

JAcondition Jump Absolute Conditional

Note that the TMS34020 jumps when any one or more of the Flags for Branch
listed above are set as indicated.
Condition Codes

Mnemonic
Non XY XY Result of Compare Status Bits Code
Unconditional | JAUC — Unconditional Don't care 0000
Compares
Unsigned JALO — Dst lower than Src C 1000
Ccmpares (JAC) (JAB) JAYN
JALS JAYLE Dst lower or same as Src C+Z 0010
JAHI JAYGT Dst higher than Src C.Z 0011
JAHS JAYNN Dst higher or same as Src | C 1001
(JANC) (JANB) Dst = Src
JAEQ —_ z 1010
(JAZ) JAYZ Dst # Src
JANE — Z 1011
(JANZ) JAYNZ
Signed JALT JAXLE Dst < Src (N-V)+(N V) 0100
Compares JALE — Dst < Src (N-V)+(N-V)+2Z 0110
JAGT — Dst > Src (N.V.Z)+(N.V.Z) | 0111
JAGE JAXGT Dst > Src (N-V)+ (N V) 0101
JAEQ — - z 1010
(JAZ) JAYZ Dst = Src
JANE — Z 1011
(JANZ) JAYNZ Dst # Sre
Compare to JAZ (JAEQ) JAYZ Result=0 Y4 1010
Zero JANZ (JANE) JAYNZ Result = 0 Z 1011
JAP — Result is positive N.-Z 0001
JAN JAXZ :Result is negative N 1110
JANN JAXNZ Result is nonnegative N 1111
Geperal . JAZ (JAEQ) JAYZ Result is 0 z 1010
Arithmetic JANZ (JANE) JAYNZ Result #0 Z 1011
JAC (JALO) (JAB) JAYN Carry set on result C 1000
JANC JAYNN No carry on result c 1001
(JAHS) (JANB)
JAB (JALO) (JAC) JAYN Borrow set on resuit C 1000
JANB JAYNN No borrow on result C 1001
(JAHS) (JANC)
JAV t JAXN Overflow on result Vv 1100
Note: A mnemonic code in parentheses is an alternate code for the preceding code.
Key: ¢ Also used for window clipping + Logical OR
Logical AND Logical NOT

13-136 TMS834020 Assembly Language Instruction Set

Jump Relative Conditional, Short JRcondition

Syntax
Execution

Instruction Words

Fields

Description

Machine States
Status Bits

Examples Code

JRcondition Address

If condition true, then offset + PC’ - PC
If condition false, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1|1|0|0| code | offset l

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes table below.)

JRconditionconditionally jumps to an address that is relative to the current PC.
Condition is part of a mnemonic; it represents the condition for the jump. For
example, if condition is UC, the instruction is JRUC. (See the conditions and
codes listed below.) If the condition is true, the TMS34020 jumps to a new loca-
tion. The assembler calculates the new address by adding the address of the
nextinstruction (PC’) to the signed word offset. The TMS34020 then continues
execution from this point. If the condition is false, the TMS34020 skips the
jump and continues execution at the next sequential instruction.

The Address operand is a 32-bit relative address. The assembler calculates
the offset as (Address — PC’)/16 (where PC’ is the address of the instruction
word immediately following the jump instruction) and inserts the resulting 8-bit
offset into the opcode. The range for this form of the JRcondition instruction
is £128 words (excluding 0).

If the offset is outside the range of +128 words, the assembler automatically
substitutes the longer form of the JRconditioninstruction. If the offset is 0, the
assembler substitutes a NOP. The assembler does not accept an address that
is externally defined or an address that is relative to a different section than the
PC. Note that the 4 LSBs of the PC are always 0 (word aligned).

The JRcondition instructions are often used with the CMP and CMPI instruc-
tions. The JRV and JRNV instructions can also be used to detect window viola-
tions or CPW status.

1 if no jump, else 2
Unaffected
Unaffected

Unaffected
Unaffected

Flags for Branch Code Flags for Branch
NCzv NCZV NC2ZzZV NCZV NCZV NCczv

<NOZ2

JRUC HERE X X X X JRC HERE X 1XxX
JRP HERE O0xO0x JRNC HERE XO0xx
JRLSHERE XXx1x x 1 xx JRZ HERE XxXx1x
JRHIHERE x00x JRNZ HERE xxO0x
JRLTHERE Oxx1 1xx0 JRV HERE XXxx1
JRGE HERE 0xx0 1x x1 JRNV HERE Xxx0
JRLEHERE Oxx1 1xx0 x x 1x JRN HERE 1XXX
JRGTHERE O0x00 1x 01 JRNN HERE O0OXxxX

13-137

JRcondition Jump Relative Conditional, Short

Note that the TMS34020 jumps when any one or more of the Flags for Branch
listed above are set as indicated.
Condition Codes

Mnemonic
Non XY XY Result of Compare Status Bits Code
Unconditional | JRUC — Unconditional Don't care 0000
Compares
Unsigned JRLO — Dst lower than Src c 1000
Compares (JRC) (JRB) JRYN
JRLS JRYLE Dst lower or same as Src C+Z 0010
JRHI JRYGT Dst higher than Src c.Z 0011
JRHS JRYNN Dst higher or same as Src | C 1001
(JRNC) (JRNB) Dst = Src
JREQ — Z 1010
(JR2Z) JRYZ Dst # Src
JRNE — Z 1011
(JRNZ) JRYNZ
Signed JRLT JRXLE Dst < Src N-V)+(NV) 0100
Compares JRLE — Dst < Src N-V)+(N-V)+Z 0110
JRGT — Dst > Src (N-V-2)+(N-V.Z) | o111
JRGE JRXGT Dst > Src (N-V)+ (N V) 0101
JREQ — - V4 1010
WRZ) JRYZ Dst = Sre
JRNE — 4 1011
(JRNZ) JRYNZ Dt Src
Compare to JRZ (JREQ) JRYZ Result=0 z 1010
Zero JRNZ (JRNE) JRYNZ Result # 0 4 1011
JRP — Result is positive N.Z 0001
JRN JRXZ Result is negative N 1110
JRNN JRXNZ Result is nonnegative N 1111
Ge_neral i JRZ (JREQ) JRYZ Resultis 0 z 1010
Arithmetic JRNZ (JRNE) JRYNZ Result 0 Z 1011
JRC (JRLO) (JRB) JRYN Carry set on result C 1000
JRNC JRYNN No carry on result C 1001
(JRHS) (JRNB)
JRB (JRLO) (JRC) JRYN Borrow set on result C 1000
JRNB JRYNN No borrow on result C 1001
(JRHS) (JRNC)
JRV t JRXN Overflow on result \" 1100
Note: A mnemonic code in parentheses is an alternate code for the preceding code.
Key: ¢ Also used for window clipping + Logical OR
Logical AND Logical NOT

13-138 TMS34020 Assembly Language Instruction Set

Jump Relative Conditional, Long JRcondition

Syntax

Execution

Instruction Words

Fields

Description

Machine States

Status Bits

JRcondition Address

If condition frue, then offset + PC' —» PC
If condition false, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1{1]o]o] code lofofojofo]ofo]o
offset

code s a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes on page 13-138.)

The JRcondition instruction conditionally jumps to an address that is relative
to the current PC. The conditionis part of a mnemonic that represents the con-
dition for the jump; for example, if conditionis UC, then the instruction is JRUC.
(See the condition mnemonics and codes listed in on page 13-138.) If the
specified condition is true, the TMS34020 jumps to a new location. The assem-
bler calculates the address of this location by adding the address of the next
instruction (PC’) to the signed word offset. The TMS34020 then continues exe-
cution from this point. If the specified condition is false, the TMS34020 skips
the jump and continues execution at the next sequential instruction.

The Addressoperand in the syntax represents the 32-bit relative address. The
assembler calculates the offset as (Address — PC’)/16 (where PC’ is the
address of the instruction word immediately following the jump instruction) and
inserts the resulting offset into the second instruction word of the opcode. The
range for this form of the JRcondition instruction is —32,768 to +32,767 words
(excluding 0).

If the offset is 0, the assembler substitutes a NOP instruction. If the address
is out of range, the assembler uses the JAcondition instruction instead. The
assembler does not accept an address that is externally defined or an address
that is relative to a different section than the PC. Note that the 4 LSBs of the
program counter are always 0 (word aligned).

The JRcondition instructions are commonly used in conjunction with the CMP
and CMPI instructions. The JRV and JRNV instructions can also be used to
detect window violations or CPW status.

2if no jump, else 3

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ

13-139

JRcondition Jump Relative Conditional, Long

Examples Code Flags for Branch Code Flags for Branch
NCzv NCzZV Nczv NCzvVv NCZV NCzv

JRUC HERE XX X X JRV HERE XxxXxi1
JRP HERE O0xO0x JRNZ HERE XxXx0Xx
JRLSHERE XxX1x X 1x x JRNN HERE O0XxXxX
JRHIHERE Xx00x JRNV HERE XxxxO0
JRLTHERE Oxx1 1xx0 JRN HERE 1xXxX
JRGEHERE O0xx0 1 xx1 JRB HERE Xx1XxX
JRLEHERE O0xx1 1xx0 XX 1Xx JRNB HERE XO0XxX
JRGTHERE O0x00 1x01 JRLO HERE Xx1xX
JRC HERE Xx1xx JRHS HERE x00x xx1x
JRNCHERE X O0xx JRNE HERE xx0Xx
JRZ HERE xXx1x JREQ HERE xX1X

Note that the TMS34020 jumps when any one or more of the Flags for Branch
listed above are set as indicated.

