer swap is thus implemented as a block fill of bit31 of the interior of awindow
with either one or zero. Whilethisis not as quick as full screen double buffering which
just requires asingle register VTGFrameRowAddr to be updated, it is many times
quicker than BitBIt double buffering, and like the BitBIt case allows any number of
windows to be hardware double buffered simultaneously.

Note that when rendering GUI data (such as window borders, titles etc.) bit31 must
aways be set to the same value so that these pixels are dways displayed from the same
buffer. The hardware writemask can then be used to write to only the high (or only the
low) nibbles when rendering the animating contents of a window.

The features are:
e "amost instantaneous’ buffer swap

 no offscreen buffer required (e.g. 1152x900 would be the maximum resolution on a
4AMB framebuffer at 32bpp depth)

» Multiple windows can be double buffered. GUI can write with no performance penalty.
* Only useful at 5:5:5:1 RGB color depth.

In order to allow the Microsoft Windows 95 DIB engine to render direct to the
framebuffer in the 5:5:5:1 format, a specia framebuffer bypass option is supported
which presents the front and back buffers uninterleaved, i.e. as a 5:5:5:1 16bpp packed
framebuffer. This alows rarely used complex primitives to be punted back to the
Microsoft implemented DIB engine, rather than being implemented in the display driver.

4.3.4 Color Space Double Buffering

Colorspace double buffering is primarily of use at 32bpp framebuffer depth using 4096
colors, though in principal the technique can be used at other depths.

It relies on the board being designed with a LUT-DA C which can toggle between
displaying the high nibbles of each of the R, G and B 8hit streams, to displaying the low
nibbles. This effectively interleaves the pixels of a 12bit true color RGB front buffer
with a 12hbit true color RGB back buffer at the same 32bit memory location in VRAM.

The implementation of the toggling will depend on the particular RAMDAC. Some have
areadmask on the input which can be updated with a single memory access. Others can
accept writes sufficiently quickly that their complete LUT can be reloaded by the host
during the VBLANK.

42 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Hardware Data Structures

GLINT can be set into amode where it replicates the pixel color information into the
high and low nibbles. Thisis useful when it is rendering GUI data (such as window
borders, titles etc.). The hardware writemask can then be used to write to only the high
(or only the low) nibbles when rendering the animating contents of the window.

The features are:
» "instantaneous' buffer swap

 no offscreen buffer required (e.g. 1152x900 would be the maximum resolution on a
4AMB framebuffer at 32bpp depth)

* ONE window can be double buffered. GUI can double write with no performance
penalty.
* inpractice most useful at 12bpp RGB

For further details see sections 85.16.4 and 85.17.1 of this manual, and refer to the data
sheet for the IBM RGB525 RAMDAC or similar device.

3Dlabs

Proprietary and Confidential 43

Graphics Programming GLINT MX Programmer’s Reference Manual

5.1

Graphics Programming

GLINT provides arich variety of operations for 2D and 3D graphics supported by
its HyperPipelined architecture. Section 85.1 shows the basic unitsin the
HyperPipeline, section 85.2 shows how to use GLINT to render a ssimple graphic
primitive, the Gouraud shaded triangle, and sections 85.3 to 85.20 describe each of
the unitsin detail.

The Graphics HyperPipeline

This section describes each of the unitsin the graphics HyperPipeline. Figure 5.1
shows a schematic of the pipeline. In this diagram, the localbuffer contains the pixel
ownership values (known as Graphic IDs), the FrameCount Planes (FCP), Depth (Z)
and Stencil buffer. The framebuffer contains the Red, Green, Blue and Alpha
bitplanes. The unitsin the HyperPipeline are:

Rasterizer scan converts the given primitive into a series of fragments for
processing by the rest of the pipeline.

Scissor Test clips out fragments that lie outside the bounds of a user defined scissor
rectangle and also performs screen clipping to stop illegal accesses outside the
screen memory.

Stipple Test masks out certain fragments according to a specified pattern. Line and
area stipples are available.

Color DDA isresponsible for generating the color information (True Color RGBA
or Color Index(Cl)) associated with afragment.

Texture is concerned with mapping a portion of a specified image (texture) onto a
fragment. The process involves interpolating to determine the texel coordinates
including perspective division, reading the texels, filtering to calculate the texture
color, and application which applies the texture color to the fragment color.

Fog blends a fog color with afragment's color according to a given fog factor.
Fogging is used for depth cueing images and to smulate atmospheric fogging.
Antialias Application combines the incoming fragment's alpha value with its
coverage value when antialiasing is enabled.

Alpha Test conditionally discards a fragment based on the outcome of a
comparison between the fragments apha value and a reference alpha value.

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

PCI Bus
LB Locabuffer Interf >
Bypess erinertace 1B |
D A D D Memory
Router -
] | | GID/ ||
LB] stenail LB
Read Depth Write

Input Regterizer| | Sosso/ N |
FIFO Stipple

Color Texture Fog Anti- Alpha

DDA 1 —1 Aliasng—1 Test
output Host FB ngif* FC°|0f Alpha FB

Write || O/ [T| Forma[™ Blend [| Read
FIFO Out Masc | | (Dither)

A
D D A FB
Memory
B;I:[;Bas Framebuffer Interface >
Figure5.1 HyperPip€eine

* GID (Pixel Ownership) is concerned with ensuring that the location in the

framebuffer for the current fragment is owned by the current visual. Comparison
occurs between the given fragment and the Graphic ID value in the localbuffer, at

the corresponding location, to determine whether the fragment should be discarded.

Stencil Test conditionally discards afragment based on the outcome of atest
between the given fragment and the value in the stencil buffer at the corresponding
location. The stencil buffer is updated dependent on the result of the stencil test
and the depth test.

Depth Test conditionally discards afragment based on the outcome of atest
between the depth value for the given fragment and the value in the depth buffer at
the corresponding location. The result of the depth test can be used to control the
updating of the stencil buffer.

3Dlabs

Proprietary and Confidential 45

Graphics Programming GLINT MX Programmer’s Reference Manual

511

Alpha Blending combines the incoming fragment's color with the color in the
framebuffer at the corresponding location.

Color Formatting converts the fragment's color into the format in which the color
information is stored in the framebuffer. This may optionally involve dithering.

Logica Op/Framebuffer Mask performs Logical Operations between the fragment
and destination, and optionally applies awritemask.

Host Out optionally gathers statistics for picking and extent checking, and returns
data to the host for image uploads.

The HyperPipeline structure of GLINT is very efficient at processing fragments, for
example, texture mapping cal culations are not actually performed on fragments that
get clipped out by scissor testing. This approach saves substantial computational
effort. The pipelined nature does however mean that when programming GLINT
you should be aware of what all the pipeline stages are doing at any time, for
example, many operations require both aread and/or write to the localbuffer and
framebuffer, it is not sufficient to set alogical operation to XOR and enable logical
operations, you must also enable the reading/writing of data from/to the framebuffer.

The Router

One important performance feature of the hyperpipeline isthe Router. Thisis
essentially a switch which alows the order of some of the units to be swapped, by
setting or clearing the Order bit of the RouterMode register.

Textured primitives are typically more costly than non-textured primitives. When
the Order bit is set fragments are tested against the GID (Pixel Ownership), Stencil
and Depth(Z), prior to the texture value being calculated. If the fragment fails any of
these tests, then nothing will be drawn, and so there is normally no need to calculate
the texture value, leading to higher performance.

OpenGL defines the order of operations on a fragment to be texture, aphatest,
stencil and then depth(Z), which is the sequence used when the Order bit in the
Router register is cleared. However, if the alphatest is disabled (or cannot reject
fragments) then OpenGL compatible semantices are maintained even if the
operation order is changed to the more optimal stencil, depth(Z), texture, alphatest.

The order can be dynamically reconfigured at any time without any need to
synchronize simply by writing to the Order bit.

46

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.2 A Gouraud Shaded Triangle

In this section we show how to render atypical 3D graphics primitive, the Gouraud
shaded, depth buffered triangle using GLINT. For this example assume that the
triangle isto be drawn into a window which has its colormap set for RGB as
opposed to color index operation. This means that all three color components; red,
green and blue, must be handled. Also, assume the coordinate origin is bottom left of
the window and drawing will be from top to bottom. GLINT can draw from top to
bottom or bottom to top.

For clarity the equations below are shown in full, though in practice there are many
common terms and factors which need only be computed once. A full C code
exampleisgiven in Appendix F.

Consider atriangle with vertices, v4, v2 and vz where each vertex comprises X, Y
and Z coordinates, shown below. Each vertex has a different color made up of red,
green and blue (R, G and B) components. The apha component will be omitted for
this example.

(XYZ

2 272

RGB)

222

v2

Figure5.2 Example Triangle

The diagram makes a distinction between top and bottom halves, thisis because
GLINT isdesigned to rasterize screen aligned trapezoids and flat topped or
bottomed triangles as shown below:

Figure5.3 Screen aligned trapezoid and flat topped triangle

3Dlabs Proprietary and Confidential 47

Graphics Programming GLINT MX Programmer’s Reference Manual

521 Initialization

GLINT requires many of itsregistersto beinitialized in a particular way, regardless
of what isto be drawn, for instance, the screen size and appropriate clipping must be
set up. Normally this only needs to be done once and for clarity this example
assumes that all initialization has already been done. More details may be found in
chapter 6.

Other state will change occasionally, though not usually on a per primitive basis, for
instance enabling Gouraud shading and depth buffering. A detailed treatment will be
found in later sections of this chapter, and details are not included here.

5.2.2 Dominant and Subordinate Sides of a Triangle

The dominant side of atriangleisthat with the greatest range of Y values. The
choice of dominant sideis optional when the triangle is either flat bottomed or flat
topped.

GLINT always draws triangles from the dominant edge towards the subordinate
edges. This simplifies the calculation of set up parameters as will be seen below.

Subordinate Subordinate
Side \ Sides
‘//
Dominant Dominant
Subordinate v Side Side

Side
Figure54 Dominant and Subordinate Sidesof a Triangle

5.2.3 Cadculating Color valuesfor Interpolation
To draw from l€eft to right, top to bottom, the color gradients (or deltas) required are:

_R:- R G- G _B3- B
dRdy1s = vV dGdyis = Yoo v, dBdy1s = Yo V.
And from the plane equation:
drex={(R- R)” LT q(r- Ry HTh
dGax ={(G- Gy 2 Y3)} (Ge- Gy & Y3)}
dBax = {(B:- Bs)” L2 Ys)} (B2 By YS)}

48 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.24

5.25

where, to be independent of the order the vertices are provided:
c=abq(Xi- X3) " (Yz2- Ya)- (X2- X3)" (Y1- Y3}

These values allow the color of each fragment in the triangle to be determined by
linear interpolation. For example, the red component color vaue of afragment at
XY m could be calculated by:

» adding dRdy»3, for each scanline between Y, and Y, to Ri.

» then adding dRdx for each fragment along scanline Y, from the
left edge to X

The example chosen has the 'knee' i.e. vertex 2, on the right hand side, and drawing
isfrom left to right. If the knee were on the left side (or drawing was from right to
left), thenthe Y deltas for both the subordinate sides would be needed to interpolate
the start values for each color component (and the depth value) on each scanline. For
thisreason GLINT aways draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle, this means left to right.

Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set as follows, for color
interpolation. Note that the format for color valuesis 24bit, fixed point 2's
complement.

/! Load the color start and delta values to draw
/[l a triangle

Rstart (Ryp)

Gstart (Gp)

Bstart (Bj)

dRdyDom (dRdy13) // To wal k up the dom nant edge
dGdyDom (dCGdy13)

dBdyDom (dBdy13)

dRdx (dRdx) /1 To wal k along the scanline
dGdx (dCGdx)
dBdx (dBdx)

Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or deltas) required
for interpolation are:
Z3- 71

dZdyis =
yi2 Ys- Y1

And from the plane equation:

(Yz2- Ya)}_ (Ze- 29 (Yi- Y3)

dzdx ={(Z1- Zs)’
X={(Z2- Z3)" .

}

3Dlabs

Proprietary and Confidential 49

Graphics Programming GLINT MX Programmer’s Reference Manual

5.2.6

5.2.7

where, as before:
c=abq(Xi- X3) " (Yz2- Ya)- (Xz- X3)" (Y1- Y3}

The divisor, shown here as ¢, isthe same as for color gradient values. The two
deltas, dZdy;3 and dZdx alow the Z value of each fragment in the triangle to be
determined by linear interpolation as was described for the color interpolation
above.

Register Set Up for Depth Testing

Internally GLINT usesfixed point arithmetic. The formats for each register are
described later. Each depth value must be converted into a 2's complement 16.32 bit
fixed point number and then loaded into the appropriate pair of 32 bit registers. The
'‘Upper' or 'U' registers store the integer portion, whilst the 'Lower’ or 'L’ registers
store the 16 fractional bits, left justified and zero filled.

For the example triangle, GLINT would need its registers set up as follows:

/!l Load the depth start and delta val ues
/!l to draw a triangle

ZStartU (Z1_MB)
ZStartL (Z1_LS)
dzdyDonJ (dzdy13_MB)
dzdyDonl (dzdy13_LS)
dzdxU (dzdx_MB)
dzdxL (dzdx_LS)

Calculating the Slopes for each Side

GLINT drawsfilled shapes such as triangles as a series of spans with one span per
scanline. Therefore it needs to know the start and end X coordinate of each span.
These are determined by 'edge walking'. This process involves adding one delta
value to the previous span's start X coordinate and another delta value to the
previous span's end x coordinate to determine the X coordinates of the new span.
These deltavalues are in effect the slopes of the triangle sides. To draw from left to
right and top to bottom, the slopes of the three sides are calculated as.

X3- X1 X1 = Xo- X1 AXo = X3- X2
Yz- Y1 Y2- Y1 Y- Y2

dXwz =

This triangle will be drawn in two parts, top down to the 'knee' i.e. vertex 2 and then
from there to the bottom. The dominant side is the left side so for the top half:

dXDom = dX13 dXSub = dXz»2

The start XY, the number of scanlines, and the above deltas give GLINT enough
information to edge walk the top half of the triangle. However, to indicate that thisis
not aflat topped triangle (GLINT is designed to rasterize screen aligned trapezoids

50

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.2.8

5.2.9

5.2.10

and flat topped triangles), the same start position in terms of X must be given twice
as StartXDomand StartX Sub.

To edge walk the lower half of the triangle, selected additional information is
required. The dope of the dominant edge remains unchanged, but the subordinate
edge sope needs to be set to:

dXSub = dX23

Also the number of scanlines to be covered from Y2 to Y 3 needsto be given. Finaly
to avoid any rounding errors accumul ated in edge walking to X, (which can lead to
pixel errors), StartXSub must be set to X2.

Rasterizer Mode

The GLINT rasterizer has a number of modes which can be set which have effect
from the time they are set until they are modified and can thus affect many
primitives. In the case of the Gouraud shaded triangle the default value for these
modes are suitable.

Rast eri zer Mode(0) /1 Default rasterizer node

Subpixel Correction

GLINT can perform subpixel correction of all interpolated values when rendering
aliased trapezoids. This correction ensures that any parameter
(color/depth/texture/fog) is correctly sampled at the center of afragment. Subpixel
correction will generally always be enabled when rendering any trapezoid which is
smooth shaded, textured, fogged or depth buffered. Control of subpixel correction is
in the Render command register described in the next section, and is selectable on a
per primitive basis. A full code exampleisgiven in Appendix F.

Rasterization

GLINT isamost ready to draw the triangle. Setting up the registers as described
here and sending the Render command will cause the top half of the example
triangle to be drawn.

For drawing the example triangle, al the bit fields within the Render command
should be set to 0 except the PrimitiveType which should be set to trapezoid and the
SubPixel CorrectionEnable bit which should be set to TRUE.

/[l Draw triangle with knee
/1 Set deltas
St art XDom (X1<<16) /! Converted to 16.16 fixed point

dXDom (((X3 - X1)<<16)/(Y3 - Y1))
St art XSub (X1<<16)

3Dlabs

Proprietary and Confidential 51

Graphics Programming GLINT MX Programmer’s Reference Manual

dXSub (((X2 - X1)<<16)/(Y2 - Y1))
StartyY (Y1<<16)

dY (-1<<16)

Count (Y1 - Y2)

/! Set the render command node
render.PrimtiveType = GLI NT_TRAPEZO D PRI M TI VE
render . SubPi xel Correcti onEnabl e = TRUE

/!l Draw the top half of the triangle

Render (r ender)

After the Render command has been issued, the registersin GLINT can immediately
be atered to draw the lower half of the triangle. Note that only two registers need be
loaded and the command ContinueNewSub sent. Once GLINT has received
ContinueNewSub, drawing of this sub-triangle will begin.

/] Set-up the delta and start for the new edge

Start XSub (Xp<<16)
dXSub (((Xz - X2)<<16)/(Y3 - Ya))

/1 Draw sub-triangle

Conti nueNewSub (Y2 - Y3) /1l Draw | ower half

52

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.3

531

Rasterizer Unit

The rasterizer decomposes a given primitive into a series of fragments for
processing by the rest of the HyperPipeline.

GLINT can directly rasterize:
aliased screen aligned trapezoids
aliased single pixel wide lines
aliased single pixel points
antialiased screen aligned trapezoids
antialiased circular points

All other primitives are treated as one or more of the above, for example an
antialiased line is drawn as a series of antialiased trapezoids.

Trapezoids

GLINT's basic area primitive is the screen aligned trapezoid. Thisis characterized
by having top and bottom edges parallel to the X axis. The side edges may be

vertical (arectangle), but in general will be diagonal. The top or bottom edges can
degenerate into points in which case we are left with either flat topped or flat
bottomed triangles. Any polygon can be decomposed into screen aligned trapezoids
or triangles. Usually, polygons are decomposed into triangles because the
interpolation of values over non-triangular polygonsisill defined. The rasterizer
does handle flat topped and flat bottomed 'bow tie' polygons which are a special case
of screen aigned trapezoids.

To render atriangle, the approach adopted to determine which fragments are to be
drawn is known as 'edge walking'. Suppose the aliased triangle shown in Figure 5.5
was to be rendered from top to bottom and the origin was bottom left of the window.
Starting at (X1, Y1) then decrementing Y and using the dope equations for edges 1-
2 and 1-3, the intersection of each edge on each scanline can be calculated. This
results in a span of fragments per scanline for the top trapezoid. The same method
can be used for the bottom trapezoid using slopes 2-3 and 1-3.

It isusually required that adjacent triangles or polygons which share an edge or
vertex are drawn such that pixels which make up the edge or vertex get drawn
exactly once. This may be achieved by omitting the pixels down the left or the right
sides and the pixels along the top or lower sides. GLINT has adopted the convention
of omitting the pixels down the right hand edge. Control of whether the pixels aong
the top or lower sides are omitted depends on the start Y value and the number of
scanlines to be covered. With the example, if StartY = Y1 and the number of
scanlinesis set to Y1-Y 2, the lower edge of the top half of the triangle will be
excluded. This excluded edge will get drawn as part of the lower half of the triangle.

To minimize delta calculations, triangles may be scan converted from left to right or
from right to left. The direction depends on the dominant edge, that is the edge

3Dlabs

Proprietary and Confidential 53

Graphics Programming GLINT MX Programmer’s Reference Manual

which has the maximum range of Y vaues. Rendering always proceeds from the
dominant edge towards the relevant subordinate edge. In the example above, the
dominant edge is 1-3 so rendering will be from right to left.

Subordinate Edge 1-2 (X1,Y1)

™

dXSub 1-2

Dominant Edge 1-3

e

Knee

Top

Trapezoid dXDom

x2¥2) € — — = — — — — — — —

Subordinate Edge 2-3
dXSub 2-3

Figure 5.5 Rasterizing a triangle.

Bottom
Trapezoid

(X3,Y3)

The sequence of actions required to render atriangle (with a'knee) are:

» Load the edge parameters and derivatives for the dominant edge and the first
subordinate edges in the first triangle.

» Send the Render command. This starts the scan conversion of the first triangle,
working from the dominant edge. This means that for triangles where the kneeis
on the left we are scanning right to left, and vice versafor triangles where the knee
isontheright.

» Load the edge parameters and derivatives for the remaining subordinate edge in the
second triangle.

* Send the ContinueNewSub command. This starts the scan conversion of the second
triangle.

Pseudocode for the above exampleis:
/! Set the rasterizer node to the default, see
// 85.3.9

Rast eri zer Mode(0)
/[l Set-up the start values and the deltas.

// Note that the X and Y coordi nates are converted
// to 16.16 formt

54 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

St art XDom (X1<<16)

dXDom (((X3- X1)<<16)/(Y3 - Y1))

St art XSub (X1<<16)

dXSub (((X2- X1)<<16)/(Y2 - Y1))

StartY (Y1<<16)

dY (-1<<16) /! Down the screen
Count (Y1l - Y2)

/1 Set the render node to aliased prinmitive with
/1 subpixel correction.

render.PrinmtiveType = GLI NT_TRAPEZO D _PRI M TI VE
render . Subpi xel Correcti onEnabl e = GLI NT_TRUE
render. Anti al i asEnabl e = GLI NT_DI SABLE

/!l Draw top half of the triangle
Render (r ender)

/] Set the start and delta for the second hal f of
/1 the triangle.

Start XSub (X2<<16)
dXSub (((X3- X2)<<16)/(Y3 - Y2))

/!l Draw |l ower half of triangle

Cont i nueNewSub (abs(Y2 - Y3))

After the Render command has been sent, the registersin GLINT can immediately
be atered to draw the second half of the triangle. For this, note that only two
registers need be loaded and the command Conti nueNewSub be sent. Once drawing
of thefirst triangleis complete and GLINT has received the ContinueNewSub
command, drawing of this sub-triangle will start. The ContinueNewSub command
register isloaded with the remaining number of scanlines to be rendered.

53.2 Lines

Single pixel wide aliased lines are drawn using a DDA agorithm, so all GLINT
needs by way of input datais StartX, StartY, dX, dY and length. The agorithm

calculates:
while (length--)
{
X = X + dx
Y =Y + dy
plot ((int)X, (int)Y)
}

3Dlabs Proprietary and Confidential 55

Graphics Programming GLINT MX Programmer’s Reference Manual

Consider rendering a two segment

polyline from (X1, Y1) to (X2, Y2) to

(X3, Y3) (X2, &
Both segments are X major so: - -((X3,Y3)
abs (Xnw1- Xp) > abs (Ynea- Yn)

The pseudocode to render thislineis
shown below.

Figure 5.6 Polyline

/! Load the delta values for the first segnent.

St art XDom (X1<<16)

dXDom (1. 0<<16)

StartyY (Y1<<16)

dY (((Yz2- Y1)<<16)/(X2 - X1))
Count (abs (X2 - X1))

/! Set the render node
render.PrimtiveType = GLINT_LINE PRI M TI VE

/1l Start rendering

Render (r ender)

/1l The first segment is conplete, |load delta
[/l for the second

dXDom (1. 0<<16)
dY (((Ys- Y2)<<16)/(X3 - X2))

/1 Continue with the second segment

Conti nue NewLi ne (abs (X3 - X3))

Note that the mechanism to render the second segment with the ContinueNewLine
command is analogous to the ContinueNewSub command used at the knee of a

triangle.

When a Continue command is issued some error will be propagated along the line,
to minimize this, a choice of actions are available as to how the DDA units are
restarted on the receipt of a Continue command. It is recommended that for OpenGL
rendering the ContinueNewLine command is not used and individual segments are
rendered.

Antialiased lines, of any width, are rendered as antialiased screen-aligned trapezoids.

56

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

533 Poaints
GLINT supports asingle pixel aliased point primitive. For points larger than one
pixel, trapezoids should be used. The fieldsin the Render command register are
described in detail later, however, in this case the PrimitiveType field in the Render
command should be set to equal GLINT_POINT_PRIMITIVE. The pseudocode
portion to render an aliased unity sized point is:
/] Set the rasterizer node to the default, see
/1 85.3.9
Rast eri zer Mbde(0)
/] Set-up the start values and the deltas.
/!l Note that the X and Y coordinates are converted
/!l to 16.16 format
St art XDom (X<<16)
StartyY (Y<<16)
/1l Set-up the render comrand.
render.PrinmtiveType = GLI NT_PO NT_PRI M TI VE
/! Render the point
Render (render)
534 Antiaiasing
GLINT uses a subpixel point sampling algorithm to antialias primitives. GLINT can
directly rasterize antialiased trapezoids and points. Other primitives are composed
from these base primitives.
The rasterizer associates a coverage vaue with each fragment produced when
antialiasing. This value represents the percentage coverage of the pixel by the
fragment. GLINT supports two levels of antialiasing quality:
normal, which represents 4x4 pixel subsampling
high, which represents 8x8 pixel subsampling
Selection between these two is made by the AntialiasingQuality bit within the
Render command register.
When rendering antialiased primitives with GLINT the FlushSpan command is used
to terminate rendering of a primitive. Thisis due to the nature of GLINT
antialiasing. When a primitive is rendered which does not happen to complete on a
scanline boundary, GLINT retains antialiasing information about the last sub-
scanling(s) it has processed, but does not generate fragments for them unless a
FlushSpan command is received. The commands ContinueNewSub,
ContinueNewDom or Continue can then be used, as appropriate, to maintain
3Dlabs Proprietary and Confidential 57

Graphics Programming GLINT MX Programmer’s Reference Manual

continuity between adjacent trapezoids. This allows complex antialiased primitives
to be built up from simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids to render an antialiased
line. Thelinewill in general consist of three screen aligned trapezoids as shown in
the diagram below.

dXDom2
count3
_ d XSub2
Trapezoid B
Knee2
count2
Kneel]
Trapezoid C

dXDom1l

countl ¢ \
dXSubl

Trapezoid A

Figure5.7 Antialiased Line

The procedure to render the lineis asfollows:

/1 Set-up the blend and coverage application units
/1l as appropriate - not shown

/!l In this exanple only the edge deltas are shown

/1l loaded into registers for clarity. Inreality

/[l start X and Y values are required. This exanple
/1 uses 4x4 anti ali asing.

/! Render Trapezoid A

dY(1<<14)

dXDom(dXDonil<<14)

dXSub(dXSubl<<14)

Count (count 1<<2)

render.PrimtiveType = GLI NT_TRAPEZO D
render. Anti al i asEnabl e = GLI NT_TRUE

render. AntialiasQuality = GLINT_M N_ANTI ALI AS
render. Cover ageEnabl e = GLI NT_TRUE
Render (r ender)

/!l Render Trapezoid B

dXSub(dXSub2<<14)
Cont i nueNewSub(count 2<<2)

58

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

/1 Render Trapezoid C

dXDom(dXDonR<<14)
Cont i nueNewbDon(count 3<<2)

/1 Now we have finished the primtive flush out
/1l the last scanline
Fl ushSpan()

Note: When rendering antialiased primitives, any count values should be given in
subscanlines. For example if the quality is 4x4 then the count will be 4 times
the number of scanlines completely covered by the primitive plus the number
of subscanlines contained in the remaining partially covered scanlines. Also,
if using 4x4 quality then any delta value must be divided by 4. If using 8x8
guality then the multiply/divide factor is 8.

When rendering, AntialiasEnable must be set in the AntialiasM ode register to scale
the fragments color by the coverage value. An appropriate blending function should
also be enabled. See the Antialias Application and Alpha Blend sections for more
details.

Note, when rendering antialiased bow-ties, the coverage value on the cross-over
scanline may be incorrect.

Section 85.9.2 describes in more detail how to render scenes with antialiased
polygons.

GLINT can render small antialiased points. Antialiased points are treated as circles,
with the coverage of the boundary fragments ranging from 0% to 100%. GLINT
supports:

point diameter of 0.5 to 16.0 in steps of 0.25 for 4x4 antialiasing

point diameter of 0.25 to 8.0 in steps of 0.125 for 8x8 antialiasing

To scan convert an antialiased point as acircle, GLINT traverses the boundary in
sub scanline steps to calculate the coverage value. For this, the sub scanline
intersections are calculated incrementally using a small table. The table holds the
changein X for astepin Y. Symmetry is used so the table only holds the delta
values for one quadrant.

3Dlabs Proprietary and Confidential 59

Graphics Programming GLINT MX Programmer’s Reference Manual

XLeft += Table[0] XRight -= Table[0]

X Left += Table[1] XRight -= Table[1]

XLeft +=Table[2] XRight -= Table[2]

XLeft -= Table[2] XRight += Table[2]

XLeft -= Table[1] XRight += Table[1]

X Left -= Table[0] XRight += Table[0]

XRight = StartXDom
XLeft = StartX Sub

Figure5.8 Antialiased Point

The pattern of table accesses, additions and subtractions are shown in Figure 5.8 for
an odd diameter point. On the diagram the symbol +/-= Table[n] by an arrow
indicates the contents of the table at address n are added/subtracted to move along
the arrow.

StartXDom, StartX Sub and StartY are set to the top or bottom of the circle and dY
et to the subscanline step. In this example the point table will have three entries.
Note in the case of an even diameter, the last of the required entriesin the table is set
to zero. Appendix A Register Reference, gives full details of how the point table is
laid out.

Note, asthe tableis configurable, point shapes other than circles can be rendered.
Also if the StartX Domand StartX Sub values are not coincident then horizontal thick
lines with rounded ends, can be rendered.

535 Span Operations

The GLINT MX has greatly increased the speed of many 2D operations through the
addition of 3Dlabs proprietary Span Filling technology.

The span mechanism may be used for various operations such as image upload,
image download, filling with constant color, filling with a pattern, character glyphs,
monochrome bitmaps, copies and copies with logical ops. Any trapezoid may be
used and the scanning direction may be left-to-right or right-to-left.

60 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

2D performanceis greatly improved by:

» Better utilization of the VRAM block fill capability for solid fills, stippled fills,
characters and pattern fills.

» The span mechanism is independent of pixel size. Hence maximum use is made of
the framebuffer bandwidth for 8, 16 and 32 bit wide pixels.

* Multiple pixels are processed in parallel.

* No alignment restrictions. Any span operation may be performed to any pixel
alignment for all pixel sizes.

» Page break overheads are amortized over many more read and write operations
during a BitBIt operation. Hence performance of BitBIt operationsis much closer
to the peak bandwidth of the memory.

» Window or screen relative operations are supported.
» Scissor clipping can also be used in conjunction with span operations.
The span mechanism does have some restrictions:

» No accesses to the localbuffer are made. Hence GID, Stencil and Depth tests are
not available.

» 3D operations including gouraud shading, alphatests, alpha blend, dither
operations, fogging and anti-aliasing are not available.

When the span operation is enabled, the rasterizer divides the pixels between the | eft
and right hand edges of the polygon or rectangle into a succession of spans, each 32
pixelswide. Each span isdescribed by a 32 bit wide span mask and each pixel in
the span has a corresponding bit in the span mask. If abit in the span mask is s,
then the corresponding pixel will be read and/or written. The least significant bit in
the span mask (bit 0) corresponds to the left most pixel on the screen for the span.
The span mask does not have any fixed alignment with the pixels stored in the
framebuffer, i.e. the first pixel in the span may correspond to any pixe in the
framebuffer. Any masking or shifting to align the span data being read or written to
the 64 bit framebuffer architecture is performed automatically.

Span filling may be performed |eft-to-right or right-to-left. However the pixels
within an individual span are always read and/or written in aleft to right order.
Henceif abitmask or image download data is provided, then the datain each
individual span must be ordered left to right. Normally if any datais provided, then
gpan filling should be performed left-to-right.

3Dlabs Proprietary and Confidential 61

Graphics Programming GLINT MX Programmer’s Reference Manual

53.6 Span Mask Processing

The span mask undergoes severa processing steps beforeiit is used by the
Framebuffer Interface Unit to determine which pixel to read and/or write:

» The Rasterizer generates the mask using the left and right hand edge information.
Note that the edges may be vertical or sloped.

* |If SyncOnBitMask is enabled in the Render command, then the span mask is
ANDed with the bit mask data provided by the host. If no bit mask datais present,
then the Rasterizer will wait for it to arrive before proceeding. The bit mask data
may be optionally inverted, byte swapped, word swapped or mirrored (in any
combination) before the ANDing is performed. The inversion may be used to
enable drawing of the background bits. The byte and word swapping allows bit
mask data from different endian hosts to be accommodated. The mirror operation
swaps bits 0 and 31, bits 1 and 30, etc. which changes the left most pixel in a span
from being controlled by the least significant bit to the most significant bit in the
bit mask.

* |If the Screen Scissor is enabled, then pixels falling outside the left and right edges
of the screen scissor region have their corresponding bits in the span mask cleared.

 |If the User Scissor is enabled, then pixels falling outside the left and right edges of
the user scissor region have their corresponding bits in the span mask cleared.

» If Area Stippling is enabled, then the stipple mask is extracted from the area stipple
table for the appropriate scan line and expanded, if necessary, to 32 bits by
replication. The normal offset, select and mirror controlsin X and in'Y may be
used as for non span rendering. The stipple mask is ANDed with the span mask.

 If texture mapping is enabled, then atexd is read from the localbuffer (under
control of the TextureAddressMode, TextureReadMode and the S, T and Q DDA
parameters). If thetexel isto be used as a bit mask, then any specified texel
formatting is performed and the final 32 bit texel value is optionally inverted, byte
swapped and mirrored before being ANDed with the span mask. This procedure
allows character bit masks to be held in the localbuffer.

» The span mask is now used (in conjunction with some mode bits) to read and/or
write pixel datain the framebufffer.

» Findly the span mask may be optionally used to grow the extent region, or perform
picking as part of the statistics operation in the Host Out Unit.

5.3.7 Block Write Operation

The span operation of the GLINT MX and GLINT 500TX includes the block write
functionality of the GLINT 300SX. The same algorithms that used block write to fill
trapezoids on the GLINT 300SX will also work on these later devices. However, the
block write sizeis now fixed at 32 pixelsfor al depths. This meansthat it isno
longer necessary to specify the block write size in the FastFilllncrement field of the
Render command, nor in the BlockWidth field of the FBWriteMode register. In the

62 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.3.8

5.3.9

5.3.10

GLINT MX and GLINT 500TX these bits are now unused and their values are
ignored.

Pixel Sizes

The GLINT 300SX core operated independently of the pixel depth. With the
introduction of span operations, and in order to maximize the number of pixels per
32 bits processed, the GLINT MX and GLINT 500TX cores take account of the
depth of the pixels. The Rasterizer unit in these two devicesincludes aregister
called the Pixel Size register. This register replaces the relevant bitsin the PCI
FBModeSd register. The bitsin FBModeSel are now read-only. To change pixel

depth on the GLINT MX and GLINT 500TX, the Pixel Size register must be used
instead.

The Pixel Size register can have the following values:

0 =32 bit pixels
1 =16 bit pixels
2 =8 it pixels

Since the PixelSize register isa core register, it can be modified at any time without
affecting in-progress rendering. Thus, unlike the GLINT 300SX it is not necessary
to synchronize with the chip before changing pixel depth.

Sub Pixel Precision and Correction

Asthe rasterizer has 16 bits of fraction precision, and the screen width used is
typicaly less than 216 wide a number of bits called subpixel precision bits, are
available. Consider a screen width of 4096 pixels. This figure gives a subpixel
precision of 4 bits (4096=212). The extra bits are required for a number of reasons:

antialiasing (where vertex start positions can be supplied to subpixel precision)

when using an accumulation buffer (where scans are rendered multiple times with
jittered input vertices)

for correct interpolation of parameters to give high quality shading as described
below

GLINT supports subpixel correction of interpolated values when rendering aiased
trapezoids. Subpixel correction ensures that all interpolated parameters associated
with a fragment (color, depth, fog, texture) are correctly sampled at the fragment's
center. This correction isrequired to ensure consistent shading of objects made
from many primitives. It should generally be enabled for all aliased rendering which
uses interpolated parameters.

Subpixel correction is not applied to antialiased primitives.
Bitmaps

A Bitmap primitive isatrapezoid or line of ones and zeros which control which
fragments are generated by the rasterizer. Only fragments where the corresponding
Bitmap bit is set are submitted for drawing. The normal use for thisisin drawing

3Dlabs

Proprietary and Confidential 63

Graphics Programming GLINT MX Programmer’s Reference Manual

characters, although the mechanism is available for all primitives. The Bitmap data
is by default, packed contiguously into 32 bit words so that rows are packed adjacent
to each other. Bitsin the mask word are by default used from the least significant

end towards the most significant end and are applied to pixelsin the order they are
generated in. The relationship between bits in the mask and the scanning order is
shownin Figure 5.9.

The rasterizer scans through the bitsin each word of the Bitmap data and increments
the X,Y coordinates to trace out the rectangle of the given width and height. By
default, any set bits (1) in the Bitmap cause a fragment to be generated, any reset
bits (0) cause the fragment to be rejected.

BitMask value

FIE|ID|C|B|A|9]|8| 7|6]|5]4]|3|2|1]0
ol1]2]3 C|DI|E]|F F| E|D| C 3121110
4151|16|7 8|9 A|B Bl]A|9]| 8 716|514
glolAalB 4 |5|16]7 716]5]| 4 BlAaAl|l9]| S8
C|DI|E|F oOj1]2(3 3|12]1|60 F|E|D]|C
—_— —_— 44— 44—

Figure59 Reationship between Bitmask and Scanning Directions

The selection of bits from the BitMaskPattern register can be mirrored, that is, the
pattern is traversed from MSB to LSB rather than LSB to MSB. The MX dlowsthe
pattern to be byte swapped on download. Thisis useful for downloading Windows
bitmaps in their native format. Also, the sense of the test can be reversed such that a
set bit causes afragment to be rejected and vice versa. This control isfound in the
RasterizerMode register, described in section 85.3.9.

When one Bitmap word has been exhausted and pixels in the rectangle still remain
then rasterization is suspended until the next write to the BitMaskPattern register.

Any unused bitsin the last Bitmap word are discarded.
For example a5 pixel wide, 8 pixel high bitmap requires aregister set up as follows:

/] Set the rasterizer node to the default, see
// 85.3.9

Rast eri zer Mbde(0)
/[l Set-up the start values and the deltas.

// Note that the X and Y coordi nates are converted
// to 16.16 format

64 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5311

St art XDom (X<<16)

dXDom (0)

Start XSub ((X + 5)<<16) /1 Right hand edge pixels
/1l get mssed off.

StartyY (Y<<16)
dY (1<<16)
Count (8)

/1 At least the following bits require setting for
/1 the Render command.

GLI NT_TRAPEZO D_PRI M TI VE
GLI NT_TRUE

render.PrinmitiveType
render. SyncOnBi t Mask

/! 1ssue render command. First fragment will be
/1 generated on receipt of the BitMaskPattern

Render (render)

/1 8x5 pixel bitmap requires 40 bits, and so 2
/1 32 bit words.

Bi t MaskPattern (patternWrdo0)
Bi t MaskPattern (patternWrdl)

Rendering will start as soon as the first patternWord is loaded into the
BitMaskPattern register.

The GLINT MX provides the ability to start a scanline at an arbitrary offset into the
first bitmask that is downloaded for each scanline, and to discard unused bits at the
end of ascanline. Thisis useful for allowing the host to download data directly from
ahost bitmap without having to shift and pack the bits. This functionality is
controlled by the BitMask Packing and the five BitMask Offset bitsin the
RasterizerMode register.

Span Operations and Bitmaps

The fastest way to render downloaded bitmap data, not requiring logical op
processing, is to use a span operation. The rasterizer is set up as normal setting the

FastFillEnable bit.

When the bitmap data is downloaded, it is now ANDed with the span mask
generated by the rasterizer. This resulting mask is passed through the core to be used
asthe VRAM block fill mask. Thus asingle VRAM access can be used to process
up to 32 pixels. Since, only the foreground color can be set with ablock fill. If itis
necessary to aso plot the background color then, the operation should be repeated
for the background color but with the InvertBitMask bit set in the RasterizerMode

register.

3Dlabs

Proprietary and Confidential 65

Graphics Programming GLINT MX Programmer’s Reference Manual

Since the downloaded bitmask data will be ANDed with masks generated by the
Rasterizer without any re-alignment being performed, it is up to the host software to
ensure that the masks match up. This can be achieved in two ways. First, the host
software can aign the bits that it downloads to match the alignment of the

Rasterizer. A faster way isto use the User Scissor. Thisis the recommended method.
Note that thisis a general algorithm. In the specia case where the datato be
downloaded is already aligned to 32 bits on both the |eft and right edges then the
scissor need not be used.

For example, suppose that we want to download data to fill arectangle with left
edge at 10 and right edge at 200. And further, assume that the host bitmap dataisto
be loaded from an offset of 35 within the bitmap. Our goal isto match the bit at
offset 35 with the pixel at offset 10.

Since we want to do the least amount of work on the host by avoiding shifting the
data, we will actually download the host bitmap data at the previous 32-bit

boundary. This means that we must set GLINT up to discard the first 3 bits of data.
We achieve this by rasterizing arectangle whose | eft edgeis 3 pixels less than that
required, in this case we would rasterize the |eft edge to start at pixel 7. This causes
the source bitmap data to be correctly aligned with the mask data produced by the
rasterizer. But, in order to protect the 3 pixels that we would otherwise overwrite, we
use the scissor clip and set its bounds to be those of the original rectangle.

When using a span operation like this, the rasterizer will wait for new bitmask data
to be downloaded at the start of each scanline. So we do not have to perform the
alignment operation on the right hand edge.

The following gives the outline for this algorithm:

leftalign = bitmapxleft & 31
width = Xright - Xl eft + leftalign

Start XDom ((Xl eft - leftalign)<<16)
dXDom (0)
St art XSub (Xri ght <<16)

StartyY (Y<<16)
dY (1<<16)
Count (hei ght)

/1l protect the edge pixels with the scissor

m nXY. X = Xl eft

mnXY.Y =Y

maxXY. X = Xri ght

mexXY.Y = Y + hei ght

Sci ssor M nXY(mi nXY) /! Load the registers

Sci ssor Max XY(maxXY)

/! Enable the unit
sci ssor Mbde. User Sci ssor Enabl e = GLI NT_ENABLE

66 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.3.12

sci ssor Mbde. ScreenSci ssor Enabl e = GLI NT_ENABLE

/1 At least the following bits require setting for
/! the Render command.

render.PrinmitiveType GLI NT_TRAPEZO D PRI M Tl VE
render. SyncOnBi t Mask GLI NT_TRUE
render. FastFi | | Enabl e = GLI NT_TRUE

/1l lIssue render command. First fragnent will be
/1 generated on receipt of the BitMskPattern.

Render (render)

/!l downl oad the bits fromthe source bitnmap 32 bits
[/ at a time aligning the bitmap pointer at the
/! start of each scanline

Bi t mapBase += bitmapyorg * bitnapw dth
bi t mapxl eft &= ~31
for (h = 0; h < height; ++h) {
pul Bitmap = BitnmapBase + bitnapxleft/8;
for (c =0; ¢ <width; ¢ += 32) {
Bi t MaskPat t er n(pul Bi t map)
pul Bitmap += si zeof (ULONG)

}
Bi t mapBase += bitmapw dth
}

A similar algorithm can be used to implement fast text rendering. For example, for
fonts where each line fits into 32 bits, each line of a glyph can be downloaded as a
mask.

Image Copy/Upload/Download

GLINT supports three "pixel rectangle" operations: copy, upload and download.
These can apply to the Depth or Stencil Buffers (held within the local buffer) or the
framebuffer aswill be seen in section §5.10.

GLINT copy moves raw blocks of data around buffers. To zoom or re-format data
external software must upload the data, process it and then download it again.

To copy arectangular area, the rasterizer would be configured to render the
destination rectangle, thus generating fragments for the areato be copied. GLINT
copy works by adding alinear offset to the destination fragment's address to find the
source fragment's address. The calculation of the offset value is as shown in the
diagram below:

Note that the offset is independent of the origin of the buffer or window, asit is
added to the destination address. Care must be taken when the source and
destination overlap to choose the source scanning direction so that the overlapping

3Dlabs

Proprietary and Confidential 67

Graphics Programming GLINT MX Programmer’s Reference Manual

areais not overwritten before it has been moved. This may be done by swapping the
values written to the StartXDom and StartX Sub, or by changing the sign of dY and
setting StartY to be the opposite side of the rectangle.

- Screen Width -
Source
Rectangle
X Offset .
Increasing
‘ Physical
Offset Address
Y Offset
Destination
Rectangle v
Offset=- Y Offset* Screen Width + X Offset

Figure5.10 GLINT Copy Operation

Localbuffer copy operations are correctly tested for pixel ownership. Note that this
implies two reads of the localbuffer, one to collect the source data, and one to get the
destination GID for the pixel ownership test.

GLINT buffer upload/downloads are very similar to copiesin that the region of
interest is generated in the rasterizer. However, the localbuffer and framebuffer are
generaly configured to read or to write only, rather than both read and write. The
exception isthat an image load may use pixel ownership tests, in which case the
localbuffer destination read must be enabled.

Units which can generate fragment va ues, the color DDA unit for example, should
generally be disabled for any copy/upload/download operations.

Warning: During image upload, al the returned fragments must be read from the
Host Out FIFO, otherwise the GLINT pipeline will stall. In addition it is strongly
recommended that any units which can discard fragments (for instance the following
tests: bitmask, alpha, user scissor, screen scissor, stipple, pixel ownership, depth,
stencil), are disabled otherwise a shortfall in pixels returned may occur, also leading
to deadlock.

Note that because the area of interest in copy/upload/download operations is defined
by the rasterizer, it is not limited to rectangular regions.

68 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Color formatting can be used when performing image copies, uploads and
downloads. This alows data to be formatted from, or to, any of the supported
GLINT color formats, section 85.16.3 fully describes this operation.

An example of arectangular copy may be found in section 85.15.4.
5.3.13 Span Operations and Image Copy/Upload/Download

2D image operations to and fromthe framebuffer can be optimized by using a span
operation. The benefits are greatest at lower pixel depths since packed pixel datais
transferred through the core.

To use span operations when copying pixel data within the framebuffer is
straightforward. The FastFillEnable and SpanOperation bits in the Render command
must be set as follows. Thiswill work both with and without logical op processing.

render. FastFi | | Enabl e = GLI NT_TRUE
render. SpanOperation =1

For image download operations, the GLINT MX supports multiple pixel download
using span operations. Thisis not supported where logical op processing is required.
For a straightforward packed pixel image download, the algorithm is very similar to
that for monochrome bitmap download using spans.

The source data should be downloaded in 32 bit quantities, starting on a 32 bit
boundary. The host should download as many 32 bit quantities per scanline as are
necessary to include all pixels to be downloaded. The rasterizer should be set to
rasterize the appropriate rectangle but adjusting the left edge backwards to alow for
extra pixels required in aligning the source. Finaly, the scissor unit should be
enabled to clip out the extraleft hand pixels now being rasterized.

For image upload, asimilar algorithm applies. In this case the image data can be
delivered to the output FIFO as packed 32 bit data. For pixels at the start and end of
each scanlinethe GLINT MX will zero out any pixels which are outside the
rectangle being rasterized. In this case the scissor unit is not required, but using it
will mean that unwanted left-hand pixels are also returned as zero.

3Dlabs Proprietary and Confidential 69

Graphics Programming GLINT MX Programmer’s Reference Manual

5.3.14 Rasterizer Mode

A number of long-term modes can be set using the RasterizerM ode register. These
are:

» ByteSwapBitMask: Thisis atwo-bit flag which specifies that any bits which are
downloaded as part of a SyncOnBitMask operation will be byte re-ordered before
being used. There are four re-ordering possibilities. Assuming that the bytes are
downloaded in the order ABCD then we get the following re-ordering depending
on the value of thistwo bit field:

0: ABCD (no swap)

1: BADC (swap within halfwords)

2. CDAB (hafword swap)

3: DCBA (full byte swap)

Using avaue of 3 ismost useful when used in conjunction with the
MirrorBitMask bit for handling Microsoft Windows bitmaps since this causes a
complete byte swap of the downloaded data.

* MirrorBitMask: Thisisasingle bit flag which specifies the direction that bits are
checked in the BitMaskPattern register. If the bit is reset, the direction is from least
significant to most significant (bit O to bit 31), if the bit is set, it isfrom most
significant to least significant (from bit 31 to bit 0).

* InvertBitMask: Thisisasingle bit which controls the sense of the accept/reject test
when using aBitmask. If the bit is reset then when the BitMask bit is set the
fragment is accepted and when it is reset the fragment isrejected. When the bitis
Set the sense of the test is reversed.

» BitMaskPacking: Thisisasingle bit which controls the packing of bits which are
downloaded as part of a SyncOnBitMask operation. If thisbit is reset then any
gpare bits at the end of a scanline are used to start the next scanline. If thisbit is set
then extra bits at the end of a scanline are discarded. Thisis not available for use
with span fills.

» BitMaskOffset: Thisisab bit field which specifies the first bit to be used in the
first bitmask word of every scanline downloaded as part of a SyncOnBitMask
operation. Thisis not available for use with span fills.

» Fraction Adjust: These 2 hits control the action taken by the rasterizer on receiving
a ContinueNewLine command. As GLINT usesa DDA agorithm to render lines,
an error accumulates in the DDA value. GLINT provides for greater control of the
error by:

a) leaving the DDA running, which means errors will be propagated along aline.
OR
b) setting the fraction bitsto either zero, ahalf or dmost a half (Ox7FFF).

» Bias Coordinatesis a 2-bit field with the following actions:-
0 - Add 0 to the coordinates (Effectively do nothing)
1 - Add exactly one half to the coordinates
2 - Add nearly one half (Ox7FFF) to the coordinates

70

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Host Data Byte Swapping: The data downloaded by the host when using
SyncOnHostData can have its bytes re-ordered. If the downloaded data has a byte
ordering of ABCD then, this 2 bit field specifies re-ordering as follows:

0: ABCD (no swap)

1. BADC (swap within halfwords)

2. CDAB (halfword swap)

3: DCBA (full byte swap)

Y Limits Clipping: When set, this bit enables Y Limits clipping. When reset Y
Limits clipping is disabled. Thisis described in the next section.

Multi GLINT: If set this bit causes the rasterizer to work in multi-GLINT mode. If
reset the rasterizer worksin single GLINT mode.

5.3.15 Y LimitsClipping

5.3.16

The rasterizer will normally rasterize al pixels on every scanline, generating a
fragment per pixel. If large numbers of scanlines are subsequently clipped out by,
for example, one of the scissor units, then alot of time can be wasted. The Y limits
register has been added to provide away of quickly eliminating whole scanlines for
agiven primitive. Thisis effectively aY scissor clip in the Rasterizer.

If Y limits testing has been enabled in the RaserizerMode register, and if a scanline
being rasterized falls outside the Y limits bounds, then the rasterizer will move
directly onto the next scanline without rasterizing in X.

Y Limits clipping is automatically disabled when SyncOnHostData or
SyncOnBitMask is used.

Rasterizer Unit Registers

Real coordinates with fractional parts are provided to the rasterizer in 2's
complement 16 bit integer, 16 bit fraction format, asillustrated below:

31

24 16 8 0
Integer Portion 16 bits Fractional Portion 16 bits

Figure5.11 Real Coordinate Representation

Table5.1 Command Register Descriptions lists the command registers which
control the rasterizer unit. The control registers are shown separately in Table 5.2
Rasterizer Registers.

3Dlabs

Proprietary and Confidential 71

Graphics Programming GLINT MX Programmer’s Reference Manual

Register Name DataField Description

Render See below Starts the rasterization process

ContinueNewDom 16 bit integer | Allows the rasterization to continue with a new
dominant edge. The dominant edge DDA in the
rasterizer is reloaded with the new parameters. The
subordinate edge is carried on from the previous
trapezoid. This alows any convex polygon to be
broken down into a collection of trapezoids, with
continuity maintained across boundaries.

Note however, that other DDAS are not rel oaded
with new start values until the next Render
command. Thusit is not possible to use this
command, for example, to Gouraud shade atriangle
from left to right which has a knee on the |eft hand
side. To avoid this, 3D rendering should always
start from the side without the knee.

The data field holds the number of scanlines (or sub
scanlines) to fill. This count is not loaded into the
Count register.

ContinueNewSub 16 bit integer | Allows the rasterization to continue with a new
subordinate edge. The subordinate DDA is reloaded
with the new parameters. The dominant edge is
carried on from the previous trapezoid. Thisis
useful when scan converting triangles with a 'knee
(i.e. two subordinate edges).

The data field holds the number of scanlines (or sub
scanlines) to fill. This count is not loaded into the

Count register.

Continue 16 bit integer | Allows the rasterization to continue after new delta
value(s) have been loaded, but does not cause either
of the trapezoid's edge DDA to be reloaded.

The data field holds the number of scanlines (or sub
scanlines) to fill. This count is not loaded into the

Count register.

72 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

ContinueNewLine

16 bit integer

Allows rasterization to continue for the next
segment in apolyline. The XY position is carried
on from the previous line, but the fraction bitsin the
DDAs can be: kept, set to zero, half, or nearly one
half, under control of the RasterizerMode.

The data field holds the number of pixels or
subpixelsin aline. This count is not loaded into the

Count register.

The use of ContinueNewL ine is not recommended
in OpenGL as for the second and subsequent
segments the DDA units will start with adlight error
compared with the value they would have been
loaded with.

FlushSpan

Not used

Used when antialiasing to force the last span out
when not all sub spans may be defined.

PixelSize

0 = 32 bits
1 =16 bits
2 =8 hits

Configures the Rasterizer (and other core units)
with the size of pixel to process when spans are
used. It aso informs the framebuffer interface Unit,
but in this case all reads and writes are affected and
not just spans. This replaces the pixel sizefieldin
the PCI FBModeSel register and works the same
way for single pixel reads and writes (i.e. the
framebuffer can be set to 32 bit pixels even though
it isdisplaying 8 bit pixelsto process 4 pixelsat a
time).

WaitForCompletion

Not used

Thisis used to suspend the GLINT MX core until
all outstanding reads and writes in both the
localbuffer and framebuffer memory units have
completed. Thisisintended to prevent a new
primitive from starting to be rasterized before the
previous primitive is completely finished. It would
be used, for example, to separate texture downloads
from the surrounding primitives. The same
functionality can be achieved using the Sync
register and waiting for it in the Host Out FIFO;
however, this method doesn’t involve the host and
can beinserted into aDMA buffer.

Table5.1

Command Register Descriptions

3Dlabs

Proprietary and Confidential 73

Graphics Programming

GLINT MX Programmer’s Reference Manual

RasterizerMode See below Defines the long term mode of operation of the
rasterizer.
StartXDom Fixed point 16.16 | Initial X value for the dominant edgein
format trapezoid filling, or initial X valueinline
drawing.
dXDom Fixed point 16.16 | Vaue added when moving from one scanline (or
format sub scanline) to the next for the dominant edge
in trapezoid filling.
Also holds the change in X when plotting lines
sofor Y major linesthiswill be some fraction
(dx/dy), otherwiseit isnormally £+ 1.0,
depending on the required scanning direction.
StartXSub Fixed point 16.16 | Initial X value for the subordinate edge.
format
dXSub Fixed point 16.16 |Vaue added when moving from one scanline (or
format sub scanline) to the next for the subordinate edge
in trapezoid filling.
StartY Fixed point 16.16 | Initial scanline (or sub scanline) in trapezoid
format filling, or initial Y position for line drawing.
dy Fixed point 16.16 |VaueaddedtoY to move from one scanlineto
format the next. For X major linesthiswill be some
fraction (dy/dx), otherwiseit isnormally + 1.0,
depending on the required scanning direction.
Count 16 bit integer Number of pixelsin aline.
Number of scanlinesin atrapezoid.
Number of sub scanlinesin an antialiased
trapezoid.
Diameter of a point in sub scanlines.
BitMaskPattern 32 bits defined Value used to control the BitMask stipple
earlier operation (if enabled).
PointTable0 Packed dx point | Antialias point datatable. There are 4 wordsin
PointTablel data. the table and the register tag is decoded to select
aword.
PointTable2
PointTable3

ScanLineOwnership

See Multi-GLINT
chapter

Defines which scanlines are owned when in
multi-GLINT mode.

74

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Ylimits

Ymax: 2's Definesthe Y extents the rasterizer should fill
complement 16 bit | between. A scanlineisfilled if itsY vaue
valuein the upper | satisfies:

word. Ymin£Y < Ymax

Ymin: 2's
complement 16 bit
value inthe lower
word.

Table5.2 Rasterizer Registers

For efficiency, the Render command register has a number of bit fields that can be
set or cleared per render operation, and which qualify other state information within
GLINT. These bits are AreaStippleEnable, LineStippleEnable, ResetLineStipple,
TextureEnable FogEnable, CoverageEnable and Subpixel Correction.

One use of this feature can occur when awindow is cleared to a background color.
For normal 3D primitives, stippling and fog operations may have been enabled, but
these are to be ignored for window clears. Initialy the FogMode, AreaStippleMode
and LineStippleMode registers are enabled through the UnitEnable bits. Now bits
need only be set or cleared within the Render command to achieve the required
result, removing the need for the FogM ode, AreaStippleM ode and LineStippleMode
registers to be loaded for every render operation.

3Dlabs

Proprietary and Confidential 75

Graphics Programming

GLINT MX Programmer’s Reference Manual

The bit fields of the Render command register are detailed below:

Bit | Name
No.

Description

0 AreaStippleEnable

This bit, when set, enables area stippling of the fragments
produced during rasterization. Note that area stipple in the Stipple
Unit must be enabled as well for stippling to occur.

When this bit is reset no area stippling occurs irrespective of the
setting of the area stipple enable bit in the Stipple Unit.

Thisbit isuseful to temporarily force no area stippling for this
primitive.

1 LineStippleEnable

This bit, when set, enables line stippling of the fragments
produced during rasterization in the Stipple Unit. Note that line
stipple in the Stipple Unit must be enabled as well for stippling to
occur.

When this bit is reset no line stippling occurs irrespective of the
setting of the line stipple enable bit in the Stipple Unit.

Thisbit is useful to temporarily force no line stippling for this
primitive.

2 ResetLineStipple

This bit, when set, causes the line stipple countersin the Stipple
Unit to be reset to zero, and would typically be used for the first
segment in apolyline. Thisaction isalso qualified by the
LineStippleEnable bit and also the stipple enable bitsin the
Stipple Unit.

When this bit is reset the stipple counters carry on from where
they left off (if line stippling is enabled)

3 FastFillEnable

This bit, when set, causes the span fill mechanisms to be used for
the rasterization process. The type of span filling is specified in
the SpanOperation field. When this bit is reset the normal
rasterization process occurs. This bit only has an effect if the
PrimitiveTypeis Trapezoid.

4,5 | Unusd

The block fill sizeisaways 32 pixelsonaGLINT MX.

6, 7 | PrimitiveType

Thistwo it field selects the primitive type to rasterize. The
primitives are:

O=Line

1 = Trapezoid

2 = Point

76

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

AntiadiasEnable

This bit, when set, causes the generation of sub scanline data and
the coverage value to be calculated for each fragment. The
number of sub pixel samplesto useis controlled by the
AntiaiasingQuality bit.

When this bit is reset normal rasterization occurs. This bit only
has an effect if the PrimitiveTypeis Trapezoid.

AntialiasingQuality

This bit, when set, sets the sub pixel resolution to be 8x8.
When this bit is reset the sub pixel resolution is 4x4.

10

UsePointTable

When this bit and the AntialiasingEnable are set, the dx values
used to move from one scanline to the next are derived from the
Point Table. Thisbit only has an effect if the PrimitiveTypeis
Trapezoid.

11

SyncOnBitMask

This bit, when set, causes a number of actions:

The least significant bit or most significant bit (depending on the
MirrorBitMask bit) in the Bit Mask register is extracted and
optionally inverted (controlled by the InvertBitMask bit). If this
bit is 0 then the corresponding fragment is culled from being
drawn.

After every fragment the BitMaskPattern register is rotated by
one bit.

If al the bits in the BitMaskPattern register have been used then
rasterization is suspended until a new BitMaskPatternis received.
If any other register is written while the rasterization is suspended
then the rasterization is aborted. The register write which caused
the abort is then processed as normal.

Note the behavior is dightly different when the SyncOnHostData
bit is set to prevent a deadlock from occurring. In this casethe
rasterization doesn't suspend when all the bits have been used and
if new BitMaskPattern data words are not received in atimely
manner then the subsequent fragments will just reuse the bitmask.

12

SyncOnHostData

When this bit is set afragment is produced only when one of the
following registers has been written by the host: Depth, FBData,
Stencil, Color or FBSourceData. If SyncOnBitMask is reset, then
if any register other than one of these five iswritten to, the
rasterization is aborted. If SyncOnBitMask is set, then if any
register other than one of these five, or BitMaskPattern, is written
to, the rasterization is aborted. The register write which caused
the abort is then processed as normal. Writing to the
BitMaskPattern register doesn't cause any fragmentsto be
generated.

3Dlabs

Proprietary and Confidential 77

Graphics Programming

GLINT MX Programmer’s Reference Manual

13

TextureEnable

This bit, when set, enables texturing of the fragments produced
during rasterization. Note that the Texture Units must be suitably

enabled as well for any texturing to occur.

When this bit is reset no texturing occurs irrespective of the
setting of the Texture Unit controls.

Thisbit is useful to temporarily force no texturing for this
primitive.

14

FogEnable

This bit, when set, enables fogging of the fragments produced
during rasterization. Note that the Fog Unit must be suitably

enabled as well for any fogging to occur.

When this bit is reset no fogging occurs irrespective of the setting
of the Fog Unit controls.

This bit is useful to temporarily force no fogging for this
primitive.

15

CoverageEnable

This bit, when set, enables the coverage value produced as part of
the antialiasing to weight the alpha value in the alphatest unit.
Note that this unit must be suitably enabled as well. When this bit
IS reset no coverage application occurs irrespective of the setting
of the AntialiasMode in the Alpha Test unit.

16

SubPixel Correction
Enable

This bit, when set enables the sub pixel correction of the color,
depth, fog and texture values at the start of a scanline. When this
bit is reset no correction is done at the start of a scanline. Sub
pixel corrections are only applied to aliased trapezoids.

17

Reserved

18

SpanOperation

This bit, when clear, indicates that writes are to use the constant
color found in the FBBIlockColor register. When this bit is set
write datais variable and is either provided by the host (i.e.
SyncOnHostData is set) or isread from the framebuffer, or the
Pattern RAM.

Table5.3 Render Command Register Fields

78

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

A number of long-term rasterizer modes are stored in the RasterizerM ode register as

shown below:

Bit

No.

Name

Description

MirrorBitMask

When this bit is set the bitmask bits are consumed from the
most significant end towards the least significant end.

When this bit is reset the bitmask bits are consumed from the
least significant end towards the most significant end.

InvertBitMask

When this bit is set the bitmask is inverted first before being
tested.

2,3

FractionAdjust

These bits control the action of a Conti nueNewLine command
and specify how the fraction bitsin the Y and XDom DDAs are
adjusted

0: No adjustment is done

1: Set the fraction bits to zero

2: Set the fraction bitsto half

3: Set the fraction to nearly half, i.e. Ox7fff

4,5

BiasCoordinates

These bits control how much is added onto the StartXDom,
StartX Sub and StartY values when they are loaded into the
DDA units. Theorigina registers are not affected:

0: Zero is added

1: Half isadded

2: Nearly half, i.e. Ox7fff is added

Reserved

ByteSwapBitMask

This bit controls the byte swapping of the BitMask data before
it isused. If the bytes are labeled ABCD on input, then the
bytes are swapped as follows:..

0: ABCD

1. BADC

2: CDAB

3: DCBA

BitMaskPacking

This bit controls whether the BitMask data is packed or if new
BitMask datais required on every scanline.

0: BitMask datais packed

1: BitMask datais provided for each scanline

3Dlabs

Proprietary and Confidential 79

Graphics Programming

GLINT MX Programmer’s Reference Manual

10 ..
14

BitMaskOffset

These 5 bits hold the position in the 32 bit BitMask data where
the first bit istaken from for the BitMask test for the first
BitMask data on a new scanline. Subsequent BitMask data
starts from bit O until the next scanline. Successive bits are
taken from increasing bit positions until the bit mask is
consumed (i.e. bit 31 isreached). The least significant bit is bit
zero.

15,16

HostDataByteSwap
Mode

These bits control the byte swapping of data associated with the
SyncOnHostData operation. If the bytes are labeled ABCD on
input, then the bytes are swapped as follows..

0: ABCD

1. BADC

2: CDAB

3: DCBA

17

MultiGLINT

This bit selects whether the rasterizer isto work in single
GLINT mode, or in multi-GLINT mode and consequently only
process the scanlines allocated to it.

0: Single GLINT mode

1: Multi-GLINT mode

18

Y LimitsEnable

This bit, when set, enablesthe Y limits testing to be done
between the minimum and maximum Y values given by the
Y limits register.

5.3.17

Table5.4 Rasterizer M ode Register

Examples

Many examples of the use of the rasterizer are found throughout the manual.

80

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.4 Scissor Unit

Two scissor tests are provided in GLINT, the User Scissor test and the Screen
Scissor test. The user scissor checks each fragment or span against a user supplied
Scissor region; the screen scissor checks that the fragment or span lies within the
screen.

541 User Scissor Test

The user scissor test, tests each fragment as follows:
XMin<=X < XMax
YMin<=Y <YMax
Where X and Y are the coordinates for the fragments, and XMin, XMax, Y Min and

Y Max define the user supplied scissor region. If afragment failsthetest it is
discarded. The test may be screen or window relative.

5.4.2 Screen Scissor Tests

Thistest ensures that a fragment lies within the screen boundaries. For each
fragment the XY origin stored in the WindowOrigin register is added to the
fragment coordinates and thisis tested against the screen boundaries stored in the
ScreenSize register. Sincethe X and Y coordinates are held as 2's complement
numbers, the window origin can be moved off the edges of the screen.

Note that the WindowOrigin register only affects the origin for clipping, it does not
affect the base address for rendering. Section 86.3 Window Initialization gives
further details on how to set the base address of a window for rendering.

The following test is made:
0£ (X +WX) <SW
Of£ (Y +WY) <SH

Where:
X = Fragment X coordinate WX = Window origin X coordinate
Y = Fragment Y coordinate WY = Window origin'Y coordinate

SW = Screen Width
SH = Screen Height

The diagram below shows a simple scenario of a screen with a single window which
has a user defined scissor region. The shaded area shows the region where fragments
pass the user and screen scissor tests and so can progress in the pipeline. Fragments
outside this region are culled from the pipeline.

3Dlabs Proprietary and Confidential 81

Graphics Programming GLINT MX Programmer’s Reference Manual

User X, Y)
Scissor : User
Min ' Scissor
. Max
Screen b \3\
Heighty | *— [= L----
(sH) N ~
Writeable Region
Window Origin Scissor Region
(WX, WY) v\
Screen

+— Screen Width (SW) ——»

Figure5.12 Screen Scissor and User Scissor Tests

Thistest may reject fragments if some part of awindow has been moved off the
screen. It will not reject fragmentsif part of awindow is simply overlapped by
another window (GID testing can be used to detect this, see section 85.12).

543 Registers
The unit is controlled by the ScissorMode register:

31 24 16 8 0

]

Screen scissor enable
0= Disabled
1 =Enabled

User scissor enable
0 = Disable
1= Enabled

Figure5.13 Scissor Register

The screen scissor test would normally always be enabled. The most common
exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and
ScissorMaxXY the X values are stored in the least significant 16 bits of the register,
the Y valuesin the most significant 16 bits of the register.

The WindowOriginregister has the X coordinate of the origin stored in the least
significant 16 bits of the register, and the Y coordinate in the most significant 16 bits
of the register. As each fragment is generated by the rasterization unit thisoriginis
added to the coordinates of the fragment to generate its screen coordinates.

82 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

The ScreenSize register specifies the screen width and height, with the width in the
least significant 16 bits and the height in the most significant 16 bits.

54.4 Span Operations and the Scissor Unit

If a span mask is presented to the scissor unit, then the mask is modified to zero out
bits corresponding to pixels which lie outside the scissor region. Thisistrue for both
the user scissor and the screen scissor.

An example of how to usethisis givenin section 5.3.11.
545 Scissor Example

To enable screen scissor for aregion: 10 <= X <500, 100 <= 'Y < 200 with a screen
size of 1280x1024 and the window origin at (100,100).

/] Set the screen size
screenSi ze. Wdth = 1280
screenSi ze. Hei ght = 1024

ScreenSi ze(screenSi ze)

/1 Set the wi ndow origin
wi ndowOrigin. X = 100

w ndowOrigin.Y = 100

/] Set-up the user scissor val ues

m nXY. X = 10

m nXY.Y = 100

maxXY. X = 500

maxXY.Y = 200

Sci ssor M nXY(ni nXY) /1l Load the registers

Sci ssor Max XY(max XY)

/! Enable the unit

sci ssor Mbde. User Sci ssor Enabl e = GLI NT_ENABLE
sci ssor Mbde. ScreenSci ssor Enabl e = GLI NT_ENABLE
Sci ssor Mbde(sci ssor Mode)

W ndowOr i gi n(wi ndowCOr i gi n)
/! Render prinmtives

3Dlabs Proprietary and Confidential 83

Graphics Programming GLINT MX Programmer’s Reference Manual

5.5

55.1

5.5.2

Stipple Unit

Stippling is a process whereby each fragment is checked against a bit in a defined
pattern, the fragment can either be rejected or accepted depending on the result of
the stipple test. If it isrejected, then it undergoes no further processing, otherwise it
proceeds down the pipeline. GLINT supports two types of stippling, line and area.

Area Stippling

A 32 x 32 bit area stippl e pattern can be applied to fragments. The least significant n
bits of the fragment's (X,Y) coordinates, index into a2D stipple pattern. If the
selected hit in the pattern is set, then the fragment passes the test, otherwise it is
rejected. The number of address bits used, allow regions of 1,2,4,8,16 and 32 pixels
to be stippled. The address selection can be controlled independently inthe X and Y
directions. In addition the bitpattern can be inverted or mirrored. Inverting the bit
pattern has the effect of changing the sense of the accept/reject test. If the mirror bit
is set the most significant bit of the pattern is towards the left of the window, the
default isthe converse.

In some situations window relative stippling is required but coordinates are only
available screen relative. To allow window relative stippling, an offset is available
which is added to the coordinates before indexing the stipple table. X and Y offsets
can be controlled independently.

Areastippling is enabled using the AreaStippleMode register and must be qualified
by the AreaStippleEnable bit in the Render command register.

Line Stippling

In this test, fragments are conditionally rejected on the outcome of testing a linear
stipple mask. If the bit is zero then the test fails, otherwise it passes. The line stipple
pattern is 16 bitsin length and is scaled by arepeat factor, r, (in the range 1 to 512).
The stipple mask bit, b, which controls the acceptance or rejection of afragment is
determined using:

b = (floor (s/r)) mod 16

where sisthe stipple counter which isincremented for every fragment (normally
along the line). This counter may be reset at the start of a polyline, but between
segments it continues as if there were no break.

The stipple pattern can be optionally mirrored, that is the bit pattern is traversed
from most significant to least significant bits, rather than the default, from least
significant to most significant.

The UpdateLineStippleCounters register controls initialization of the line stipple
counters, which can be reset or loaded from a previousy saved value. The
Savel ineStippleCounters register is used to save the current line stipple counters.
The combination of UpdatelineStippleCounters and Savel ineStippleCountersis
useful to implement stippling of wide polylines.

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.5.3

554

31

Line stippling is enabled using the LineStippleMode register and must be qualified
by the LineStippleEnable bit in the Render command register.

Span Operations and Stippling

A span mask generated by the rasterizer will be modified by the area stippleif itis
enabled. The line stipple has no effect on the span mask.

If area stippling is enabled, then the current stipple mask is replicated to form afull
32 bit mask. Thisis ANDed with the span mask. The stipple mask replication
happens before al mirroring, inverting and rotating have been performed.

Thisisvery useful for enabling use of the VRAM block write capability for doing
monochrome pattern expansions. For example, Microsoft Windows monochrome
brushes are normally 8x8. If this brush pattern is stored in the area stipple and solid
fill with span operation is enabled, then the foreground color for the pattern will be
rendered using block writes. The background color can be filled on a second pass by
turning on the InvertStipplePattern bit in the AreaStippleMode register.

Registers
The LineStippleMode register controls line stipple:

24 16 8 0

stipple mask repeat factor

Mirror Stipple Mask Enable unit
(1)i no mirror 0=Disable
= mirror 1=Enable

Figure5.14 LineStippleMode Register
The repeat factor is set to one less than the required value.

The least significant bit of the Updatel ineStippleCounters register, controls loading
the line stipple counters. If set the line stipple counters are loaded with the
previousy saved values. If reset, the counters are cleared to zero. The counters can
also be reset by means of the ResetLineStipple bit in the Render command.

3Dlabs

Proprietary and Confidential 85

Graphics Programming

GLINT MX Programmer’s Reference Manual

The AreaStippleMode register controls area stipple operation:

31 24 16 8 0
Y Offset X Offset Y sel X sl

Mirror Y _, / |
0= no mirror)
1 =mirror Address select Enable unit

_ 0=1hit 0 = Disable
Mirror X 1 =2 bits 1=Enable
0 = no mirror 2 =3 hits
1 = mirror 3 = 4 bits

- 4 =5 hits

Invert Stipple Pattern
0=noinvert
1=linvert

Figure5.15 AreaStippleMode Register
The EnableUnit bit in the LineStippleMode and AreaStippleMode registers are

qualified by the LineStippl
command register.

eEnable and AreaStippleEnable bits in the Render

Savel ineStippleCounters register (which has no datafield) savesthe line stipple

countersinternaly.

The area stipple is set up in the AreaStipplePatternn register, where n represents an

integer between 0 and 31.

The LoadL ineStippleCounters register is shown below:

24

16 8 0

repeat_counter bit_counter, repeat_counter bit_counter

555

\/ \/

Figure5.16
Examples

Segment register 'Live' counters

L oadL ineStippleCounters register

A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:

/1 Use only the
AreaSti ppl ePat t
AreaSti ppl ePat t

/1 Set-up node

areaSti ppl eMbde.
areaSti ppl eMbde.
areaSti ppl eMbde.

areaSti ppl eMbde.
areaSti ppl eMbde.

areaSti ppl eMode

first two table entries
ern0(0x1)
ernl(0x2)

register

Uni t Enabl e = GLI NT_ENABLE

XSel = 0 // Address index based on
YSel = 0 // LSB of address, repeats
/'l every 2nd pixel in X &Y
0

0

XO f set
YOf f set
.Invert =0

86

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

areaSti ppl eMode. M rrorY
areaSti ppl eMode. M rror X

/1 Load node register
AreaSti ppl eMode(areaSti ppl eMode)

/1 When the Render command is sent the

/1 AreaStippl eEnabl e

/1 bit should be set in addition to the area stipple
/1 test being enabl ed:

/1 render. AreaSti ppl eEnabl e = GLI NT_TRUE

A line stipple which rejects alternate fragments:

[/l Set counters to zero
Updat eLi neSti ppl eCount er s(0x0)

/1l Set the stipple node

lineStippl evbde. Unit Enabl e = GLI NT_ENABLE

lineStippl eMbde. Repeat Factor = 0 // Repeat factor 1
lineStippl eMbde. Sti ppl eMask = O0xAAAA

Li neSti ppl eMode(li neSti ppl eMode)

/1 When issuing a Render command the

/1 LineStippleEnable bit should be set in addition
/1l to the line stipple test being enabl ed:

/1 render.LineStippl eEnable = G.I NT_TRUE

556 AreaStipple Example
A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:

AreaSti PPl ePattern0 (OXAAAAAAAA)
AreaSti ppl ePatternl (0x55555555)
AreaSti ppl ePattern2 (OXAAAAAAAA)
AreaSti ppl ePattern3 (0x55555555)
AreaSti ppl ePatternd (0xAAAAAAAA)
AreaSti ppl ePat fernb (0x55555555)
RTeaSti ppl ePattern6 (OxXAAAAAAAA)
AreaSti ppl ePattern7 (0x55555555)
AreaSti ppl ePattern31(0x55555555)

/1 Set-up node register
areaSti ppl eMbde. Uni t Enabl e = GLI NT_ENABLE
areaSti ppl eMode. Xsel ect
areaSti ppl evode. Ysel ect
areaSti ppl evobde. Xof f set
areaSti ppl eMode. Yof f set
areaSti ppl eMbde. | nvert = 0
areaSti ppl eMode. M rrorY

areaSti ppl eMode. M rror X

(1 T |
[oNeoNeNo)

0
0

3Dlabs Proprietary and Confidential 87

Graphics Programming

GLINT MX Programmer’s Reference Manual

/1 Load node register
AreaSti ppl eModear eaSti ppl eMode)

/1 When issuing a Render conmand, the

/1 AreaStippl eEnabl e bit should be set to
/1 enabl ed:

/1 Arender. AreaSti ppl eEnabl e = GLI NT_TRUE

88

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.6

5.6.1

31

Color DDA Unit

The color DDA unit is used to associate a color with afragment produced by the
rasterizer. This unit should be enabled for rendering operations and disabled for
pixel rectangle operations (i.e. copies, uploads and downloads).