13-140 TMS34020 Assembly Language Instruction Set

Jump Indirect JUMP

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

JUMP Rs
Rs —» PC

15 14 13 12 11 10 9
l[oJofoJoJofofo

8 7 6 5 4 3 2 1 0
[t loft]r]r] Rd |

JUMP jumps to the address contained in the source register. The TMS34020
sets the 4 LSBs of the program counter to 0 (word aligned). This instruction can
be used in conjunction with the GETPC and/or EXGPC instructions.

2
N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Code Before After
A1 PC PC
JUMP Al 00001EEONh 00555550h 00001EEOh
JUMP Al 00001EE5h 00555550h 00001EEOh
JUMP Al FFFFFFFFh 00555550h FFFFFFFOh

13-141

LINE Line Draw with XY Addressing

Syntax

Execution

Instruction Words

Fields

Description

13-142

LINE {0]1}

The two execution algorithms for the LINE instruction are explained below.
These algorithms are similar, varying only in their treatment of d=0.

15 14 18 12 11 10 9 8 7 6 5 4 3 2
ENENENEREN KN EREREA KN N EREREN

10
1] o]

The assembler sets bit 7 in the instruction word (the Z bit) to 0 or 1, depending
on which LINE algorithm you select: :

Z=0 selects algorithm 0
Z=1 selects algorithm 1

LINE is an alternative implementation of the FLINE instruction (page 13-121).
The major differences between LINE and FLINE are the following:

Gk LINE is slower than FLINE.
Ld LINE supports windowing (FLINE does not).
LX LINE requires B2 to be in XY format.

LINE performs the inner loop of Bresenham’s line-drawing algorithm. This type
of line draw plots a series of points (x;,y;) either diagonally or laterally with
respect to the previous point. Movement from pixel to pixel always proceeds
in a dominant lateral direction. The algorithm may or may not also increment
in the direction with the smaller dimension (this produces a diagonal move-
ment). Two XY-format registers supply the XY increment values for the two
possible movements. The LINE instruction maintains a decision variable, d,
that acts as an error term, controlling movement in either the dominant or
diagonal direction. The algorithm operates in one of two modes, depending on
how the condition d=0 is treated.

During LINE execution, some portion of aline [(xg,yo)(X1,y1)] is drawn. The line
is drawn so that the axis with the largest extent has dimension a, and the axis
with the least extent has dimension b. Thus, ais the larger (in absolute terms)
of yq —yg or Xy — xg, and b is the smaller of the two. This means that a= b>
0.

The LINIT instruction provides a simple method for setting up the LINE instruc-
tion’s implied operands. For more information, refer to the LINIT instruction
(page 13-146).

The following values must be supplied to draw a line from (xg,yg) to (x1,y4):

LX Setthe value in DADDR to be the linear address of the first pixel in the line
at (X0,yo)-

L Use the line endpoints to determine the major and minor dimensions (a
and b, respectively) for the line draw; then set the DYDX register to this
value (b:a).

TMS34020 Assembly Language Instruction Set

Line Draw with XY Addressing LINE

L1 Place the signed XY increment for a movement in the diagonal (or minor)
direction (d= 0 for Z=0, d > 0 for Z=1) in the INC1 register.

(N

Place the signed XY increment for a movement in the dominant (or major)
direction (d < 0 for Z=0, d < 0 for Z=1) in the INC2 register.

Set the initial value of the decision variable in register BO to 2b— a.
Set the initial count value in the COUNT register to a + 1.

Set the COLOR1 and COLORQO registers.

OO0 dd

Set the PATTERN register to the required pattern.

LINE handles the contents of PATTERN in the same way as FLINE (unlike
PFILL XY). With LINE, the first pixel drawn is controlled by bit 0 of the
PATTERN register.

The PATTERN register contains a 32-bit repeating line-style pattern. If bit 0
of PATTERN is 0, then the first pixel drawn by LINE is a COLORQO pixel. If bit
0 of PATTERN is 1, then the first pixel drawn by LINE is a COLOR1 pixel.
The second pixel drawn by LINE is controlled by bit 1 of B13, and so on. If
the line is longer than 32 pixels, the PATTERN is reused cyclically; there-
fore, the 33rd pixel on the line is once again controlled by bit 0 of PATTERN.
As each pixel is drawn, the contents of PATTERN are rotated right (circular
shifted) by 1 bit. The LSB of the rotated pattern controls the next pixel the
instruction puts out.

If PATTERN contains all 1s, the line is drawn in a solid color using the repli-
cated pixel value contained in COLORI1; if PATTERN contains all Os, the
line is drawn in a solid color using COLORO.

The LINE instruction may use one of two algorithms, depending on the value

of Z.
Algorithm 0 (2=0): Algorithm 1 (Z=1):
While COUNT > 0 , While COUNT >0
COUNT = COUNT -1 COUNT = COUNT -1
Draw the next pixel Draw the next pixel
fd=>0 fd>0 ,
d=d+2b-2a d=d+2b-2a
POINTER = POINTER + INC1 POINTER = POINTER + INC1
Else d=d + 2b; Else d=d+ 2b;
POINTER = POINTER + INC2 POINTER = POINTER + INC2

13-143

LINE Line Draw with X Y Addressing

Implied Operands

Pixel Processing

Window Checking

13-144

Register Name Format Description
BO ¢t SADDR Integer Decision variable (d)
B2 ¢ DADDR XY Starting point (y;, ;), usually (yg, Xg)
B3 ¢ DPTCH Linear Destination pitch
B4 OFFSET Linear Screen origin (0,0)
B5 WSTART XY Window starting corner
B WEND XY Window ending corner
B7 DYDX XY (b: @) = Minor: major dimension
B8 COLORO Pixel COLORO
B9 COLORH1 Pixel COLORH1
B10 ¢ COUNT Integer Loop count
B11 INC1 XY Minor axis (diagonal) increment
Bi2 INC2 XY Major axis (dominant) increment
B13 PATTERN Pattern Pattern register

T These registers are changed by instruction execution.
¥ Required only when pitch is an arbitrary, nonpower of 2.

Address Name Description and Elements (Bits)
C00000BOh CONTROL PPOP Pixel-processing operations (22 options)
W Window-clipping operation
T Transparency operation
TM Sets transparency mode

C0000140h CONVDP XY-to-linear conversion (destination pitch)

C0000150h PSIZE Pixel size (1,2,4,8,16,32)
C0000160h PMASK Plane mask — pixel format
(32 bits)

Due to the pipelining of memory writes, the /ast I/0 register that you write to
may not, in some cases, contain the desired value when you execute the LINE
instruction. To ensure that this register contains the correct value for execution,
you may want to follow the write to that location with an MWAIT (13-177). Refer
to Section 4.5.6 on page 4-13 for a description of the potential latency of writes
to I/O registers.

PPOP[CONTROL] specifies the operation to be applied to the pixel as it is
written. There are 22 operations; the default case at reset is the pixel-proces-
sing replace (S — D) operation. For more information, refer to Section 12.8,
Pixel Processing, on page 12-27.

Window clipping or picking is selected by setting W[CONTROL] to the appro-
priate value. The WSTART and WEND registers define the window in XY-coor-
dinate space. For more information, refer to Section 12.7, Window Checking,
on page 12-19.

TMS34020 Assembly Language Instruction Set

Line Draw with XY Addressing LINE

Transparency You can enable transparency for this instruction by setting TTCONTROL] to
1. Select 1 of 3 transparency options by setting TM[CONTROL]. For more
information, refer to Section 12.9, Transparency, on page 12-36.

Plane Masking The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

Interrupts LINE may be interrupted after every pixel in the line draw except for the last
pixel. Note that a LINE instruction that is aborted because of window checking
options 1 or 2 does not decrement the PC before pushing it on the stack. In this
case, the LINE is not resumed after returning from the interrupt service routine.
For more information, refer to Section 6.6, Interrupting Graphics Instructions,

on page 6-13.
Machine States Refer to Section 15.1 on page 15-2.
Status Bits N Undefined

C Undefined

Z Undefined

V Set depending upon window operation

Example Refer to example for FLINE on page 13-124.

13-145

LINIT Line Initialization

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

13-146

LINIT

2b-a - BO

(b:a) - B7

a+1 - B10

minor axis (diagonal) XY increment — B11
major axis (dominant) XY increment — B12

15 14 13 12 11 10 9 8 7 6 5 4 3
l[ofofoJoJ1f+fofofoJtfo]tfol]

2 1 0

MENEN
This line initialization instruction uses the start and end points for the line to set
up the implied B-file registers as required by the LINE and FLINE instructions.
The startpoint is assumed to be in B2 and the endpoint in B7. Note that FLINE

expects a linear DADDR, so when LINIT is used in conjunction with FLINE,
CVXYL should be executed on DADDR before executing FLINE.

The V bit in status is set to indicate if both start and end points lie within the
window. The N and Z bits are seton the X and Y zero deiecis on ihe diiierence
between the two points. This allows for detection of the special cases of hori-
zontal and vertical lines as well as single pixel lines. The C bit is set to indicate
that the line may be trivially rejected.

For additional information, refer to Section 12.4, Line Instructions, on page
12-7; FLINE on page 13-121, LINE on page 13-142, subsection 12.7.5,
Window_ Checking for Line Instructions, on page 12-23, and subsection
12.7.5.2, Using LINIT and FLINE for Preclipping Line Drawing, on page 12-26.

Register Name Format Description

BO SADDR Linear Decision variable (output)
B2 DADDR XY Starting point (yg, Xo) (input)
B7 DYDX XY Ending point (Y1, X1) (input)
B7 DYDX XY b:a minor:major line dimensions (output)
B10 COUNT Integer Count (output)
B11 XY Minor axis (diagonal increment) (output)
B12 XY Major axis (dominant increment) (output)

9

N=1 if x0 =x1 (vertical line)

C=1 if (CPW(yp, xg) & CPW(y1,x1)) is nonzero (line lies entirely

, outside window)
Z=1 ifyg=yj (horizontal line)
V=1 if(ygXg) or (y1.Xq) lie outside the window (line lies partially

outside window)

Refer to Section 15.1 on page 15-2.

TMS34020 Assembly Language Instruction Set

Find Leftmost One LMO

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

LMO ARs, Rd

31 — (bit number of leftmost 1 in Rs) — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1]1fo]1]o]1] Rs | R | Rd |

LMO locates the leftmost (most significant) 1 in the source register. It then
loads the 1s complement of the bit number of the leftmost-1 bitinto the 5 LSBs
of the destination register. The 27 MSBs of the destination register are loaded
with Os. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the LSB. If the source
register contains all 0s, then the destination register is loaded with all 0s and
status bit Z is set.

You can normalize the contents of the source register by following the LMO
instruction with an RL Rs,Rd instruction, where Rs is the destination register
of the LMO instruction and Rd is the source register.

Rs and Rd must be in the same register file.

1

N Unaffected
C Unaffected
Z 1if the source register contents are 0, 0 otherwise
V Unaffected
Code Before After

A0 NCZV A1
LMO AO,Al 00000000h X x1x 00000000h
LMO AQ,Al 00000001h X x0x 0000001Fh
LMO AQ,Al 00000010h x x 0x 0000001Bh
LMO AO,Al 08000000h X x 0x 00000004h
LMO AOQ,Al 80000000h X x0x 00000000h

13-147

MMFM Move Multiple Registers from Memory

Syntax

Execution

Instruction Words

Description

13-148

MMFM Rp, register list

For each register Rn in the register list,
32 bits of data at the address specified in Rp — Rn
Rp+32—=Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofjoJolt1]ofJolt1[1]o]1][R] Rp
binary representation of the register list

MMFM loads the contents of a specified list of either A- or B-file registers (not
both) from a block of memory.

[d Rpis a register that points to the first location in the block of memory.

B Theregisterlistis alist of registers separated by commas (such as A0, A1,
A9). These are the registers that MMFM loads new values into.

MMFM and MMTM are complementary instructions. MMFM reads & list of A-
or B-file registers from memory, and MMTM writes a list of A- or B-file registers
to memory. These instructions can be used to save and restore the contents
of registers during, for example, subroutine calls and interrupts. All 32 bits of
each register in the list are saved and then restored.

MMFM and MMTM use Rp as a pointer register. Rp acts as a stack pointer;
MMTM pushes alist of registers onto a stack, and MMFM pops alist of registers
from a stack. The stack grows toward lower addresses, similar to the way the
SP register points to the system stack. The Rp can be any register that is not
included in the register list and that is in the same file as the registers in the
list. (SP can be treated as belonging to either register file.)

MMFM and MMTM always leave the Rp register adjusted to point to the new
top of the stack following a push or pop operation. MMTM predecrements Rp
by 32 prior to pushing each register in the list onto the stack. The last register
pushed on the stack by MMTM is the highest numbered register in the list.
MMFM postincrements Rp by 32 after popping each register in the list from the
stack. Thefirstregister popped off the stack by MMFM is the highest numbered
register in the list.

If SP is used as the Rp register, MMTM and MMFM push and pop register val-
ues to and from the system stack and leave SP correctly adjusted to point to
the new top of the system stack.

Rp and the registers in the list must all be in the same register file. The assem-
bler allows the registers in the list to be specified in any order; the highest num-
bered register is always restored first (that is, the value at the top of the stack—
the lowest address inthe stack—is loaded into the highest numbered register).
Don't include Rp as one of the registers in the register list, because this
produces unpredictable results. For the best performance, the original

TMS34020 Assembly Language Instruction Set

Move Multiple Registers from Memory NIMFM

contents of Rp should be aligned on a long-word boundary; the alignment of
Rp affects the instruction timing as indicated in Machine States, below.

The second word of the MMFM instruction is a binary-mask representation of
the registers in the list. The R bit (bit 4) in the first instruction word indicates
whichregister file is affected; the bits that are setto 1 in the mask indicate which
registers are restored. The bit assignments in the mask are

SP [A14 | A13 [A12 | A11 | A10 | A9 | AB | A7 | A6 (A5 | A4 | A3 | A2 | A1 |AD
or | SP |B14 |B13 | B12 (B11 |B10 | B9 (B8 |B7 |B6 | B5 |B4 | B3 | B2 | B1 [BO

(MSB) 15 0 (LSB)
Machine States Refer to Section 15.1 on page 15-2.
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples This example restores several B-file registers:

MMFM BO,B1,B2,B3,B7,B12,B13,B14,SP

This instruction uses register BO as the stack pointer. Assume that BO =
00010000h; this is the address of the top of the stack. MMFM moves the data
atthislocationinto the LSW of the SP (which is the highest order register listed
in this example). Assume that memory contains the following values before
instruction execution:

Address Data Address Data

000100F0Ch 1111h 00010070h CCCCh
000100ECh B1B1h 00010060h BCBCh
000100D0h 2222h 00010050h DDDDh

000100C0h 0B2B2h 00010040h BDBDh
000100BOh 3333h 00010030h EEEEh

000100AOh B3B3h 00010020h BEBEh

00010090h 7777h 00010010h FFFFh

00010080h B7B7h 00010000h BFBFh

After the MMFM instruction is executed, the registers in the list have the follow-
ing values:

BO = 00010100h B12 = CCCCBCBCh

B1 =1111B1B1h B13 = DDDDBDBDh

B2 = 2222B2B2h B14 = EEEEBEBEh

B4 = 3333B3B3h SP = FFFFBFBFh

B8 = 7777B7B7h

The other B-file registers (which weren’t specified in the register list) are not
affected by this instruction. Note that BO now contains the value 10100h; the
last part of the data that was restored was for B1, and BO points to the word
past that data.

13-149

MMTM Move Multiple Registers to Memory

Syntax

Execution

Instruction Words

Description

13-150

MMTM Rp, register list
For each register Rn in the register list,
Rp-32 — Rp
32 bits of data at the address specified in Rr — Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o{ofofo|1]ofo|[1][1]o]o0o]|[R] Rp-

binary representation of the register list

MMTM stores the contents of a specified list of either A- or B-file registers (not
both) in memory.

4 Rpis aregister that points to the first location in a block of memory.

LI The register list is a list of registers that are separated by commas (such
as A0, A1, A9). These are the registers that MMTM stores in memory.

MMTM and MMFM are complementary instructions. MMFM reads a list of A-
or B-file registers from memory, and MMTM writes a list of A- or B-file registers
to memory. These instructions can be used to save and restore the contents
of registers during, for example, subroutine calls and interrupts. All 32 bits of
each register in the list are saved and then restored.

MMTM and MMFM use Rp as a pointer register. Rp acts as a stack pointer;
MMTM pushes alist of registers onto a stack, and MMFM pops alist of registers
from a stack. The stack grows toward lower addresses, similar to the way the
SP register points to the system stack. The Rp can be any register that is not
included in the register list and that is in the same file as the registers in the
list. (SP can be treated as belonging to either register file.)

MMTM and MMFM always leave the Rp register adjusted to point to the new
top of the stack following a push or pop operation. MMTM predecrements Rp
by 32 prior to pushing each register in the list onto the stack. The last register
pushed on the stack by MMTM is the highest numbered register in the list.
MMFM postincrements Rp by 32 after popping each register in the listfrom the
stack. The first register popped off the stack by MMFM is the highest numbered
register in the list.

If SP is used as the Rp register, MMTM and MMFM push and pop register val-
ues to and from the system stack and leave SP correctly adjusted to point to
the new top of the system stack.

When MMTM execution is complete, the contents of the lowest order register
in the list reside at the highest address in the memory stack, and Rp points to
the address of the highest order register in the list.

Rp and the registers in the list must all be in the same register file. The assem-
bler allows the registers in the list to be specified in any order; the lowest order
register is always saved first. Don't include Rp as one of the registers in the
register list, because this produces unpredictable results. For the best per-
formance, the original contents of Rp should be aligned on a long-word

TMS34020 Assembly Language Instruction Set

Move Multiple Registers to Memory MMTM

boundary; the alignment of Rp affects the instruction timing as shown in
Machine States, below.