RGBA and Color-Index(Cl) Modes

Two color modes are supported by GLINT, true color RGBA and color index (ClI).
GLINT'sinternal color representation is RGBA with 8 bits per component:

24 16 8 0

Alpha Blue Green Red

5.6.2

Figure5.17 GLINT Color Representation

Thisformat isthe same for al the different framebuffer configurations supported. If
the number of bitsin the framebuffer for a color component isless than 8 then the
color valueis left shifted into the most significant bits of that componentsfield. The
unused least significant bits should be set to zero.

In CI mode the color index is placed in the lower byte of the 32 bit register (i.e., the
red component). If lessthan 8 bits are used the index isleft justified to be in the
most significant end of the red component. The unused least significant bits should
be set to zero.

Gouraud Shading

When in Gouraud shading mode, the color DDA unit performs linear interpolation
given aset of start and increment values. Clamping is used to ensure that the
interpolated value does not underflow or overflow the permitted color range.

dCdyDom

. Subordinate Edges

D ominant Edge

T

dCdyDom = color gradient in the Y direction aong the dominant edge
dCdx = color gradient in the X direction

Figure5.18 Color Interpolation

3Dlabs

Proprietary and Confidential 89

Graphics Programming GLINT MX Programmer’s Reference Manual

For a Gouraud shaded trapezoid, GLINT interpolates from the dominant edge of a
trapezoid to the subordinate edges. This means that two increment values are
required per color component, one to move along the dominant edge and one to
move across the span to the subordinate edge. Thisisillustrated in Figure 5.18,
where C represents a color component (red, green, blue, alpha or color index).

See section 5.2 A Gouraud Shaded Triangle for details of how to calculate the
required increment values.

For Gouraud shaded lines, each line is treated as the dominant edge of atrapezoid,
and so no dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a 24bit fixed
point format. The format is 2's complement with 9 bits integer and 15 bits fraction:

31 24 16 8 0

Integer Fraction

Figure5.19 Fixed Point Color Format

Note that if you are rendering to multiple buffers and have initialized the start and
increment values in the color DDA unit, then any subsequent Render command will
cause the start values to be reloaded.

If subpixel correction has been enabled for a primitive, then any correction required
will be applied to the color components.

56.3 Flat Shading

In flat shading mode, a constant color is associated with each fragment. This color is
loaded into the ConstantColor register which has the format shown in Figure 5.17.

564 Registers
The control register for the color DDA unit is the ColorDDAMode register:

Shade Mode

O =Flat

1 = Gouraud
Unit enable
0= Disable
1=Enable

Figure5.20 ColorDDAMode Register

90 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

The registers to set up Gouraud shading in the color DDA unit are:

Register Data Field Description
RStart Fixed point 9.15 format Red start value
dRdx Fixed point 9.15 format Red derivative per unit X
dRdyDom Fixed point 9.15 format Red derivative per unit Y,
dominant edge
GStart Fixed point 9.15 format Green start vaue
dGadx Fixed point 9.15 format Green derivative per unit X
dGdyDom Fixed point 9.15 format Green derivative per unit Y,
dominant edge
BStart Fixed point 9.15 format Blue start value
dBdx Fixed point 9.15 format Blue derivative per unit X
dBdyDom Fixed point 9.15 format Blue derivative per unit Y,
dominant edge
AStart Fixed point 9.15 format Alphastart value
dAdx Fixed point 9.15 format Alpha derivative per unit X
dAdyDom Fixed point 9.15 format Alphaderivative per unit Y,
dominant edge
Table5.5 Color Interpolation Registers
5.6.5 Flat Shading Example
A flat shaded primitive:
/!l Set DDA to flat shade node
col or DDAMode. Uni t Enabl e = GLI NT_ENABLE
col or DDAMbde. Shade = GLI NT_FLAT_SHADE_MODE
Col or DDAMode(col or DDAMbde)
Const ant Col or (OxFFFFFFFF) // Load the flat col or
5.6.6 Gouraud Shaded Trapezoid Example

See section 85.2.3 for details of how to calculate delta values.

/1 Enable unit
col or DDAMode. Uni t Enabl e =
col or DDAMbde. Shade =

Col or DDAMode(col or DDAMbde)

i n Gouraud shadi ng node
GLI NT_ENABLE
GLI NT_GOURAUD_SHADE_MODE

/! Load the color start values and del tasfor dom nant

/! edge and the body of the trapezoid

RStart () /! Set-up the red component
dRdx() /1l Set-up the red conponent
dRdyDom()

GStart () /1 Set-up the green conponent

start val ue
i ncrements

start val ue

3Dlabs Proprietary and Confidential

91

Graphics Programming GLINT MX Programmer’s Reference Manual

dGdx() /1l Set-up the green conponent increnents
dCGdy Dont()

BStart () /1 Set-up the blue conmponent start val ue
dBdx () [/l Set-up the blue conmponent increnents
dBdyDom ()

5.6.7 Gouraud Shaded Line Example

See section 85.2.3 for details of how to calculate delta values.

/! Set DDA for Gouraud shaded node

col or DDAMode. Uni t Enabl e = GLI NT_ENABLE

col or DDAMbde. Shade = GLI NT_GOURAUD_SHADE_MODE
Col or DDAMode(col or DDAMbde)

/1l For lines we need only start val ues and
/! dom nant edge deltas

RSt art () /1l Set-up the red conponent start val ue
dRdyDom() // Set-up the red component incremnent
GStart () /1l Set-up the green conponent start val ue
dGdyDon() // Set-up the green conponent i ncrenent
BStart () /1 Set-up the blue conmponent start val ue
dBdyDon() // Set-up the blue conponent increnent

92 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.7

5.7.1

Texture Mapping

For each fragment within a primitive, texture mapping involves the following stages:
calculation of the perspecively correct texture coordinates for each fragment
calculating the level of detail if mipmapping
fetching the appropriate texel data from the localbuffer
derivation of the texture color from the texel(s) (afiltering process)

application of the texture color to the fragment's color, which is dependent on the
texture application mode.

See the OpenGL Specification, and OpenGL Programming Guide for details of the
theory and practice of texture mapping.

The texture operation is carried out in four phases:
Texture Address Generation
Texture Read
Texture Filtering

Texture Color Generation and application
Texture Address Generation

To generate the texture addresses, DDAs are used to interpolate the texture
coordinates over atrapezoid or line primitive.

There are two general modes of operation: 2D and 3D. In 3D mode, the task divides
into the following steps:

* interpolate the texture coordinates (S, T, Q) using the DDA units
* perspective correction of the coordinates by calculating S/Q and T/Q
* level of detail calculation

» wrap the corrected coordinates (s, t) using mirror, repeat or clamp operations to
map the coordinates into the range 0.0 to 1.0 (u, v)

 passthe resulting coordinates (u, v) to the texture read unit.

For the 2D mode, the perspective correction stage is omitted, the wrap operation is
always arepeat operation and no level of detail is performed.

Compatibility with the GLINT 500TX.

The texture code used with the GLINT 500TX will work with the GLINT MX when
the following additional register is programmed.

TextureFilterM ode (tag 0x09C) should be set to 0 when texture mapping is disabled,
or to 1 whenitisenabled. Thisenable bit worksin conjunction with the normal
Texture Enable bit in the Render Command.

3Dlabs

Proprietary and Confidential 93

Graphics Programming GLINT MX Programmer’s Reference Manual

Note that the per pixel mipmapping code used on a GLINT 500TX will not work on
aGLINT MX and this code should be converted to use the hardware mipmapping
facilities (see later).

Texture Coordinate Nomenclature
A vertex has a homogeneous coordinate and texture coordinate donated by:

[%e Ve z. w] and [s t. r. q

In OpenGL the texture coordinate is transformed using a 4x4 matrix (frequently this
isaunit matrix) and the default valuesfor r,, q, are 0.0 and 1.0 respectively. r,isa
place holder in anticipation of 3D textures, and g, can be used to apply perspective
projectionsto the texture map. Thevaluesof S, T and Q are given by:

s % role oo
_We _We _We

The S, T and Q parameters are interpolated in DDA unitsin the same way al other
interpolantsin GLINT are. The 9 registers: SStart, dSdx, dSdyDom, TStart, dTdx,
dTdyDom, QStart, dQdx and dQdyDom hold the start, dx and dyDom parameters
for S, Tand Q. Thevauesof S, T and Q at each vertex are used to calculate the
gradient values in much the same way as the color gradients when Gouraud shading.

The fixed point format of these registers can be defined as you wish, but they must
be the same - the divide operation yields consistent internal results. One method of
ensuring that the full range of accuracy available in the DDAsis used but not
exceeded (the DDAswill clamp if the range is exceeded) isto normalizethe S, T, Q
values before cal culating the gradient values. For example, for atriangle primitive
thisinvolves finding the maximum absol ute value of the 9 values defined at the
vertices and scaling the other 8 values appropriately.

At each pixel there is adivision operation to achieve perspective correction of the
texture coordinates and derive the s, t coordinates used to index the texture map

through the equations:
S T
s=—= t=—
Q Q

After the division, the s, t coordinates are wrapped to liein therange 0.0 to 1.0
inclusive (and therefore within the range of the defined texture map). The wrapped
coordinates are denoted as u, v. It isthe u, v coordinates that are passed on to the
Texture Read Unit which uses them to calculate the physical addressin the
localbuffer where the texture is stored.

Level of Detail calculation

The Level Of Detail (LOD) calculates the approximate area a fragment projects onto
the texture map. The LOD valueis then used:

9 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

To select between the mininfication and magnification filter modes provided in the
TextureReadMode register.

The one or two texture maps to use when mipmapping.
The between maps interpolation factor if the mipmapping requires two maps.
Theidea LOD equation for trianglesis given by:

&
s Béﬂto gllso emo
I Iogzgmalee.” g eqxg’ Jeﬂyfz efyo }t;

Thiscalculation is very expensiveto calculate so GLINT MX usesan
approximation. The approximation is perspectively correct and is re-evaluated for
every fragment in the primitive.

Theidea LOD equation for aline between x1y; and x2y» is given by:

| J@mm+w +@Wm+—w /

efx Ty z efx Ty "o

where
Dx=x, - X
Dy=y,-

¢ =yDx* + Dy*

This equation is not implemented in MX and the recommended solution isto
subdivide the line into segments based on some maximum LOD error and each
segment rendered with constant LOD from the LOD register.

The LOD calculation requires the dSdy, dTdy and dQdy values, however these are
not available from GLINT Delta or GLINT Gamma so can be calcul ated
automatically by GLINT MX. Thiscalculation isenabled by the EnableDY bit in
the TextureAddressMode register. If the EnableDY bit is not set the dSdy, dTdy and
dQdy values can be provided externally by writing into the registers of the same
names. The fixed point format is the same at chosen for the SStart, dSdx,

dSdyDom etc. registers.

The LOD calculation is enabled by the Enablel OD bit in the TextureAddressM ode
register. When thishit isclear no LOD is calculated and a constant LOD from the
LOD register is used (when it isrequired by the TextureReadMode). Theformat is
unsigned 4.8 fixed point and can be interpreted as follows: the integer part selects
the higher resolution map of the pair to use with 0 using the map at the address given
by TextureBaseAddr[0] register; the fraction gives the between map interpolation
coefficient measured from the higher resolution map selected.

3Dlabs

Proprietary and Confidential 95

Graphics Programming GLINT MX Programmer’s Reference Manual

Texture Coordinate Wrapping Modes

Three wrapping modes are available, and s and t can be wrapped differently. The
selected mode is held in the SWrap and TWrap fields in the TextureAddressMode
register, and in the UWrap and VWrap fields in the TextureReadM ode register.

Clamp This tests the coordinate against 1.0 and if the coordinate is larger
setsthe coordinateto 1.0. Similarly if the coordinate is less that
0.0itissetto 0.0.

This causes texels outside of the texture map to be set to the edge
values.

u

1.0 /

pd

Ve S

Repeat The integer part of the coordinate is discarded just to leave the
fractional part. The Repeat mode creates a saw-tooth transfer
function, which as the name suggests, causes the texture pattern
to be repeated (i.e. tiled) over the polygon. Abutting edges are
from opposite sides of the texture map so unless care istaken a
discontinuity may be seen.

u

1.0

|
i

S

Mirror Thisis similar to Repeat, but when the integer part is odd the
value (1.0 - fraction) is used instead of just the fraction. This
creates atriangle transfer function, which has the advantage that
butting edges always match.

1o &
\/\
v s

The Repeat and Clamp modes are identical to those defined by OpenGL.

Texture Address Registers
The TextureAddressM ode register contains the following control bits:

An enable bit, which when clear stops this unit generating texture coordinates. If
this bit is set and the texture enable bit in the Render command is set then texture
coordinates are generated.

96 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

SWrap. Reducesthetexel s coordinate into the narrow u range as outlined
above.

T Wrap. Reducesthe texel t coordinate into the narrow v range as outlined
above.

Operation bit. When thisis clear the addresses are calculated in '2D mode' so no
perspective correction isdone. Thiswill typically run twice asfast aswhenin
‘3D mode' where perspective correction isdone. Inthe 2D case the wrap
operation is aways “repeat” asthe DDA units are allowed to wrap around and
have the fixed 0.32 fixed point format. Level of detail calculation isnot donein
2D mode.

InhibitDDAInitialisation. This bit, when set preventsthe S, T and Q DDASs being
reset to the respective SStart, TStart and QStart register values at the start of a
primitive. The main usefor thisisthat if the texture operation is being used to
implement a stipple pattern (maybe multi colored or beyond the scope of the
normal line stipple mechanism) the stipple pattern can carry on smoothly between
the segments of a polyline.

EnablelL OD. As mentioned previoudly, this enables the LOD calculation.
Disabling the LOD calculation has a small performance advantage when it is not
needed, and also provides away for software derived LOD value to be
substituted.

EnableDY . As mentioned previoudy, this enables the calculation of dSdy, dTdy
and dQdy. Disabling these calculations has a small performance advantage when
it is not needed, and also provides away for a software derived dy valuesto be
substituted.

Width. Holds the width of the highest resolution texture map in the mipmapping
set. Thisis expressed as a power of two.

Height. Holds the height of the highest resolution texture map in the mipmapping
set. Thisis expressed as a power of two.

TextureMapType. This selects between a 1D texture maps (0) or 2D texture
maps (1). This effects how the LOD calculation is done.

3Dlabs Proprietary and Confidential 97

Graphics Programming GLINT MX Programmer’s Reference Manual

31.......24...... 16......8 IIO
Height | Width

Teixture map type // .
0=1D Operation Enable Unit

1=2D Enable LOD 0=2D mode 0=Disable
0 = Disable 1= 3D mode 1=Enable
1= Enable T Wrap SWrap
EnableDY Inhibit DDA Initidlisation 0=Clamp 0= Clamp
0=Disable 0=No 1=Repeat 1= Repeat
l1=Enable 1=Yes 2 =Mirror 2= Mirror

Figure5.21 TextureAddressMode Register

The following registers set up the texture interpolation deltas :

Register Data Field Description

SStart S start value

dSdx S derivative per unit X

dSdyDom S derivative per unit Y, dominant edge
TStart T start value

dTdx T derivative per unit X

dTdyDom T derivative per unit Y, dominant edge
QStart Q start value

dQdx Q derivative per unit X

dQdyDom Q derivative per unit Y, dominant edge
dSdy S derivative per unit Y

dTdy T derivative per unit Y

dQdy Q derivative per unit Y

Table5.6 Texturelnterpolation Registers

5.7.2 Texture Read Phase

The texture read phase fetches and formats texel data from the localbuffer. This
involves taking the u, v coordinates generated by the texture address unit and
possibly the LOD value and calculating the physical address in the localbuffer
where the texture is stored. The texture information (texels) are read and
converted into the internal format (8 bits per component) before being passed onto
Texture Filtering. The interpolation coefficients (if any are needed) are derived
from the u, v coordinates and possibly the LOD value and passed on as well.

98 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Filter Modes
All the filter modes of OpenGL are supported, that is:

Minification Nearest
Linear
NearestMipMapNearest
NearestMipMapLinear
LinearMipMapNearest
LinearMipMapLinear

Magnification Nearest
Linear

Table5.7 OpenGL Filter Modes

Minification is the name given to the filtering situation where multiple texels map to
asingle fragment, while magnification is the name given to the filtering situation
where only a portion of asingle texel maps to a single fragment.

Nearest is the simplest form of filtering where the nearest texel to the texture
coordinate location is selected.

Linear is a more sophisticated filtering algorithm which is dependent on the type of
primitive. For lines (which are 1D), it involves linear interpolation between the two
nearest texels. For polygons and points which are considered to have finite area,
linear isin fact bi-linear interpolation which interpol ates between the nearest 4
texels.

3Dlabs Proprietary and Confidential 99

Graphics Programming

GLINT MX Programmer’s Reference Manual

Calculating the Texel Address(es)

The address generation is controlled by the TextureReadMode register. It hasthe
following fields (which are explained in more detail |ater on):

Field Width Function
Enable 1 Enablestexel reads.
Width 4 1...2048 encoded as a power of two.
Height 4 | 1...2048 encoded as a power of two.
Depth 3 | 1...32 encoded as a power of two.
Border 1 No border (0) or border present (1)
Patch 1 |No(0),orYes(l)
MagFilter 1 | Nearest (0), Linear (1)
MinFilter 3 | Nearest (0), Linear (1),
Nearest Mipmap Nearest (2),
Nearest Mipmap Linear (3),
Linear Mipmap Nearest (4),
Linear Mipmap Linear (5)
Uwrap 2 | Clamp (0), Repeat (1) or Mirror (2)
Vwrap 2 | Clamp (0), Repeat (1) or Mirror (2)
MapType 1 1D (O) or 2D (1)
MipmapEnable 1 Disabled (0) or Enabled (1).
PrimaryCacheEnabl 1 | Thisshould normally be set for best texture mapping
e performance.
FBSourceAddr 2 | Thisalowsthe texture address facilities to be used to

generate framebuffer source addresses. Thisis
particularly useful for doing stretch blts when the
source dataisin the framebuffer. Thisfacility isonly
available when the filter mode (minification or
magnification) is Nearest. No texel dataisread from
the local buffer memory.

The modes are:
None (0) - The unit operates in its normal mode.

Index (1) - Thetexd'sindex (j * texture map width +
1) isused as the framebuffer source offset. The
framebuffer address is (FBSourceOffset + index) and
use this to read the source pixel.

Coordinate (2) - The texel'si, j coordinate is used as
the framebuffer source offset. The framebuffer
addressis (FBSourceOffset +] * screen width + i)
and use this to read the source pixel.

100

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

BorderClamp 1 1 | Thishit, when set prevents the texelsin any of the
linear modes from using texels from opposite edges
of the texture map (thisis the normal OpenGL mode
of operation).

Table5.8 TextureReadM ode Register

The texel address(es) is calculated from the following parameters:

Dimensions. A texture map is atwo dimensional image, possibly with differing
width and height. The width and height are given by (2"+2b) and (2M+2b)
respectively where b is one when aborder is present, otherwise it iszero. The
values of n, m and b are stored in the TextureReadM ode register in the Width,
Height and Border fields respectively. The width or height can be one (more
normally height) so the texture map is reduced to be one dimensional as required
for 1D mapsin OpenGL. The largest texture map supported is 2K by 2K without a
border, or 2050x2050 with a border. When atexture map doesn't fit in with the
above width and height equations it must be padded out to the nearest acceptable
size. Thisislikely to occur when afont is held as a texture map but will not cause
any problems as the texture coordinate DDAS can be adjusted.

Borders. In OpenGL any texture map can have an extrarow on the top and bottom,
and an extra column on the left and right of the map so the size of a texture map
may not be apower of 2. These extraborder texels are only ever accessed during
linear filtering, but may need to be skipped over when not needed. If aborder has
not been provided in the texture map, but a border texel is needed, they are taken
from the BorderColor register.

Texel Sze. A texel may be 1, 2, 4, 8, 16 or 32 bitsin size. The interpretation of
these bitsis covered later and is of no concern for the address calculation. Texel
ordering within aword is aways sequential and can start from either end. The texel
size, d, is encoded as a power of 2 so it can havethevalues0...5 inclusiveand is
held in the Depth field in the TextureReadM ode and TextureFormat registers.

Base Address. The base addressis given in units of the smallest texel size(i.e. 1
bit). The addressis 29 bits in size to accommodate bit level addressingin a
maximal memory system of 16M words (i.e. 24 + 5). A texture map must always
start on the natural boundary for the size of texelsit contains. For example a 32 bit
texture will always have the bottom 5 bits set to zero. Thisfine level of addressing
allows sub images in the texture map to be used. It is not intended to allow more
efficient packing of texture mapsin memory (i.e. it is not possible to store two 4x4
one bit mapsin one localbuffer word) as texture download only replaces the
contents of awhole localbuffer word and will not do a merge. The base addressis
held in the TextureBaseAddr registers with the pixel addressin the high order 24-
bits. There are 12 of these registers, one for each possible level in a mipmap.

Origin. The origin is always at the base address (i.e. 0, 0) and al texelsin the
texture map are at higher addresses.

3Dlabs

Proprietary and Confidential 101

Graphics Programming GLINT MX Programmer’s Reference Manual

» Texture map patch. Storing the texture map in memory with one row following the
next can gives poor access times when scanning along a column due to the page
breaks. If the texture map is smaller than the page size then thiswill not occur, but
frequently the texture map will be much larger than the page size so it is a concern.
To make the access time less dependent on the scanning direction the texture map
can be optionally stored in patches such that a 2D region of the map is stored in the
same DRAM page. All the texels within aword are always sequential along arow
and a patch is 16x16 words, hence the patch size in texels varies from 16x16 (for
32 bit texels) to 512x16 (for 1 bit texels). If packed texture maps are required then
the packing can be done automatically during texture download, or must be done
by the host if the localbuffer bypass is used. Note that some wastage of the
memory space will occur if the texture map dimensions are not an integer multiple

of the patch size.
2D texture with 32bit
texels ordered in patches
m
1 255 511 n
16
16, 3Y272................ 287
012, 14 1;| 256 ..o, 271
v
< % > width
1D memory layout
n m
012............. 2550256 511 | |

A
v

width/16 * 256

Figure5.22 Texture Patch Example
» The patch modeis only useful when the width of the map exceeds 16 words.

102 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

» The patch mode works best when the height of the map is greater than 16 texels.
For maps which are less than this in height a portion of the patch will not be used
so the texel datawill be spread out in memory. Consider a 1K word x 4 texture
map. Thiswill occupy a quarter of the patch memory so 16K words need to be set
aside for 4K of texels. Moving between rows will occur without page breaks,
where as in the non patch case it would incur a page break. It ispossibleto
interleave 4 such maps so getting the benefit of less page breaks without the cost of
the additional memory.

» Filter and MapType. Thefilter (Nearest or Linear) and map type (1D or 2D)

determine how many addresses are generated. Note that the MinFilter is not
normally used unless mipmapping is enabled.

A texel on the map hasthe integer coordinatesi, j and these are calculated from u, v
and the width and height values. These integer coordinates are guaranteed to lie on
the texture map (excluding the border texels, if present), so for the nearest filter
mode the texel isjust read and used.

For the linear filter mode and 2D MapType the four texels (i, j), (i+1, j), (i, j+1) and
(i+1, j+1) are read, with obvious reductions for the 1D MapType. The coordinates
(i+1) and/or (j+1) may not lie on the texture map. If the texture map has a border
(specified in the Border field) then the appropriate texel from the texture map is
read, otherwise texel istaken from the BorderColor register. Thetexel color stored
inthisregister isin the normal 8:8:8:8 format.

Texture Memory Layout

The MX has dua page detectorsin the localbuffer interface so if there are two banks
of memory then accesses can toggle between banks without breaking page in either
bank. Thisisimportant when depth buffering and texture mapping are being done at
the same time as their respective accesses are interleaved. Keeping the depth buffer
in one bank and the textures in the other will give the best performance. If this
separation is not possible because there is only a single bank of memory, or the
depth buffer or texture maps have overflowed into the other bank there will be a
performance impact, but thisis reduced by the texture cache and other features of

the memory interface unit.

Texture Cache

The texture data is cached to improve performance by reducing the demand for
localbuffer bandwidth. The texture cacheisfully associative with aLRU (least
recently used) replacement policy and can hold eight 32 bit words. Thistrandates
into, for example, a 8x8 by 4 bit texture map. In the cases where a cache doesn't
help because there is no re-use of data then the localbuffer is read, however texture
reads are grouped together to reduce their impact on other localbuffer accesses by
breaking page.

The cache is managed under software control and the TextureCacheControl
command is used to invalidate the cache (after atexture download, for example), or
to disable the cache.

3Dlabs

Proprietary and Confidential 103

Graphics Programming GLINT MX Programmer’s Reference Manual

The primary texture cache should normally be enabled by setting the
PrimaryCacheEnable bit in the TextureReadM ode register.

Texel Formatting

The texel formatting is controlled by the TextureFormat register and it has the
following fields:

Field Width Function

Order 1 Little endian (0) or big endian (1)

Format 1 Alternative 16 bit format.

ColorOrder 1 BGR (0) or RGB (1)

NumComps 2 1,2,30r4

OutputFormat 2 Texel (0), Color (1) or Bitmask (2)
MirrorBitMask 1 No (0) or Yes (1)

InvertBitMask 1 No (0) or Yes(1)

ByteSwapBitMask 1 No (0) or Yes (1)

LUTOffset 8 Holds the value to be added to the texel when it

isused as an index into the Texd LUT.

OneCompFormat 2 Determines the interpretation of a one component
texel when not converted using the Texel LUT.
Possible options are:

Luminance (0)

Alpha (1)

Intensity (2).

Table5.9 Texel Format Register

Only the least significant 32 bits of the localbuffer are used for texture storage. If the
localbuffer iswider then the additional bits are ignored during texture reads, and
overwritten with zeros during texture downloads.

A texdl canbel, 2, 4, 8, 16 or 32 hitsin size (depth) and is converted into the
internal 32 bit wide texel format.

Thefirst step isto extract the appropriate bits from the data returned by the
localbuffer. The texel's coordinates, depth and order determine which texel out of
the 32 bit localbuffer word is extracted. If the order islittle endian then increasing u
(or 1) coordinate runs from the most significant end towards the least significant end
of the 32 bits and vice versafor big endian order.

The next stage isto take the texel data and extract the RGBA components and
format them into the 32 bit internal format. OpenGL defines texture maps as having
1, 2, 3 or 4 components and the formats supported are:

104 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Number of Components
Color | Texel | Format 1 2 3 4
Order | Width
X 1 X LUT LUT LUT LUT
X 2 X LUT LUT LUT LUT
X 4 X LUT LUT LUT LUT
X 8 1 LUT LUT LUT LUT
8 0 | LglAgllg Agly B,GsRs | A1BGsR,
BGR 16 0 - Aglg BsGgRs | A4B4G4R4
16 1 - Aglg BsGsRs | A;BGsRs
32 X - - - AgBgGgRg
8 0 LglAgllg Aglq RiG3B, | A1RG3B;
RGB 16 0 - Aglg RsGgBs | A4R4G4B,4
16 1 - Aglg RsGsBs | A;R:GsBs
32 X - - - AgR;GgBg

Table5.10 Supported Texel Formats

The 1, 2 and 4 bit texels are converted using aLUT to theinternal format. The
indexed texel value has an 8 bit LUTOffset added (and allowed to wrap) to it prior
to thelook up. Thisalows multiple smaler LUTsto be held in the large 256 LUT.
The LUT converts an indexed texel value into an RGBA vaue The benefit of this
scheme for 3D isthat it allows texture maps to be compressed so take up less
memory.

For 2D it allows a one bit texture to be used as a stipple and provide a foreground
and background color. A 4 bit texture can be used to hold a Cl dither offsets which
the LUT trandate into color values (RGBA or Cl). This alows MicrosoftWindow's
compatible CI dithering to be implemented.

The 8 bit texels (Tg) are converted either algorithmically or by using the LUT. The
method is selected by the Format bit. The loading of texel datainto the 256 entries
inthe LUT is described later.

One component texels (if not converted by the LUT) and converted according to the
OneCompFormat field in the TextureFormat register as follows:

OneCompFormat R G B A
Luminance Tg |Ts Tg 255
Alpha 255 |255 | 255 |Tg
Intengity Tg |Tg |Tsg |Tg

Table5.11 One Component Texels Conversion

3Dlabs Proprietary and Confidential 105

Graphics Programming GLINT MX Programmer’s Reference Manual

Two component texels have the luminance value (L) replicated into the RGB
components.

Three component textures have the apha value set to 255.

A dash in the table shows the combinations which don't make sense as there will be
unused bits |eft over in the texel data. If such a combination occurs then the nearest
earlier entry for this number of componentsis used and the extraneous data is
ignored. For exampleif athree component 32 bit texel is selected in BGR order the
texel datais converted using B:GsRs.

The tables entries show how the texel datais expanded into the internal Texel or
Color formats. The subscripts are the number of bits the corresponding component
and the component ordering is with least significant on the right.

The 32 bit texel valueis now optionally (in this order):

» Byte swapped. If the bytes are labeled ABCD on input then after byte swapping
they will have the order DCBA. This allows the normal bit mask format provided

by Microsoft Windows to be used directly.

* Mirrored. Thisswaps bit 0 and bit 31, bit 1 and bit 30, etc. so when no mirroring is
enabled the least significant bit in the texel will be the left most pixel in the span.
With mirroring the most significant bit in the texel will be the Ieft most pixel in the
span.

* Inverted. Thissmply invertsthe texel bits before they are used. Thisalowsthe
same bit mask to be used to fill in the foreground pixelsin one color and then the
background pixelsin a different color on a second rasterization pass with inversion
occurring.

These operations are identical to those provided in the rasterizer for bit mask
operations and are intended to allow bit mask datato be held in the localbuffer for
use with 2D span processing. However, these operations are available for usein the
general 3D case.

The next stage is controlled by the OutputFormat bitsin the TextureFormat register.
They have the following effect:

» Texel. Thetexe ispassed to the Texture Filter Unit for further texture processing.

» Color. Thiswould be used by 2D operations as no further texture processing is
needed.

» BitMask. The 32 hit texdl isheld locally and is ANDed with the next span data
sent from the rasterizer and subsequently used to read and/or write a span of data.

Loading the Texd LUT

The LUT is 256 entries deep by 32 bitswide. The bottom 16 locations are directly
accessed by the TexelLUTO... 15 registers, and can also be readback directly. The
remaining entries are accessed via an aternative method.

The LUT can be loaded via the auto incrementing register writes or from the local
buffer. The ability to load the entire LUT from the local buffer by writing to two

106 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

registers will greatly reduce the burden on the host to manage the LUT. The LUT
data can be written into the local buffer initialy either viathe bypass, or more
preferably using the normal texture download mechanism.

Loading the LUT via auto incrementing registers

The start index in the LUT iswritten to the Texel LUTIndex register. The bottom 8
bits of the data give theindex. Every subsequent write to the TexelLUTData
register will then load the LUT with the data and increment the index. Reading back
the Texel LUTIndex register will return the incremented index value.

Loading the LUT from thelocal buffer.

The local buffer address where the LUT isheld in the Texd LUT Address register.
The start index and number of wordsto fill inthe LUT are given in the

TexeLUT Transfer register with the index in the bits 0...7 and the count in bits
8...16. Thewriteto the TexelLUT Transfer register will also initiate the transfer. A
count of zero will load zero words into the LUT so this effectively disables the
loading operation. The transfer will wrap around in the LUT if necessary. The
Texe LUTAddress and Texel LUT Transfer registers are not changed by the transfer
and both can be readback. The restoration of these registers after a context switch
will automatically restore the LUT to it's previous contents. This does assume the
LUT hasn't been loaded piecemeal, or viaone of the other mechanisms and that the
LUT datainthelocal buffer istill valid. If these conditions don't hold then the
LUT will have to be restored manually.

The LUT datais only held in the bottom 32 bits of the local buffer memory and the
red component isin the least significant byte.

Reading the LUT.

The readback of the LUT isdone by first reading the TexelLUT Index register. As
well asreturning the current LUT index (as noted above) it also has the side effect of
setting a Readindex counter to zero. The Readindex counter is only used during
readback. Each subsequent read from the TexelLUTData register will return the
LUT data at the Readindex and the Readindex counter isincremented. The
Readlindex counter will wrap from 255 to 0.

5.7.3 Texture Read Registers
The TextureReadM ode register controls the general operation of texel reads and has
the following format:

3Dlabs Proprietary and Confidential 107

Graphics Programming GLINT MX Programmer’s Reference Manual

31 28 24 20 16 12 8 4 0
Bordaél arlnp T Enable
0=No Texture
1=Yes Width -Reed
0= None Depth 1= Enable
1= Index V Wrap
2 = Coordinate 0= Clamp B(irder
PrimaryCache 1= Rgpeet 0 = No zorder
0= Disable 2= Mirror MinFilt 1 = Border present
1=Enable U Wrap 0 l”N' e;t Patch
Mipmap 0=Clamp_| /7 /1 2;’(\2
(1) i [E);;Tg ; ; ?/I?;re: 2= NearestMipMapNearest MagFilter
Textur; map type 3= NearestMipMapLinear 0= Nearest
0=1D 4 = LinearMipMapNesarest 1= Linear
1;2D 5 = LinearMipMapL inear
Figure5.23 TextureReadMode Register
a_ 4 : 6 8 : : 0
LUTOffset
/ / Order
OneCompFormat 0 =Little Endian
O=Luminance ByteSwap BitMask 1 =Bit Endian
1= Alpha 0= No Byte Swap Output Format
2 = Intensity 1 = Byte Swap 0=Texel Format
. 1 = Colour
Invert BitMask 2 = BitMask Colour Order
0= No Invert 0=BGR
1=Invert Number Comps 1=RGB
0=1 a

Mirror BitMask 1
0= No Mirror 2
3

1 = Mirror

2
3
4

Figure5.24 TextureFormat Register

Other registersin the texture read unit:

Register DataField Description

TexelCoordU 20 LS bitsstorethe | Only used if host needsto
coordinate provide a texture coordinate

Texel CoordV 20 LS bitsstorethe | Only used if host needsto
coordinate provide a texture coordinate

108

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming
TextureBaseAddr[12 29 bit address Lower 5 bits specify address
within aword. [0] holds the
highest resolution map in the set.
BorderColor 32 bit color format. | Only relevant when filter
Redinlower byte | operation islinear
TexdLUT[16] 32 bit texel/color Relevant for 1, 2 & 4 bit texels
format. Redin
lower byte
Texel CacheControl BitO: Allows software control of the
O=Noinvaidate |texture cache operation
1= Invalidate
cache
Bit 1:
O=Disable cache
1=Enable cache
TexeLUTIndex 8LSbitsstorethe | When loading via anti-
coordinates incremnting registers
Texdl LUTData 32 LShitsstorethe | DataVaue
coordinates
Texd LUTAddress 24 LS hits storethe | LocalBuffer address where the
coordinates LUT ished
Texd LUT Transfer 8 LShitsarethe Start index and the number of
start index, next LS | wordsto fill when loading the
9 bitsarethecount | LUT from the LocaBuffer
Table5.12 Other Texture Read Registers
574 TextureFiltering

The required texture filter mode is set up in the TextureReadM ode register as
already outlined. The texture filtering must be enabled separately viathe
TextureFilterMode register. Thisregister has the following fields:

Name Width Function
Enable 1 Enables texture filtering to occur when set.
AlphaM apEnabl 1 Enables Alpha map processing to occur when set
e
AlphaMapSense 1 When clear the alpha map senseis Include,
otherwiseit is exclude.
Table5.13 TextureFiltering

The Alpha Map processing provides a mechanismwhere the color of the input texels
are tested against arange of colors and the alpha value of the texd is set based on

the outcome of thetest. This subsequently allows an Alpha Test to be done,
however it doesn't rely on the presence of an apha channel in the texture map..

3Dlabs

Proprietary and Confidential

Graphics Programming GLINT MX Programmer’s Reference Manual

Direct3D and QD3D both have the notion of atransparent color in the texture map
for doing cut-outs so the alpha map operation allows the Alpha Test to be used.

The apha map test is given by:
ClLE£ET £Cu & CIE£T ,£Cu, & CILLET £Cy & CE£T, £Cu,

where Cl isthe lower chromavaue held in the TextureChromal ower register, Cu
isthe upper chromavalue held in the TextureChromaUpper register and T isthe
input texel value. Each component is tested separately and obviously a component
can be excluded from the test by setting the lower and upper valuesto 0 and 255
respectively.

The TextureChromaL ower and TextureChromaUpper register hold the color
bytes with the red component in the lower byte, then the green byte and finally the
blue byte.

The aphamap test is only enabled when the TextureFilter Unit is enabled and the
AlphaMapEnable bit in the Textur eFilter M ode register is set. The sense of the
alpha map test (when enabled) is controlled by the AlphaMapSense bit and the effect
of thisistabulated below:

AlphaMap Test Enabled | Test Result | AlphaMapSens Action
e
N X X Alphavalue
unchanged.
Y False Include Alpha set to 0x00.
Y True Include Alpha set to OxFF.
Y False Exclude Alpha set to OxFF.
Y True Exclude Alpha set to 0x00.

Table5.14 AlphaMapTest Enabled

575 TextureColor Generation

The fina phase of the texturing process combines the incoming fragment's color
(generated in the color DDA unit) with the texture color value generated from the
texture filter phase. The function used to combine these two colorsisreferred to as
the texture application mode. The available options are split into two types -
OpenGL and QuickDraw 3D. The OpenGL options are one of Decal, Blend,
Modulate and Replace. The QuickDraw 3D options are any combination of Decal,
Modulate or Highlight.

OpenGL Application Modes
The fragment's color is calculated based on the following equations:

110 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming
Type Application Mode Equation
bits0, 1
Modulate 0 Crapa = Tiga * Frgpa
Decal 1 Copp = Lep(Fr Ty)
Ca = Fa
Blend 2 Cop = LerP{Frs Kigo T
C.=F"T
Replace 3 Base Format
Alpha Cop=Fgpr C.=T,
Luminance Cop=Tgp, GC=FK
LuminanceAlpha Cgpn = Tiga
Intensity Craba = Tigha
RGB Cop=Te, C.=F
RGBA C,gba = Tigpa

where C isthefina color after texture has been applied, F is the fragment color, T is
the texel value texels and K is a constant color stored in the TextureEnvColor
register. The equations are vector equations and the suffixes show how the different
component values are combined.

Lerp(A, B, a) linearly interpolates between A and B using a asthe interpolation
coefficient:

Lerp(A B,a) = (1- a)* A+a*B
and the subscripts identify individual color components.

The Replace equation depends on the base format of the texture map. Thisis
defined in the TextureColor M ode register.

In addition to the standard OpenGL texture application modes, if bit 2 of the
ApplicationMode is set the highlight color components (from the Ks DDAS) are
added in. This provides the functionality that Direct3D requires.

This style of texture application is used when the TextureTypefield in the
TextureColorMode register is OpenGL.

Apple Texture Modes

These texture application modes support the QuickDraw 3D API.

Note: Any combination of these operations are allowed and they are done in the

order given.

Once calculated, the texture value, R is used and the fragment's color is calculated
asfollows:

3Dlabs

Proprietary and Confidential 111

Graphics Programming GLINT MX Programmer’s Reference Manual

Type Application Mode Equation
Decal bit O If enabled
Cop =TT, + (1- T)Fy,
Ca = Fa
else
Cgp = Trgp
C.=T.F
Modulate | bit 1 Crgo =Crgp * Kdygy
C.=C,
Highligh | bit 2 Cgp =Crgpt K
t C.=C,

where T isthe texel color, F isthe fragment color, Kd isthe diffuse RGB
components from the Kd DDA unit, and Ksis the specular RGB components from
the Ks DDA unit. The equations are vector equations and the suffixes show how the
different component values are combined.

This style of texture application is used when the TextureType field in the
TextureColorMode register is Apple.

The Ksand Kd DDASs

The Ks and Kd DDA units interpolate the specular and diffuse RGB values.

Loading of the DDA start and derivative values is done dightly differently to try to
maintain backwards comparability with GLINT Delta and GLINT 500TX devices as
these only knows about calculating the monochrome Ks and Kd values.

» Theorigina Ksand Kd registers when written to load the corresponding R, G and

B registers. This gives comparable functionality to GLINT TX.

The new KsRStart, dKsRdx and dK sRdyDom registers load up the start, dx and
dyDom registers for the Ks Red DDA unit. Similarly for the Ks GB components
and also the Kd RGB components. This allows for future set up chips to program
these registers directly.

The ColorLoadMode field in the TextureColor M ode register allows writes to the
Color DDA registersto also load up the identified Ks or Kd register with the same
color name. Thisalowsthe normal GLINT Delta color calculations to be
subverted and used for the Ks and Kd valuesinstead. Thisis achieved by using the
NoDraw optionin GLINT Deltaand Gamma and cycling the Ks, Kd and Color
values through the Delta RGB vertex registers and changing the ColorLoadMode
as appropriate. Thisisnot idea asthe triangle throughput is going to be
substantially less, but it saves the host from having to do any of the calculations
itself.

112

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

The Ks and Kd values loaded in to the vertex color registersin GLINT Deltaare
divided by two to bring them into the normal range for colors.
Theformat is 2's complement 2.22 fixed point format with an effective range of

+1.999. Thevauesof Ksand Kd at each vertex are used to calculate the gradient
values in much the same way as the color gradients, when Gouraud shading.

The parameters to control the two DDA units are loaded into the red, green and blue
values (there is no aphavalue) and are held as 1.8 unsigned fixed point numbers so
values greater than 1.0 can be represented.

This style of texture application is used when the TextureTypefield in the
TextureColorMode register is Apple.
Texture Color Registers

The application of textureis qualified by the TextureEnable bit in the Render
command register. The following registers control the application of textures.

0004 016 8 ___ 0
Colour LoadM ode/// |
2 - ane BaseFormat Enable Texture
2=kd JZAlPha 0= Disable
2 = LuminanceAlpha KQDDA 1=Enable
3 = Intengity 0=Disdble .
4=RGB 1=Enable | Application mode
5=RGBA TextureType
KsDDA 0= OpenGL
0= Disable 1=Apple
1=Enable

Figure5.25 TextureColorMode Register

Register DataField Description
TextureEnvColor | 32 bit RGBA format, R
in least significant byte

KsStart 24 bit 2scompfix pt | Ksstart value, loads up the R, G and B
DDA dtart registers.

dK sdx 24 bit 2scompfix pt | Ksderivative unit X, loads up the R, G and
B DDA dx registers.

dKsdyDom 24 bit 2scompfix pt | Ksderivative unit Y, dominant edge, loads
up the R, G and B DDA dyDom registers.

KdStart 24 bit 2scompfix pt | Kd start value, loadsup the R, G and B
DDA dtart registers.

3Dlabs Proprietary and Confidential 113

Graphics Programming

GLINT MX Programmer’s Reference Manual

dKddx 24 bit 2scompfix pt | Kd derivative unit X, loadsup the R, G
and B DDA dx registers.

dKddyDom 24 bit 2scompfix pt | Kd derivative unit Y, dominant edge, loads
up the R, G and B DDA dyDom registers.

KsRStart 24 bit 2scomp fix pt | KsRed start value

dKsRdx 24 bit 2scomp fix pt | Ks Red derivative unit X

dKsRdyDom 24 bit 2scompfix pt | KsRed derivative unit Y, dominant edge

KsGStart 24 bit 2scompfix pt | Ks Green start value

dK sGdx 24 bit 2scompfix pt | Ks Green derivative unit X

dKsGdyDom 24 bit 2scompfix pt | Ks Green derivative unit Y, dominant edge

KsBStart 24 bit 2scomp fix pt | KsBlue start value

dKsBdx 24 bit 2scompfix pt | KsBlue derivative unit X

dKsBdyDom 24 bit 2scomp fix pt | KsBlue derivative unit Y, dominant edge

KdRStart 24 bit 2scomp fix pt | Kd Red start value

dKdRdx 24 bit 2scompfix pt | Kd Red derivative unit X

dKdRdyDom 24 bit 2scompfix pt | Kd Red derivative unit Y, dominant edge

KdGStart 24 bit 2scompfix pt | Kd Green start value

dKdGdx 24 bit 2scompfix pt | Kd Green derivative unit X

dKdGdyDom 24 bit 2scomp fix pt | Kd Green derivative unit Y, dominant
edge

KdBStart 24 bit 2scompfix pt | Kd Blue start value

dK dBdx 24 bit 2scomp fix pt | Kd Blue derivative unit X

dKdBdyDom 24 bit 2scomp fix pt | Kd Blue derivative unit Y, dominant edge

Table5.15

5.7.6 Downloading Texture Maps

Other Texture Color Registers

Texture maps are downloaded into the localbuffer by ssmply writing the data to the
TextureData register (ideally using the on-chip DMA controller). In this mode of
operation the peak download rate is 50M words per second®. The bypass path to the
localbuffer can also be used but this will be much slower.

Texelswhich are less than 32 bitsin size will need to be packed into a 32 bit word
before they are downloaded and the packing must be compatible with the way the
texels will subsequently be read. Note that the presence of a border in the texture

map will complicate the packing as some 32 bit words will now contain texels from
adjacent rows.

Texture maps are aways stored linearly in memory.

The base address of the texture map is specified in the LBWindowBase register so it
will need to be restored after texture download is complete. The texel word to write
to is specified by the TextureDownloadOffset. This register auto increments after
every texture word is written to the localbuffer, so generaly is zeroed at the start of
the download, and ignored thereafter. Where the TextureDownloadOffset register is

10ther system factors such as memory speed, PCI clock frequency, etc. will reduce the system downl oad speed.

114 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

useful isif the texture map is downloaded in strips, maybe due to the size of the
DMA buffer being smaller than the texture map, or for context switching reasons.
At the start of each strip the TextureDownloadOffset register is loaded with the
offset value for the start of thisstrip. The offset is 24 bitsin size. The
LBWindowBase register always gives the base address of the texture map and
should never be used to give the address of a strip (other than the first one)
otherwise any address patching will not work properly.

If the Patch bit in the LBReadMode register is set, the texture map addressis
modified to be compatible with the patching used when reading the texture maps. A
patch isaways 16 x 16 words, or 16 * (6 - d) by 16 texels where d is the number of
bitsin atexel expressed as a power of 2. To form the correct address the
Localbuffer Unit needs to know the width of the texture map and thisis encoded in
the PatchCode (in the LBReadMode register) as follows:
width in words | Patch code
32 0
64
128
256
512
1024
2048

OB WIN|F-

Notel: The patch mode is only useful when the width of the map exceeds 16 words.

Note2: The patch mode works best when the height of the map is greater than 16

texels. For maps which are less than thisin height a portion of the patch will
not be used so the texel data will be spread out in memory. Consider a 1K
word x 4 texture map. Thiswill occupy a quarter of the patch memory so 16K
words need to be set aside for 4K of texels. Moving between rows will occur
without page breaks, where as in the non patch case it would incur a page
break. It is possible to interleave 4 such maps so getting the benefit of less
page breaks without the cost of the additional memory.

In summary the only registers which need to be set up for a texture download
operation are:

LBWindowBase
TextureDownloadOffset
L BReadM ode (PatchEnable and PatchCode fields only).

There isadanger that a texture mapped primitive immediately following a texture
download may start to read texel data still waiting to be written (texture units before
localbuffer units), or conversely a download may overwrite texel datain the process
of being read (locabuffer units before texture units). If thereis any chancethis
situation might arise then the WaitForCompl etion command can be used to prevent a
rendering action from starting until al the fragments associated with the previous
render action have been written to memory. This command is conceptually similar

3Dlabs

Proprietary and Confidential 115

Graphics Programming GLINT MX Programmer’s Reference Manual

to the Sync command but the host does not need to read from the output FIFO.
There isno datafield required with the WaitForCompletion command.

The texture download mechanism outlined defines what is needed. However the
semantics of texture downloading in OpenGL alowsfor all the fragment formatting
operations to be available when downloading images. The normal case will be a
straight download with no fragment processing. When thisis not so the texture map
will need to be processed, maybe into off-screen framebuffer, before loading into the
localbuffer as described above.

577 Texture Order

Any texture operations will cause alossin performance over the same non-textured
rendering, so it isagood idea only to texture those pixels which pass all the depth,
stencil and GID tests. OpenGL defines the order in which operations are to be
performed on fragments as texture, aphatest, stencil and then depth. 1t isvery
likely that in atypical scene many textured fragments will get rejected by the depth
test, say, which isn't the most effective use of the texturing capacity. If the alphatest
isdisabled (or cannot reject fragments) then OpenGL compatible semantics are still
maintained if the order is rearranged to be stencil, depth, texture and then aphatest.

The GLINT MX has a pipeline which can be re-configured into either of the two
orders (TextureDepth or DepthTexture) by writing to the RouterMode register.
Changing the pipeline order is self synchronizing so the user does not need to wait
for the pipeline to empty first.

578 Texture Download Example

This example shows the state preparation needed to download atexture map in a
single block from host memory into the localbuffer with patching enabled .
/1 Texture Downl oad with patching enabl ed
| bReadMbde. Pat ch = GLI NT_TRUE
| bReadMbde. Pat chCode = wi dt hLog2 + depthLog2 - 10
LBReadMbde(| bReadMode)

LBW ndowBase(Local Buf f er Text ur eBaseAddr [12])
Text ur eDownl cadCOf f set (0)

/1 have the texture cache enabl ed but invalidate the

/] cache

Text ureCacheControl (GLI NT_TEXTURE_CACHE_CONTROL_ENABLE]
GLI NT_TEXTURE_CACHE_CONTROL_| NVALI DATE)

/1l ensure wait for any outstanding texture reads to
/1 finish
Wi t For Conpl eti on()

/1 1 oop through texture data in 32bit steps
for (i=0; i< cDWORDS ; i++)
Text ureDat a(t ext ur eDat a)

116 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

/1l ensure wait for outstanding texture wites to

/1 finish
Wi t For Conpl et i on()
5.7.9 Mipmapping
A mipmap is an ordered set of arrays representing the same image. Each array has
half the linear resolution of the preceding one. This technique alows minification
filtering to occur with a constant time overhead irrespective of the size of the
projected area.
Thefirst filter name for mipmapping in the Min Filter field specifies the filtering to
be done on alevel, and the second filter name specifies the filtering to be done
between levels.
Mipmap is enabled by setting the MipMaphit in the TextureReadM ode register.
5.7.10 Texture Mapping Example
This example shows how to prepare GLINT MX state to render atextured triangle
primitive. It assumes the texture has been downloaded using the approach in section
85.7.8. Thisexample describes the usual case where the texture filter function
(nearest or linear) does not vary across the primitive. In this case thereis no
involvement required from the host per pixel.
/1l Prepare the texture address unit
t ext ur eAddr essvbde. Enabl eUnit = GLI NT_ENABLE
t ext ur eAddr essWbde. SWap = G.I NT_REPEAT
t ext ur eAddr essvbde. TWap = G.I NT_CLAWP
t ext ur eAddr essMode. Operation = GLI NT_ENABLE
/13D node
Text ur eAddr essMode(t ext ur eAddr essMode)
/!l Prepare the texture read unit
t ext ur eReadMode. Enabl eUnit = GLI NT_ENABLE
t ext ur eReadMode. Wdt h = wi dt hLog?2
t ext ur eReadMode. Hei ght = hei ght Log2
t ext ur eReadMode. Dept h = dept hLog?2
t ext ur eReadMode. Pat ch = GLI NT_TRUE
t ext ur eReadMode. MagFi | t er = GLI NT_NEAREST
t ext ur eReadMode. UW ap = GLI NT_REPEAT
t ext ur eReadMode. VW ap = GLI NT_CLAMP
t ext ur eReadMbde. Text ureType = GLI NT_ENABLE // 2D type
t ext ur eReadMode. M pnmapEnabl e = GLI NT_DI SABLE
Text ur eReadMode(t ext ur eReadMbde)
[/l Prepare the texture format unit
textureFormat. Data = 0 /[l set all fields to O
t ext ur eFor mat . Nunmber Conps = GLI NT_4_COVPONENTS
t extur eFor mat . Qut put For mat = GLI NT_TEXEL
3Dlabs Proprietary and Confidential 117

Graphics Programming GLINT MX Programmer’s Reference Manual

/! Enable the texture filter node
texturefilternode. Enabl eTexture = GLI NT_TRUE
TextureFilterMode (texturefilter_node)

/! Enable the texture application node

Text ur eCol or Mbde. Enabl eTexture = GLI NT_TRUE
Text ur eCol or Mbde. Appl i cati onMode = GLI NT_DECAL
Text ur eCol or Mbde(Text ur eCol or Mode)

/! Point at the defined texture in | ocal buffer
Text ureBaseAddr[12] (Local Buf f er Text ur eBaseAddr[12] << 5)

[/l Set-up to render into the franebuffer
/1 Not shown.

// Normalise S, T, Qvalues fromall 3 vertices
/1 Not shown.

// Calculate the S, T, Q deltas

/1 Not shown.

/[l Set-up the S, T, Q delta val ues
Sstart()

dSdx ()

dSdyDon()

Tstart ()

dTdx()

dTdyDom()

start()

dQdx()

dQdyDom()

/1 Render triangle

/] rasterization deltas not shown
render.PrimtiveType = GLI NT_TRAPEZO D PRI M Tl VE
render. Text ureEnabl e = GLI NT_TRUE

Render (r ender)

118 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.8

581

Fog Unit
The fog unit is used to blend the incoming fragment's color (generated by the color

DDA unit, and potentially modified by the texture unit) with a predefined fog color.
Fogging can be used to simulate atmospheric fogging, and a so to depth cue images.

Fog application has two stages: derivation of the fog index for afragment; and the
application of the fogging effect. The fog index is a value which is interpolated over
the primitive using a DDA in the same way color and depth are interpolated. The
fogging effect is applied to each fragment using one of the equations described
below.

The GLINT MX performs the fog calculations in parallel to the texture filtering and
application so (unlike the GLINT 500TX) there is no degradation in performance
when both fog and texture are enabled.

Note that although the fog values are linearly interpolated over a primitive the fog
values can be calculated on the host using alinear fog function (typically for smple
fog effects and depth cueing) or a more complex function to model atmospheric
attenuation. This would typically be an exponential function.

Fog Index Calculation - The Fog DDA

The fog DDA is used to interpolate the fog index (f) across a primitive. The
mechanics are similar to those of the other DDA units, as the diagram below
illustrates:

dFdyDom

. Subordinate Edges

D ominant Edge

T~

Figure5.26 Fog Interpolation Over A Triangle

where:

dFdX = Fog gradient in the X direction.

dFdyDom = Fog gradient along the dominant edge of a primitive.
Note that for fogged lines the dFdx deltais not required.

Thefog index is specified as a 32bit fixed point value. The format is 2's complement
with 10 bits integer and 22 hits fraction.

3Dlabs

Proprietary and Confidential 119

Graphics Programming GLINT MX Programmer’s Reference Manual

31

24 16 8 0

Integer Fraction

5.8.2

Figure5.27 Fog Interpolant Fixed Point For mat

The DDA has an internal range of approximately +511 to -512, in some cases
primitives may exceed these bounds. This problem typically occurs for very large
polygons which span the whole depth of a scene. The correct solution isto tessellate
the polygon until polygons lie within the acceptable range, however, the visual

effect is frequently negligible and can often be ignored.

The fog DDA calculates afog index value which is clamped to liein the range 0.0 to
1.0 beforeit is used in the fogging equations described below.

RGBA Fogging Equation

Fogging is applied differently depending on the color mode. For RGBA mode the
fogging equation is:

C=1Cj + (L-f)Cy

where:

C = outgoing fragment color

Cf =fog color

Cj = incoming fragment color

f =fog index
The equation is applied to the color components, red, green and blue; alphais not
modified. The diagram below shows how the fogging would typically affect

fragments. Initially no fogging occurs, f 3 1.0, thenaregion of linear combination of
the fragment color and fog color occurs 0.0 < f < 1.0, followed by aregion of

constant fog color, f £ 0.0.

120

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

+511 A C= (:l

1.0 C=fCj +(1f) Cf |

/

Fog Index (f) C=Cy
: : Increasing Screen Depth
512 v
Fragment Color é Linear Fogging Range : Fogged Color

Figure5.28 RGBA Fogging

5.8.3 Cl Fogging Equation

For color index mode the equation is:
| =1 + (1-f)If

where:
| = outgoing fragment color index
li = incoming fragment color index
f = fog index
If = fog color index

584 Registers

The FogMode register is used to enable and disable fogging (qualified by the fog
application bit in the Render command register).

/
Color Mode

0=RGBA

1=Cl Enable Fog
0= Disable
1=Enable

Figure5.29 FogMode Register

3Dlabs Proprietary and Confidential 121

Graphics Programming GLINT MX Programmer’s Reference Manual

5.85

Additional fog registers are, FogColor, which holds the fog color in the standard
color format. FStart, dFdx & dFdyDomwhich control the fog DDA and are
formatted in 2's complement 10.22 fixed point format as described above.

Fog Example

A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white (see
85.2.3 for details of how to calculate color and fog delta values).

/! Enable the color DDA unit in Gouraud shadi ng

/1 node

col or DDAMode. Uni t Enabl e = GLI NT_ENABLE

col or DDAMode. Shade = GLI NT_GOURAUD_SHADE MODE

Col or DDAMode(col or DDAMbde)

/1 Enabl e the Fog unit
f ogMode. FogEnabl e = GLI NT_TRUE
f ogMbde. Col or Mode = GLI NT_RGBA MODE

Foghbde(f oghbde)

/1l Set the fog color to white
FogCol or (OXFFFFFFFF)

/! Load the color start values and deltas for
/! domi nant edge and the body of the trapezoid

Rstart () /1l Set-up the red conponent start val ue
dRdX() /] Set-up the red conponent increnments
dRdYDom()

Gstart() /1l Set-up the green conponent start val ue
dGdX() /1 Set-up the green conponent increments
dGdYDom()

Bstart () [/l Set-up the blue conmponent start val ue
dBdX() /! Set-up the blue conponent increnents
dBYDom()

/! Load the start value and delta for dom nant edge
/1l and the body of the trapezoid

/1 Note that the fog deltas are calculated in the
/! same way as the color deltas

FStart () /! Set-up the fog component start val ue
dFdX() /1l Set-up the fog conponent increnments
dFdYDon()

/1 When issuing a Render conmand the FogEnable bit
/! should be set in addition to the fog unit being
/'l enabl ed:

/1 render. FogEnabl e = GLI NT_TRUE

122

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.9 Antialias Application Unit

Antialias application controls the combining of the coverage value generated by the
rasterizer with the color generated in the color DDA units. The application depends
on the color mode, either RGBA or Color Index (Cl).

59.1 AntiaiasApplication

When antialiasing is enabled this unit is used to combine the coverage value
calculated for each fragment with the fragment's alpha value. In RGBA mode the
alphavalue is multiplied by the coverage value calculated in the rasterizer (its range
is 0% to 100%). The RGB values remain unchanged and these are modified later in
the Alpha Blend unit which must be set up appropriately. In CI mode the coverage
valueis placed in the lower 4 bits of the color field. The Color Look Up Tableis
assumed to be set up such that each color has 16 intensities associated with it, one
per coverage entry.

5.9.2 Polygon Antialiasing

A number of issues should be considered when using GLINT to render antialiased
polygons. Depth buffering cannot be used with GLINT antialiasing. Thisis because
the order the fragments are combined in is critical in producing the correct final
color. Polygons must therefore be depth sorted, and rendered front to back, using the
alphablend modes: SourceAlphaSaturate for the source blend function and One for
the destination blend function. In this way the a pha component of a fragment
represents the percentage pixel coverage, and the blend function accumulates
coverage until the value in the apha buffer equals one, at which point no further
contributions can be made to a pixel.

Although this technique works well in many cases, it is an approximation. Consider
the case bel ow which shows three polygons of equal depth which intersect asingle
pixel. In this case there would ideally be a contribution from each of the polygons.
However, if the rendering order is polygon A followed by polygon B, each of which
contributes approximately 50% pixel coverage, then polygon C will make no
contribution to the pixel asthe aphavalueis 'saturated' (50%+50%=100%).

3Dlabs Proprietary and Confidential 123

Graphics Programming GLINT MX Programmer’s Reference Manual

Pol ygon A Pol ygon C

Pol ygon B [Pixd

Figure5.30 Polygon Antialiasing

For the antialiasing of general scenes, with no restrictions on rendering order, the
accumulation buffer isthe preferred choice. Thisisindirectly supported by GLINT
viaimage uploading and downloading, with the accumulation buffer residing on the
host.

When antialiasing, interpolated parameters which are sampled within afragment
(color, fog and texture), will sometimes be unrepresentative of a continuous
sampling of a surface, and care should be taken when rendering smooth shaded
antialiased primitives. This problem does not occur in aliased rendering, asthe
sample point is consistently at the center of apixel.

See The OpenGL Programming Guide for more details of antialiasing.

59.3 Registers
The AntialiasM ode register controls the unit:

31 24 16 8 0
Color mode 4
0=RGBA
1=Cl
Antialias Enable
0 = Disabled
1=Enabled

Figure5.31 AntialiasMode Register

For the coverage application to take place the enable in the AntialiasMode register
must be qualified by the CoverageEnable bit in the Render command register.

594 Antidias Example
Enable antialiasing for aRGBA primitive:

124 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

/1 Set AA application for RGBA primtive
anti al i asMbde. Anti al i asEnabl e = GLI NT_TRUE
anti al i asMbde. Col or Mode = GLI NT_RGBA

Anti al i asMode(anti al i asMbde)

/1l Set the blend npbde to an appropriate value if
/1 blending is required. Not shown.

/1 When issuing a Render command the CoverageEnabl e
/! bit should be set in addition to the antialias
/! unit being enabl ed:

/1 render. CoverageEnabl e = G.I NT_TRUE

3Dlabs

Proprietary and Confidential

125

Graphics Programming GLINT MX Programmer’s Reference Manual

510 Alpha Test Unit

The alphatest compares a fragment's apha value with areference value. Alpha
testing is not available in color index (Cl) mode.

5.10.1 AlphaTest

The aphatest conditionally regjects a fragment based on the comparison between a
reference alphavaue and one associated with the fragment, the available tests are:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equa 6 Greater Than or Equal
3 Less Than or Equal 7 Always

Table5.16 AlphaTest Comparison Tests

The sense of the test is such that if the comparison modeis set to Less and the
reference value is set to 0x80, then fragments with a pha values between 0x0 and
Ox7F will pass the test and fragments with alpha values between 0x80 and OxFF will
fail the test and be rejected.

5.10.2 Registers
The AlphaTestMode register controls the alpha test:

31 28 24 20 16 12 8 4 0

Reference

See Table 5.16
Enable Unit

0= Disable
1=Enable

Figure5.32 AlphaTestMode Register

5.10.3 AlphaTest Example

Set the alphatest mode to be LESS and the reference value to be 0x80:
/! Enable unit and set nodes
al phaMode. Uni t Enabl e = GLI NT_ENABLE
al phaMbde. Conpare = GLI NT_ALPHA_ COWVPARE_MODE_LESS
al phaMode. Ref erence = 0x80
Al phaMode(al phaMbde) // Load register
/!l Render primtives

126 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.11

5.11.1

Localbuffer Read/Write Unit

The locabuffer holds the Graphic ID, FrameCount, Stencil and Depth data
associated with afragment. The localbuffer read/write unit controls the operation of
GID testing, depth testing and stencil testing.

Localbuffer Read

The LBReadM ode register can be configured to make O, 1 or 2 reads of the
localbuffer. The following are the most common modes of access to the localbuffer:

* Normal rendering without depth, stencil or GID testing. This
requires no localbuffer reads or writes.

* Normal rendering without depth or stencil testing and with GID
testing. This requires alocalbuffer read to get the GID from the
local buffer.

* Normal rendering with depth and/or stencil testing required which
conditionally requires the localbuffer to be updated. This requires
localbuffer reads and writes to be enabled.

» Copy operations. Operations which copy al or part of the
localbuffer with or without GID testing. This requires reads and
writes enabled.

» Image upload/download operations. Operations which download
depth or stencil information to the localbuffer or read depth, stencil
fast clear or GID from the local buffer.

The address cal culation implements the following equations assuming local buffer
patching is disabled. This applies to both reads and writes:
Bottom left origin -

Desti nation address = LBWndowBase - Y/S * W+ X

Source address = LBWndowBase - Y/S * W+ X +

LBSour ceCr f set

Top left origin -

Desti nation address = LBWndowBase + Y/S * W+ X

Source address = LBWndowBase + Y/S * W+ X +
LBSour ceCr f set

3Dlabs

Proprietary and Confidential 127

Graphics Programming GLINT MX Programmer’s Reference Manual

where:

Destination isthe address any write will be made to and any
addr ess destination read will be made from.

Sour ce address |sthe address a source read will be made from.

X isthe pixel's X coordinate.

Y isthe pixel's Y coordinate.

S isthe Scanline interval for multi-GLINT MX systems

LBW ndowBase holds the base address in the localbuffer of the current
window.

LBSour ceO fset isnormally zero except during a copy operation where
datais read from one address and written to another
address. The offset from destination to sourceisheld in
the LBSourceOffset register.

w isthe screen width. Only a subset of widths are supported
and these are encoded into the PPO, PP1 and PP2 fieldsin
the LBReadMode register. See the table in Appendix C
for more details.

Note that turning on Patch addressing introduces additional complexity into the
address calculation which is beyond the scope of this manual. Localbuffer bypass
accesses are not recommended when Patch mode addressing is enabled.

The locabuffer can be read in three formats: LBDefault, LBStencil or LBDepth.
These tell GLINT which areas of the localbuffer is required. LBDefault is used for
all copy and rendering operations, LBStencil and LBDepth are used for image
upload of the Stencil and Depth planest. The table below summarizes the common
rendering operations and the read modes required for them:

INote that these fields are read independently because the width of the localbuffer is greater than the width of
the host data bus.

128

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

ReadSource | ReadDestination | Writes | Data Type Rendering Operation

Disabled Disabled Disabled - Rendering with no GID, Depth or
Stencil enabled.

Disabled Enabled Disabled | LBDefault | Rendering with no Stencil or depth
tests enabled, but with GID testing
enabled

Disabled Enabled Enabled | LBStencil | Image download. GID testing

LBDepth | optional.
Disabled Enabled Disabled | LBStencil | Image upload. GID testing
LBDepth | optional.

Disabled Enabled Enabled | LBDefault | Rendering with depth and/or stencil
updates enabled. GID testing
optional.

Enabled Enabled Enabled | LBDefault | Copy operations with GID testing.

Enabled Disabled Enabled | LBDefault | Copy operations with no GID
testing.

Table5.17 Localbuffer Read/Write M odes.

5.11.2 Locdbuffer Write

Writes to the localbuffer must be enabled to allow any update of the localbuffer to
take place. The LBWriteMode register has two data fields, EnableWrite controls the
buffer updating and UpL oadData is used for reading back depth and stencil values

5.11.3

and for picking.

Locabuffer Data Formats

The four data fields supported in the localbuffer and their allowed lengths and
positions are shown in the following table:

Field

Lengths

Start positions

Depth

16, 24, 32

0

Stencil

0,4,8

16, 20, 24, 28, 32

FrameCount

0,4,8

16, 20, 24, 28, 32, 36, 40

GID

0,4

16, 20, 24, 28, 32, 36, 40, 44, 48

Table5.18

L ocalbuffer Configurations

In addition there is a compact mode for a 32bit wide localbuffer where depth is
24bits, stencil is 1bit, FrameCount is 4bits, and GID is 3bits.

The LBReadFormat and L BWriteFormat registers must be configured to the
appropriate values, see Figure 5.33. The format can be different for different

windows.

3Dlabs

Proprietary and Confidential

129

Graphics Programming GLINT MX Programmer’s Reference Manual

5114

31

Note that the L BReadFormat and L BWriteFormet registers should not be written to
while there are pending reads to the localbuffer. To avoid this awrite to these
registers should normally be preceded by a WaitForCompletion command.

Registers
The LBReadMode register is as shown below:

24 16 8 0

reserved PP3 reserved PP2 PP1 PPO

Partid product
selection Scanline Interval Window Origin

Patch Code Data Type Partia produc[

sdection

Patch Read Source enable
Read Dedtination enable

Figure5.33 LBReadMode Register

The Partial Product fields PPO, PP1, PP2 and PP3 define the width of the
localbuffer. They are described in the Hardware Data Structures chapter.

ReadSourceEnable and ReadDestinationEnable control localbuffer reads of the
destination address and source address respectively. DataType controls the format of
localbuffer data, and WindowOrigin specifiesif the window originis Top Left or
Bottom L eft.

When the Patch bit is set then Patch mode addressing is enabled. Thistypicaly
results in more efficient memory bandwidth utilization in the local buffer, asit
minimizes the number of page breaks generated when rendering a primitive, and so
should be viewed as the normal default case. One case where this mode should not
be enabled is when a datastructure needs to be accessed through the localbuffer
bypass.

The Scanlinelnterval isused in multi-GLINT MX systems. See chapter 7. For more
details.

The PatchCode controls the address generation for texture mapping. See section
5.7.4 for further details.

31 28 24 20 16 12 8 4 0

UpLoadData
0= None

1=LBDepth £pahie write
2 = LBStencil 0 = Disable

1 = Enable

130

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Figure5.34 LBWriteMode Register

The local buffer format must be specified for both reads and writes using the

L BReadFormat and L BWriteFormat registers. Normally these registers are set to
identical values. It may be useful to set them to different values when, say, copying
between two windows using different depth widths. In all cases care should be taken
to ensure that the field widths and positions are such that the fields do not overlap.

31 24 16 8 0
reserved
Compact32 p%:,qoln
GID Position | Stencil Width
GID Width FrameCount Width
FrameCount Position Depth Width

Figure5.35 LBReadFormat /LBWriteFormat Register Layout
LBWriteMode is asingle bit register. When the least significant bit is set, writes to
the localbuffer are enabled.

L BSourceOffset holds a 24 bit 2's complement value used in copy operations.

L BWindowBase updates the base address of the localbuffer. When local buffer
patching is disabled, this register should hold the window base address. When it is
enabled, it should hold the base address of the screen's depth buffer.

5.11.5 LocaBuffer Example
The following is an example of arendering operation with localbuffer read and
write. GLINT is configured with a 32 bit localbuffer such that 24 bits are used for
depth, 4 bits for stencil and 4 bits for fast clear with a screen size of 800x600.
/! Set the local buffer read and wite formats to be
/1l 24bit depth, 4 stencil and 4 fast clear.
| bReadFor mat . Dept hWdth = 1 [l 24 bit
| bReadFormat . Stenci I|Wdth = 1 [l 4 bit
| bReadFor mat . Stenci | Position = 2 [l bit 24
| bReadFor mat . FraneCount Wdth = 1 Il 4 bit
| bReadFor mat . FraneCount Position = 3 // bit 28
| bReadFormat . G DWdth = 0 /1 No G D planes
| bReadFormat . G DPosition = 0
| bReadFor mat . Conpact 32 = GLI NT_FALSE
LBReadFor mat (| bReadFor mat) /'l Load read format
LBW it eFor mat (| bReadFor mat) /1 Wite is same read
3Dlabs Proprietary and Confidential 131

Graphics Programming

GLINT MX Programmer’s Reference Manual

/] Set the local buffer wite npde
LBWiteMode (GLI NT_ENABLE)

/! Set the |ocal buffer read node

/[l Partial

| bReadMbde.
| bReadMbde.
| bReadMbde.

| bReadMbde.
| bReadMbde.
| bReadMbde.
| bReadMbde.
| bReadMbde.
| bReadMbde.
| bReadMbde.
| bReadMbde.

// wite suitable for stencil

products for 800 :

PPO
PP1
PP2

32 + 256 + 512

1 /1l 32 (<< 5)
4 /'l 256 (<< 8)
5 /1 512 (<< 9)

ReadSource = GLI NT_DI SABLE
ReadDesti nati on = GLI NT_ENABLE

Fast Cl ear Enabl e

GLI NT_FALSE

Dat aType = GLI NT_LBDEFAULT

W ndowOrigin = as appropriate

Patch = GLI NT_FALSE
Scanlinelnterleave = 0

Pat chCode = 0

LBReadMbde(| bReadMode)

/1 Now ready to render with | ocal buffer read and

/1 operations.

and depth buffering

132

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.12

5.12.1

5.12.2

31

Pixel Ownership Test Unit

Any fragment generated by the rasterizer may undergo a pixel ownership test. This
test establishes the current fragment's write permission to the local buffer and
framebuffer.

Pixel Ownership Test

The ownership of a pixel is established by testing the GID of the current window
againgt the GID of afragment's destination in the GID buffer. If the test passes, then
awrite can take place, otherwise the write is discarded. The sense of the test can be
set to one of : always pass, alwaysfail, passif equal, or passif not equal. Pass if
equal isthe norma mode. In GLINT the GID planes, if present, are 4 bits deep
allowing 16 possible Graphic ID's. The current GID is established by setting the
Window register.

If the unit is disabled fragments pass through undisturbed.
Register
Pixel ownership is controlled by the Window register:

24 16 8 0

reserved FrameCount GID

/

LB Update Foree
Source LB Update

Depth FCP giencil FCP Compare Mode

Override
Write Filtering

Unit Enable

Figure5.36 Window Register

The CompareMode field will generally be set to 'Pass if Equal’ for GID testing, with
the current GID inthe appropriate field.

The Forcel. BUpdate bit is used to alow all the fields in the local buffer to be updated
simultaneously, Forcel. BUpdate overrides al GID, stencil and Depth testing.

DepthFCP and Stencil FCP bits are used to control the fast clearing of the stencil and
depth buffers. FrameCount is the frame counter value for current frame. Thisis
described in more detail in section 84.1.4.

LBUpdate source is used in conjunction with the Forcel. BUpdate bit to select
whether the source data comes from: the localbuffer, or values held in local registers
(Depth, Window, Stencil). The combination of LBUpdateSource being set to
LBSourceData, and the force LBUpdate bit being enabled is particularly useful

when copying awindow from one location on the screen to another. The
combination of LBUpdateSource being set to Registers and the force LBUpdate bit

3Dlabs

Proprietary and Confidential 133

Graphics Programming GLINT MX Programmer’s Reference Manual

being enabled is particularly useful for initializing the contents of the various
localbuffer fieldsin awindow.

Normally GLINT detects the case where the data to be written to the localbuffer is
the same as the data read from the localbuffer, and avoids performing the write.
Setting the OverrideWriteFiltering bit prevents these writes from being filtered out.
Thisis of value when the localbuffer read format is different from the localbuffer
write format since the comparison is done on the internal data format.