The second word of the MMTM instruction is a binary-mask representation of
the registers in the list. The R bit (bit 4) in the first instruction word indicates
whichregisterfile is affected; the bits that are setto 1 inthe mask indicate which
registers are restored. The bit assignments in the mask are

AO | A1 |A2 |A3 |A4 [A5 [A6 |A7 | AB | A9 | A10 | A11. | A12 | A13 | A14 | SP
or |BO(B1 (B2 |B3|B4|B5|B6|B7|B8|B9|B10|B11 |B12 |B13 | B14 | SP

(MSB) 15 0 (LSE
Machine States Refer to Section 15.1 on page 15-2.

Status Bits N. Setto the sign of the result of 0— Rp. (This value is typically 1 if the original
. contents of Rp are positive; otherwise, it is 0. The only exceptions to this
are when Rp=80000000h and N is set to 0, and when Rp=0 and N is set
to1.)
C Unaffected
Z Unaffected
V Unaffected

Examples This example saves the values of several A-file registers in memory:
MMTM Al,A0,A2,A4,A8,A12,A13,A14,SP

This instruction uses register A1 as the stack pointer. Assume that A1 =
00100000h before instruction execution; this value is decremented by 32 to
point to the address where the contents of A0 (the lowest order register in the
list) are stored. Assume thatthe registers in the list contain the following values
before instruction execution:

A0 = 0000A0AQHh A12 = CCCCACACh

A2 = 2222A2A2h A13 = DDDDADADh

A4 = 4444A4A4h A14 = EEEEAEAEh

A8 = 8888ABA8h SP = FFFFAFAFh

MMTM saves these register values in memory as shown below:
Address Data Address Data

000FFFO0h AFAFh 000FFF80h ABA8h
000FFF10h FFFFh 000FFF90h 8888h
000FFF20h AEAEh 000FFFAOh Ad4A4h
000FFF30h EEEEh 000FFFBOh 4444h
000FFF40h ADADh 000FFFCOh A2A2h
000FFF50h DDDDh 00OFFFDOh 2222h
000FFF60Nh ACACh 000FFFEQh AOAOh
000FFF70h CCCCh 000FFFFOh 0000h

After instruction execution, register A1 = 000FFFO0O0h; this is the address ofthe
last portion of register data that is saved.

13-151

MODS Modulus, Signed

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-152

MODS Rs, Rd

Rd mod Rs — Rd

15

14 138

12 11 10

9 8 7

6 5

3 2 1 0

Lot frJofr]1]ol]

Rs

7]

Rd

MODS performs a 32-bit signed divide of the 32-bit dividend in the destination
register by the 32-bit divisor in the source register, and returns a 32-bit remain-
der in the destination register. Regardless of whether the result is positive or
negative, the magnitude of the remainder is always the same as it would be
for a positive dividend and divisor. The remainder is the same sign as the divi-
dend. The original contents of the destination register are always overwritten.

Rs and Rd must be in the same register file.

40

41 if result = 80000000
3ifRs=0

N OifRsis0O

1 if Rs is not 0 and the result in Rd is —ve
0 if Rs is not 0 and the result in Rd is + ve

N O

Unaffected
OifRsis0

7 if Rs is not 0 and the result in Rd is 0
0 if Rs is not 0 and the result in Rd is not 0
V [fRsis0,thenV =1, otherwise V=0

Code

MODS
MODS
MODS
MODS
MODS
MODS
MODS
MODS
MODS
MODS
MODS
MODS
MODS

A0,Aal
a0,Aal
A0,Al
A0,Al
A0,Al
a0,Al
20,Al
A0,Al
A0,Al
A0,Al
20,A1
A0,Al
A0,Al

Before

A0
00000000h
00000000h
00000000h
00000004h
00000004h
00000004h
00000004h
00000004h
FFFFFFFCh
FFFFFFFCh
FFFFFFFCh
FFFFFFFCh
FFFFFFFCh

Al
00000000h
00000007h
FFFFFFFSh
00000008h
00000007h
00000000h
FFFFFFFSh
FFFFFFF8h
00000008h
00000007h
00000000h
FFFFFFFSh
FFFFFFF8h

After
NCzZV
0x01
0x01
0x01
0x10
0x00
0x10
1x00
0x10
0x10
0x00
0x10
1x00
0x10

Al
00000000h
00000007h
FFFFFFF9h
00000000h
00000003h
00000000h
FFFFFFFDh
00000000h
00000000h
00000003h
00000000h
FFFFFFFDh
00000000h

TMS34020 Assembly Language Instruction Set

Modulus, Unsigned MODU

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MODU Rs, Rd
Rd mod Rs — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo{ 1 1o |1]{1]1] Rs | R | Rd l

MODU performs a 32-bit unsigned divide of the 32-bit dividend in the destina-
tion register by the 32-bit divisor in the source register, and returns a 32-bit
remainder in the destination register. The original contents of the destination
register are always overwritten.

Rs and Rd must be in the same register file.

35
3ifRs=0
N Unaffected
C Unaffected
Z 0ifRs=0, 1 if quotient is 0, 0 otherwise
V 1 ifdivisor Rs equals 0, 0 otherwise
Code Before After

A0 Al NCZV A1
MODU AO0,Al 00000000h 00000000h xx01 00000000h
MODU A0,Al 00000000h 00000007h xx01 00000007h
MODU A0,Al 00000000h FFFFFFFSh xXx01 FFFFFFF9h
MODU AO,Al 00000004h 00000008h xx10 00000000h
MODU A0,Al 00000004h 00000007h xX00 00000003h
MODU AO0,Al 00000004h 00000000h xx10 00000000h
MODU A0,Al 00000004h FFFFFFFSh xx00 00000001h

13-153

MOVB Move Byte Instructions

MOVB Instructions

The MOVB instruction is a special form of the MOVE instruction that restricts
the field size of the move to 8 bits. MOVB moves a single byte from its source
to a specified destination.The following list describes characteristics common
to all MOVB instructions.

C

G

MOVB instructions move data from a register to memory, from memory to
aregister, and between memory locations, but they do not move data be-
tween registers.

Abyte can begin on any bit boundary in memory, although sequential byte
moves are more efficient if the byte addresses are aligned on even 8-bit
boundaries.

All addresses are bit addresses.

When abyte is moved into aregister, the byte’s LSB coincides with the reg-
ister's LSB; the byte is sign-extended into the 24 MSBs of the register.

If the source data is in a register, only the LSbyte is used.
Rs and Rd must be in the same register file.

The status bits are unaffected unless otherwise noted in the individual de-
scriptions.

For machine states information, refer to Section 15.2 on page 15-10.

Table 13-4. Summary of Operand Formats for the MOVB Instruction

Destination
| Rd *Rd *Rd(DOffset) @DAddress
1 w Rs v v v
= *Rs v Y
@ *Rs(SOffset) v YV
' @SAddress v v

The MOVB instruction has nine operand combinations, which are listed below
with their corresponding instruction words and descriptions. .

MOVB Rs, *Rd

13-154

14 11 7 6 5 4 3 2 1 0

15
L1 |

1 |1(1)J90J8 Rs | R Rd |

13 12
o ool

Moves the LSbyte of Rs to the memory address contained in the Rd.

TMS34020 Assembly Language Instruction Set

Move Byte Instructions MOVB

MOVB Rs, *Rd(offset)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1ot o1]1]0] Rs | R | Rd
offset

Moves the LSbyte of Rs to the destination memory address. The destination
address is formed by adding the signed 16-bit offset to the contents of Rd.

MOVB Rs, @DAddress

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofoJolofJo[r]o[1][1[1]1]R] Rs

16 LSBs of destination address

16 MSBs of destination address

Moves the LSbyte of Rs to the destination address.

MOVB *Rs, Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 {oJofo|1[1]1] Rs | R | Rd |

Moves a byte from the source address contained in Rs into Rd. This instruction
also compares the source data to 0.1 See Status Bits for more information.

MOVB *Rs, *Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L1]Joflo 1]1]1]o] Rs | R | Rd |

Moves a byte from the source address contained in Rs to the destination
address contained in Rd.

MOVB *Rs(offset), Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1o 1ot]1]1] Rs | R | Rd
offset

Moves a byte from the source address to the destination register. The source
data’s memory address is a bit address and is formed by adding the signed
16-bit offset to the contents of Rs. This instruction also compares the source
datato 0. T See Status Bits for more information.

13-155

MOVB Move Byte Instructions

MOVB *Rs(SOffset), *Rd(DOffset)

MOVB @SAddress, *Rd

MOVB @SAddress, @DAddress

Status Bits

13-156

15 14 13 12 11 i0 9 8 7 6 5 4 3 2 1 0
t o1 {1]1][1]o0] Rs | R | Rd
source offset

destination offset

Moves a byte from the source address to the destination address. Both ad-
dresses are formed by adding the source or destination signed 16-bit offset to
the contents of Rs or Rd, respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJofoJofo |1 [+t][1]1]1]R] Rd

16 LSBs of source address

16 MSBs of source address

Moves a byte from the source address to Rd. This instruction also compares
the source data to 0. T See Status Bits for more information.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o|o|o|o|o|o‘1[1|o]110|0|o]0|o]0
16 LSBs of source address

16 MSBs of source address

16 LSBs of destination address
16 MSBs of destination address

Moves a byte from the source address to the destination address.