5.12.3 Pixel Ownership Example

Setting the Window register for normal 3D operations with GID testing but no fast
clear planes:

/] Set W ndow nodes.

ndow. Uni t Enabl e = GLI NT_ENABLE

ndow. G D = as appropriate

ndow. Conpar eMode = GLI NT_PASS | F_EQUAL

ndow. LBUpdat e = GLI NT_NO_FORCE

ndow. FCS = don't care

ndow. St enci | FCP = GLI NT_DI SABLE

ndow. Dept hFCP = GLI NT_DI SABLE

ndow. OverrideWiteFiltering = GLI NT_DI SABLE
W ndow(wi ndow)

£ £ssszs:2s

/! Note: Wndow base in franebuffer and | ocal buffer
/1 may need updati ng.

134 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.13

5131

Stencil Test Unit

The stencil test conditionally rejects fragments based on the outcome of a
comparison between the value in the stencil buffer and areference value. The
stencil buffer is updated according to the current stencil update mode which depends
on the result of the stencil test and the depth test.

Stencil Test

Thistest only occursif al the preceding tests (bitmask, scissor, stipple, apha, pixel
ownership) have passed. The stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test between the reference stencil
value and the value held in the stencil buffer. If the test isLESS and the result is true
then the fragment value is less than the source value. The stencil operation controls
the updating of the stencil buffer, and is dependent on the result of the stencil and
depth tests.

The table below shows the stencil functions available:

e Comparison Function Mode Comparison Function

Never 4 Greater

Less 5 Not Equal

Equa 6 Greater or Equal

OOI\)HOS_

Less or Equd 7 Always

Table5.19 Sencil Functions

If the stencil test is enabled then the stencil buffer will be updated depending on the

outcome of both the stencil and the depth tests (if the depth test is disabled the depth
result is set to pass). Refer to the tables below and the definition of the StencilMode
register in section 85.13.2 to fully understand their relationship.

Stencil Test
Pass Fail
Depth Test Pass dppass sfail
Fail dpfail Sfail

Table5.20 Possible Update Operationsfor Stencil Planes

3Dlabs

Proprietary and Confidential 135

Graphics Programming

GLINT MX Programmer’s Reference Manual

The entries dppass, dpfail and sfail are set to one of the update operations below.
Source stencil isthe value in the stencil buffer:

Update Method Mode | Stencil Vaue

Keep 0 Source stencil

Zero 1 0

Replace 2 Reference stencil

Increment 3 Clamp (Source stencil + 1) to 2stencl width . 1
Decrement 4 Clamp (Source stencil -1) to O

Invert 5 ~Source stencil

Table5.21 Stencil Operations

In addition a comparison bit mask is supplied in the StencilData register. Thisis
used to establish which bits of the source and reference value are used in the stencil
function test. It should normally be set to exclude the top four bits when the stencil
width has been set to 4 bitsin the StencilMode register.

The source stencil value can be from a number of places as controlled by afield in
the StencilMode register:

Stencil Source Mode | Use

Test logic 0 | Thisisthe norma mode.

Stencil register 1 | Thisisused, for instance, in the OpenGL draw pixels
function where the host supplies the stencil valuesin the
Stencil register.
Thisis used when a constant stencil value is needed, for
example, when clearing the stencil buffer when fast clear
planes are not available.

Source stencil value 2 | Thisisused, for instance, in the OpenGL copy pixels

read from the function when the stencil planes in the destination are not

localbuffer to be updated. The stencil datawill come either from the
localbuffer data, or the FCStencil register, depending on
whether fast clear operations are enabled.

LBSourceData: 3 | Thisisused, for instance, in the OpenGL copy pixels

(stencil value read function when the stencil planes are to be copied to the

from the degtination. The source is offset from the destination by

localbuffer) the value in LBSourceOffset register.

Tables.22 Stencil Sources

See The OpenGL Reference Manual and The OpenGL Programming Guide from
Addison-Wed ey for more details of the stencil operations and examples of its use.

136

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.13.2 Registers
Stencil test is controlled by the StencilM ode register:

31 24 16 8 0
reserved dal | dpfal | dppass
Stencil Width UpdateMethod ;¢
Stencil Source Unsigned Compare Enable
Function

Figure5.37 StencilMode Register

The StencilData register holds the other data associated with the test.

31| T |24 T T T T T T |16 T T T T T T T 8 T T T T T T T o

FCStencil stencil write mask compare mask reference stencil

Figure5.38 StencilData Register.

The stencil writemask is used to control which stencil planes are updated as a result
of thetest. The FCStencil field holds the stencil fast clear value.

The Stencil register holds an externally sourced stencil value. It is a 32bit register of
which only the least significant 8 bits are used. The unused most significant bits
should be set to zero.

The stencil unit must be enabled to update the stencil buffer. If it is disabled then the
stencil buffer will only be updated if ForceL BUpdate is set in the Window register.

5.13.3 Stencil Example

This example sets the stencil unit to use a supplied reference value (0x80) and to test
fragments to be LESS than thisvalue. It aso sets the stencil planes update function
to be Increment if the test passes and the depth test passes (or is not enabled),
otherwise it sets the update function to Keep.

/! Set the local buffer read and wite npdes
/! See section 85.11

/! Set the stencil nodes

st enci | Mode. Uni t Enabl e = GLI NT_ENABLE

st enci | Mode. DPPass GLI NT_STENCI L_METHOD_| NCREMVENT
stenci | Mbde. DPFai | GLI NT_STENCI L_METHOD_KEEP
stenci | Mode. SFai | = GLI NT_STENCI L_METHOD_KEEP

st enci | Mode. Conpar eFuncti on = GLI NT_STENCI L_COVPARE_LESS
stenci | Mode. Stenci | Source = GLI NT_SOURCE _TEST _LOd C

3Dlabs Proprietary and Confidential 137

Graphics Programming GLINT MX Programmer’s Reference Manual

stencil Mode. Wdth = as appropriate
St enci | Mode(st enci | Mode)

/] Set the reference stencil value and set the
/1 conpare and witemasks to OxFF

stenci | Dat a. Ref erenceStencil = 0x80

st enci | Dat a. Conpar eMask = OxFF

stencil Data. Stenci |l WiteMask = as appropriate for
wi dth of Stencil buffer

stenci |l Data. FCStencil = don't care

St enci | Dat a(st enci | Dat a)
/1 Enable the depth test here if required, if not

/! enabled the result of the depth test is set to
/] pass.

138 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.14

5.14.1

Depth Test Unit

The depth (Z) test, if enabled, compares afragment's depth against the
corresponding depth in the depth buffer. The result of the depth test can effect the
updating of the stencil buffer if stencil testing is enabled.

Depth Test

Thistest isonly performed if al the preceding tests (bitmask, scissor, stipple, apha,
pixel ownership, stencil) have passed. The comparison tests available are:

e Comparison Function Mode Comparison Function

Never 4 Greater

Less 5 Not Equal

Equa 6 Greater Than or Equal

OOI\JI—‘OS_

Less Than or Equal 7 Always

Table5.23 Depth Comparison Modes.

The test compares the fragment's depth against a source depth value. If the compare
function is LESS and the result is true then the fragment value is less than the source
value. The source value can be obtained from a number of places as controlled by a
field in the DepthMode register.

Source Use

DDA (see below) Thisisused for normal Depth buffered 3D rendering.

Depth register Thisisused, for instance, in the OpenGL draw pixels function

where the host supplies the depth values through the Depth
register.

Alternatively thisis used when a constant depth value is
needed, for example, when clearing the depth buffer (when
fast clear planes are not available) or 2D rendering where the
depth is held constant.

LBSourceData: Thisis used, for instance, in the OpenGL copy pixels function
Source depth value | when the depth planes are to be copied to the destination.
from the localbuffer

Source Depth Thisis used, for instance, in the OpenGL copy pixels function

when the depth planes in the destination are not updated. The
depth data will come either from the localbuffer or the
FCDepth register depending the state of the Fast Clear modes
In operation.

Table5.24 Depth Sources.

3Dlabs

Proprietary and Confidential 139

Graphics Programming GLINT MX Programmer’s Reference Manual

When using the depth DDA for normal depth buffered rendering operations the
depth values required are similar to those required for the color values in the color

DDA unit:
Zstart =Start Z Vaue
dzdYyDom = Increment adong dominant edge.
dzdX = Increment along the scan line.

The dzdX valueis not required for Z-buffered lines.

dZdyDom —
. Subordinate Edges

D ominant Edge

\
ZStart
Figure5.39 Depth Interpolation

The number format for the increment valuesis 2's complement fixed point integer:

32 bitsinteger and 16 bits fraction. All the start, derivative and internal dataisin this
format. Thisis mapped into the Upper and Lower registers (U and L) as shown
below:

32 bits Integer 16 bitsfraction ;| remaining bits0

U L

Figure5.40 Depth Derivative Format.

The depth unit must be enabled to update the depth buffer. If it is disabled then the
depth buffer will only be updated if ForceL BUpdate is set in the Window register.

140 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

5.14.2 Registers

Operation of the Depth unit is controlled by the DepthM ode register:

31 24 16

cmp
mode

———

Compare mode New depth source
0 = Never 0=DDA
l1=Less 1=LBData
2 = Equals 2 = Depth register
3=Less Equal 3 =LBSourceData Unit Enable
4 = Greater 0= Disable
5= Not Equal 1 = Enable
? fflreater Equal Write Mask
— AIWYS 0 = no write
1=write

Figure5.41 DepthMode Register.

The single bit writemask is used to control updating al the bitsin the depth buffer.
The FastClearDepth register holds the 32 bit fast clear depth (FCDepth) value.

The Depth register holds an externally sourced 32 bit depth value. If the depth buffer
holds less than 32bits then the user supplied depth value isright justified to the least
significant end of the register. The unused most significant bits should be set to zero.

The DDA and other registers are shown below (note the increment values are split

into two registers):

Register Description

ZStartU Depth start value

ZStartL

dZdxU Depth derivative per unit X

dzdxL

dZdyDomU Depth derivative per unit Y, dominant edge, or
along aline.

dzdyDomL

Table5.25 Depth Interpolation Registers.

3Dlabs Proprietary and Confidential 141

Graphics Programming GLINT MX Programmer’s Reference Manual

5.14.3 Depth Example
Rendering a Gouraud shaded depth buffered trapezoid.

/! Set the |local buffer read and wite npdes
/!l See section 85.11

/1 Set the depth npde

dept hMode. Uni t Enabl e = GLI NT_ENABLE

dept hMode. WiteMask = 1

dept hvbde. NewDept hSour ce = GLI NT_NEW DEPTH_SOURCE_DDA
dept hMbde. Conpar eMbde = GLI NT_DEPTH_COVPARE_MODE_LESS
Dept hMbde(dept hivbde)

/! Load the depth start values and deltas for
/! dom nant edge and the body of the trapezoid

ZStart U() /'l Load upper and | ower start val ues
ZStartL()

dzdxU() /1 Load upper and | ower dzdX deltas

dZdxL()

dzdyDomJ() /1 Load upper and | ower dom nant edge deltas
dZdyDonl()

/! Enable unit in Gouraud shadi ng node

col or DDAMode. Uni t Enabl e = GLI NT_ENABLE

col or DDAMbde. Shade = GLI NT_GOURAUD_SHADE_MODE
Col or DDAMode(col or DDAMbde)

/! Load the color start values and deltas for
/! dom nant edge and the body of the trapezoid

Rstart () /]l Set-up the red conponent start val ue

dRdX() /1 Set-up the red conponent increments
dRdYDon()

Gstart() /1l Set-up the green conponent start val ue
dGdX() /1 Set-up the green conponent increments
dGdYDom()

Bstart () /1 Set-up the blue conmponent start val ue
dBdX() /! Set-up the blue conmponent increnents
dBYDom()

/!l Render primtive

142 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.15

5.15.1

Framebuffer Read/Write Unit

Before rendering can take place GLINT must be configured to perform the correct
framebuffer read and write operations. Framebuffer read and write modes affect the
operation of alpha blending, logic ops, writemasks, image upl oad/download
operations and the updating of pixelsin the framebuffer.

The framebuffer read and write units are set up in different ways depending on
whether Span Operations are being used. Normally, span operations are used for 2D
rendering in order to maximize memory bandwidth. Span operations allow multiple
pixelsto be read and processed in parallel. The following sections discuss the use of
the framebuffer read and write units for both standard operation and span operations.

Standard Framebuffer Read Operation

The FBReadMode register allows GLINT to be configured to make 0, 1 or 2 reads
of the framebuffer. The following are the most common modes of access to the
framebuffer:

» Rendering operations with no logical operations, software writemasking or apha
blending. In this case no read of the framebuffer is required and framebuffer
writes should be enabled.

» Rendering operations which use logical ops, software writemasks or apha
blending. In these cases the destination pixel must be read from the framebuffer
and framebuffer writes must be enabled.

» Here set-up varies depending what functionality is required. If apha blending,
logic ops or software writemasks are used the framebuffer isread twicei.e. both
the source and the destination. When alpha blending and logic ops are not
needed, and hardware writemasks are used (or when the software writemask
allows updating of al bitsin apixel) only oneread is required.

* Image upload. Thisrequires reading of the destination framebuffer pixelsto be
enabled and framebuffer writes to be disabled.

» Image download. This case requires no framebuffer reads (aslong as software
writemasking, apha blending and logic ops are disabled) but writes must be
enabled.

Note that avoiding unnecessary additional reads will enhance performance.

The data read from the framebuffer may be tagged either FBDefault (data which
may be written back into the framebuffer or used in some manner to modify the
fragment color) or FBColor (data which will be uploaded to the host). Table 5.26

Framebuffer Read/Write Modes summarizes the framebuffer read/write
control for common rendering operations:

3Dlabs

Proprietary and Confidential 143

Graphics Programming GLINT MX Programmer’s Reference Manual

ReadSourc | ReadDestination | Writes | Read Data Rendering Operation
e Type
Disabled Disabled Enabled - Rendering with no logical operations,
software writemasks or blending.
Disabled Disabled Enabled - Image download.
Disabled Enabled Disable | FBColor |Image upload.
d
Enabled Disabled Enabled | FBDefault | Image copy with hardware writemasks
and no alpha blending orlogical
operations
Disabled Enabled Enabled | FBDefault | Rendering using logical operations,
software writemasks or blending.
Enabled Enabled Enabled | FBDefault | Image copy with software writemasks,
alphablending or logic ops.
Table5.26 Framebuffer Read/Write Modes
5.15.2 Framebuffer Read Span Operations

Asweéll as performing standard, single pixel at atime, read operations the
framebuffer read unit can be used to process span operations. The ssimplest type of
operation is where a span mask is presented to the read unit and the ReadSource bit
isenabled. Thiswill cause the unit to read a compl ete span of pixels from the
framebuffer in a packed format. The datais always read as a set of 32 bit words. For
example, at 8 bits per pixel, up to eight 32 bit words will be read per span; at 16 bits
per pixel up to sixteen 32 bit words will be read. In all cases, up to 32 pixels worth
of dataisread per span. This allows maximum use of both memory and core
bandwidth since multiple pixels are being processed.

Since a span mask may not necessarily have all its bits set to 1 (i.e. only a subset of
pixelsin the span need to be processed), it would be wasteful of memory bandwidth
to always read the complete span. For example, at the right hand edge of arectangle
which is being copied, we want the read unit to only read up to the rightmost pixel
but not beyond. Whether a 32 bit word is read depends on the corresponding bit
valuesin the span mask. Since each bit in the mask represents apixel, either 1, 2 or

4 bitswill represent a 32 bit word for the depths 32, 16 and 8 bits respectively. If the
group of bits representing a 32 bit word is non-zero then the corresponding 32 bits
will be read from the framebuffer. Thus:

e at 32 hits per pixel, asingle bit in the span mask correspondsto 32 bitsin the
framebuffer and 32 bit words will be read only at those locations where the
corresponding bit in the span mask isa 1.

» at 16 bits per pixel, 2 bitsin the span mask represent 32 bits in the framebuffer. A
32 bit word will be read only at those |ocations where the corresponding 2 span
bits form a non-zero value.

144

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.15.3

5.154

» at 8 bits per pixel, a 32 bit word will be read only at those locations where the
corresponding 4 span bits form a non-zero value.

The number of 32bit words read from the framebuffer is thus afunction of the span
mask and the number of bits per pixel, though thisis not normally of interest to the
programmer. However, the number of 32bit words becomes important for span
operations where the data is downloaded from the host. For example, an image
download operation using a span operation only requires those 32 bit words which
contain required pixel datato be downloaded. Some examples of this are given later.

Merge-copy Span Operations

To understand the way in which the read units works we will examine the way in
which a span operation with alogic op works. In particular we consider the case
where both ReadSource and ReadDestination bits are set in the FBReadM ode
register. For example, this would be the case when copying data within the
framebuffer with an xor logic op.

To perform this operation, the framebuffer read unit must read both a source span of
data and a destination span of data. These spans must then be merged so that the data
presented to the logic op unit consists of source and destination pairs. Since the logic
op unit can combine up to 32 bits a atime, the data can be presented in the form of
packed 32 bit words (at 8 bits per pixel this means that the logic op unit can work on
4 pixelsat atime).

It would be wasteful of memory bandwidth to read 32 bits from the source followed
by 32 bits from the destination. This would result in too many VRAM page breaks.
So the read unit reads a complete source span and storesiit internally in adata area
known as the Pattern RAM. Then the destination span is read. As the destination
gpanisread, it is merged with the saved source span data so that the data which the
logical op unit sees comprises corresponding sections of source and destination data.
The logic op unit can then combine this data and present a series of 32 bit resultsto
the framebuffer write unit.

The Pattern RAM is so named because it can be used for pattern filling operations as
well as atemporary store for source pixel data. This functionality is described
below.

PatternRamM ode register

To control the operation of the Pattern RAM the GLINT MX introduces a new
register called the PatternRamMode. This register controls whether the Pattern RAM
is enabled and how to interpret the contents. Its layout is described below.

The PatternEnable bit is used in conjunction with the ReadSource and
ReadDestination bits from the FBReadM ode register to specify different operations.
The following table indicates the different operations that can be specified using
these 3 mode bits.

3Dlabs

Proprietary and Confidential 145

Graphics Programming

GLINT MX Programmer’s Reference Manual

PatternRam
Enable

ReadSourc
e Enable

ReadDestination

Enable

Operation

0

0

0

No span reads are done, nor is data sourced from
the pattern ram. Thisis the optimal mode for
spanfills with constant color. If a span fill with
variable color is required then the host must
supply the data by writing to the Color, FBData,
or FBSourceData registers.

Used for image upload or destination only logical
ops. The pattern RAM will be overwritten and
left containing indeterminate data by this
operation.

Used for astraight blt operation, or source only
logical op. The pattern RAM will be overwritten
and left containing indeterminate data by this
operation.

Span reads of source and destination regions for a
ROP2 blt operation. The source span isread first
and saved in the pattern ram. The destination
gpan isthen read and the data interleaved with
data from the pattern ram while sending it to the
logical op unit.

No span reads but the data is sourced from the
pattern ram for latter use in a span write with
variable color.

Span read but the data does not go into the
pattern ram. The destination span dataiis
interleaved with data from the pattern ram while
sending to the logical op unit. The contents of the
pattern ram are left intact so this can be reused
without having to load the pattern in again.

The source span isread and saved in the pattern
ram. No datais sent to the logical op unit, so this
mode can be used to load the pattern ram from
the framebuffer for later use as pattern data.
Writes would normally be disabled, however if
the write mode is set up for variable color then
nothing will be drawn, as no color datais
provided. A write with constant color will
however go ahead if enabled.

5.15.5 Framebuffer Address Calculations

Table5.27

PatternRamM ode

For both the read and the write operations, an offset is added to the calculated
address. The source offset (FBSourceOffset) is used for copy operations. The pixel

146

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

offset (FBPixel Offset) can be used to allow multi-buffer updates. The offsets should
be set to zero for normal rendering. The address cal culation implements the
following equations:
Bottom left origin

Dest addr = FBWndowBase - Y/S * W+ X + FBPi xel O f set

Srce addr = FBWndowBase - Y/S * W+ X + FBPi xel O fset +

FBSour ceX f set
Top left origin
Dest addr = FBW ndowBase + Y/S * W+ X + FBPi xel O f set
Srce addr = FBWndowBase + Y/S * W+ X + FBPi xel O fset +
FBSour ceX f set
where;
Dest addr is the address in the framebuffer which iswritten to if
writes are enabled, and is also the address read when
ReadDestination is enabled.
Srce addr is the address in the framebuffer which is read from when
ReadSource is enabled.
X isthe pixel's X coordinate,
Y isthe pixel's Y coordinate,
S isthe scanline interval for multi-GLINT systems
FBW ndowBase holds the base address in the framebuffer of the current
window.

FBPi xel O f set isnormally zero except when multi-buffer writes are
needed! when it gives away to access pixelsin aternative
buffers without changing the FBWindowBase register.
Thisis useful asthe window system may be
asynchronously changing the window's position on the
screen. It isheld in the FBPixel Offset register.

FBSour ceOf fset isnormally zero except during a copy operation where
datais read from one address and written to another
address. The FBSourceOffset is held in the
FBSourceOffset register and is the offset from destination
to source.

10penGL, for example, allows any combination of the Front, Back, L eft and Right color buffers to be updated
'simultaneously’. In this case a scene would be rendered multiple times changing the FBPixel Offset as
appropriate. When using this mode it isimportant to ensure that the buffers which affect the rendering are
updated only once, for example, when rendering with depth buffering enabled, localbuffer writes should only
be enabled for the last buffer updated.

3Dlabs Proprietary and Confidential 147

Graphics Programming GLINT MX Programmer’s Reference Manual

W is the screen width. Only a subset of widths are supported
and these are encoded into the PPO, PP1 and PP2 fieldsin
the FBReadM ode register. See the table in Appendix C
for more details.

The address calculations for span operations are the same as those for non-span
operations.

5.15.6 Standard Framebuffer Write

Framebuffer writes must be enabled to alow the framebuffer to be updated. A single
1 bit flag controls this operation.

The framebuffer write unit is aso used to control the operation of fast block fills, if
supported by the framebuffer.

When uploading images the UpL oadData bit can be set to allow color formatting
(which takes place in the Alpha Blend unit). See sections 85.3.8 and 85.16.3 for
more details.

5.15.7 Span Operations and Framebuffer Write

If the SpanOperation bit in the Render command is zero then the write unit will use
the span mask as a block fill mask and will fill the 32 pixel span with the current
block color. If the SpanOperation bit is set to indicate variable color span filling,
then either the FBReadMode register must be set to alow datato be read from the
framebuffer or pattern RAM, or the host must provide the data (i.e. the
SyncOnHostData bit in the Render command must be set). Failure to meet these
conditions will NOT hang the chip but will lead to indeterminate results.

For block fills, thefill sizeis aways 32 pixels regardless of the pixel depth or the
type of the memory fitted (for the GLINT 500TX the block size depends on the
memory configuration). The block fill color is 64 bits wide. This can be specified
using the FBBlockColor register in which case this 32 bit value is replicated by the
write unit to form 64 bits. Or the 64 bits can be explicitly specified using the
FBBIlockColorL (lower 32 bits) and FBBlockColorU (upper 32 bits) registers. At 8
and 16 bits per pixel depthsit is up to the host software to replicate the block color
to fill al 32 bits.

As with the standard mode of operation, in order to write data the WriteEnable bit
must be set the FBWriteM ode register.

To upload span data the UpL oadData bit should be set and the WriteEnable bit
should be cleared. This allows image uploads data to be delivered to the host in a
packed form. i.e. at a pixel depth of 8 bits, 4 pixels per 32 bit word can be read back
from the output FIFO; at a depth of 16 bits, 2 pixels per 32 bit word can be read
back.

148 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

5.15.8

Using the Pattern RAM

As we have seen the pattern RAM can be used as an areain which the GLINT MX
temporarily stores data read back from the framebuffer. It can also be used explicitly
by the host software to perform pattern fills.

The Pattern RAM contains 128 bytes of storage arranged as 32 x 32 bit registers.
Thisisenough to store afull span of data at a depth of 32 bits per pixd. Itisalso
enough space to contain afull 8x8 pattern at both 8 and 16 bits per pixel. At adepth
of 32 hits per pixel, half am 8x8 pattern can be stored. It is then possible to pattern
fill aregion intwo passes. Thisdatais stored in the same packed format as span
data. The PatternRamMode register contains three fields, Xmask, Y shift and Y mask
which allow the format of this data to be specified when the PatternEnable bit is set.

The start position in the pattern ram where a spans worth of pattern datais read from
isinitially determined from the Y coordinate associated with the span mask. The
start addressis given by:

Yoffset = (Y << Yshift) & Ymask

where Y shift and Y mask are in the PatternRamMode register. Only the least
significant 5 bits of the Y address are of interest.

The X offset issimilarly given:
Xof fset = of f set

where the offset is the bit, pair or nibble offset for 32, 16 and 8 bit pixels
respectively. The pattern ram address is then:

pattern ram addr = Yoffset + Xoffset

& Xmask

For an 8x8 hit pattern the values of the X and Y shift and masks are as follows:

Pixel
size

Y shift | Y mask X mask Notes

8 1 OxOF 0x01 Pattern fills lower half of the

pattern ram

16 Ox1f 0x03 Pattern fills all of ram.

2
32 2 0x18

0x07 Pattern ram contains even

rows of pattern first and then
odd rows on second pass.

Table5.28 Pattern RAM shift and mask values

The Y shift and mask values can be set up for different pattern sizes other than the
8x8 outlined here. The pattern must have awidth of 2, 4, 8, 16 or 32, but can have
any height. Alsoinamulti GLINT system there can be one pattern common to all
GLINTsor the pattern can be divided up so each GLINT only gets the parts of the
pattern it needs for its scanlines.

This pattern filling technique has an advantage over the aternative method of using
the texture unit, in that 2 or 4 pixels are processed at atime whereas using the

3Dlabs

Proprietary and Confidential 149

Graphics Programming GLINT MX Programmer’s Reference Manual

texture method only one pixel a atimeis dealt with. The pattern RAM can be used
to supply constant color by setting the PatternRamM ode register to Ox1 (i.e. the shift
and mask are both set to zero), and then loading the color into the Pattern RAM at
offset 0. At Pixel depths of 8bpp and 16bpp, the color needs to be replicated to fill
all 32bits.

Thisis useful when performing logical ops where the sourceisasolid color, asit
allows all the benefits of span processing to be achieved.

Note that the pattern is always aligned to the start of a span. This has two
consequences:

* If the pattern needs to be aligned relative to some other reference point, then the
pattern must be rotated (in X and Y) to give the correct alignment. For example if
the pattern is relative to the window origin, and a small rectangle inside the
window isto befilled to repair the window background pattern, then the pattern
must be rotated.

» Filling trapezoidal areas (as opposed to rectangular areas) will cause the pattern to
be sheared. In this case the only alternative isto use the texture unit.

5.15.9 Frame Blank Synchronization

The SuspendUnitFrameBlank command register may be used to stall the GLINT
pipeline until the next frameblank. For double buffering, it is beneficial to
synchronize to the monitor blanking. By using this register, full screen double
buffering can be controlled through the pipeline and the host does not need to wait
for vertical frame blank itself. Instead, once the SuspendUntilFrameBlank
command register has been loaded, the host can continue to load GLINT registers
and issue commands. GLINT will continue processing these as long as they do not
involve writing to the framebuffer.

The SyncMode data field determines how the buffer swap isto be controlled.
Options are:

wait for vertical frame blank and update external video register
update external video register immediately

wait for vertical frame blank then update the VTGFrameRowAddr register
immediately.

Note:This command register cannot be used in amulti-GLINT system.
5.15.10 Stretched Copies

By utilising the texture units GLINT MX can do stretch bltsin Video Memory.
Unlike a standard framebuffer copy, the coordinates for the source datain the blt
come from the Texture Address Unit. Using special mode switches in FBReadMode
and TextureReadMode, a stretched bit can be achieved. Thisinvolves no host
interaction and istherefore very fast. The restrictions are:

The stretch can only be done in the framebuffer, not the local buffer.

150 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

No filtering isavailable. The stretch is done by pixel replication.
Span Operations are not available.

Two different modes of operation are available during stretching —‘ Coordinate’ and
‘Index’. In‘Coordinate’ mode the coordinates for the source of the copy are taken
as being rectangular; i.e. they are acombination of aY and an X offset into the
rectangular frame buffer. In‘Index’ mode the coordinateis ssimply alinear offset
from the start of the source. For genera framebuffer stretch copies, * Coordinate’
mode is more common. Current DirectX driversfor GLINT MX make use of
‘Coordinate’ mode to enable zoomed video playback.

To setup a stretched copy operation, the following steps are required:

Set the FBSourceAddress function in TextureReadMode to ‘ Coordinate’ or ‘ Index’.
These optionstell the Texture Read Unit to generate coordinates for the current
location in the source region.

Set the SourceAddress Function in FBReadMode to ‘ Coordinate’ or ‘Index’. These
options tell the Framebuffer Read Unit to take the source pixel addresses from
values passed by the Texture Read Unit.

Disable TextureColorMode and TextureFormat — they are not needed.

Calculate the scaling factor to get back to the source rectangle from the destination
rectangle. This scaling factor is effectively the increment in the texture coordinates
on the source, for each pixel step along the destination. The scaling factor and the
texture coordinates need to be setup correctly for the internal conversion from
texture coordinates to pixel coordinates. The conversion inside the texture unitsis
based upon the texture size that is setup in the TextureReadMode register.

Setup the destination rectangle in 2D coordinate space and the source rectangle in
2D texture space.

Setting up the correct texture coordinates for the source rectangle isimportant. First
choose a large enough texture map size to cover the region you want to copy.
Loading of the Sand T values will depend on the size you choose. For a 2048 texel
x 2048 texd texture map the integer portion of the texture coordinate should be
scaled to be in the top 11 bits of the texture registers (2048 = 2™, with the fractional
part in the remainig 21 bits of the register.

For an example of a stretched copy, see secion 5.15.16

3Dlabs Proprietary and Confidential 151

Graphics Programming GLINT MX Programmer’s Reference Manual

5.15.11 Registers
The FBReadMode register layout is as follows:

31 . 4 16 8 _ 0
PP3 Reserved not used PP2 | PP1 | PPO
T~
) Partial product
Scanline Interval Data Type selection
0=1 0 = Default
% = 121 1=FBColour ReadSource enable
3-8 Window Origin 0= no read
. 0=Top Left 1=do read
So_urce Address Function 1 = Bottom Left - ReadDestination enable
0 = Constant 0 = no read
1=Index 1 = do read
2 = Coordinate

Figure5.42 FBReadMode Register

See the chapter on Hardware Data Structures for more details of GID, Window
Origin, and Partial Products.

The layout of the PatternRamM ode register is as follows:

31 23 16 8 0
Xmask Y shift Y mask

PatternEnable
0 = Disable
1 = Enable

Figure5.43 PatternRamMode Register

152 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

FBWindowBase holds the base address of the window in the framebuffer in 24 bit
unsigned format. The FBPixel Offset and FBSourceOffset registers hold 24 bit 2's
complement offsets used in copy operations and multi-buffer updates, as described
above.

The FBWriteM ode controls the framebuffer write operations:

31

24 16 8 0

Resarved

5.15.12

UpL oadData reserved

0 = Disebled \n/vite Enable
1=Enabled § _ \\rites dissbled
1 = Writes ensabled

Figure5.44 FBWriteMode Register

Simple Image Copy Example

This example copies arectangular region of the framebuffer, without moving any

datain the localbuffer. Pixel ownership tests are enabled. The region extends from
the origin (0,0) to (100,100) and will be shifted right by 200 pixels. The destination
rectangle is scan converted.

/1l First set-up the framebuffer read node
f bReadMode. ReadSource = GLI NT_ENABLE

f bReadMode. ReadDesti nati on = GLI NT_DI SABLE
f bReadMode. Dat aType = GLI NT_FBDEFAULT

FBReadMbde(f bReadMode) /1 Update register

/1 Now enable franebuffer wite
fbWiteMde. WiteEnabl e = GLI NT_ENABLE
FBW it eMode(f bW iteMde) /1 Update register

/] OFfsets. No Pixel offset, source offset of 200
FBPi xel O f set (0x0)
FBSour ceOr f set (- 200)

/! The I ocal buffer unit should be enabled to all ow
/1 ADtesting.

| bReadMbde. ReadSour ce = GLI NT_DI SABLE

| bReadMbde. ReadDest i nati on = GLI NT_ENABLE

| bReadMVbde. Dat aType = GLI NT_LBDEFAULT

| bReadMbde. WndowOrigin = as appropriate
LBReadMbde(| br eadnode)

3Dlabs

Proprietary and Confidential 153

Graphics Programming GLINT MX Programmer’s Reference Manual

/! Disable |ocal buffer wites
| bWiteMde. WiteEnabl e = GLI NT_DI SABLE
LBW it eMode(l bW it eMbde) /1 Update register

/! Enable G D testing.

i ndow. Uni t Enabl e = GLI NT_TRUE

ndow. Conpar eMbde = GLI NT_G D_COVPARE _EQUAL
ndow. For ceLBUpdat e = GLI NT_FALSE

ndow. LBUpdate = don't care

ndow. St enci | FCP = GLI NT_DI SABLE

ndow. Dept hFCP = GLI NT_DI SABLE

W ndow(wi ndow)

£sssst

/1 Al the units which could renove the fragnent

/1 must be disabled (Stipple, Al pha, Stencil, Depth)
/1 except the Scissor test which is still needed for
/1l screen and possibly wi ndow cli ppi ng.

/[l 1f software writemasks are to be used then they
[/l are set appropriately, and the franebuffer set up
/!l to do extra read operation

/! Disable the color DDA unit, we do not want to
/1 associate a color with this fragment.

col or DDAMode. Uni t Enabl e = GLI NT_FALSE

Col or DDAMode(col or DDAMbde)

/!l Define the region we wish to copy to.
St ar t XDom(200<<16)

St art XSub(300<<16)

dXSub(0)

dXDom(0)

Start Y(0)

dY(1<<16)

Count (100)

render.PrimtiveType = GLI NT_TRAPEZO D

Render (r ender) /[l Start the rasterization

154 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.15.13 Span Operation Image Copy Example

This example copies arectangular region of the framebuffer, using a span fill
operation with an xor logic op. The region extends from the origin (0,0) to (100,100)
and will be shifted right by 200 pixels. The destination rectangle is scan converted.

Note that thisis almost identical to how one would copy pixels using the standard
rasterization method. The PatternRamMode is explicitly disabled and the Render
command specifies that variable color span filling isto be used. This code will
perform an optimal copy at al pixel depths. Also, note that to turn this back into a
simple screen-to-screen blt, the ReadDestination bit would be cleared and the logic
op unit would be disabled.

/[l First set-up the framebuffer read node
f bReadMode. ReadSource = GLI NT_ENABLE
f bReadMode. ReadDesti nati on = GLI NT_ENABLE
f bReadMode. Dat aType = GLI NT_FBDEFAULT

FBReadMbde(f bReadMbde) /1 Update register

/1 Now enable franebuffer wite
fbWiteMde. WiteEnabl e = GLI NT_ENABLE
FBW i t eMode(f bW it eMode) /1 Update register

/1 Enable the logic op unit

| ogi cop. Uni t Enabl e = GLI NT_TRUE
| ogi cop. LogicOp = XOR

Logi cOpMode(| ogi cop)

/1 Disable the Pattern RAM regi ster
pat Ranivbde. Pat t ernEnabl e = GLI NT_DI SABLE
Pat t er nRaniVvbde(pat Ranmvbde) /! Update register

/] Ofsets. No Pixel offset, source offset of 200
FBPi xel O f set (0x0)
FBSour ceOr f set (- 200)

/!l Define the region we wish to copy to.
St ar t XDom(200<<16)

St art XSub(300<<16)

dXSub(0)

dXDom(0)

Start Y(0)

dY(1<<16)

Count (100)

render.PrinmitiveType
render. Fast Fi | | Enabl e
render. SpanQOper ati on

GLI NT_TRAPEZO D
1 // use span operation
1 // variable color

Render (r ender) [/l Start the rasterization

3Dlabs Proprietary and Confidential 155

Graphics Programming GLINT MX Programmer’s Reference Manual

5.15.14 Span Operation Image Copy Example using Pattern RAM

This example assumes that the pixel depth has been set to 8 bits per pixel and uses
the pattern RAM to perform a pattern fill using an 8x8 pattern.

/1l First set-up the framebuffer read node
f bReadMode. ReadSource = GLI NT_DI SABLE

f bReadMode. ReadDesti nati on = GLI NT_DI SABLE
f bReadMode. Dat aType = GLI NT_FBDEFAULT

FBReadMbde(f bReadMode) /1 Update register

/1 Now enable franebuffer wite
fbWiteMde. WiteEnable = GLI NT_ENABLE
FBW it eMode(f bW iteMde) /1 Update register

/] OFfsets. No Pixel offset
FBPi xel O f set (0x0)

/! downl oad the data for the 8x8 pattern. Assune that //
the source data is contained in a byte array called

/1 Pat 8.

pat = Pat 8;

for (i =0; i < 8; i++4)

ul Val ue = pat[0] |
(pat[1] << 8) |
(pat[2] << 16) |
(pat[3] << 24]);
Pat t er nRanmDat a[i] (ul Val ue)
pat += 4,
}

/1 Enable the Pattern RAM regi ster for an 8x8 pattern
/1 of depth 8 bits per pixel.
pat Ramivbde. Pat t er nEnabl e = GLI NT_ENABLE

pat Ranivbde. Ymask = OxOF

pat Ramivbde. Yshift = 1

pat Ramivbde. Xmask =1

Pat t er nRamvbde(pat Ranivbde) /1 Update register

/1 Define the region we wish to copy to.
St art XDom(200<<16)

St art XSub(300<<16)

dXSub(0)

dXDom(0)

Start Y(0)

dY(1<<16)

Count (100)

156 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

render.PrinmitiveType
render. Fast Fi | | Enabl e
render. SpanQOper ati on

GLI NT_TRAPEZO D
1 // use span operation
1 // variable color

Render (r ender) /[l Start the rasterization
5.15.15 Span Operation Solid Fill Example

This example uses the pattern RAM to perform a solid color fill with logicop. The
code works for all 3 color depths. Note that if alogicop is not required we could
simply clear the ReadDestination bit and disable the logic op unit, but this would be
far slower than using a constant color span fill. To use a span fill we would load the
solid color into the FBBlockColor register, and clear the SpanOperation bit in the
Render command.