TThe following status bits information applies only to MOVB instructions with
these addressing modes:

MOVB *Rs, Rd

MOVB *Rs(offset), Rd

MOVB @SAddress, Rd

1 if the sign-extended data moved is negative, 0 otherwise
Unaffected

1 if the sign-extended data moved is 0, 0 otherwise

0

<NOZ

TMS34020 Assembly Language Instruction S=t

Move Byte Instructions MOVB

MOVB Examples

Example 1

Example 2

Example 3

Assume that memory contains the following values:

Address Data
1000h 0000h
1010h 0000h
Code Before
MOVB AQ,*Al

MOVB A0, *Al

MOVB AQ0,*Al(1l)
MOVB A0, *Al(-1)
MOVB A0,@1000h
MOVB AQ0,@100Ch

A0

89ABCDEFh
89ABCDEFh
89ABCDEFh
89ABCDEFh
89ABCDEFh
89ABCDEFh

After

A1l
00001000h
00001009h
00001000h
00001001h
XXXXXAXXXX
HXXXXXXXXX

@1000h

00EFh
DEOOh
01DEh
00EFh
00EFh
FOO0Oh

Assume that memory contains the following values:

Address
1000h
1010h

Code

MOVB *A0,Al
MOVB *A0,Al
MOVB *A0,Al
MOVB *A0,Al

Data
00EFh
89ABh

Before
A0
00001000h
00001001h
00001008h
0000100Ch

MOVB *A0(0),A1 00001000h
MOVB *A0(8),A1 00001000h
MOVB *A0(—1),A10000100Dh
MOVB @1000h,A1 XXXXXXXXX
MOVB @100Ch,Al XXXXXXXXX

Assume that memory contains the following values:

After

A1l
FFFFFFEFh
00000077h
00000000h
FFFFFFBOh
FFFFFFEFh
00000000h
FFFFFFBOh
FFFFFFEFh
FFFFFFBOh

Address Data

1000h CDEFh

1010h 89ABh

2000h 0000h

2010h 0000h

Code Before
A0

MOVB *A0,*Al 00001000h

MOVB *A0, *Al 00001000h

MOVB *AQ,*Al 00001000h

MOVB *A0,*Al 00001001h

MOVB *A0, *Al 00001001h

MOVB *AQ,*Al 0000100Ch

MOVB *A0(0),*Al(0) 00001000h

MOVB
MOVB
MOVB

*A0(12),*A1(9) 00001000h
@1000h,@2000h XXXXXXXXX
@100Ch,@2009h XXOOXXXXXX

A1
00002000h
00002001h
00002009h
00002000h
00002001h
00002009h
00002000h
00002000h
XXXHXXKHXK
XXXXXXXXX

_L_L_LO—L—I.OO._LZ
XXXXXXXXX0O

After

@2000h @2010h

00EFh
01DEh
DEOOh
00F7h
01EEh
7800h
00EFh
7800h
00EFh
7800h

coo—-00—+0O0ON
cooocoocoooL

@1010h
0000h
0001h
0000h
0000h
0000h
000Eh

0000h
0000h
0001h
0000h
0000h
0001h
0000h
0001h
0000h
0001h

13-157

MOVE Move Register to Register

Syntax

Execution

Instruction Words

Description

Fields

Machine States

Status Bits

Examples

13-158

MOVE Rs, Rd
Rs — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1]ofo]1[1]m] Rs | R | Rd |

MOVE moves the 32 bits of data from the source register to the destination reg-
ister. Note that this is not a field move; therefore, the field size has no effect.
The source and destination registers can be any of the 31 locations in the on-
chip register file. Note that this is the only MOVE instruction that allows the
source and destination registers to be in different files. This instruction also
performs an implicit compare to 0 of the register data.

The assembler sets bit 9 (the M bit) in the instruction word to specify whether
the move is within a register file or whether it crosses the register files. The as-
sembler sets M to 0 if the source and destination registers are in the same file;
it sets M to 1 if the registers are in different files.

The assembler sets bit 4 (the R bit) in the instruction word to specify the file
the registers are in. The assembler sets R to 0 if the registers are in file A; it
sets R to 1 if the registers are in file B.

Note that when M=0, R specifies the register file for both registers; if M=1, R
specifies the register file for the source register.

1

N 1 if the 32-bit data moved is negative, 0 otherwise
C Unaffected
Z 1 if the 32-bit data moved is 0, 0 otherwise

vV 0
Code Before After

AO At B1 NCzv
MOVE A0, Al 00OOFFFFh 0000FFFFh XXOOXXXXh 0x00
MOVE A0, Al 00000000h 00000000h XXXXXXXXh 0ox10
MOVE A0, Al FFFFFFFFh FFFFFFFFh XXXXXXXXh 1x00
MOVE A0, Bl O000OFFFFh XXOOOXXXN 0000FFFFh 0x00
MOVE A0, B1 00000000h XXXXXXXXD 00000000h 0x10
MOVE A0, Bl FFFFFFFFh XXXXXXxxh FFFFFFFFh 1x00

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE

MOVE Instructions The following list describes characteristics common to all MOVE instructions
(except MOVE Rs, Rd). For information on MOVE Rs, Rd, refer to page
13-158.

.

(8]

.
.

The MOVE instruction moves a field of 1—32 bits, depending on the se-
lectedfield size.The optional F parameter determines the field size and ex-
tension for the move.

B F=0 selects the field size of 0 (FSO).

F=1 selects the field size of 1 (FS1).

The SETF instruction sets the field size and extension.

If you do not supply a value for F, MOVE uses the value of field 0.

The field is right-justified within the source register.
Rs and Rd must in the same register file.

The status bits are unaffected unless otherwise noted inthe individual de-
scriptions.

For machine states information, refer to Section 15.2 on page 15-10.

The destination address is a bit address.

Table 13-5. Summary of Operand Formats for the MOVE Instruction

Destination

Rd *Rd *Rd+ —*Rd *Rd(DOffset) @DAddress
Rs v v v v v v
*As v v
*Rs+ v v
—*Rs v v
*Rs(SOffset) Vv v v
@SAddress v v v

The MOVE instruction has 18 operand combinations, which are listed below
with their corresponding instruction words and descriptions.

MOVE Rs, *Rd [,F]

15

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1]o]ofofo]o]|F] Rs | R | Rd

Moves a field from Rs to the address specified in Rd.

13-159

MOVE Move Field Instructions

MOVE Rs, *Rd-+ [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L1 loflolt1]olo]F] Rs | R | Rd |

Moves afield from Rs to the address contained in the destination register. After
the move, the contents of Rd are postincremented by the selected field size.

MOVE Rs, —*Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]o]l1]ofo]o]F] Rs | R | Rd |

Moves a field from the Rs to the address contained in Rd. Before the move,
the destination address is determined by subtracting the field size from the
contents of Rd. (This value is also the final value for the register.)

MOVE Rs, *Rd(offset) [,F]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1|o|1|1|o|o|F| Rs | R | Rd
offset

Moves a field from the Rs to the destination address. The destination address
is formed by adding the signed 16-bit offset to the contents of Rd.

MOVE Rs, @DAddress [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJofoJo|lo|1|F]1[1]o]o]|R] Rs
16 LSBs of source address

16 MSBs of source address

Moves a field from Rs to the destination address.

MOVE *Rs, Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 Jofofo]o|[1]F] Rs | R | Rd |
Moves a field from the source address contained in Rs to the destination
address contained in Rd. When the field is moved into the destination register,
it is right-justified and sign-extended or zero-extended to 32 bits (depending
on the value of FE). This instruction also compares the source datato 0. t See
Status Bits for more information.

MOVE *Rs, *Rd [,F]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]ofofo|l1][o]F] Rs | R | Rd |

Moves afield from a source address contained in Rs to the destination address
contained in Rd.

13-160 TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE

MOVE *Rs+, Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1]JoJo[1]o]1]F] Rs | R | Rd |

Moves a field from a source address into Rd. Rs contains the address of the
field; after the move, the contents of the source register are incremented by
the field size. When the field is moved into Rd, it is right-justified and sign- or
zero-extended to 32 bits (depending on the value of the current FE bit). This
instruction also performs animplicit compare to 0 of the field data. t See Status
Bits for more information.

MOVE *Rs+, *Rd+ [,F]
4 13 12 11 10 6 5 4 3 2 1 0

£]1o|o]1|1]o|g|=[8 7Rs IEN Rd]

Moves a field from one address to another. Rs contains the bit address of the
field; Rd contains the bit address of the field’s destination. After the move, the
contents of both registers are incremented by the field size.

If Rs and Rd specify the same register, the data read from the location pointed
to by the original contents of Rs is written to the location pointed to by the
incremented value of Rs(Rd).

MOVE —*Rs, Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o] 1]o]o|1]F] Rs | R | Rd |
Moves a field from a source address into Rd. Rs contains a bit address; before
the move, the contents of Rs are decremented by the field size to form the
address of the field. (This value is also the final value for the register.) When
the field is moved into Rd, it is right-justified and sign- or zero-extended to 32

bits (depending on the value of the current FE bit). This instruction also
performs an implicit compare to 0 of the field data.

If Rs and Rd are the same register, the pointer information is overwritten by the
data fetched. t See Status Bits for more information.

MOVE —*Rs, —*Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o1]o|1]o]F] Rs | R | Rd |

Moves a field from one memory location to another. Both registers contain bit
addresses; before the move, the contents of both registers are decremented
by the field size.

13-161

MOVE Move Field Instructions

If Rs and Rd are the same register, then the final contents of the register are
its original contents decremented by twice the field size.

MOVE *Rs(offset), Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1]1]o]1][F] Rs | R | Rd
) offset

Moves a field from the source address into Rd. The source address is formed
by adding a signed, 16-bit offset to the contents of Rs. When the field is moved
into Rd, itis right-justified and sign- or zero-extended to 32 bits (depending on
the value of the current FE bit). This instruction also performs an implicit
compare to 0 of the field data. T See Status Bits for more information.

MOVE *Rs(offset), *Rd+ [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1|o|1|o|o|F| Rs | R | Rd
) offset

Moves a field from one memory location to another. The source address is
formed by adding the contents of Rs to the signed 16-bit offset. Rd contains
the address of the field’s destination; after the move, the contents of Rd are
incremented by the selected field size.

MOVE *Rs(SOffset), *Rd(DOffset) [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 [1[1]o]F] Rs | R | Rd
source offset

destination offset

Moves a field from one memory location to another. The source address is
formed by adding a signed 16-bit offset to the contents of Rs. The destination
address is formed by adding a signed 16-bit offset to the contents of Rd.

MOVE @SAddress, Rd [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJofofoflof1[F[1]1]o]1][R] Rs
16 LSBs of source address

16 MSBs of source address

Moves a field from memory to the destination register. SAddress is a 32-bit
address. Whenthe field is moved into the destination register, it is right-justified

13-162 TMS34020 Assembly Language Instruction Set

\

Move Field Instructions MOVE

and sign- or zero-extended to 32 bits (depending on the selected value of FE).
Thisinstruction also compares the source datato 0. T See Status Bits for more
information.

MOVE @SAddress, *Rd+ [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o1]o[1][Flofo]lo]o[R] Rs
16 LSBs of source address

16 MSBs of source address

Moves a field from one location in memory to another. The source address is
a 32-bit address; the destination address is specified by the contents of Rd.
After the move, the contents of the destination register are incremented by the
field size.

MOVE @SAddress, @DAddress [,F]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o|o[o|o|o|1|F]1|1|1|o|o|o|o|0|o
16 LSBs of source address

16 MSBs of source address
16 LSBs of destination address
16 MSBs of destination address

Moves a field from one location in memory to another. Both addresses are
32-bit addresses.

t The following status bits information applies only to these MOVEs:
MOVE *Rs, Rd [,F]
MOVE *Rs+, Rd [,F]
MOVE —*Rs, Rd [,F]
MOVE *Rs(offset), Rd [,F]
MOVE @SAddress, Rd [,F]

Status Bits N 7 if the field-extended data moved to register is negative, 0 otherwise
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise
vV 0

13-163

MOVE Move Field Instructions

MOVE Examples

Example 1 This is an example of the following MOVE instructions:

MOVE Rs, *Rd

MOVE Rs, *Rd+
MOVE Rs, —*Rd
MOVE Rs, *Rd(offset)
MOVE Rs, @DAddress

Assume that memory contains the following value before instruction execution:

Address Data
15500h 0000h
15510h 0000h

15520h 0000h Register A0 = FFFFFFFFh
Code Before After
A1l FS0/1 A1 @15500h @15510h @15520h

MOVE A0, *Al,0 00015500h 5/x 00015500h 001Fh 0000h 0000h
MOVE AQ0,*Al,1 00015503h x/8 00015503h 078Fh 0000h 0000h
MOVE AOQ,*Al,0 00015508h 13/x 00015508h FFOOh 001Fh 0000h
MOVE AO0,*Al,1l 0001550Ch x/24 0001550Ch F00Oh FFFFh 000Fh
MOVE AOQ,*Al+,1 0001551Dh x/16 0001552Dh 0000h E000Oh 1FFFh
MOVE AQ,*Al+,0 00015516h 19/x 00015529h 0000h FFCOh 01FFh
MOVE AO,*Al+,1 00015500h x/32 00015520h FFFFh FFFFh 0000h
MOVE AQ,—*Al1,0 0001530h 5/x 000152Bh 0000h 0000h F800h
MOVE AO0,—*Al,1 000152Dh x/8 0001525h 0000h 0000h 1FEOh
MOVE A0,—*Al,0 0001528h 13/x 000151Bh 0000h F800h 00FFh

MOVE A0, *Al(0000h),100015500h x/1 00015500h 0001h 0000h 0000h
MOVE A0, *Al(OFFFh),000014501h 19/x 00014501h FFFFh 0007h 0000h
MOVE A0, *Al(7FFFh),10000D501h x/22 0000D501h FFFFh 003Fh 0000h
MOVE A0, *Al(8000h),00001D500h 27/x 0001D500h FFFFh 07FFh 0000h

MOVE A0,@1550Bh,1 XXHXXXXX X/16 XXXXXXXX F800h 07FFh 0000h
MOVE A0,@15512h,0 XXXXXXXX 27/X XXXXXXXX 0000h FFFCh 1FFFh
MOVE A0,@1550Ch,1 XXXXXXXXK X/32 XXXXXXXX FOOOh FFFFh OFFFh

Example 2 This is an example of the following MOVE instructions:

MOVE *Rs, Rd

MOVE *Rs+, Rd
MOVE —*Rs, Rd
MOVE *Rs(offset), Rd
MOVE @SAddress, Rd

Assumethat memory contains the following value before instruction execution:

Address Data Address Data

15500h 7770h 15530h 3333h
15510h 7777h 15540h 4444h
15520h 0000h 15550h 5555h

13-164 v TMS34020 Assembly Language Instruction Set

Move Field Instructions

MOVE

Example 3

MOVE
MOVE
MOVE
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE

*A0,Al, 1
*A0,A1,0
*A0,Al, 1
*A0,Al,0
*A0,Al,0

*A0+,Al,0
*A0+,Al,1
*A0+,Al,0
*A0+,Al1,1

—*A0,A1,0
—*A0,A1,0
—*A0,A1,0

*A0(0020h),Al,1
*A0 (00FFh),Al,0
*A0 (7FFFh),Al,1
*A0(8000h),Al,0
*A0 (OFFECh),Al,0

@15504h,Al1,0
€15500h,A1,1
€15501h,A1,0
@15501h,Al1,1

This is an example of the following MOVE instructions:

Before

A0 FS0/1

00015500h x/1
00015500h 5/x
00015500h x/5
00015500h 5/x
00015500hn 18/x

00015500h 12/x
00015500h x/12
00015500h 27/x
00015500h x/27

00015520h 31/x
00015520h x/31
00015520h 32/x

0001551Chx/13
00015435h 16/x
0000D531hx/22
0001D530h 27/x
0001554Dh 32/x

XOOXXXX 1/
XIOOXXXXX — X/0
XXXXXXXX OfX
XXOOXXXX X/1

MOVE *Rs, *Rd
MOVE *Rs+, *Rd+
MOVE —*Rs, —*Rd

MOVE @SAddress, @DAddress

MOVE @SAddress, *Rd+

Assumethatmemory contains the following value before instruction execution:

Address
15500h
15510h
15520h

Data

FFFFh
FFFFh
FFFFh

FEO/1
x/1
0/x
x/1
0/x
0/x

0/x
x/1
0/x
x/1

1/x
x/0
X/x

x/0
1/x
x/1
1/x
0/x

18/x
x/18
30/x
x/30

After

A0

00015500h
00015500h
FFFFFFFOR
00015500h
00037770h

0001550Ch
0001550Ch
0001551Bh
0001551Bh

00015501h
00015501h
00015500h

0001551Ch
00015435h
0000D531h
0001D530h
0001554Dh

XOXXXXXXX
XXXXXXXX
XXX
XXXXXXXX

Al

00000000h
00000010h
00000000h
00000010h
00000010h

00000770h
00000770h
07777770h
FF777770h

3BBBBBB8h
3BBBBBB8h
77777770h

00000443h
00004333h
00000443h
FC443333h
AAA22219h

FFFF7777h
00037770h
3BBBBBB8h
FBBBBBB8h

NCzVv

0x10
0x00
1x00
0x00
0x00

0x00
0x00
0x00
1x00

0x00
0x00
0x00

0x00
0x00
0x00
1x00
1x00

1x00
0x00
0x00
1x00

Address Data

15530h 0000h
15540h 0000h
15550h 0000h

13-165

MOVE Move Field Instructions

Code Before
A0 A1l

FS0/1 A0

MOVE *A0,*Al,1 00015500h 00015530h x/1

MOVE *AQ0,*Al,0 00015500h 0001
MOVE *A0,*Al,1 00015500h 0001
MOVE *A0,*Al1,0 00015500h 0001

MOVE *AO+,*AH,1 00015510h 0001
MOVE *AO+,*AH,0 00015511h 0001

5534h 5/x
553Ah x/10
553Fh 19/x

5532h x/7
553Ah 13/x

MOVE *A0+,*AH,1 00015513h 0001553Fh x/8

MOVE *A0+, *AH,0 00015510h 0001

MOVE *—A0, *—Al,000015527h 0001
MOVE *-A0, *—Al,100015527h 0001
MOVE *—A0, *—Al1,00001552Ah 0001
MOVE *—-A0, *—Al,100015520h 0001