/1l First set up the framebuffer read node
f bReadMode. ReadSource = GLI NT_DI SABLE
f bReadMode. ReadDesti nati on = GLI NT_ENABLE
f bReadMode. Dat aType = GLI NT_FBDEFAULT

FBReadMbde(f bReadMbde) /1 Update register

/1 Now enable franebuffer wite
fbWiteMde. WiteEnabl e = GLI NT_ENABLE
FBW i t eMode(f bW it eMode) /1 Update register

/] OFfsets. No Pixel offset
FBPi xel O f set (0x0)

/1 Enable the logic op unit for xor
| ogi cop. Uni t Enabl e = GLI NT_TRUE

| ogi cop. Logi cOp = XOR

Logi cOpMode(| ogi cop)

/1 Enable the Pattern RAM regi ster for a solid color.
/1l i.e. Yshift and nmasks are set to zero.

pat Ramvbde = 1;

Pat t er nRamvbde(pat Ranivbde) /1 Update register

/1l replicate the color if necessary and |oad into
/1l entry zero of the Pattern RAM

ul Color = SolidColor; // start at 32 bit depth

if (Pixel Depth < 32)

ul Col or | = ul Col or << 16; /!l 16 bit depth
if (Pixel Depth < 16)
ulColor |=ulColor << 8; // 8 bit depth

}
Pat t er nRanDat aO(ul Col or)

3Dlabs Proprietary and Confidential 157

Graphics Programming GLINT MX Programmer’s Reference Manual

/1 Define the region we wish to wite to
St art XDom(200<<16)

St art XSub(300<<16)

dXSub(0)

dXDom(0)

Start Y(0)

dY(1<<16)

Count (100)

render.PrinmitiveType
render. Fast Fi | | Enabl e
render. SpanQOper ati on

GLI NT_TRAPEZO D
1 // use span operation
1 // variable color

Render (r ender) [/l Start the rasterization

5.15.16 Simple Stretched Copy Example

This example copies arectangular region of the framebuffer to different region with
stretching. The source region extends from the origin (0,0) to (100,100) and will be
shifted right by 200 pixels and stretched to double proportions. The fina
destination image will have coordinates from (200, 0) to (400, 200). The example
below assumes that unused units are disabled. Pixel sizeis assumed to be 8 bits.

/1l First calculate the scaling for the copy.

/1 This maps fromthe destination back to the

/! source (as the texture addresses are generated
/1 for the source rectangle).

f XScal e = SourceWdth / DestWdth
= 100 / 200 = 0.5
f YScal e = Sour ceHei ght / Dest Hei ght

100 / 200 = 0.5

/1 Setup the franmebuffer read node

f bReadMode. ReadSource = GLI NT_ENABLE

f bReadMode. ReadDesti nati on = GLI NT_DI SABLE

f bReadMode. Sour ceAddr ess = SOURCE_COORDI NATE
FBReadMbde(f bReadMbde) /1 Update register

/1 Now enable franebuffer wite
fbWiteMde. WiteEnabl e = GLI NT_ENABLE
FBW i t eMode(f bW it eMode) /1 Update register

/[l Ofsets.

/! FBSourceoffset is the offset in

/!l texels to the start of the source region from
/1 the beginning of franmebuffer nenory

/1l WndowBase is the offset in texels to the

[/l start of the destination region fromthe

/!l begi nning of framebuffer nenory

/1 For this exanple, we use rectangles to define
/1l the regions, so both offsets are at the origin

158

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

FBSour ceOF f set (0)
FBW ndowBase(0)

Text ur eFor mat (GLI NT_DI SABLE)
Text ur eCol or Mode(GLI NT_DI SABLE)

TexReadMode. Enabl e = GLI NT_ENABLE
TexReadMbde. Dept h log2(8) // 8 Bit Texels
TexReadMode. W dt h | 0g2(2048)

TexReadMode. Hei ght = 1 0g2(2048)

TexReadMode. MagFi | ter = NEAREST
TexReadMbde. M nFi | t er = NEAREST
TexReadMbde. Unm ap = CLAMP

TexReadMbde. Vw ap = CLAMP

TexReadMbde. Text ureType = 2D _TEXMAP
TexReadMbde. FBSour ceAddr ess = COORDI NATE_MODE
Text ur eReadMode(TexReadMode)

TexAddr esshbde. Enabl e = GLI NT_ENABLE
TexAddr essMbde. Swrap = CLAWP

TexAddr essMbde. Twrap = CLAMP

TexAddr esshbde. Operati on = 2D TEXMAP

Text ur eAddr essMbde(TexAddr esshMbde)

/! Source origin (0,0)
Sstart (0)

dSdx(f XScal e)

dSdyDom(0)

Tstart (0)
dTdx(0)
dTdyDon{ f YScal e)

/! Define the region we wish to render to.
St art XDom(200<<16)

St art XSub(400<<16)

dXSub(0)

dXDom(0)

Start Y(0)

dY(1<<16)

Count (200)

/] Define the

render.PrimtiveType = GLI NT_TRAPEZO D | GLI NT_TEXTURED

Render (r ender) [/l Start the rasterization

3Dlabs

Proprietary and Confidential

159

Graphics Programming GLINT MX Programmer’s Reference Manual

516 Alpha Blend Unit
Alpha blending combines a fragment's color with those of the corresponding pixel in
the framebuffer. Blending is supported in RGBA and BGRA modes only.
5.16.1 OpenGL AlphaBlending
The apha blend unit, combines the fragment's color value with that stored in the
framebuffer, using the blend equation:
Co=CsS+CyD
where: C, isthe output color, Csisthe source color (calculated internally) and Cyis
the destination color read from the framebuffer.
The source blending function, S, and the destination blending function, D, are
defined in the following tables. These tables assume a number range of 0.0 to 1.0.
Mode | Vdue R G B A
0 Zero 0 0 0 0
1 One 1 1 1 1
2 Destination Color R4 Gy By Aqg
3 One Minus Degtination Color | 1 - Ry 1-Gq 1-Byg 1-Aq
4 Source Alpha As As As As
5 One Minus Source Alpha’ 1-Ag 1-Aq 1-As 1-As
6 Destination Alpha Ag Aqg Ag Ag
7 One Minus Destination Alpha | 1 - Ag 1-Aqg 1-Aqg 1-Aq
8 Source Alpha Saturate min of min of min of 1
(As, 1-Ag) | (As,1-Ag) | (As, 1-Ag)
Table5.29 Source Blending Functions
Mode | Vaue R G B A
0 Zexo 0 0 0 0
1 One 1 1 1 1
2 Source Color Rs Gs Bs As
3 One Minus Source Color 1-Rs 1-Gg 1-Bg 1-Ag
4 Source Alpha As As As As
5 One Minus Source Alpha 1-Ag 1-Ag 1-As 1-As
6 Destination Alpha Ag Aqg Ag Ag
7 One Minus Destination Alpha | 1 - Aq 1-Aqg 1-Aq 1-Aq

Table5.30 Destination Blending Functions

* One Minus Valueis sometimes referred to as Inverse Vaue.

160

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.16.2

5.16.3

If the blend operations require any destination color components then the
framebuffer read mode must be set appropriately, see section 5.14.
In some situations blending is desired when no retained alpha buffer is present. In

this case the apha value which is considered to be read from the framebuffer will be
set to 1.0. The NoAlphaBuffer bit in the AlphaBlendMode register controls this.

See The OpenGL Reference Manual and The OpenGL Programming Guide from
Addison-Wedley for more details of alpha blending.
QuickDraw 3D AlphaBlending

When the AlphaType bit in the AlphaBlendMode register is set then QuickDraw 3D
style alpha blend equations are followed. The OpenGL equations above are used for
the RGB components, but the apha channel is treated differently and hasasingle
source and destination blend functions as follows:

Ca=1-(1-Cs) * (1-Cua)

The source and destination blend functions should be set as follows:

Name Source Blend Destination Blend

Premultiplied | ONE ONE_MINUS SRC ALPH
A

Interpolated SRC_ALPHA ONE_MINUS SRC_ALPH
A

Table5.31 Source Blending Functions
The apha calculation is the same for both modes.

Image Formatting

The apha blend and color formatting units can be used to format image datainto
any of the supported GLINT framebuffer formats, though conversion between Cl
and RGB modes or vice versa are not supported.

Consider the case where the framebuffer isin RGBA 4:4:4:4 mode, and an area of
the screen is to be uploaded and stored in an 8 bit RGB 3:3:2 format. The sequence
of operationsis:

» Set the rasterizer as appropriate (described in section 85.3.12)
» Enable framebuffer reads

» Disable framebuffer writes and set the UpLoadData bit in the
FBWriteM ode register

» Enable the alpha blend unit with a blend function which passes the
destination value and ignores the source value (source blend Zero,
destination blend One) and set the color mode to RGBA 4:4:4:4

» Set the color formatting unit to format the color of incoming
fragments to an 8 bit RGB 3:3:2 framebuffer format.

3Dlabs

Proprietary and Confidential 161

Graphics Programming GLINT MX Programmer’s Reference Manual

5.16.4

The upload now proceeds as normal.

The same technique can be used to download data which isin any supported
framebuffer format, in this case the rasterizer is set to sync with FBData, rather than
Color. In this case framebuffer writes are enabled, and the UpL cadData bit cleared.

Registers
The unit is controlled by the AlphaBlendMode register:

31 24 16 8 2 0
. ————r— — “a —
fmt end | 5€ blend
— _— | yd
Colour Conversion Colour format Alphablend enable
0=Scale 0 =Disable
1 = Shift AlphaType NoAlphaBuffer 1=Enable
. 0= OpenGL 0 = Alpha buffer present
£/1pha Conversion 1= Apple 1= No alpha buffer
= e
1 = Shift AlphaDst Colour Order

0 =FBData 0=BGR
1 = FBSourceData 1=RGB

Figure5.45 AlphaBlendMode Register

The ColorConversion hit salects the conversion method for RGB values read from
the framebuffer.

The Scale method linearly scales the color values to fill the full range of an 8 bit
value. Thismethod is preferable when, for example, downloading an image with
fewer bits per pixel into a deeper (i.e. more bits per pixel) framebuffer.

The Shift method just |eft shifts by the appropriate amount to make the component 8
bitswide. Thismethod is preferable when blending into a dithered framebuffer asit
preserves the framebuffer color when fragment color does not contribute to it. The
scale method would otherwise cause the 'fraction’ bits to be non zero, which may
result in adifferent color when re-dithered again. Thiswill show up asafaint
outline of the underlying polygon, when, for example, an apha blended textureis
used with zero value to provide cut-outs.

The AlphaConversion bit selects the conversion method for the Alphavaluesin a
similar way. Itiscontrolled separately to allow, for example, the situation in
antialiasing where it represents coverage - this must be linearly scaled to preserve
the 100% covered state.

The apha blend can be argumented by a chroma test.

The chromatest provides a mechanism where the fragment's color is tested against a
range of colors and the fragment can be rejected based on the outcome of the test.

The framebuffer source color, framebuffer destination color , fragment's color before
or after aphablending can be used for the test. The source and destination keying

162

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

are needed for DirectX for its chromakey blts. Rejecting afragment based on its
color can be used to remove writes where the destination color will not change, for
example afogged fragment which has the same color as the background fog color
does not need to be written if the screen was cleared to the fog color.

The chromatest is given by:
ClLE£ET £Cu & CI E£ET ,£Cu, & CILLET £Cy & CE£T, £Cu,

where Cl isthe lower chroma value held in the ChromalLower register, Cu isthe
upper chroma value held in the ChromaUpper register and T is the selected color to
test against. Each component is tested separately and obviously a component can be
excluded from the test by setting the lower and upper values to 0 and 255
respectively.

The format of the ChromalL ower and ChromaUpper registersisthered byteisin the
least significant byte, then the green byte and finally the blue byte. If the
framebuffer format for a color component isless than 8 bits then the unused bitsin
the upper and lower register for this component are set to zero.

The chromatest is enabled by the Enable bit in the ChromaMode register isset. The
source color to test is given by the Source field. The sense of the chromatest (when
enabled) is controlled by the Sense bit and the effect of thisis tabulated bel ow:

ChromaTest | Test Result | ChromaSens Action
Enabled e

N X X The framebuffer is updated as
normal

Y False Include | Theframebuffer is not updated

Y True Include | Theframebuffer is updated as
normal

Y False Exclude | Theframebuffer isupdated as
normal

Y True Exclude | Theframebuffer is not updated

The format of the ChromaTestMode register is:

L o4 6 8 __ 0
Sense Source
0 =Include 0 = FBSourceData
1 = Exclude 1= FBData Chromatest enable
2 = Input Colour 0= Disable

3 = Output Colour 1=Enable

3Dlabs Proprietary and Confidential 163

Graphics Programming GLINT MX Programmer’s Reference Manual

The color format and order is needed as the destination color is read from the
framebuffer and needs to be converted into the internal GLINT representation, it
should therefore be set as appropriate for the framebuffer.

Internal Color Channel
Format Name R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:.4.4 4@0 4@4 4@8 4@12
Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255
6 3:3:2Back 3@8 3@11 2014 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:.4.4 4@8 4@4 4@0 4@12
Color 3 4:4:4:4Front | 4@16 4@8 4@0 4@24
Order: 4 4:4:4:4Back | 4@20 4@12 4@4 4@28
RGB 5 3:3:2Front 3@5 3@2 2@0 255
6 3:3:2Back 3@13 3@10 2@8 255
8 1:2:1Back 1@7 2@5 1@4 255
7 1:2:1Front 1@3 2@1 1@0 255
13 5:5:5Back 5@26 5@21 5@16 255
Cl 14 Cl8 8@0 0 0 0
15 Cl4 4@0 0 0 0

Table5.32 GLINT Color Modes

The framebuffer may be configured to be RGBA or Color Index (Cl). Table 5.32

GLINT Color Modesshows the full list of color modes supported by GLINT.
TheR, G, B and A columns show the width of each color component. n@m means
that n bits starting at bit position m are read and scaled to fit the 8bit internal color
channel format. The least significant bit position is zero. A numerical value (O or
255) indicates the value substituted when the corresponding channel does not exist
in the framebuffer.

For the Front and Back Modes the value to be blended is read only from the low bits
or high bits respectively. Thisisto assist with color space double buffering.

When 5:5:5 bitplane double buffering is required, the 5:5:5:5 mode with the
NoAlphaBuffer bit in the AlphaBlendMode register set, is used to select the front
buffer. The back buffer is selected by using the 5:5:5Back mode, in which case the
state of the NoAlphaBuffer bit isignored.

164 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.16.5 AlphaBlend Example

This example sets the blend mode to allow antialiasing of polygons, i.e. source blend
function = Source Alpha Saturate, destination blend function = One. These blend
functions are suitable for polygon antialiasing when polygons are drawn in front to
back order, and the depth test is disabled.

/1 Enable framebuffer reads all ow bl end operation
/1 - Not Shown -

/1 Set the al pha node.

al phaBl endMode. Uni t Enabl e = GLI NT_ENABLE

al phaBl endMbde. Sour ceBl end =

GLI NT_BLEND_SRC_ALPHA SATURATE

al phaBl endMode. Desti nati onBl end = GLI NT_BLEND_ ONE
al phaBl endMode. Col or Format = as appropriate

Al phaBl endMbde(al phaBl endMbde) /1 Load register

/1 Enable antialias application and disable
/1 depth testing
/1 - Not Shown -

/! Render polygons sorted front to back with
/! Coverage Enable bit set in the Render conmand
/1 - Not Shown -

3Dlabs Proprietary and Confidential 165

Graphics Programming GLINT MX Programmer’s Reference Manual

5.17 Color Format Unit

The color format unit converts from GLINT's internal color representation to a
format suitable to be written into the framebuffer. This process may optionally
include dithering of the color values for framebuffers with less than 8 bits width per
color component. If the unit is disabled then the color is not modified in any way.

5.17.1 Color Formats

The framebuffer may be configured to be RGBA or Color Index (Cl). Table 5.26
Framebuffer Read/Write Modes shows the full list of color modes supported
by GLINT.

TheR, G, B and A columns show the width of each color component. n@m means
that the interna color channel is converted into an n bit number and stored in the
framebuffer at bit position m. The least significant bit position is bit zero, and a dash
in acolumn indicates that this component does not exist in the framebuffer for this
mode.

For the Front and Back Modes the value is replicated into both buffers, and
writemasks may be used to only update one buffer. Note the redundant duplication
of the Front and Back modesis retained for symmetry with the Color format field of
the AlphaBlendMode register.

The 5:5:5 Back format is designed to support multiple independent 15bpp double
buffered windows, on systems which have a RAMDAC that can select the front and
back buffer on a per pixel basis based on the top bit of the 32bit pixel stream. The
front or back buffer may be selected for writing using writemasking.

In Cl mode the index is replicated into al streams.

166 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

Internal Color Channd

Format Name R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:.4.4 4@0 4@4 4@8 4@12
3 4:4:.4.4 4@0 4@8 4@16 4@24
Front 4@4 4@12 4@20 4@28
Color 4 4:4:.4.4 4@0 4@8 4@16 4@24
Order: Back 4@4 4@12 4@20 4@28
BGR 5 3:3.2 3@0 3@3 2@6 -
Front 3@8 3@11 2@14
6 3:3:2 3@0 3@3 2@6 -
Back 3@8 3@11 2014
7 1:2:1 1@0 201 1@3 -
Front 1@4 2@5 1@7
8 1:.2:1 1@0 201 1@3 -
Back 1@4 2@5 1@7
13 5:5:5 5@0 5@5 5@10 -
Back 5@16 5@21 5@26
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
3 4:4:4:4 4@16 4@8 4@0 4@24
Front 4@20 4@12 4@4 4@28
Color 4 4:4:.4.4 4@16 4@8 4@0 4@24
Order: Back 4@20 4@12 4@4 4@28
RGB 5 3:3:2 3@5 3@2 2@0 -
Front 3@13 3@10 2@8
6 3:3.2 3@5 3@2 2@0 -
Back 3@13 3@10 2@8
7 1:2:1 1@3 2@1 1@0 -
Front 1@7 2@5 1@4
8 1:.2:1 1@3 201 1@0 -
Back 1@7 2@5 1@4
13 5:5:5 5@10 5@5 5@0 -
Back 5@26 5@21 5@16
Cl 14 Cl8 8@0 0 0 0
15 Cl4 4@0 0 0 0
Table5.33 GLINT Color Modes

5.17.2 Color Dithering

GLINT uses an ordered dither algorithm to implement color dithering. The
following table shows the exact type of dithering used when dither is enabled. The
type of dithering depends on the width of individual color components:

3Dlabs

Proprietary and Confidential

167

Graphics Programming GLINT MX Programmer’s Reference Manual

Component Width Type of Dithering
8 No Dithering
5 2x2 Ordered Dither
4 4x4 Ordered Dither
3 4x4 Ordered Dither
2 4x4 Ordered Dither
1 4x4 Ordered Dither

Table5.34 Dither Methods

GLINT's ordered dither matrices are shown below:

0 8 2 10

12 4 14 6 0 2
3 11 1 9 3 1
15 7 13 5

Table5.35 Ordered Dither Matrices, 4x4 and 2x2.

If the color formatting unit is disabled, the color components RGBA are not
modified and will be truncated, or rounded, under the control of the RoundingMode
bit in the DitherMode register, when placed in the framebuffer (assuming that the
framebuffer width is less than 8 bits per component). In Cl mode the valueis
rounded to the nearest integer. In both cases the result is clamped to a maximum
value to prevent overflow.

In some situations only screen coordinates are available, but window relative
dithering is required. This can be implemented by adding an optional offset to the
coordinates before indexing the dither tables. The offset is atwo bit number which is
supplied for each coordinate, X and Y. The XOffset, Y Offset fieldsin the
DitherMode register control this operation, if window relative coordinates are used
they should be set to zero.

The alpha channel processing is qualified by the AlphaDither control bit. When
cleared the alpha channel is processed in the same way as the color channels, as
dictated by the DitherEnable bit. When the AlphaDither bit is set however, the alpha
channel is not dithered, but is processed according to the state of the RoundingMode
bit. The ability to disable dithering on the apha channel is useful when using the
alpha buffer to hold coverage information during antialiasing. In this situation
dithering adds noise to the coverage value, leading to artifacts where a pixel which
should be fully covered is reported as not fully covered.

See The OpenGL Reference Manual and The OpenGL Programming Guide from
Addison-Wedley for more details on dithering.

168

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

5.17.3

31

Registers

One register controls the operation of this unit, DitherMode, and its layout is:

24 16 8 0

reserved

5.17.4

5.17.5

5.17.6

Rounding Mode X Offset

Alpha Dither Color format

Y Offst Dither Enable
Reserved Color Order Unit enable

Figure5.46 DitherMode Register

Dither Example
To set the framebuffer format to RGB 3:3:2 and enable dithering:

/1 332 Dithering

di t her Mbde. Uni t Enabl e = GLI NT_TRUE
di t her Mode. Di t her Enabl e = GLI NT_TRUE
di t her Mode. Col or Mode = GLI NT_COLOR_FORMAT_RGB_332

Di t her Mode(di t her Mbde) /! Load register
3:3:2 Color Format Example
To set the framebuffer format to RGB 3:3:2 and disable dithering:

/1 332 No Dither

di t her Mbde. Uni t Enabl e = GLI NT_TRUE
di t her Mode. Di t her Enabl e = GLI NT_FALSE
di t her Mode. Col or Mode = GLI NT_COLOR_FORMAT_RGB_332

Di t her Mbde(di t her Mbde) /! Load register
8:8:8:8 Color Format Example
To set the framebuffer to RGBA 8:8:8:8 and not dithered:

/1 8888 Dithered (No effect as 8 bit conponents are
/1 not dithered)

di t her Mbde. Uni t Enabl e = GLI NT_TRUE
di t her Mode. Di t her Enabl e = GLI NT_FALSE
di t her Mode. Col or Mode = GLI NT_COLOR_FORMAT_RGBA 8888

3Dlabs

Proprietary and Confidential

169

Graphics Programming GLINT MX Programmer’s Reference Manual

Di t her Mode(di t her Mode) /1 Load register

The same can be achieved by disabling the color formatting unit as 8 bit components
are not dithered:

/1 8888 No dither
di t her Mode. Uni t Enabl e = GLI NT_FALSE

Di t her Mode(di t her Mode) /1 Load register
5.17.7 Color Index Format Example

To set the framebuffer to 4 bit Color Index and enable dithering:
/1 4 bit CI with dithering

di t her Mbde. Uni t Enabl e = GLI NT_TRUE
di t her Mode. Di t her Enabl e = GLI NT_TRUE
di t her Mode. Col or Mode = GLI NT_COLOR_FORMAT_Cl _4

Di t her Mode(di t her Mode) /1 Load register

170 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

518 Logical Op Unit
Thelogical op unit performs two functions; logic ops between the fragment color
(source color) and avalue from the framebuffer (destination color), and, optionally
control of aspecia GLINT mode which alows high performance flat shaded
rendering.
5.18.1 High Speed Flat Shaded Rendering
Onthe GLINT 500TX aspecia rendering mode is available which allows high
speed rendering of unshaded images. This mode is still supported on the GLINT
MX, and is detailed below for completeness, but span processing should be used on
the GLINT MX in preference to this technique.
To use the mode the following constraints must be satisfied:
* Flat shaded aliased primitive
* Nodithering required or logical ops
» No stencil, depth or GID testing required
* No aphablending
The following are available:
» Bit masking in the rasterizer
* Areaand line stippling
» User and Screen Scissor test
If al the conditions are met then high speed rendering can be achieved by setting the
FBWriteData register to hold the framebuffer data (formatted appropriately for the
framebuffer in use) and setting the UseConstantFBWriteData bit in the
LogicaOpMode register. All unused units should be disabled.
Thismode is most useful for 2D applications or for clearing the framebuffer when
the memory does not support block writes. Note that FBWriteData register should
be considered volatile when context switching.
3Dlabs Proprietary and Confidential 171

Graphics Programming

GLINT MX Programmer’s Reference Manual

5.18.2 Logica Operations

The logical operations supported by GLINT are:

Mode Name Operation | Mode Name Operation
0 Clear 0 8 Nor ~(S|D)
1 And S&D 9 Equivaent ~(S~ D)
2 And Reverse S& ~D 10 Invert ~D
3 Copy S 11 Or Reverse S|~D
4 And Inverted ~S& D 12 Copy Invert ~S
5 Noop D 13 Or Invert ~S|D
6 Xor S~D 14 Nand ~(S& D)
7 Or S|D 15 Set 1

Where: S = Source (fragment) color, D = Destination (framebuffer) color
Table5.36 Logical Operations

For correct operation of this unit in a mode which takes the destination color,
GLINT must be configured to allow reads from the framebuffer using the
FBReadMode register. See section 85.15 for more details.

GLINT makes no distinction between RGBA and Cl modes when performing

logical operations.
5.18.3 Registers

The operation of the unit is controlled by the L ogical OpMode register:

31 24 16 8 0

UseConstantFBWriteData /Logical Op enable
0= Variable LogicOp 0 =Disabled
1 = Constant See Table 5.25 1 =Enabled
Figure5.47 LogicalOpMode Register
5184 XOR Example
To set the logical operation to XOR.
/1 Set franmebuffer to all ow reads
/1 Not shown
| ogi cal OpMode. Uni t Enabl e = GLI NT_ENABLE
| ogi cal OpMbde. Logi cal Op = GLI NT_LOQd COP_XOR
172 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Programming

Logi cal OpMode(| ogi cal OpMode)
5.18.5 Logica Op and Software Writemask Example

/1 Load register

To set the logical operation to COPY, enable the software writemask, and write to
the green component in an 8 bit framebuffer configured in 3:3:2 RGB mode:

|/ Set franebuffer to allow reads

/1 Not shown

di t her Mode. Uni t Enabl e = GLI NT_ENABLE
di t her Mode. Di t her Enabl e = GLI NT_ENABLE

di t her Mode. Col or Mbde = GLI NT_COLOR_FORMAT _RGB_332

Di t her Mode(di t her Mode)

/1 Load register

| ogi cal OpMode. Uni t Enabl e = GLI NT_ENABLE
| ogi cal OpMbde. Logi cal Op = GLI NT_LOGQ COP_COPY

Logi cal OpMode(| ogi cal OpMbde)

FBSof t war eW i t eMask(OxFFFFFFE3)

/! Load register

3Dlabs Proprietary and Confidential

173

Graphics Programming GLINT MX Programmer’s Reference Manual

5.19 Framebuffer Writemasks

Two types of framebuffer writemasking are supported by GLINT, software and
hardware. Software writemasking requires aread from the framebuffer to combine
the fragment color with the framebuffer color, before checking the bits in the mask
to see which planes are writeable. Hardware writemasking is implemented using
VRAM writemasks and no framebuffer read is required.

5.19.1 Software Writemasks

Software writemasking is controlled by the FBSoftwareWriteMask register. The
datafield has one bit per framebuffer bit which when set, allows the corresponding
framebuffer bit to be updated. When reset it disables writing to that bit. Software
writemasking is applied to all fragments and is not controlled by an enable/disable
bit. However it may effectively be disabled by setting the mask to al 1's. Note that
the ReadDestination bit must be enabled in the FBReadMode register when using
software writemasks, in which some of the bits are zero.

See the Framebuffer Read/\Write section for details of how to enable/disable
framebuffer reads.

5.19.2 Hardware Writemasks

Hardware writemasks, if present, are controlled using the FBHardwareWriteM ask
register. If the framebuffer supports hardware writemasks, and they are to be used,
then software writemasking should be disabled (by setting all the bitsin the
FBSoftwareWriteMask register). Thiswill result in fewer framebuffer reads when
no logical operations or alpha blending is needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware writemask
must be replicated to all 4 bytes of the FBHardwareWriteMask register. If the
framebuffer isin 16 bit packed mode then the 16 bit hardware writemask must be
replicated to both halves of the FBHardwareWriteMask register.

Seethe GLINT MX Hardware Reference Manual for more details of framebuffer
hardware writemasks.
5.19.3 Registers

Both registers FBHardwareWriteM ask and FBSoftwareWriteMask are 32 bit
registers in which each bit represents a bit in the framebuffer.

5.19.4 Software Writemask Example

Using software writemasks:

/1 Enabl e framebuffer reads (not shown)
/1l Set the witenmask
FBSof t war eW i t eMask(OxOFOFOFOF)

See 85.18.5 for another example

174 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.19.5 Hardware Writemask Example

Using hardware writemasks when neither logic ops, nor alpha blending are enabled:

/1 Disable framebuffer reads (not shown)
/1l Set the witenmasks

FBSof t war eW i t eMask(OXFFFFFFFF) // ' Di sabl €'
FBHar dwar eW i t eMask(OxFOFOFOFO) // Actual witenask

3Dlabs Proprietary and Confidential 175

Graphics Programming GLINT MX Programmer’s Reference Manual

5.20 Host Out Unit

The Host Out Unit controls which datais available at the output FIFO, and gathers
statistics about the rendering operations (picking and extent testing) and the
synchronization of GLINT viathe Sync register.

5.20.1 Filtering

Filtering controls the data available at the output FIFO. There are a number of
categories:

* Depth, Stencil, Color: These are data values associated with a
fragment which has been read from the loca buffer or framebuffer,
or generated using the UpL oadData flag in the Framebuffer Write
Unit.

» Synchronization: A single register, Sync, which is used to
synchronize GLINT and flush the graphics pipeline.

o Statistics: The registers associated with extent and picking.

Thefiltering is controlled by the FilterM ode register which is split into 2 bit fields
for each category. The 2 bit field selects whether the register tag and/or register data,
are passed to the output FIFO. The format of the FilterMode register is shown in the

table below.
Register Category Tag Data | pescri ption
Control | Control
Bit Bit

Diagnostic Use Only 0 1

Diagnostic Use Only 2 3

Depth 4 S | Thisisthe datafrom image upload of the
Depth (2) buffer.

Stencil 6 7 Thisis the data from image upload of the
Stencil buffer.

Color 8 9 Thisis the data from image upload of the
Framebuffer (FBColor).

Synchronization 10 11

Statistics 12 13 | Thisisthe data generated following a
command to read back the results of the
statistic measurements: PickResult,
MaxHitRegion, MinHitRegion.

Diagnostic Use Only 14 15

Table5.37 Filter Modes

176 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

5.20.2

Note, the filter unit must be set appropriately before any synchronization can take
place, see 85.20.3.

Statistic Operations

There are two statistic collection modes of operation; picking and extent checking.
Picking is normally used to select drawn objects or regions of the screen. Typically,
extent checking is used to determine the bounds within which drawing has occurred
so that asmaller area of the framebuffer can subsequently be cleared. Spans are
handled by GLINT in afully consistent way for picking and extent checking.

Statistic collection is controlled using the StatisticM ode register.

Picking

In picking mode, the active and/or passive fragments have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegionregisters. If the result istrue, then the PickResult flag is set, otherwise it
holds its previous state. The compare function can be either Inside or Outside.

Before picking can start, the ResetPickResult register must be loaded to clear the
PickResult flag.

The MinRegion and MaxRegion registers are loaded to select the region of interest
for picking. A coordinate isinside the region if:

Xpmin £ X < Xmax
YmnEY <VYmax

where X and Y are from the fragment and the min/max values are from MinRegion
and MaxRegion registers. This comparison isidentical to the one used in the scissor
tests.

The following stages are required for picking:

1) load ResetPickResult, MinRegion and MaxRegion registers

2) Set up the FilterMode to allow statistic commands out of GLINT MX
3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO waiting for the PickResult to have passed through GLINT
MX.

Extent Checking

In extent mode, active and/or passive fragments have their associated XY
coordinates compared to the MinRegion and MaxRegion registers and if found to be
outside the defined rectangular region, then the appropriate register is updated with
the new coordinate(s) to extend the region. The Inside/Outside bit has no effect in
this mode. Block fills are included in the extent checking if the StatisticM ode
register is set to include spans.

3Dlabs

Proprietary and Confidential 177

Graphics Programming GLINT MX Programmer’s Reference Manual

The MinRegion and MaxRegion registers are loaded to select the maximum value
(MinRegion) and minimum vaue (MaxRegion) for extent checking. A coordinate is
inside the region if:

Xpin £ X < Xmax
YmnE Y <Ymax

where X and Y are from the fragment and the min/max values are from MinRegion
and MaxRegion registers. This comparison isidentical to the one used in the scissor
tests.

Once all the necessary primitives have been rendered the results can be found using
the MinHitRegion and MaxHitRegion commands, which cause the contents of the
MinRegion and MaxRegion registers respectively to be written into the output FIFO
(under control of the FilterMode register).

5.20.3 Synchronization

The Sync register isfiltered and written to the output FIFO in asimilar fashion to

the other registers. If an interrupt is required to be generated then the most

significant bit of the Sync command register must be set, and the filtering must be

Set up to write something into the FIFO. If nothing is written to the FIFO (because

of the FilterMode) then no interrupt will be generated. The actual interrupt will not
be generated until the Sync data or tag has passed through, and is on the output of

the FIFO, so asto allow low level resynchronization between the core and PCI clock
domains. The FIFO has an extra bit in width to accommodate the interrupt signal.
When both the data and tag are written into the FIFO only the first entry in the FIFO
will cause the interrupt (assuming an interrupt was requested).

The remaining bitsin the datafield are free and can be used by the host to identify
the reason for the Sync.

5.20.4 Registers
Filtering is controlled by the FilterM ode register:

reserved Individua bits defined above

Figure5.48 FilterMode Register

178 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Graphics Programming

Statistic collection is controlled by the StatisticM ode register:

24 16 8 0

31

reserved

5.20.5

5.20.6

Include Spans
Compare Function
Monitor Culled Fragments
Monitor Pixels Written

Stats Type
Enable Stats

Figure5.49 StatisticMode Register

MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The format is
16 bit 2's complement numbers, X in the least significant end of the word.

PickResult is used to read the results of picking, the pick flagis placed in the least
significant bit of the 32 bit register. ResetPickResult is used to clear the picking flag,

the datafield is not used.

The Sync register is 32 bits with the most significant bit set to indicate an interrupt is
to be generated, bits 0-30 are available for the user.

Filter Mode Example

/[l Set up Filter npde to only pernmit read back of
/1 synchronization tag and data

Filter Mbde(0Ox0C00) // Set bits 10 & 11
Picking Example

Set the statistic mode to picking and detect any active fragmentsin the region 0x0
<=x < 0x100, 0x0 <=y < 0x100. Render some primitives then read back the

results.

3Dlabs

Proprietary and Confidential 179

Graphics Programming GLINT MX Programmer’s Reference Manual

/] Set filter npde as above
Filter Mbde(0Ox0C00) // Set bits 10 & 11

/] Set statistic node
M nRegi on(0)
MaxRegi on(0x100 | 0x100 << 16)

/1 Clear the picking flag
Reset Pi ckResul t (0x0) /! Data not used

/1 Now render primtives....

Render (render) /1 Al units set as appropriate
/{1 Al rendering finished.

/1l Set the filter node to all ow read back of Syncs
/1 and statistic information (tag and data)

FilterMode(0x3C00) // Set bits 10 to 13

/1 Wite to the PickResult register
Pi ckResul t (0x0) /! Data not used

/1 Now read the PickResult fromthe output FIFO (not shown)

5.20.7 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data (0x34) in
the lower 31 bits of the Sync register.

/[l Set up Filter npde to only pernmit read back of

/1 synchronization tag and data

FilterMode(0Ox0C00) // Set bits 10 & 11

/1 Wite to the Sync register with the top bit
/1 (bit 31) set and user data encoded into the
/1 1 ower bits (0-30)

sync = (0x1 << 31) | (0x34 & Ox7FFFFFFF)
Sync (sync)

/1 Now wait for the sync interrupt. Not shown.

180 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Initialization

6.

6.1

6.2
6.2.1

6.2.2

Initialization

Initializing GLINT

This section illustrates how to initialize GLINT following reset, prior to carrying out
rendering operations.

Initiaization falls broadly into three areas, though in different systems precise
responsibilities can vary:

* Systeminitiaization covers the PCl bus, memory set-up and video
output. Thisinformation typically is only initialized once following
reset.

* Window initialization covers the base address of the current rendering
window and its color format. This must beinitialized at reset, but will
need updating each time GLINT starts drawing to a new window.

* Application initialization covers state that istypically dynamic,
enabling & disabling depth testing for example. Again this state must
be set at reset, but islikely to be updated relatively frequently.

To make use of the full functionaity of GLINT consult the relevant sections of the
Graphics Programming chapter. Examples are given which make use of the pseudocode
conventions given in Appendix B.

Note: In general the graphics registers (those listed in Appendix A, as opposed to those
documented in the GLINT MX Hardware Reference Manual) are not hardware
initialized to specific values at reset. In the examples below it is assumed that the
data structures used to load these registers are initialized to zero. Thus bit fields
which are not set explicitly, will default to zero.

System Initialization
PCI bus

There are a set of PCI related registers which can be interrogated for information about
the chip, for exampleitsrevision and device ID. Some of these PCI related registers will
need to be set up at reset, for instance to configure the base addresses of the different
memory regions of the chip. However, the subject of PCI bus initialization is beyond the
scope of this document. For more details refer to the GLINT MX Hardware Reference
Manud, and the PCI Local Bus Specification Rev2.1.

Memory Configuration

A part of the GLINT initialization isto specify some of the hardware parameters that
define the characteristics of the memory attached to GLINT. In most board designs,
these registers are initialized at reset by a set of resistors connected to the chip.

3Dlabs

Proprietary and Confidential 181

Initialization GLINT MX Programmer’s Reference Manual

If the GLINT board design does not include these resistors, then these registers will have
to be set by software as outlined below.

The content of these registers is dependent upon the board design, and the memory chips
that have been used. It is necessary to consult the GLINT MX Hardware Reference
Manual and the board design documentation, to find the correct values for any particular
system configuration.

The Reset register isinitialized automatically at reset as detailed in the GLINT MX
Hardware Reference Manual.

The memory characteristics for the framebuffer and localbuffer are set through three
registers. These characteristics include details about the number of banks, page sizes and
address strobe requirements. For example, the following will initialize GLINT to operate
in asystem where the localbuffer comprises 1 bank of memory, with a page size of 2Kk,
and the localbuffer and framebuffer have the RAS/CA S timing values indicated:

| bMenor yCont r ol . Nbanks GLI NT_LB NBANKS 1

| bMermor yCont r ol . PageSi ze GLI NT_LB _PAGE_SI ZE 2048

| bMenor yCont r ol . RASLow GLINT_LB RAS LOW 3

| bMenoryControl . RASPrecharge = GLI NT_LB_RAS PRECHARGE 2

| bMeror yCont r ol . CASLow = GLINT_LB CAS LOW 1

| bMenor yCont r ol . PageModeEnabl e GLI NT_ENABLE

| bMermor yCont r ol . Ref r eshCount 0x20

LBMenor yControl (1 bMenoryControl)

f bMenor yCont r ol . RASLow = GLINT_FB_RAS LOW 2

f bMenoryControl . RASPrecharge = GLI NT_FB RAS PRECHARGE 2
f bMenor yCont r ol . CASLow = GLINT_FB_CAS LOW 1

f bMenoryCont rol . PageMbdeEnabl e = GLI NT_ENABLE

f bMenor yControl . Ref reshCount = 0x20

FBMenor yCont r ol (f bMenoryControl)

The refresh count multiplied by 16 represents the number of MClk clock cycles between
the start of each refresh. Setting a RefreshCount of 0x20, will cause arefresh every 512
clock cycles.

The FBModeSd register contains details of the capabilities & characteristics of the
framebuffer and might typicaly be initialized as follows:

/1 We can use sonme of the fast VRAM npbdes
f bMbdeSel . Fast ModeEnabl e = GLI NT_ENABLE

// Buffer is not shared.
f bMbdeSel . Shar edivbde = GLI NT_FB_SHARED DI SABLED

/! Enable VRAM transfer cycles
f bMbdeSel . XFer Enabl e = GLI NT_ENABLE

/1 Select an external timnng generator.
f bModeSel . Ext VTG = GLI NT_FB_EXT_VTG
FBModeSel (f bModeSel)

182

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Initialization

6.2.3 Internd Video Timing Registers
If the board design uses the on chip video timing generator, then the video timing
registers must be initialized appropriately. For details refer to the GLINT MX Hardware
Reference Manual.
6.24 Framebuffer Depth
The size of each pixel to be written into the framebuffer needs to be set up using the
PixelSizeregister. To initialize the pixel sizeto 32 bits deep the Pixel Size register would
be loaded as follows.
pi xel size = GLI NT_FB _PACK 32
Pi xel Si ze(pi xel si ze)
6.25 Screen Width
The width of the screenisinitialized by setting the three partial products fieldsin the
FBReadMode and LBReadMode registers. Note that the width isin pixels, not in bytes,
so the same values apply regardless of framebuffer depth, for a given screen resolution.
Some of the more common values are shown in the table below. A full listisgivenin
Appendix C.
Screen width PPO PP1 PP2
640 5 3 0
1024 6 0 0
1152 6 3 0
1280 6 4 0
1600 6 5 2
To initialize the screen to be 1024 pixels wide the registers would be set as follows.
f bReadMbde. PPO = 6
f bReadMode. PP1 = 0
f bReadMbde. PP2 = 0O
FBReadMbde(f bReadMbde)
| bReadMbde. PPO = 6
| bReadMbde. PP1 = 0
| bReadMbde. PP2 = 0
LBReadMbde(| bReadMode)
6.2.6 Screen Clipping Region
GLINT supports a screen scissor clip which should be set at system initiaization, and a
user scissor clip which should initially be disabled. Assuming that the FBPixel Offset,
FBWindowBase and LBWindowBase registers are set appropriately, then setting the
screen clip prevents writing outside the framebuffer memory (and localbuffer), which
could have undesirable results. The following example would be appropriate for a
resolution of 1024 by 768 pixels:
screenSi ze. X = 1024
screenSize.Y = 768
ScreenSi ze(ScreenSi ze)
3Dlabs Proprietary and Confidential 183

Initialization GLINT MX Programmer’s Reference Manual

sci ssor Mbde. ScreenSci ssor Enabl e = GLI NT_ENABLE
sci ssor Mbde. User Sci ssor Enabl e = GLI NT_DI SABLE
Sci ssor Mbde(Sci ssor Mode)

6.2.7 Locadbuffer and Framebuffer Configuration
GLINT supports arange of locabuffer configurations. During initiaization, fields in the
L BWriteFormat and L BReadFormat registers should be set to appropriate values which
reflect the depth of memory on the board design, and the initial manner in which it isto
be used. For example if the hardware is designed to support a 32 bit local buffer, and
initially thisisto be divided into a 24 bit Depth buffer, 4 bit stencil, no GID planes and 4
FrameCount planes, then the registers must be set as follows:
| bReadFor mat . Dept hW dt h =1 // 24 bit depth
/1 buffer
| bReadFor mat . St enci | Posi tion =2 /] Stencil @24
| bReadFor mat . St enci | Wdt h =1 [/ 4 bit stencil
| bReadFor mat . G DW dt h =0 // No @D planes
| bReadFor mat . G DPosi ti on =1 // Does not matter
| bReadFor mat . FraneCount Position =3 // FrameCount @ 28
| bReadFor mat . FrameCount W dt h =1 // 4 FraneCount
/1 planes
LBReadFor mat (| bReadFor mat)
| bW it eFormat. Dept hW dt h =1 // 24 bit depth
/1 buffer
| bWiteFormat. Stencil Position =2 [] Stencil @24
| bWiteFormat. Stencil Wdth =1 [/ 4 bit stencil
| bWiteFormat. d DW dth =0 // No @D planes
| bW it eFormat. d DPosition =1 // Does not matter
| bWiteFormat. FraneCount Position = 3 // FranmeCount @8
| bW it eFormat. FrameCount W dt h =1 // 4 FranmeCount
/1 planes
LBW it eMode(l bW it eFor mat)
Note that within the limits of the memory depth that is physically available, it is possible
to dynamically change the allocation of the bits, for instance on a per window basis.
Set the framebuffer and localbuffer read units to their default data sources:
f bReadMode. Dat aType = GLI NT_FBDATA
FBReadMbde(f bReadMode)
| bReadMbde. Dat aType = GLI NT_LBDEFAULT
LBReadMbde(| bReadMode)
The following registers are typically only needed for certain specialized operations.
Normally their offsets will be zero.
FBSour ceOf f set (0)
FBPi xel Of f set (0)
LBSour ceOr f set (0)
184 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Initialization

6.2.8 Host Out Unit

Under some circumstances it is necessary to synchronize with GLINT. Thisis controlled
through the Sync command which causes data to be written to the host out FIFO once all
processing has completed. The host out FIFO should normally be initialized so asto pass
these pieces of data (they can be filtered out).

In addition the host out unit should normally be set to filter out all other output data,
otherwise the host software must regularly poll the output FIFO to keep it drained and
prevent it freezing the pipeline. For example:

filterMode. Depth = GLI NT_NULL
filterMode. Stencil = GLI NT_NULL
filterMode. Col or = GLI NT_NULL

Filter Mode Synchronization GLI NT_FI LTER _TAG_AND_DATA
/1 Al ow syncs through

GLI NT_NULL

filterMode. Statistics
FilterMde(filterMde)

6.2.9 Disabling Specialized Modes

The Graphic ID, and FrameCount planes, should normally be initially disabled. Refer to
the Graphics Programming chapter for more details on their use.

wi ndow. Dept hFCP = GLI NT_DI SABLE

wi ndow. St enci | FCP = GLI NT_DI SABLE

wi ndow. Fr ameCount = OxFF

wi ndow. G D = GLI NT_NULL

wi ndow. LBUpdat eSour ce = GLI NT_G D_LBUPDATE_REG STER
wi ndow. For ceLBUpdate = GLI NT_FALSE

wi ndow. Conpar eMode = GLI NT_G D_ALWAYS PASS

wi ndow. Uni t Enabl e = GLI NT_DI SABLE

W ndow(wi ndow)

3Dlabs Proprietary and Confidential 185

Initialization GLINT MX Programmer’s Reference Manual

6.3

6.3.1

6.3.2

Window Initialization

GLINT supports the concept of awindow origin, and makes it relatively smpleto
implement systems which allow different color formats to coexist in different windows.

Color Format

The color formatting unit and the alpha blend unit should be initialized to an appropriate
color format at reset. The units support avariety of different formats, listed in Table 4.2.

For example to render in 3:3:2, 8 bit color format, the following would be needed:
di t her Mode. Col or For mat =
GLI NT_COLOR_FORMAT_RGB_332_FRONT
Di t her Mode(di t her Mode)

al phaBl endMode. Col or Format =
GLI NT_COLOR_FORMAT_RGB_332_FRONT
Al phaBl endMbde(al phaBl endMbde)

To enable dithering use the following:
di t her Mbde. Xof f set =
di t her Mbde. Yof f set =
di t her Mode. Di t her Enabl e
di t her Mbde. Uni t Enabl e
Di t her Mode(di t her Mode)

0
0
= GLI NT_ENABLE
GLI NT_ENABLE

Note that the color formatting unit is normally always enabled even if dithering itself is
not. Thisis because the unit handles color formatting as well as the dithering operation.

Setting the Window Address and Origin.

GLINT supports the concept of a current window origin. The originof the window can
be specified either as being in the Top Left or Bottom Left corner. Thisalows the user
to pick the most appropriate coordinate system to use; for OpenGL it would typically be
bottom left, whereas for an X windows implementation it would be Top Left. Thus for
OpenGL st

f bReadMode. W ndowOr i gi n =

GLI NT_BOTTOM LEFT_W NDOW ORI Gl N
FBReadMbde(f bReadMode)

| bReadMbde. W ndowOr i gi n =
GLI NT_BOTTOM _LEFT_W NDOW ORI G N
LBReadMbde(| bReadMode)

The window origin for clipping is set in the scissor unit. Thisinformation usually is
provided by the window system. It will need updating if the window moves. Asan
example if the position of the window is (200, 600) (using a bottom left coordinate
system), the origin is specified as follows:

wi ndowOrigin. X = 200

w ndowOrigin.Y = 600

186

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Initialization

W ndowOr i gi n(wi ndowCOr i gi n)

The base address of the window must aso be established in the local buffer read and
framebuffer read units. The base addressis the physical address that represents the base
address of the window. Assuming the base address of the framebuffer represents the
pixel in the top left corner of the screen, then for the example above the actua physica
address of the bottom left pixel of the window will be set as follows:
f bW ndowBase = fbBaseAddress + (fbWdth * (fbHei ght-1-600) +
200
FBV\% ndowBase(f bW ndowBase)

| bW ndowBase = | bBaseAddress + (I bwdth * (| bHei ght-1-600) +
200)
LBW ndowBase(| bW ndowBase)

Where fbhBaseAddress, foWidth and fbHeight are the physical base address, width and
height of the framebuffer (in pixels). As with the WindowOrigin data, if the window
moves, these registers must be updated.

The above references to the IbWindowBase assume local buffer patching is disabled."
6.3.3 Writemasks

Normally both the hardware (if present) and the software writemasks will initially be set
to make all bitplanes writeable:

FBSof t war eW i t eMask(GLI NT_ALL_WRI TEMASKS_SET)
FBHar dwar eW i t eMask(GLI NT_ALL_WRI TEMASKS_SET)

6.3.4 Enabling Writing

Which buffers are enabled at any given time iswindow specific and should be
considered for performance reasons. Performance will be improved if unnecessary reads
from, and writes to, buffers are disabled. For example if the current rendering does not
use depth, stencil, or pixel ownership testing, then reading and writing to the localbuffer
may be disabled. The following example initializes the buffersto alow Z buffering and

aphablending:
fbWiteMde. Unit Enabl e = GLI NT_ENABLE
FBW i t eMode(f bW it eMode)
| bW it eMode. Unit Enabl e = GLI NT_ENABLE
LBW it eMode(| bW it eMode)
| bReadMbde. ReadSour ceEnabl e = GLI NT_DI SABLE
| bReadMbde. ReadDest i nati onEnabl e = GLI NT_ENABLE
LBReadMbde(| bReadMode)
f bReadMode. ReadSour ceEnabl e = GLI NT_DI SABLE
f bReadMode. ReadDest i nati onEnabl e = GLI NT_ENABLE

FBReadMbde(f bReadMode)

Note that to use software writemasking, the FBReadM ode register's
ReadDestinationEnabl e field needs to be set if the writemask is set to other than al 1's.

3Dlabs Proprietary and Confidential 187

Initialization

GLINT MX Programmer’s Reference Manual

6.4 Application Initialization

While an application is running it may dynamically use features of GLINT such as depth
buffering, alpha blending, logical operations, etc.. Initialy, however, it is recommended
that the respective units are disabled, to ensure that they are in aknown state:

areaSti ppl eMbde. Uni t Enabl e =
AreaSti ppl eMode(areaSti ppl eMode)

lineStippl eMbde. Uni t Enabl e

Li neSti ppl eMode(li neSti ppl eMode) ;

rout er Mbde. Uni t Enabl e =
Rout er Mode(r out er Mode)

wi ndow. Uni t Enabl e

W ndow(wi ndow)

stenci | Mbde. Uni t Enabl e =
St enci | Mbde(st enci | Mode)

dept hMode. Uni t Enabl e =
Dept hMbde(dept hivbde)

col or DDAMbde. Uni t Enabl e =
Col or DDAMode(col or DDAMbde)

t ext ur eAddr essivbde. Uni t Enabl e =
Text ur eAddr essMode(t ext ur eAddr essMode)

t ext ur eReadMbde. Uni t Enabl e =
t ext ur eReadMode(t ext ur eReadMbde)

Text ur eCol or Mbde.

Uni t Enabl e =

Text ur eCol or Mbde(Text ur eCol or Mode)

f ogMode. Uni t Enabl e =

Foghbde(f oghMbde)

anti al i asivbde. Anti al i asEnabl e

Anti al i asMode(anti al i asMbde)

al phaTest Mode. Uni t Enabl e =
Al phaTest Mode(al phaTest Mode)

al phaBl endMode. Uni t Enabl e =
Al phaBl endMbde(al phaBl endMbde)

| ogi cal OpMode. Uni t Enabl e =
Logi cal OpMode(| ogi cal OpMode)

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

GLI NT_DI SABLE

188

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual Multi-GLINT Systems

7. Multi-GLINT Systems

7.1 Overview

This chapter will examine some of the issues and methods that a multi-GLINT MX
system can employ.

To gain benefit from running multiple GLINTs in parallel the system must be rendering
bound. If the system is host or geometry bound then adding in more GLINTswill not
improve the system performance.

There are many possible parallel paradigms which can be adopted. The major ones are
tabulated below, but this chapter will concentrate on the Scanline Interleaved method.
The table is not exhaustive and an interested reader is directed to the book by Whitmant.

The Scanline Interleaved paradigm is a good all-round method, ideally suited to the
simulation market. Boards using this paradigm support all the normal GLINT rendering
operations, and operations such as antialiasing, line stipples, image download and
bitmasks which typically present problemsin aparalée system are fully supported in the
GLINT MX hardware. The only limitation inherent in such architectures, is that Block
copies where source and destination are not a multiple of the Scanline Interleave factor
apart, are not directly hardware accelerated by GLINT. Such copies must be
implemented using a combination of bypass, image upload and image download
operations. For the ssimulation market thisis not an issue as on screen copies arerare,
however, for desktop machines running in a windowing environment where copies are
common afull solution is provided in the dual-GLINT case, by using the shared
framebuffer facility. See below for further details.

IMultiprocessor Methods For Computer Graphics Rendering by Scott Whitman,
ISBN 0-86720-229-7

3Dlabs Proprietary and Confidential 189

Multi-GLINT Systems

GLINT MX Programmer’s Reference Manual

Paradigm Description Advantage Disadvantage
Frame Frame Interleaving iswhereaGLINT Simple. Increase in transport
Interleaving works on frame n, the next GLINT works | Good load balancing. | delay.

onframen+1, etc.. Each GLINT does Can beimplemented | Complete systemis
everything for its own frame and the with any GLINT duplicated.
video is sourced from each GLINT's product .
framebuffer in turn. Doesn't need a
broadcast mechanism.
FrameMerging | Frame merging isasimilar techniqueto | Conceptualy simple. | Needs video rate
or Primitive frame interleaving where each GLINT Average load composition using the
Parallelism has afull localbuffer and framebuffer. In | balancing. depth value to select
this case the primitives are distributed which pixel to
amongst the GLINTs and the resultant display. The
partial images composited using the localbuffer structure
depth information to control which does not readily
fragment from the multiple buffersis support this dual port
displayed in each pixel position. access.
Alphablending and
antidiasing are
problematical.
Block copies don't
work.
Screen Here the screen isdivided upinto large | Conceptually simple. | Poor load balancing
subdivision contiguous regionsand aGLINT looks | Can beimplemented | unless regions
(regions) after each region. Primitiveswhich with any GLINT allocated dynamically.
overlap between regions are sent to both | product. Block copiesfail
regions and scissor clipping used. when cross
Primitives contained wholly in one boundaries.
region areideally just sent to the one Broadcast can not be
GLINT. used effectively.
The number of regions and the horizontal
and/or vertical division of the screen can
be chosen as appropriate, however
horizontal bands are usually easier for
the video hardware to cope with.
Screen Theinterleave factor is every other nth | Load balancing is Block copiesinY do
subdivision scanline wheren is the number of excellent. not work unlessthe
(interleaved GLINTs. Nearly al primitives will Entire Depth and displacement isa
scanlines) overlap multiple scanlines so are ideally Color buffers not multiple of interleave
broadcast to all GLINTS. duplicated for each factor. May be solved
Each GLINT only needs enough GLINT. using shared
localbuffer and frame buffer to cover the framebuffer.
pixelsinits own region, however texture
maps are replicated in full.
7.2 Setting up the Graphics Processor

In an Interleaved Scanline multi-GLINT system all GLINTs will receive the same
command and parameter data with the exception of the one parameter needed to specify
which scanline aparticular GLINT isowning. Thisisimportant asit means that the host
does not have the additional burden of calculating different parameters for each GLINT.
|deally the command and parameter datais broadcast to all GLINTS to economize on

190 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Multi-GLINT Systems

system bandwidth and thisistrivialy done using a GLINT Deltal or GLINT Gamma?
chip.

Thefirst step isto set the MultiGLINT bit in the RasterizerMode register. This causes
GLINT to operate in an interleaved scan line mode when rasterizing primitives.

Which scanlinesa GLINT ownsis defined by the ScanLineOwnership register and this
only has an effect when the MultiGLINT bit is set in the RasterizerMode register. The
format isasfollows:

Bits Function

0,1 Scanline Interval
Thisis set to the number of GLINTS
and has the values:

O0=1GLINT

1=2GLINTs

2=4GLINTs

3=8GLINTs
2,3, 4 Scanline. This holds which scanline
within a Scanline Interval thisGLINT
owns. For exampleif the Scanline
Interval and thisfield are both set to 2
then this GLINT owns scanlines 2, 6,
10, etc.

The Scanline Interval is decoded to select the number of least significant bits of Y
(generated during rasterization) to compare with the same number of bitsin the Scanline
field. If these two value are the same then this GLINT owns the scanline.

Thevalue of Y used iswhatever the rasterizer has been given so it can be screen relative
or window relative. The hardware will naturally force scanlines to be associated to
screen relative coordinates. If window relative coordinates are used, the Scanline field
will need to be set up to reflect this mapping whenever the window moves.

In some systemsit is desirable for each GLINT to have only the memory it needs to hold
the depth and color information for its scanlines. Setting the Scanline Interleave factor
in the LBReadMode and FBReadM ode registers achieves this. This Scanline Interleave
value has the same meaning as in the ScanLineOwnership register, and is sometimes
useful for it to have different values. Note that the texture addresses are not affected by
the Scanline Interval as the texture maps are replicated in full.

After this set up the GLINTs al receive identical command and data streams.

IThe GLINT Deltais a3D geometry chip from 3Dlabs for the GLINT processor range, which offloads the triangle
and line set-up calculations from the host and will aso handle the broadcasting of commands and data to two
GLINT rendering devices.

2The GLINT Gammais ageometry chip from 3Dlabs for the GLINT processor range which fully offloads the host
of al geometry and lighting calculations. Like GLINT Delta, it has the facility to broadcast commands and data to
two GLINT rendering devices.

3Dlabs Proprietary and Confidential 191

Multi-GLINT Systems GLINT MX Programmer’s Reference Manual

7.3

7.4

7.5

To upload data from the localbuffer or framebuffer the standard upload command
sequenceis sent to all GLINTSs but then the returned datais read a scanline at atime
from the successive output FIFOs of the GLINTS.

To sync with the GLINTSs the Sync command is broadcast to all GLINTs and then each
output FIFO is polled in turn waiting for the Sync command. Alternatively interrupts
could be used in which case the interrupt handler will collect an interrupt from each
GLINT.

The Host Connection

In an ideal system the host will be able to read and write to each GLINT individually
and broadcast writeto all the GLINTstogether. Furthermore, best performanceis
typically achieved when DMA isused and it isless efficient if each GLINT isusing
DMA to service itsdlf, with the consequent competition on the PCI bus. A better
solution isfor an external DMA controller to read the host memory and broadcast the
datato the GLINTs. Each GLINT provides a set of signalsto show the status of the
input FIFO which the external DMA controller can monitor to determine when all
GLINTs have enough space in their FIFO to accept the broadcast data.

The GLINT Délta chip provides an economical solution when there are two GLINT MX
devicesin asystem asit includes the 'external DMA controller' and can broadcast or
selectively write. Asan added bonusthe GLINT Deltawill aso do the triangle and line
set up calculations which further reduces the host's load. The GLINT Gamma device
provides al the functionality of a GLINT Delta but additionally offloads the host of all
geometry and lighting calculations.

The Video Connection

The video stream in amulti-GLINT system with separate framebuffers will need to
cycle amongst the framebuffers so each framebuffer provides the datafor its own
scanlines. Theinterna video timing generator in GLINT does not have the flexibility to
accommodate this so an external video timing generator isneeded. This can typically be
implemented economically in afew large pals.

Performance

The following comments assume the system is rendering bound, that each GLINT has its
own localbuffer and framebuffer, and that the primitives are large enough to have
sufficient pixels for each GLINT to have some to work on.

The pixel throughput of general polygon rendering should increase linearly by the
number of GLINTsin the system.

In the case of lines, image download and bitmasks the performance increase will be less
as each fragment in the primitive needs to be processed by each GLINT. Fragmentson
owned scanlines will be processed at the rate appropriate to the rendering modes, while
other fragments will only take one cycle.

192

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Multi-GLINT Systems

7.6

A General Purpose Dual GLINT System

The mainissuein ascanline interleaved multi-GLINT system is the difficulty of doing a
fast arbitrary bit blt. This operation isimportant for windowing based GUI systems such
as Microsoft Windows, or the X Window System. To provide an optimal 3D graphics on
the 'desktop’ system running in a GUI environment, a different approach can be adopted
inthe dua-GLINT case.

GLINT has a shared framebuffer interface so it is possible for two GLINTSs to share the
framebuffer but have separate localbuffers. The shared framebuffer protocol used to
arbitrate access is designed to ensure fairer access for both GLINTSs than typical
master/slave protocols.

Many 3D operations (especially texture mapping) do not place a high burden on the
framebuffer bandwidth so the framebuffer can be shared with little impact on the 3D
performance expected from adua GLINT system.

GUI operations, which tend to be more framebuffer bound, can be implemented using

just one GLINT, so the performance will be as good asfor asingle GLINT system.

Note that when a 3D window is moved the localbuffer contents will aso need to be
moved aswell. This raisesthe same problem that blts are needed in a split local buffer,
however the performanceisless critical for 3D so the origina blt method using image
upload and image download is typically acceptable. Further, in many cases when a 3D
window moves, it is acceptable for the application to be required to perform aredraw, or
to wait for the next animation frame to be drawn, whereupon the copy becomes
superfluous.

3Dlabs

Proprietary and Confidential 193

Performance Tips GLINT MX Programmer’s Reference Manual

8. Performance Tips
Thefollowing isalist of software programming tips and techniques which can be
applied to maximize GLINT performance.
Thelist is not exhaustive, nor isthis note intended to be a replacement for the
information to be found el sawhere in this manual and in the GLINT MX Hardware
Reference Manua (HRM). Rather it isintended to serve as an introduction to some of
the unique or unusual capabilities of the GLINT chip, and a pointer to where more
detailed documentation can be found.
Thefollowing isalist of the topics which are covered:
* Using VRAM Block Writes - e.g. for clears
 Fast double buffering in awindow using 12bit colorspace double buffering
* Incrementing addresses when writing to the FIFO to enable PCI burst transfers
» Using PCI Disconnect under PIO
» Using bus mastership (i.e. DMA)
* Improving DMA bus bandwidth utilization using the indexed FIFO modes
» Disabling unitsthat are not in use (e.g. Framebuffer reads)
» Useof fast clear planesfor clearing the localbuffer
» Clearing al bitplanes of the localbuffer when possible
* Useof the extent register to minimize the areain the localbuffer and framebuffer
that needs to be cleared
» Useof the GLINT graphics pipelinein preference to the framebuffer (and/or
localbuffer) bypass when possible
» Loading registersin unit order (i.e. Rasterizer first - Host Out last)
e Avoiding unnecessary register updates
» Miscellaneous generic graphics tips
8.1 VRAM Block Writes
Typicaly GLINT boards are equipped with VRAMs that support block writes. This
allows up to 32 pixels at atime to be filled with a constant color by a single framebuffer
write access. This can, lead to roughly a 32fold increase in the speed of, for instance,
clearing alarge area of the framebuffer.
While this technique is most useful when clearing the framebuffer, it can be used to fill
any trapezoid.
194 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Performance Tips

8.2

8.3

8.4

Fast double buffering in a window

Double buffering is atechnique used to achieve visually smooth animation, by rendering
a scene to an offscreen buffer, before quickly displayingit.

GLINT board designs can readily support a variety of double buffering mechanisms
depending on the memory configuration and LUT-DAC used, including:

* BLT
» Full Screen
* Bitplane
e Colorspace
For further details see section 84.3, 85.16.4 and §5.17.1 of this manual.

Note that optimal functionality may be achieved by mixing two or more of the above
double buffering techniques.

Improving PCI bus bandwidth for Programmed I/0O and DMA

The smplest way to program GLINT is by writing data values into the memory mapped
registers. Thisis appropriate for primitives which require few set-up parameters such as
2D lines.

For more complex primitives such as Gouraud shaded triangles, where a significant
number of registers must be loaded for each primitive, it may be more optimal to write
directly to the GLINT FIFO input.

The advantage of this mechanismisthat it is then possible to use DMA burst transfers.

The disadvantage of this method isthat both the address of the register and the data
value to be loaded must be written, apparently doubling the amount of data to be |oaded.

However, to improve DMA bus bandwidth utilization, the registers have been grouped,
into blocks which frequently al need to be updated together, and an indexed addressing
mode is supported which allows asingle "address" to be loaded, followed by the data for
awhole set of registers.

An additional mode is supported which allows a large number of data valuesto be
loaded to the same register. Thisis useful for image downloads.

See section §3.2.3.

PCI burst transfers under Programmed 1/0

PCI bus burst transfers typically allow up to four times the bandwidth of individual
transfers.

However burst transfers are only initiated on the PCI bus when successive addresses are
being written to (i.e. the byte address isincremented by 4). To facilitate the use of burst
transfers when using programmed 1/0 to load the GLINT FIFOs, GLINT multiply maps
the FIFO input register throughout the range:

0x00002000 to 0Xx00002FFF inregion O

3Dlabs

Proprietary and Confidential 195

Performance Tips

GLINT MX Programmer’s Reference Manual

8.5

8.6

8.7

Thus when datais being loaded into the FIFO a software loop should be written which
starts by writing the first data item at the lower extreme of this address range, and works
towards the upper.

Using PCI Disconnect Under Programmed 1/O

The PCI bus protocol incorporates a feature known as PCI Disconnect, which is
supported by GLINT. Oncethe GLINT isin thismode, if the host processor attempts to
write to the full FIFO then instead of the write being lost, the GLINT chip will assert
PCI Disconnect which will cause the host processor to keep retrying the write cycle until
it succeeds.

This feature allows faster download of datato GLINT, since the host need not poll the
InFIFOSpace register but should be used with care since whenever the PCI Disconnect
is asserted the busis effectively hogged by the host processor until such time asthe
GLINT frees up an entry inits FIFO.

Using Bus Mastership (DMA)

Most GLINT boards support PCI bus mastership, allowing the on-board DMA of
GLINT to be used to copy data from host memory into the GLINT FIFO.

If aboard is DMA capable, then bit 25 of the FBMemoryCtl register will be set to 1,
otherwise this bit will be 0.

The use of PCI bus mastership has a number of benefits:

 PCI bus bandwidth utilization is generally much improved. GLINT has been
measured achieving transfer rates of up to 30-40M Bytes/sec with afast host dave
(P90 Neptune chipset).

* PCI bus bandwidth is further improved because the driver software no longer needs
to poll the FIFO flags to find how many entries are empty, before loading it.

* Overall system performance may benefit through increased parallelism between
GLINT and the hogt, as the host can often perform useful work preparing the next
DMA buffer onceit hasinitiated one DMA transfer.

See section §3.2.2 for more details on using DMA.

Disabling units not in use

Asageneral rule any unitswithin GLINT which are not actively in use for the current
rendering should be disabled. Each unit has a bit in a control register for this purpose.
Thiswill maximize pixel throughput in the graphics core.

In particular it isimportant to check that unnecessary reads of the localbuffer are not
taking place. For instance it is perfectly possible to set up the localbuffer read unit such
that GLINT reads per pixel information (such as Z, stencil and fast clear plane data)
which isthen discarded. The effect will be the same visually, but the cost in performance
of making the memory accesses will be very high.

Similar comments apply for the framebuffer read unit which again should only be
enabled to read pixel datawhen it is essential.

196

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual Performance Tips

8.8

8.9

8.10

8.11

8.12

Note that GLINT boards typically support hardware writemasks and these should be
used in preference to the software writemasks.

Rapidly clearing the localbuffer - 1

GLINT supports a specia technique for clearing down areas of the DRAM localbuffer,
16 or even 256 times faster than simply writing to every pixel.

When an application is generating animation images, it is normally necessary not only to
draw each picture into the framebuffer, but also to first clear down the framebuffer, and
to clear down auxiliary buffers such as depth (Z) buffers, stencil buffers, alpha buffers
and others.

In most applications the value written when clearing any given buffer, isthe same at
every pixel location, though different values may be used in different auxiliary buffers.
Thus the framebuffer is often cleared to the value which corresponds to black, while the
depth(2) buffer istypically cleared to avalue corresponding to infinity.

This unique capability isreferred to as the fast clear mechanism.

Essentially the fast clear mechanism provides a method where the time taken to clear
buffers such as the depth(Z) and stencil buffers can be amortized over a number of clear
operations issued by the application.

Rapidly clearing the localbuffer - 2

When clearing the localbuffer it is faster to make accesses to all the bitplanes of the
localbuffer e.g. clear the fast clear planes, stencil & depth(Z) buffers simultaneously.
Thisis because just clearing the depth(Z) requires a read-modify-write, whereas clearing
all the bitplanes can be done with awrite.

Rapid clear of the localbuffer & framebuffer

GLINT can be instructed to maintain arecord of the minimum bounding box that has
been rendered to, in a given period. In some circumstances this may be used to limit the
areathat must be cleared down.

Note that this technique is not appropriate for use in conjunction with the fast clear
mechanism for the localbuffer described above.

For further details see the description of the Host Out Unit in this manual.

Use of the Framebuffer (or Localbuffer) Bypass

Whenever possible rendering should be done through the GLINT graphics pipeline. This
is because reading and writing the framebuffer (or localbuffer) using the bypassis
relatively dow. In some cases performance may even be improved if asmall area of the
framebuffer (and/or localbuffer) is uploaded through the graphics pipeline into a bitmap,
rendered to, and then downloaded again through the graphics pipeline.

Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive should be loaded
into the GLINT FIFO in unit order. Thus the registers associated with the Rasterizer unit

3Dlabs

Proprietary and Confidential 197

Performance Tips

GLINT MX Programmer’s Reference Manual

8.13

8.14

should be loaded first, then Scissor unit, Stipple unit, Color DDA, and so on until the
last unit to be loaded is the Host Out unit (if necessary). Then finally the relevant
command register should be loaded.

For the order of the units refer to Figure 5.1.

Avoiding Unnecessary Register Updates

GLINT control registersretain their value between one primitive and the next. Thusitis
not necessary to reload registers that are unchanged between primitives. e.g. the dY
register usually is set to either +1 or -1 (except when antialiasing).

In addition calculations of register values can often be shared across primitives, for
instance between edges in adjacent polygons in meshes.

Miscellaneous Generic Graphics Tips

The following is a set of miscellaneous tips that are not GLINT specific, but well worth
using:
Avoid polling for Vblank whenever possible, but if you have to poll, consider whether
your application is taking just longer than an integer number of Vblank intervalsto
draw aframe - dightly smplifying the frame to make it just under an integer multiple
can dramatically improve performance.

Another way of looking at the same problem is, if you remove your SwapBuffers()
calls, does your application render many more frames per second? If so, you might be
spending alot of time waiting for buffer swaps, and you should tune your app so that it
draws just enough to fit in one less frame time.

When usng DMA it may be best to flush the DMA buffer to the chip after entering a
large primitive in the buffer (e.g. screen clear), so that the chip is doing useful work
while further primitives are being prepared on the host.

Minimize the use of the Sync command.

Does making your window smaller cause things to speed up? If so, you're probably
fill-limited (bottlenecked by filling the pixelsin the window). Speed things up by
reducing the depth complexity of your scene or by using ssmpler drawing operations
wherever possible (e.g., avoiding depth-buffering for the background or ground plane).

Does making your window smaller have no effect on the time it takes to draw a frame?
If so, you're probably geometry-limited (bottlenecked by transformations, clipping, or
lighting) or host-limited.

Measure the time it takes your application to draw aframe. Now comment out all the
drawing calls, and measure again. If most of the elapsed time per frameis spent doing
things other that drawing, your application is probably host-limited rather than
geometry-limited.

If you're geometry-limited, you can speed things up by using simpler models with
fewer vertices, by reducing the amount of clipped geometry, by using fewer light
sources, etc. If you're host-limited you should use profiling tools to figure out where
your application is spending its time and then tune those areas.

198

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Appendix A. Graphics Register Reference

This Appendix gives details of the format of each of the Graphics registersfor GLINT.
The GLINT MX Hardware Reference Manual, details al other registers not given here.

Theregisters are listed alphabetically by name.

* Region: specifies the section of the GLINT memory map in which the
register appears. See the GLINT MX Hardware Reference Manual for
more details.

» Offset: specifies the address offset from the base address of the region
of thisregister.

» Tag: specifiesthe Tag value used in certain DMA modes. For more
details see the Programming Model chapter.

» Read/write indicates that the register can be both written and read at
the address given by Offset.

* Write indicates that the register can only be written. The value of any
read from this address is undefined.

* Resat Vaue specifies the value of the register following reset. In
general for the Graphics registers this is undefined.

In the diagrams:

* reserved indicates bits that may be used in future members of the
GLINT family. To ensure upwards compatibility, any software should
not assume a value for these bits when read, and should always write
them as zeros.

» not used indicates bits that are adjacent to numeric fields. These may
be used in future members of the GLINT family, but only to extend the
dynamic range of these fields. While reading from these bitsis
undefined, a good convention to follow isto sign extend the numeric
value, rather than masking them to zero before writing the register.
Thiswill ensure compatibility if the dynamic rangeisincreased in
future members of the GLINT family.

* For enumeration fields which do not specify the full range of possible
values, only the specified values should be used. Future members of
the GLINT family may define a meaning for the unused values.

3Dlabs Proprietary and Confidential 199

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Al phaBl endMbde

Name: AlphaBlend Mode

Unit: Al pha Bl end

Region: O Offsat: 0x0000. 8810
Tag: 0x102

Read/write Reset Value: Undefi ned

31 28 24 20 16 12 8 4 0

Alpha Conversion
Color Conversion

Alpha Dst
Alpha Type Dst blend
Color Order Src blend
No Alpha Buffer Alpha Blend Enable

Color Format

Controls Alpha Blending.

Where the RGB format has an apha component it may still not exist if those memory
planes are not populated. In this case the NoAlphaBuffer bit in the AlphaBlendMode
register should be set which causes the apha component to be set to 255 (corresponding
to an aphavalue of 1.0). The values in the tables below are treated as floating point.

Note that alpha blending is not defined for the Color Index (Cl) mode color formats.
Bit0 AlphaBlend Enable:

0 =Disable
1=Enable
Bit 1-4 Source Blend Mode:
Mode | Vaue R G B A
0 |ZERO 0 0 0 0
1 |ONE 1 1 1 1
2 | DST_COLOR Rd Gd Bd Ad
3 | ONE_MINUS DST_COLOR 1-Rd 1-Gq 1-Bd 1-Ad
4 | SRC ALPHA As As As As
5 | ONE_MINUS SRC ALPHA 1-Asg 1-Ag 1-As 1-As
6 | DST_ALPHA Ad Ad Ad Ad
7 | ONE_MINUS DST_ALPHA 1-Ad 1-Ad 1-Ad 1-Ad
8 | SRC ALPHA SATURATE min of min of min of 1
(As,1-Ad) | (As 1-Ad) [(As 1-Ad)

200 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Bit 5-7 Destination Blend Mode:

Mode | Vdue R G B A
0 |ZERO 0 0 0 0
1 |ONE 1 1 1 1
2 |SRC COLOR Rs Gs Bs As
3 | ONE_MINUS SRC COLOR 1-Rs 1-Gsg 1-Bs 1-As
4 |SRC ALPHA As As As As
5 |ONE_MINUS SRC ALPHA 1-Ag 1-As 1-As 1-As
6 DST_ALPHA Ad Ad Ad Ad
7 |ONE_MINUS DST_ALPHA 1-Ad 1-Ad 1-Ad 1-Ad

Bit 8-11 Color Format:

Internal Color Channel
Format Name R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12
Color 3 4:4:4:4Front 4@0 4@8 4@16 4@24
Order: 4 4:4:4:4Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2Front 3@0 3@3 2@6 255
6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2@5 1@7 255
13 5:5:5Back 5@16 5@21 5@26 255
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:.4.4 4@8 4@4 4@0 4@12
Color 3 4:4:4:4Front | 4@16 4@8 4@0 4@24
Order: 4 4:4:4.4Back | 4@20 4@12 4@4 4@28
RGB 5 3:3:2Front 3@5 3@2 2@0 255
6 3:3:2Back 3@13 3@10 2@8 255
7 1:2:1Front 1@3 2@1 1@0 255
13 5:5:5Back 5@26 5@21 5@16 255
Cl 14 Cl8 8@0 0 0 0
15 Cl4 4@0 0 0 0

1) n@m means n bits starting at bit m are read from the framebuffer and
scaled to fit the 8bit wide internal color channel.