553Ah 28/x

5555h 31/x
5550h x/31
5550h 32/x
555Ah x/32

MOVE @15500h, *A1+,1 0001553Ah xxxxxxxx x/10
MOVE @15500h, *Al+, 00001553Ah xxxxxxxx 19/
MOVE @1550Dh, *Al+,10001553Ah Xxxxxxxx 28/x
MOVE @15505h, *Al+,00001553Ah XXXXXXXX X/32

After

Al

@15530h @15540h @1550h

00015500h 00015530h
00015500h 00015534h
00015500h 0001553Ah
00015500h 0001553Fh

00015517h 0001553%h
0001551Fh 00015547h
0001551Bh 00015547h
0001552Ch 00015556h

00015508h 00015536h
00015508h 00015531h
0001550Ah 00015530h
00015500h 0001553Ah

00015544h XXXXXXXX
00015552 XXXXXXXX
0001554Ch xxxxxxxx
0001554Dh XXXXXXXX

0001h 0000h
01FOh 0000h
FCOOh 000Fh
8000h FFFFh

01FCh 0000h
FCOOh 007Fh
8000h 007Fh
FCOOh FFFFh

FFCOh FFFFh
FFFEh FFFFh
FFFFh FFFFh
FCOOh FFFFh

FCOOh 000Fh
8000h FFFFh
FFFFh OFFFh
FFEOh OFFFh

MOVE @15500h,@15530h, 1 XXXXXXXX XXXXXXXX x/1 XXXXXXXX XXXXXXXX 0001h 0000h
MOVE @15500h,@15534h, 0 XXXXXXXX XXXXXXXX 5/x XXXXXXXK XXXXXXXX 01FOh 0000h
MOVE @15500h,@15530h, 1 XXXXXXXX XXXXXXXX x/7 XXXXXXXX XXXXXXXK 007Fh 0000h
MOVE @15500h,@15530h, 0 XXXXXXXX XXXXXXXX 13/X XHOOKXXX XXXXXXXX 1FFFh 0000h
Example 4 This is an example of the following MOVE instructions:

MOVE *Rs(offset), *Rd+

MOVE *Rs(offset), *Rd(offset)

0000h
0000h
0000h
0003h

0000h
0000h
0000h
003Fh

001Fh
0000h
0000h
03FFh

0000h
0003h
0000h
0000h

0000h
0000h
0000h
0000h

Assumethat memory contains the following value before instruction execution:

Address Data
15500h 0000h
15510h 0000h
15520h 0000h
Code Before
A0 A1

MOVE *A0 (0000h) , *Al+,1
MOVE *AQ (00FFh) ,*Al+,1
MOVE *AQ0 (OFFFh) ,*Al+,1

13-166

00015530h 0015500h x/1

00015535h 001550Ch 16/x
00015531h 00015510h 19/x
MOVE *A0 (OFFEOh), *Al+, 1 00015558h 00015508h x/31

MOVE *A0(0001h),*A1(0000h),0 0001552Fh 00015504h 5/x
MOVE *A0 (000Fh) ,*A1(000Fh),0 0001552Dh 000154FDh 8/x
MOVE *A0 (7FFFh),*A1(8000h),1 0000D531h 0001D508h x/22
MOVE *A0 (OFFF2h),*Al(7FFFh),100015540h 0000D501h x/25

After
FS0/1 A1 .

00015501h
0001551Ch
00015523h
00015527h

00015504h
000154FDh
0001D508h
0000D501h

Address Data

15530h 3333h
15540h 4444h
156550h 5555h

@15530h @15540h @1550h

0001h 0000h
3000h 0433h
0000h 3333h
3300h 4444h

0130h 0000h
3000h 0004h
3300h 0433h
0CCCh 0111h

0000h
0000h
0004h
0055h

0000h
0000h
0000h
0000h

TMS34020 Assembly Language Instruction Set

Move Immediate, 16 Bits MOVI

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MOVI W, Rd [, W]

16-bit immediate value — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o|o|o|o|1|o|o]1|1|1|o|R| Rd
16-bit value

MOVI stores a 16-bit, sign-extended immediate value in the destination regis-
ter. (/W in the instruction syntax represents the 16-bit value.)

The assembler uses the short form if the immediate value has been previously
defined and is in the range —32,768 through 32,767. You can force the assem-
bler to use the short form by following the register operand with ,W:

MOVI IW,Rd,W

The assembler truncates the upper bits and issues an appropriate warning
message.

2
N 1 if the data being moved is negative, O otherwise
C Unaffected
Z Unaffected
V 1 if the data being moved is 0, 0 otherwise
Code After

A0 NCzZV
MOVI 32767,A0 00007FFFh 0x00
MOVI 1,A0 00000001h 0x00
MOVI 0,A0 00000000h 0x10
MOVI -1,A0 FFFFFFFFh 1x00
MOVI —32768,A0 FFFF8000h 1x00
MOVI 0000h,A0 00000000h 0x10
MOVI 7FFFh,AQ 00007FFFh 0x00

13-167

MOVI Move Immediate, 32 Bits

Syntax MOVI L, Rd [, L]
Execution 32-bit immediate value — Rd
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofJoJoflt]ofo|t1 1]1]1]R] Rd
16 LSBs of IL
16 MSBs of IL
Description MOVI stores a 32-bit immediate value in the destination register. (IL in the

instruction syntax represents the 32-bit value.)

The assembler uses this opcode if it cannot use the MovI 1w,Rd opcode or if
the long opcode is forced by following the register operand with, L:

MOVI IL,Rd,L

Machine States 2 if immediate data is long-word aligned
3 if immediate data is not long-word aligned

Status Bits N 7 if the data being moved is negative, 0 otherwise
C Unaffected
Z 1 ifthe data being moved is 0, 0 otherwise
V 0

Examples Code After

A0 NCZV

MOVI 2147483647 ,A0 7FFFFFFFh 0x00
MOVI 32768,A0 00008000h 0x00
MOVI —32769,A0 FFFF7FFFh 1x00
MOVI —2147483648,A0 80000000h 1x00
MOVI 8000h,A0 00008000h 0x00
MOVI OFFFFFFFFh,AQ FFFFFFFFh 1x00
MOVI OFFFFh,A0,L FFFFFFFFh 1x00

13-168 TMS34020 Assembly Language Instruction Set

Move Constant (5 Bits) MOVK

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MOVK constant, Rd

5-bit constant — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
folofo|1]1]o0] constant | R | Rd |

MOVK stores a 5-bit constant in the destination register. The constant is
treated as an unsigned number in the range 1—32, where constant = 0 in the
opcode corresponds to a value of 32. The resulting constant value is zero-
extended to 32 bits.

Note that you cannot set a register to 0 with this instruction. You can clear a
register by XORing the register with itself; use crr rd (an alternate mnemonic
for XOR Rs, Rd) to accomplish this. Both these methods alter the Z bit (set it
to 1).

1

N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Code After

A0
MOVK 1,A0 00000001h
MOVK 8,A0 00000008h
MOVK 16,A0 00000010h
MOVK 32,A0 00000020h

13-169

MOVX Move X Half of Register

Syntax MOVX Rs, Rd
Execution X half of Rs — X half of Rd
Instruction Words 15 14 13 12 11 10 9 8 7 5 4 3
(1l]rfof1]1]o] Rs 1R
Description MOVX moves the X half of the source register (16 LSBs) to the X half of the

destination register. The Y halves of both registers are unaffected.

You can also use the MOVX and MOVY instructions for handling packed 16-bit
quantities and XY addresses. You can use the RL instruction to swap the con-

tents of X and Y.

Rs and Rd must be in the same register file.

Machine States 1
Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
Examples Code Before
A0 A1

MOVX A0,Al 00000000h FFFFFFFFh
MOVX AO0,Al 12345678h 00000000h
MOVX AO0,Al FFFFFFFFh 00000000h

13-170 TMS34020 Assembly Language Instruction Set

After

At
FFFF0000h
00005678h
0000FFFFh

Move Y Half of Register MOVY

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MOVY Rs, Rd
Y half of Rs — Y half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ERERERERERERER Rs | R | Rd]

MOVY moves the Y half of the source register (16 MSBs) to the Y half of the
destination register. The X halves of both registers are unaffected.

You can also use the MOVX and MOVY instructions for handling packed 16-bit
quantities and XY addresses. You can use the RL instruction to swap the con-
tents of X and Y.

Rs and Rd must be in the same register file.

.1

N Unaffected

C Unaffected

Z Unaffected

V Unaffected

Code Before After
A0 Al Al

MOVY AO,Al 00000000h FFFFFFFFh ~ O000FFFFh
MOVY A0,Al 12345678h 00000000h 12340000h
MOVY AO0,Al FFFFFFFFh ~ 00000000h FFFFO000h

13-171

MPYS Muiltiply Registers, Signed

Syntax

Execution

Instruction Words

Description

13-172

MPYS Rs, Rd

If Rd is an even-numbered register, Rs x Rd — Rd:Rd+1
If Rd is an odd-numbered register, Rs x Rd — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 o1]1[1]o] Rs | R | Rd |

MPYS performs a signed multiply of a variably sized field in the source register
by the 32 bits in the destination register. This produces a 32-bit to a 64-bit
result, depending on the register and field definitions. Note that Rs and Rd
must be in the same register file.