2) Front and Back modes read the color value only from the corresponding
low or high bits, to assist with color space double buffering.

3) A numerical value (0 or 255) is the value substituted when that channel
does not exist in the framebuffer.

3Dlabs Proprietary and Confidential 201

Graphics Register Reference

GLINT MX Programmer’s Reference Manual

Bit 12

Bit 13

Bit 14

Bit 15

Bit 16

Bit 17

No AlphaBuffer Present:

0 = Alpha Buffer present

1 = No AlphaBuffer present

ColorOrder:
0=BGR
1=RGB

Alpha Type:
0 = OpenGL
1 = QuickDraw 3D

AlphaDst:
0=FBData
1 = FBSourceData

Color Conversion
0= Scae
1 = Shift

Alpha Conversion
0=Scde
1 = Shift

202

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Al phaTest Mode

Name: AlphaTest Mode

Unit: Al pha Test

Region: O Offsat: 0x0000. 8800
Tag: 0x100

Read/write Reset Value: Undefi ned

31 24 16 8 2
reference
Unsigned compare Enable unit
function

When the unit is enabled, the compare operation compares the fragment's a pha val ue,
against the reference alpha value in this register. If the comparison result isfalse, then
the fragment is culled, and will not be drawn.

If the dphatest isdisabled then it isasif the alphatest always passes.

The compare operation is done unsigned. The sense of the test is such that if the
comparison is LESS and the reference vaue is 0x80, then fragments with alpha values
between 0x0 and Ox7F will pass the test.

BitO AlphaTest Enable:
0 =Disable
1=Enable
Bit1-3 Unsigned Compare Function:
Mode Comparison Function
0 NEVER
1 LESS
2 EQUAL
3 LESS OR EQUAL
4 GREATER
5 NOT EQUAL
6 GREATER OR EQUAL
7 ALWAYS

Bit4-11 Referencevaue

3Dlabs Proprietary and Confidential 203

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Ant i al 1 asMode

Name: Antialias Mode

Unit: Anti alias Application

Region: O Offsat: 0x0000. 8808
Tag: 0x101

Read/write Reset Value: Undefi ned

31 24 16 8 0

Color mode Q \
Antiaias Enable
Controls the operation of antialiasing. When the unit is enabled:

* InColor Index (Cl) mode the bottom 4 hits of the color index of a
fragment is replaced by the coverage value scaled by 15/256, where the
result is rounded to the nearest integer.

* InRGBA mode the apha component of afragment is multiplied by the
coverage vaue, but the RGB components are not changed.

Note that the CoverageEnable bit in the Render command must also be set to enable

antialiasing.
Bit0 Antialias Enable:
0 =Disable
1=Enable
Bit0 Color Mode:
0=RGBA
1=Cl

204 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

AreaSti ppl eMode

Name: Area Stipple Mode

Unit: Stipple

Region: O Offsat: 0x0000. 81A0
Tag: 0x34

Read/write Reset Vaue: Undefi ned

31 24 16 8 0
reserved Y Offset X Offset Y sel X sel
Mirror Y] / |
Mirror X Address select Enable unit

Invert Stipple Pattern —

Controls Area Stippling.
Both the AreaStippleEnable bit in the Render command and the enable in the
AreaStippleMode register must be set, to enable the area stippl e test.
BitO Unit Enable:
0 =Disable
1 =Enable
Bit1-3 X address select:
0=1hit
1=2hit
2 =3 hit
3 =4hit
4 =5 hit
Bit4-6 Y address select:
0 =1 hit
1=2hit
2 =3 hit
3 =4hit
4 =5 hit
Bit7-11 XOffset
Bit12-16 Y Offset
Bitl7 Invert Stipple Pattern:
0= No Invert
1=Invert
Bit18 Mirror X:
0 = No Mirror
1 = Mirror
Bit19 Mirror Y:
0 = No Mirror
1 = Mirror

3Dlabs Proprietary and Confidential 205

Graphics Register Reference GLINT MX Programmer’s Reference Manual

AreaSti ppl ePattern[0. .. 31]

Name: Area Stipple Pattern

Unit: Stipple

Region: 0 Offst: 0x0000. 8200, ..., 0x0000.82F8
Tag: 0x40, ..., Ox5F

Read/write Reset Value: Undefi ned

31 24 16 8 0
32 bit mask

These 32 registers provide the bitmask which enables and disables corresponding
fragments for drawing when rasterizing a primitive with area stippling.

Both the AreaStippleEnable in the Render command and enable in the AreaStippleM ode
register must be set, to enable the area stipple test.

Name: Initial Color - Alpha
ASt art
Unit; Col or DDA
Region: O Offset: 0x0000. 87C8
Tag: OxF9

Read/write Reset Value: Undefi ned

31 24 16 8 0

not used integer fraction

Thisregister isused to set theinitial value for the Alphavalue for avertex whenin
Gouraud shading mode. The value is 2's complement 9.15 fixed point format.

206 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Bi t MaskPattern

Name: Bit Mask Pattern
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8068
Tag: 0xD
Write Reset Value: Undef i ned
31 24 16 8 0
o bt

Vaue used to control the bit mask stipple operation (if enabled). Fragments are accepted
or rejected based on the current BitMask test modes defined by the RasterizerM ode
register. Note that the SyncOnBitmask bit in the Render command must also be enabled.

Bor der Col or
Name: Texture Border Color
Unit: Texture
Region: O Offsat: 0x0000. 84A8
Tag: 0x95
Read/write Reset Value: Undef i ned
31 24 16 8 0
" Apa | Bue | Geen | Red

32hit color value to be used for texture borders.

3Dlabs Proprietary and Confidential 207

Graphics Register Reference

GLINT MX Programmer’s Reference Manual

BSt ar t
Name: Initial Color - Blue
Unit: Col or DDA
Region: O Offsat: 0x0000. 87B0
Tag: OxF6
Read/write Reset Value: Undef i ned
31 24 16 8 0
" notused Cinteger fraction |

Thisregister isused to set theinitial value for the Blue value for avertex whenin
Gouraud shading mode. The value is 2's complement 9.15 fixed point format.

Chr omaLower

Name: ChromalL ower
Unit; Col or DDA
Region: 0 Offset: 0x0000. 8F10
Tag: Ox1E2
Write Reset Value: Undefi ned
3]-I L] L] L] L] L] I24 L] L] L] L] L] L] I]-6 L] L] L] L] L] L] L] 8 L] L] L] L] L] L] L] O
Alpha Blue Green Red
3]-I L] L] L] L] L] I24I L] L] L] L] L] L] I16l L] L] L] L] L] L] L] 8l L] L] L] L] L] L] L] O
32 bit value

Thisregister holds the lower bound colour for the chormatest. Each colour compoents
has a seperate boundary held as an unsigned 8 bit number with Red in the lower byte,
then greeen, then blue and finaly in the upper byte alpha. Thetest isinclusive so thea
fragment isin rangeif all its components are less than or equal to the upper bound /
greater than or equal to the lower bound. The result of the test can be used to prevent
the fragment being written to the framebuffer.

208

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Chr omaTest Mbde

Nane: Chr omaTest Mode

Unit: Al phaBl end

Region O O fset: 0x0000. 8F18
Tag Ox1E3

Read/ write Reset Val ue: Undefi ned

31 28 24 20 16 12 8 4 0
Sense
Source
Chroma test enabl

Used to test the fragment’ s color against arange of colors after AlphaBlending. The
chromatest is enabled by the Enable bit in the ChromaM ode register.

Bit0 Chromatest enable:
0 =Disable
1=Enable

Bit1-2 Source:
0 = FBSourceData
1=FBData
2 =Input Color
3 = Output Color

Bit3 Sense:
0 =Include
1 = Exclude

3Dlabs Proprietary and Confidential 209

Graphics Register Reference

GLINT MX Programmer’s Reference Manual

Chr omaUpper
Name: ChromalUpper
Unit: Col or DDA
Region: O Off sat: 0x0000. 8F08
Tag: Ox1E1l
Write Reset Value: Undef i ned
31 24 16 0
O Apha Blle Green Red
31 24 16 0
T e '

This register holds the upper bound colour for the chormatest. Each colour compoents
has a seperate boundary held as an unsigned 8 bit number with Red in the lower byte,
then greeen, then blue and finaly in the upper byte alpha. Thetest isinclusive so thea

fragment isin rangeif all its components are less than or equal to the upper bound /

greater than or equal to the lower bound. The result of the test can be used to prevent

the fragment being written to the framebuffer.

210

Proprietary and Confidential

3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Register Reference

Name: Color
Unit; Col or DDA
Region: O Offsat: 0x0000. 87F0
Tag: OxFE
Write Reset Value: Undefi ned
3L 24 __ 1 8
Alpha Blue Green Red
31 24 16 8
32 bit value

Used for downloading image data to the framebuffer. The format is either the standard
color format, or the raw framebuffer format if the color formatting unit is disabled.

Col or

In Cl mode the color index is placed in bits O-7. If the color index isless than 8 bits then

itisleft justified in the most significant end of bits 0-7, and the least significant bits

should be st to zero.
This register cannot be saved and restored as part of atask context switch.

When used this register should always be reloaded at start of every command, and the

Color DDA unit must be disabled prior to loading it.

It can result in higher performance than using the ConstantCol or register when rendering
flat shaded, depth buffered primitives.

3Dlabs

Proprietary and Confidential

211

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Col or DDAMbde
Name: Color DDA Mode
Unit: Col or DDA
Region: O Offsat: 0x0x0000. 87EO0

Tag: OxFC
Read/write Reset Value: Undefi ned

31 24 16 8 0

reserved

——

Shading Mode Unit Enable

The bit fields control the mode of operation of the Color DDA unit:

BitO Unit Enable:
0 =Disable
1=Enable

Bitl Shading mode control:
O=Flat
1 = Gouraud

212 Proprietary and Confidential

3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Const ant Col or

Name: Constant Color

Unit: Col or DDA

Region: O Offsat: 0x0000. 87ES8
Tag: OxFD

Read/write Reset Value: Undefi ned

31 24 16 8 0
Alpha Blue Green Red
31 24 16 8 0
32 bit value

Set to either an encoded color RGBA, (or araw framebuffer data value if the color
formatting unit is disabled) when in Flat shading mode (see the ColorDDAMode
register).

In Cl mode the color index is placed in bits 0-7. If the color index is less than 8 bits then
it isleft justified in the most significant end of bits0-7, and the least significant bits

should be set to zero.
Cont I nue
Name: Continue
Unit; Rasteri zer
Region: O Offsat: 0x0000. 8058
Tag: OxB
Write Reset Value: Undefi ned
L 24 16 8 0
reserved unsigned 16 bit integer

This command causes rasterization to continue after new delta value(s) have been
loaded, but does not cause either of the trapezoid's edge DDASs to be reloaded.

The datafield holds the number of scanlines (or sub scanlines) to fill. Note this count
does not get loaded into the Count register.

3Dlabs Proprietary and Confidential 213

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Cont i nueNewDom

Name: Continue New Dominant Edge
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8048
Tag: 0x9
Write Reset Value: Undef i ned
31 24 16 8 0
BOBORE=TI000000 MOROC22T0T29000

This command causes rasterizati on to continue with a new dominant edge. The dominant
edge DDA in the rasterizer is reloaded with the new parameters. The subordinate edgeis
carried on from the previous trapezoid. This alows any convex 2D polygon to be broken
down into a collection of trapezoids and continuity maintained across boundaries.

Since this command only affects the rasterizer DDA (and not any of the other units), itis
not suitable for 3D operations.

The data field holds the number of scanlines (or sub scanlines) to fill. Note this count
does not get loaded into the Count register.

Cont i nueNewLi ne

Name: Continue New Line Segment
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8040
Tag: 0x8
Write Reset Value: Undef i ned
31 24 16 8 0
BOBORC=TI000000 MIROC22T0T29008

This command causes rasterization to continue for the next segment in apolyline. The
XY position is carried on from the previous line, however the fraction bitsin the DDAs
can be kept, set to zero, one half, or nearly one haf, under control of the RasterizerMode
register.

The datafield holds the number of pixels (or sub pixels) in aline. Note this count does
not get loaded into the Count register.

214 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

The use of ContinueNewLine is not recommended for OpenGL because the DDA units
will start with adight error as compared with the value they would have been loaded
with for the second and subsequent segments.

3Dlabs Proprietary and Confidential 215

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Cont | nueNewSub

Name: Continue New Subordinate Edge
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8050
Tag: OxA
Write Reset Value: Undef i ned
31 24 16 8 0
BEBSSE=22008000 MRNCT2TIE200

This command causes rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant edgeis carried on
from the previous trapezoid. Thisis very useful when scan converting triangleswith a
'knee' (i.e. two subordinate edges).

The datafield holds the number of scanlines (or sub scanlines) to fill. Note this count
does not get loaded into the Count register.

Count
Name: Count
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8030

31

Tag: 0x6
Read/write Reset Value: Undefi ned

24 16 8 0

reserved unsigned 16 bit integer

Contents is dependent on the mode set in the Render command:
Number of pixelsin aline.

Number of scanlinesin atrapezoid.
Number of sub scanlinesin an antialiased trapezoid.
Diameter of an antialiased point in sub scanlines.

216

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dAdx
Name: X Derivative - Alpha
Unit: Col or DDA
Region: O Offsat: 0x0000. 87D0
Tag: OxFA
Read/write Reset Value: Undef i ned
31 N S __ 16 8 N o

not used integer fraction

Thisregister is used to set the X derivative for the Alpha value for the interior of a
trapezoid when in Gouraud shading mode. The valueisin 2's complement 9.15 fixed

point format.
dAdyDom
Name: Y Derivative Dominant - Alpha
Unit; Col or DDA
Region: 0 Offsat: 0x0000. 87D8
Tag: OxFB
Read/write Reset Value: Undefi ned
31 24 16 8 0

not used integer fraction

Thisregister isused to set the Y derivative dominant, for the Alphavaue along aline, or
for the dominant edge of atrapezoid, when in Gouraud shading mode. The valueisin 2's
complement 9.15 fixed point format.

3Dlabs Proprietary and Confidential 217

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dBdx
Name: X Derivative - Blue
Unit: Col or DDA
Region: O Offsat: 0x0000. 87B8
Tag: OxF7
Read/write Reset Value: Undef i ned
31 N S __ 16 8 N o

not used integer fraction

Thisregister is used to set the X derivative for the Blue value for the interior of a
trapezoid when in Gouraud shading mode. The valueisin 2's complement 9.15 fixed

point format.
dBdyDom
Name: Y Derivative Dominant - Blue
Unit; Col or DDA
Region: O Offset: 0x0000. 87C0

Tag: OxF8
Read/write Reset Value: Undefi ned

31 24 16 8 0

not used integer fraction

Thisregister isused to set the Y derivative dominant, for the Blue value along aline, or
for the dominant edge of atrapezoid, when in Gouraud shading mode. Thevalueisin 2's
complement 9.15 fixed point format.

218 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

Dept h
Name: Depth
Unit: Dept h
Region: O Offsat: 0x0000. 89A8
Tag: 0x135
Read/write Reset Value: Undef i ned
N S 16 8 0

Right justified depth value

Holds an externally sourced 32 bit depth value. If the depth buffer holds less than 32bits
then the user supplied depth value isright justified to the least significant end. The
unused most significant bits should be set to zero.

Thisisused in the draw pixels function where the host supplies the depth values through
the Depth register.

Alternatively thisis used when a constant depth value is needed, for example, when
clearing the depth buffer, or for 2D rendering where the depth is held constant.

3Dlabs Proprietary and Confidential 219

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Dept hMbde
Name: Depth Mode
Unit: Dept h
Region: O Offsat: 0x0000. 89A0

Tag: 0x134
Read/write Reset Value: Undefi ned

31I L] L] L] L] L] I24l L] L] L] L] L] L] L] 16. L] L] L] L] L] L] L] 8l L] L] L] 0
Compare mode New depth source / /

Write Mask Unit Enable

Controls the comparison of afragment's depth value and updating of the depth buffer. If
the compare function is LESS and the result is true then the fragment value is less than

the source value.
Bit0 Unit Enable;
0 =Disable
1 = Enable
Bitl Writemask:

0 = Disable write to depth buffer
1 = Enable write to depth buffer

Bit2-3 Source of depth value for comparison:

0 = Fragment's depth value

1=LBData-
for copy pixels when destination depth planes are not
updated.

2 = Depth register

3 = LBSourceData -
for copy pixels when destination depth planes are
updated.

220 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Register Reference

Bit4-6 Comparison function:
Mode Comparison Function
0 NEVER
1 LESS
2 EQUAL
3 LESS OR EQUAL
4 GREATER
5 NOT EQUAL
6 GREATER OR EQUAL
7 ALWAYS
Name: X Derivative - Fog
dFdx
Unit: Fog
Region: O Offset: 0x0000. 86A8
Tag: OxD5
Read/write Reset Value: Undef i ned
24 0% 8 0
integer fraction

Fog coefficient derivative per unit X for usein rendering trapezoids. The vaueisin 2's
complement 10.22 fixed point format.

3Dlabs

Proprietary and Confidential

221

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dFdyDom
Name: Y Derivative Dominant - Fog
Unit: Fog
Region: O Offsat: 0x0000. 86B0

Tag: OxD6
Read/write Resat Value: Undefi ned

31 24 16 8 0

integer fraction

Fog coefficient derivative per unit Y along aline, or for the dominant edge of a
trapezoid. The valueisin 2's complement 10.22 fixed point format.

dGdx
Name: X Derivative - Green
Unit: Col or DDA
Region: O Offsat: 0x0000. 87A0
Tag: OxF4
Read/write Reset Value: Undef i ned
31 4 __ 16 8 0

not used integer fraction

This register is used to set the X derivative for the Green value for the interior of a
trapezoid when in Gouraud shading mode. The value isin 2's complement 9.15 fixed
point format.

222 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference
dGdyDom
Name: Y Derivative Dominant - Green
Unit: Col or DDA
Region: O Offsat: 0x0000. 87A8
Tag: OxF5

Read/write Reset Value: Undefi ned

31 24 16 8 0

not used integer fraction

Thisregister isused to set the Y derivative dominant for the Green value along aline or
for the dominant edge of atrapezoid, when in Gouraud shading mode. The valueisin 2's
complement 9.15 fixed point format.

3Dlabs

Proprietary and Confidential 223

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Di t her Mode

Name: Dither Mode
Unit: Col or Formatting
Region: O Offsat: 0x0000. 8818

Tag: 0x103
Read/write Reset Value: Undef i ned

31 24 16 8 0
Rounding Mode X Offset
Alpha Dither Color format

Y Offst Dither Enable
Reserved Color Order Unit enable

Controls the color formatting unit.

Bit0

Bitl

Bit2-5

Unit Enable;
0 =Disable
1=Enable

Dither Enable:
0 =Disable
1 = Enable

Color Format:

1) n@m means that the internal color channdl is converted into an n bit
number and stored in the framebuffer at bit m. Bit zero isthe least
significant bit position.

2) Front and Back modes replicate the color value into the low and high
bits to assist with color space double buffering. The modes are redundantly
duplicated to mirror the color format field of the AlphaBlendMode register.
Writemasks should be used to select only the high or low bits for each
channdl.

3) ClI vaues are replicated into each byte (CI8) or nibble (Cl4) to assist
with color space double buffering.

4) A dash indicates that this channel does not occur in the framebuffer.

224

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Register Reference

Internal Color Channel
Format Name R G B A
0 8:8:8:8 8@0 8@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:.4.4 4@0 4@4 4@8 4@12
3 4:4:4:4 4@0 4@8 4@16 4@24
Front 4@4 4@12 4@20 4@28
Color 4 4:4:.4.4 4@0 4@8 4@16 4@24
Order: Back 4@4 4@12 4@20 4@28
BGR 5 3:3:2 3@0 3@3 2@6 -
Front 3@8 3@11 2@14
6 3:3:2 3@0 3@3 2@6 -
Back 3@8 3@11 2@14
7 1:2:1 1@0 2@1 1@3 -
Front 1@4 2@5 1@7
8 1:.2:1 1@0 201 1@3 -
Back 1@4 2@5 1@7
13 5:5:5 5@0 5@5 5@10 -
Back 5@16 5@21 5@26
0 8:8:8:8 8@16 8@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
3 4:4:4:4 4@16 4@8 4@0 4@24
Front 4@20 4@12 4@4 4@28
Color 4 4:4:4:4 4@16 4@8 4@0 4@24
Order: Back 4@20 4@12 4@4 4@28
RGB 5 3:3:2 3@5 3@2 2@0 -
Front 3@13 3@10 2@8
6 3:3:2 3@5 3@2 2@0 -
Back 3@13 3@10 2@8
7 1:2:1 1@3 2@1 1@0 -
Front 1@7 2@5 1@4
8 1:2:1 1@3 2@1 1@0 -
Back 1@7 2@5 1@4
13 5:5:5 5@10 5@5 5@0 -
Back 5@26 5@21 5@16
Cl 14 Cl8 8@0 0 0 0
15 Cl4 4@0 0 0 0
Bit6-7 XOffset to enable window relative dithering.
Bit8-9 Y Offset to enable window relative dithering.
Bit10 Color Order:
0=BGR
1=RGB

3Dlabs Proprietary and Confidential 225

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Bit1l4 Alpha Dither:

0 = Default
1 =No Dither
Bitl15 Rounding Mode:
0 = Truncate
1=Round
Name: Kd Derivative unit X - Blue
Unit: Texture
dKdBdx
Region: O Offset: 0x0000. 8D38
Tag: Ox1A7

Read/write Reset Vaue: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Kd derivative per unit X for the Blue color component. The valueis 2.22, 2's
complement fixed point format.

226 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’ s Reference Manual

Graphics Register Reference

dKdBdyDom
Name: Kd Derivative unit Y Dominant edge - Blue
Unit: Texture
Region: O Offsat: 0x0000. 8D40
Tag: Ox1A8
Read/write Reset Value: Undef i ned
31 24 16 8 0
 notused - fraction |

\ integer

Kd derivative per unit Y along the dominant edge for the Blue color component. The
valueis2.22, 2's complement fixed point format.

3Dlabs

Proprietary and Confidential

227

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dKddx
Name: Kd Derivative unit X
Unit: Texture
Region: O Offsat: 0x0000. 86ES8

Tag: OxDD
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Kd derivative for unit X. Thevalueis 2.22, 2's complement fixed point format.

dKddyDom
Name: Kd Derivative unit Y Dominant edge
Unit: Texture
Region: O Offsat: 0x0000. 86F0

Tag: OxDE
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Kd derivative per unit Y aong the dominant edge. The value is 2.22, 2's complement
fixed point format.

228 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dKdGdx
Name: Kd Derivative unit X - Green
Unit: Texture
Region: 0 Offst: 0x0000. 8D20
Tag: Ox1A4
Read/write Reset Value: Undef i ned
31 24 16 8 0
" onotused | | faton
\ integer

Kd derivative per unit X for the Green color component. The valueis 2.22, 2's
complement fixed point format.

dKdGdy Dom
Name: Kd Derivative unit Y Dominant edge - Green
Unit: Texture
Region: 0 Offst: 0x0000. 8D28
Tag: Ox1A5
Read/write Reset Vaue: Undef i ned
31 24 16 8 0
" onotesed | | faton
\ integer

Kd derivative per unit Y along the dominant edge for the Green color component. The
value is 2.22, 2's complement fixed point format.

3Dlabs Proprietary and Confidential 229

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dKdRdx
Name: Kd Derivative unit X - Red
Unit: Texture
Region: 0 Offset: 0x0000.8D08

Tag: Ox1Al1
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Kd derivative per unit X for the Red color component. The valueis 2.22, 2's
complement fixed point format.

dKdRdyDom
Name: Kd Derivative unit Y Dominant edge - Red
Unit: Texture
Region: O Offsat: 0x0000. 8D10

Tag: Ox1A2
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Kd derivative per unit Y aong the dominant edge for the Red color component. The
valueis2.22, 2's complement fixed point format.

230 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dKsBdx
Name: Ks Derivative unit X - Blue
Unit: Texture
Region: O Offsat: 0x0000. 8CB8
Tag: 0x197
Read/write Reset Value: Undef i ned
31 24 16 8 0
" onotused | | faton
\ integer

Ks derivative per unit X for the Blue color component. The valueis 2.22, 2's
complement fixed point format.

dKsBdyDom
Name: Ks Derivative unit Y Dominant edge - Blue
Unit: Texture
Region: O Offsat: 0x0000. 8CC0
Tag: 0x198
Read/write Reset Value: Undef i ned
31 24 16 8 0
" onotesed | | faton
\ integer

Ks derivative per unit Y along the dominant edge for the Blue color component. The
valueis2.22, 2's complement fixed point format.

3Dlabs Proprietary and Confidential 231

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dKsdx
Name: Ks Derivative unit X
Unit: Texture
Region: O Offsat: 0x0000. 86D0

Tag: OxDA
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Ksderivative for unit X. The valueis 2.22, 2's complement fixed point format.

dKsdyDom
Name: Ks Derivative unit Y Dominant edge
Unit: Texture
Region: O Offsat: 0x0000. 86D8

Tag: OxDB
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Ks derivative per unit Y along the dominant edge. The valueis 2.22, 2's complement
fixed point format.

232 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dKs Gdx
Name: Ks Derivative unit X - Green
Unit: Texture
Region: O Offsat: 0x0000. 8CAO
Tag: 0x194
Read/write Reset Value: Undef i ned
31 24 16 8 0
" onotused | | faton
\ integer

Ks derivative per unit X for the Green color component. The valueis 2.22, 2's
complement fixed point format.

dKsGdyDom
Name: Ks Derivative unit Y Dominant edge - Green
Unit: Texture
Region: O Offsat: 0x0000. 8CA8
Tag: 0x195
Read/write Reset Value: Undef i ned
31 24 16 8 0
" onotesed | | faton
\ integer

K's derivative per unit Y along the dominant edge for the Green color component. The
valueis2.22, 2's complement fixed point format.

3Dlabs Proprietary and Confidential 233

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dKsRdx
Name: Ks Derivative unit X - Red
Unit: Texture
Region: O Offsat: 0x0000. 8C88

Tag: 0x191
Read/write Reset Vaue Undefi ned

31 24 16 8 0
not used fraction

\ integer

Ks derivative per unit X for the Red color component. The valueis 2.22, 2's complement

fixed point format.
dKsRdyDom
Name: Ks Derivative unit Y Dominant edge - Red
Unit: Texture
Region: O Offsat: 0x0000. 8C90

Tag: 0x192
Read/write Reset Value: Undefi ned

31 24 16 8 0
not used fraction

\ integer

Ksderivative per unit Y along the dominant edge for the Red color component. The
valueis2.22, 2's complement fixed point format.

234 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dQdx

Name: X Derivative - Texture

Unit: Texture

Region: O Offsat: 0x0000. 83C0
Tag: 0x078

Read/write Reset Value: Undefi ned

31 24 16 8 0

2's complement fixed point number

Used to set the X derivative for the Q parameter for texture map interpolation. The value
isin 2's complement fixed point format. The binary point is at an arbitrary location, but
must be consistent for dl S, T and Q values.

dQdy

Name: Y Derivative - Texture

Unit: Texture

Region: O Offsat: 0x0000. 83ES8
Tag: 0x07D

Read/write Reset Vaue: Undefi ned

31 24 16 8 0

2's complement fixed point number

Used to set the Y derivative for the Q parameter for texture map interpolation. The value
isin 2's complement fixed point format. The binary point is at an arbitrary location, but
must be consistent for al S, T and Q values.

3Dlabs Proprietary and Confidential 235

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dQdyDom
Name: Y Derivative Dominant - Texture
Unit: Texture
Region: O Offsat: 0x0000. 83C8

Tag: 0x79
Read/write Reset Value: Undefi ned

31 24 16 8 0

2's complement fixed point number

Used to set the Y derivative dominant for the Q parameter for texture map interpolation.
Thevalueisin 2's complement fixed point format. The binary point is at an arbitrary
location, but must be consistent for all S, T and Q values.

dRdx
Name: X Derivative - Red
Unit: Col or DDA
Region: O Offsat: 0x0000. 8788
Tag: OxF1
Read/write Reset Value: Undef i ned
31 4 __ 16 8 0

not used integer fraction

This register is used to set the X derivative for the Red value for the interior of a
trapezoid when in Gouraud shading mode. The valueisin 2's complement 9.15 fixed
point format.

236 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dRdyDom
Name: Y Derivative Dominant - Red
Unit: Col or DDA
Region: O Offsat: 0x0000. 8790
Tag: OxF2
Read/write Reset Value: Undef i ned
31 4 __ 16 8 0

not used integer fraction

Thisregister isused to set the Y derivative dominant for the Red value along aline, or
for the dominant edge of atrapezoid, when in Gouraud shading mode. The valueisin 2's
complement 9.15 fixed point format.

dSdx
Name: X Derivative - Texture
Unit: Texture
Region: O Offsat: 0x0000. 8390
Tag: 0x072
Read/write Reset Value: Undef i ned

31 24 16 8 0

2's complement fixed point number

Used to set the X derivative for the S parameter for texture map interpolation. The value
isin 2's complement fixed point format. The binary point is at an arbitrary location, but
must be consistent for al S, T and Q values.

3Dlabs Proprietary and Confidential 237

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dSdy
Name: Y Derivative - Texture
Unit: Texture
Region: O Offsat: 0x0000. 83D8
Tag: 0x07B
Read/write Reset Value: Undef i ned

31 24 16 8 0

2's complement fixed point number

Used to set the Y derivative for the S parameter for texture map interpolation. The value
isin 2's complement fixed point format. The binary point is at an arbitrary location, but
must be consistent for dl S, T and Q values.

dSdyDom
Name: Y Derivative Dominant - Texture
Unit: Texture
Region: O Offsat: 0x0000. 8398

Tag: 0x73
Read/write Reset Value: Undefi ned

31 24 16 8 0

2's complement fixed point number

Used to set the Y derivative dominant for the S parameter for texture map interpolation.
Thevalueisin 2's complement fixed point format. The binary point is at an arbitrary
|ocation, but must be consistent for all S, T and Q values.

238 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dTdx
Name: X Derivative - Texture
Unit: Texture
Region: O Offsat: 0x0000. 83A8
Tag: 0x075
Read/write Reset Value: Undef i ned

31 24 16 8 0

2's complement fixed point number

Used to set the X derivative for the T parameter for texture map interpolation. The value
isin 2's complement fixed point format. The binary point is at an arbitrary location, but
must be consistent for dl S, T and Q values.

dTdy
Name: Y Derivative - Texture
Unit: Texture
Region: O Offsat: 0x0000. 83E0
Tag: 0x07C
Read/write Reset Value: Undef i ned

31 24 16 8 0

2's complement fixed point number

Used to set the X derivative for the T parameter for texture map interpolation. The value
isin 2's complement fixed point format. The binary point is at an arbitrary location, but
must be consistent for al S, T and Q values.

3Dlabs Proprietary and Confidential 239

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dTdyDom
Name: Y Derivative Dominant - Texture
Unit: Texture
Region: O Offsat: 0x0000. 83B0

Tag: 0x76
Read/write Reset Value: Undefi ned

31 24 16 8 0

2's complement fixed point number

Used to set the Y derivative dominant for the T parameter for texture map interpolation.
Thevalueisin 2's complement fixed point format. The binary point is at an arbitrary
location, but must be consistent for all S, T and Q values.

dXDom
Name: Delta X Dominant
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8008

Tag: Ox1
Read/write Reset Value: Undefi ned

31 24 16 8 0

Integer Fraction

Value added when moving from one scanline (or sub scanline) to the next for the
dominant edge in trapezoid filling. The value isin 2's complement 16.16 fixed point
format.

Also holds the change in X when plotting lines. For Y major lines thiswill be some
fraction (dx/dy), otherwise it isnormally = 1.0, depending on the required scanning
direction.

240

Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dXSub
Name: DeltaX Subordinate
Unit: Rasteri zer
Region: O Offsat: 0x0000. 8018
Tag: 0x3
Read/write Reset Value: Undef i ned
. 024 16 8 0

Integer Fraction

Value added when moving from one scanline (or sub scanline) to the next for the
subordinate edge in trapezoid filling. The valueisin 2's complement 16.16 fixed point

format.
dyY
Name: Ddta Y
Unit: Rasteri zer
Region: 0 Offset: 0x0000. 8028

Tag: 0x5
Read/write Reset Value: Undefi ned

Integer Fraction

Vaue added to Y to move from one scanline to the next.

For X major lines this will be some fraction (dy/dx), otherwise it isnormally + 1.0,
depending on the required scanning direction. The valueisin 2's complement 16.16
fixed point format.

For trapezoids the value will be:

+1.0 if non-antialiased, depending on the scanning direction.

+0.25 when using 4x4 quality antialiasing, depending on the scanning direction.
+0.125 when using 8x8 quality antialiasing, depending on the scanning direction.

3Dlabs Proprietary and Confidential 241

Graphics Register Reference GLINT MX Programmer’s Reference Manual

dZdxL
Name: Depth Derivative X
Unit: Dept h
Region: O Offsat: 0x0000. 89C8

Tag: 0x139
Read/write Reset Value: Undefi ned

32 bitsinteger 16 bitsfraction ; remaining bits0

dZdxU dzZadxL

This pair of registers set the depth derivative per unit in X used in rendering trapezoids.
dZdxU holds the most significant bits, and dZdxL the least significant bits. The valueis

in 2's complement 32.16 fixed point format.

dZdxU
Name: Depth Derivative X
Unit: Dept h
Region: O Offsat: 0x0000. 89C0

Tag: 0x138
Read/write Reset Value: Undefi ned

32 bitsinteger 16 bitsfraction ; remaining bits0

dZdxU dzZadxL

This pair of registers set the depth derivative per unit in X used in rendering trapezoids.
dZdxU holds the most significant bits, and dZdxL the least significant bits. The valueis
in 2's complement 32.16 fixed point format.

242 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

dZdyDonl
Name: Depth Derivative’ Y Dominant
Unit: Dept h
Region: O Offsat: 0x0000. 8908
Tag: 0x13B
Read/write Reset Value: Undef i ned
32 bitsinteger 16 bitsfraction , remaining bits0

dzdyDomuU dzdyDomL

This pair of registers set the depth derivative per unitin'Y for the dominant edge, or
along aline. dZdyDomU holds the most significant bits, and dZdyDomL the least
significant bits. The valueisin 2's complement 32.16 fixed point format.

dzdyDonlJ
Name: Depth Derivative Y Dominant
Unit: Dept h
Region: O Offsat: 0x0000. 89D0
Tag: Ox13A
Read/write Reset Value: Undef i ned
32 bitsinteger 16 bitsfraction ; remaining bits0

dzdyDomuU dzdyDomL

Thispair of registers set the depth derivative per unit in Y for the dominant edge, or
along aline. dZdyDomU holds the most significant bits, and dZdyDomL the least
significant bits. The valueisin 2's complement 32.16 fixed point format.

3Dlabs Proprietary and Confidential 243

Graphics Register Reference GLINT MX Programmer’s Reference Manual

Fast C ear Dept h

Name: Fast Clear Depth

Unit: Dept h

Region: O Offsat: 0x0000. 89EO0
Tag: 0x13C

Read/write Reset Value: Undefi ned

31 24 16 8 0
Right justified zero filled depth value

Depth value to be substituted when using the Frame Count Planes mechanism to provide
fast clear of the depth buffer.

FBBI ockCol or
Name: Framebuffer Block Color
Unit: Franebuffer RF'W
Region: O Offsat: 0x0000. 8AC8
Tag: 0x159
Read/write Reset Value: Undef i ned

31 24 16 8 0
32 bit value

Contains the color (and optionally alphavalue) to be written to the framebuffer during
block writes. Note the format is the raw data format of the framebuffer.

If the framebuffer is used in 8 bit packed mode, then data should be replicated to al 4
bytes of the register.

If the framebuffer isin 16 bit packed mode then the data must be replicated to both
halves of the register.

Writing to this register will automatically update the upper and lower 32 bits of the
destination 64bit wide register in the VRAMSs.

Reading from this register will return the lower 32 bits of the 64 bit wide register in the
VRAMSs.

244 Proprietary and Confidential 3Dlabs

GLINT MX Programmer’s Reference Manual Graphics Register Reference

FBBI ockCol or L

Name: Framebuffer Block Color Lower and Upper
Unit: Franmebuffer RF'W
Region: O Offsat: 0x0000. 8C70

Tag: Ox18E

Read/write Reset Value: Undefi ned

Contains the lower and upper respectively, 32 bit words of color data (and optionally
alphavalue) to be written to the framebuffer during block writes. Note the format is the
raw data format of the framebuffer.

Note the lower 32bits are at the higher address.

If the framebuffer is used in 8 bit packed mode, then data should be replicated to al 8
bytes of the register.

If the framebuffer isin 16 bit packed mode then the data must be replicated to all four
half words of the register.

The FBBIlockColorL and FBBlockColorU registers are aliased with the FBBlockColor
register for backwards compatibility.

3Dlabs

Proprietary and Confidential 245

Graphics Register R