The value of field size 1 (FS1) defines the size of the multiplierin Rs. FS1 may
have any even value nfrom 2to0 32 (thatis, n=2, 4, 6 ... 30, 32). The instruction
executes a 32-bit-by-n-bit multiply — multiplying the 32 bits in Rd by the n bits
in Rs. All values are signed. The MSB of the source field (bitn— 1 in Rs) defines
the sign of the field; the bits to the left of bit » are ignored. The MSB of Rd
defines the sign of the multiplicand.

31

Lignored __wbitmultipler] | a2 bitmultilicand

MPYS has two modes, depending on whether Rd is even or odd:

X Rd Even:

MPYS multiplies the contents of Rd by the »-bit field in Rs, and stores the
resultin 2 consecutive registers, Rd and Rd+1. (Forexample, if Rd=B4, the
result is stored in registers B4 and B5.) The result is sign-extended and
right-justified; the 32 MSBs are stored in Rd, and the 32 LSBs are stored in
Rd+1. Note that all 32 bits of both registers are used, regardless of the field
size of the multiply.

Do not use A14 or B14 as the destination register, because Rd+1 (A15 or
B15) is the stack pointer register (SP). It is not desirable to write over the
contents of the SP.

SR)
31 A

. 031
sign | _n MSBs of result | 32 LSBs of result

TMS34020 Assembly Language Instruction Set

Multiply Registers, Signed MPYS

Lk Rd Odd:

MPYS multiplies the contents of Rd by the n-bit field in Rs, and stores the
32 LSBsoftheresultin Rd; neither Rs nor Rd+1 are changed. Iftheresultis
greater than 32 bits, the extra MSBs are discarded, regardless of the field
size. The N and Z status bits, however, are set according to the full result,
including the MSBs that are discarded.

Contbenbt’s of Rd (odd register) -

31 0
| __32LSBs of result » | _

Machine States 5 + (field size)/2

Status Bits N 7 if the result is negative, 0 otherwise
C Unaffected
Z 1 iftheresultis 0, 0 otherwise
V Unaffected

Example 1 MPYS Al, AO

Before After

A0 A1 FS1 A0 A1 NCzv
00000000h 00000000h 32 00000000h 00000000h Ox1x
7FFFFFFFh 7FFFFFFFh 32 3FFFFFFFh 00000001h 0x0x
7FFFFFFFh FFFFFFFFh 32 FFFFFFFFh 80000001h 1x0Xx
FFFFFFFFh 7FFFFFFFh 32 FFFFFFFFh 80000001h 1x0Xx
FFFFFFFFh FFFFFFFFh 32 00000000h 00000001h 0x0x
80000000h 7FFFFFFFh 32 C0000000h 80000000h 1x0x
80000000h 80000000h 32 40000000h 00000000h 0x0x
80000001h 80000000h 32 3FFFFFFFh 80000000h 0x0x
8040156Fh 7FF3B074h 32 C0262CDCh 53E486F8h 1x0x
8040156Fh 7FF3B074h 24 000624B1h 53E486F8h 0x0x
8040156Fh 7FF3B074h 20 FFFE28B2h 594486F8h 1x0x
8040156Fh 7FF3B074h 16 000027B2h 17EC86F8h 0x0x
8040156Fh 7FF3B074h 14 000007C2h 1C0206F8h 0x0x
8040156Fh 7FF3B074h 8 FFFFFFC6h 1D0766F8h 1x0x
8040156Fh 7FF3B074h 6 00000005h FCFF3BF8h 0xO0x
8040156Fh 7FF3B074h 4 FFFFFFFEhQ 01004158h 1x0x
8040156Fh 7FF3B074h 2 00000000h 00000000h 0x1x

13-173

MPYS Muitiply Registers, Signed

Example 2

13-174

MPYS AO,Al

Before

AO
00000000h
7FFFFFFFh
7FFFFFFFh
FFFFFFFFh
FFFFFFFFh
80000000h
80000000h
80000001h
7FF3B074h
7FF3B074h
7FF3B074h
7FF3B074h
7FF3B074h
7FF3B074h
7FF3B074h
7FF3B074h
7FF3B074h

A1
00000000h
7FFFFFFFh
7FFFFFFFh
7FFFFFFFh
FFFFFFFFh
7FFFFFFFh
80000000h
80000000h
80401056h
80401056h
80401056h
80401056h
80401056h
80401056h
80401056h
80401056h
80401056h

FS1

32
32
32
32
32
32
32
32
24
20
16

N A~ O

TMS34020 Assembly Language Instruction Set

After

A0
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

At
00000000h
00000001h
80000001h
80000001h
00000001h
80000000h
00000000h
80000000h
53E486F8h
53E486F8h
594486F8h
17EC86F8h
1C0206F8h
1D0766F8h
FCFF3BF8h
01004158h
00000000h

NCzv
0x1x
0x0x
1x0x
1x0x
0x0x
1x0x
0x0x
0x0x
1x0x
0x0x
1x0x
0x0x
0x0x
1x0x
0x0x
1x0x
O0x1x

Multiply Registers, Unsigned MPYU

Syntax MPYU Rs, Rd
Execution If Rd is an even-numbered register: Rs x Rd — Rd:Rd+1
If Rd is an odd-numbered register: Rs x Rd — Rd
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o[1o 11]1]1] Rs | R | Rd |
Description MPYU performs an unsigned multiply of a variably-sized field in the source reg-

ister by the 32 bits in the destination register. This produces a 32-bit to a 64-bit
result, depending on the register and field definitions. Note that Rs and Rd
must be in the same register file.

The value of field size 1 (FS1) defines the size of the multiplier in Rs. FS1 may
have any even value nfrom2to0 32 (thatis, n =2, 4,6 ... 30, 32). The instruction
executes a 32-bit-by-z-bit multiply — multiplying the 32 bits in Rd by the » bits
in Rs. All values are unsigned.

. - b:.:: : o -
L_ignored n—bit multiplier .

MPYS has two modes, depending on whether Rd is even or odd:

[Rd Even:

MPYU multiplies the contents of Rd by the r-bit field in Rs and stores the
resultin 2 consecutive registers, Rdand Rd+1. (Forexample, if Rd=B4, the
result is stored in registers B4 and B5.) The result is zero-extended and
right-justified; the 32 MSBs are stored in Rd, and the 32 LSBs are stored in
Rd+1. Note that all 32 bits of both registers are used, regardless of the field
size of the multiply.

Do not use A14 or B14 as the destination register, because Rd+1 (A15 or
B15) is the stack pointer register (SP). It is not desirable to write over the
contents of the SP.

o i o s i o

3 nnd 031 o

[os [nMSBsofresut | 32 LSBs of result]

2 Rd Odd:

MPYU multiplies the contents of Rd by the n-bit field in Rs and stores the 32
LSBs of the result in Rd; Rs is not changed. If the result is greater than 32
bits, the extra MSBs are discarded, regardless of the field size. The Z sta-
tus bit, however, is set according to the full result, including the MSBs that
are discarded.

13-175

MPYU Muttiply Registers, Unsigned

32 LSBs of result

5 + (field size)/2

Machine States Rs nonnegative:
Rs negative: 6 + (field size)/2

Status Bits N Unaffected
C Unaffected
Z 1 iftheresultis 0, 0 otherwise
V Unaffected

Example 1 MPYU Al,A0
Before After
A0 A1 FS1 A0 A1 NCzv
FFFF0000h 10000000h 32 OFFFFQOO0h 00000000h x X 0 X
FFFF0000h 10001010h 32 1000000Fh EFF00000h xx0x
FFFFO0000h 10001010h 16 0000100Fh EFFO00000h XX 0x
FFFF0000h 10001010h 8 0000000Fh FFFO00000h x x0x
FFFFO000h 10001010h 4 00000000h 00000000h xx1x
08001056h 0003B074h 32 00001D83h DC4486F8h XX 0x
08001056h 0003B074h 16 00000583h AB4286F8h x X 0 x
08001056h 0003B074h 14 00000183h A31786F8h x X0 X
08001056h 0003B074h 8 00000003h A00766F8h XxxX0x
08001056h 0003B074h 6 00000001h A0035178h x X0 X
08001056h 0003B074h 4 00000000h 20004158h xx0x
08001056h 0003B074h 2 00000000h 00000000h XX 1x

Example 2 MPYU AO0,Al
Before After
A0 A1 FS1 A0 A1 NCzv
10000000h FFFFO000h 32 unchanged 00000000h XX 0Xx
10001010h FFFFO000h 32 unchanged EFF00000h XX 0x
10001010h FFFFO0O00h 16 unchanged EFF00000h xx0x
10001010h FFFF0O00h 8 unchanged FFFO0000h XX 0x
10001010h FFFFO000h 4 unchanged 00000000h XX 1x
0003B074h 08001056h 32 unchanged DC4486F8h x X 0x
0003B074h 08001056h 16 unchanged AB4286F8h x X 0x
0003B074h 08001056h 14 unchanged A31786F8h XX 0x
0003B074h 08001056h 8 unchanged A00766F8h xx0x
0003B074h 08001056h 6 unchanged A0035178h XxX0x
0003B074h 08001056h 4 unchanged 20004158h X X0 X
0003B074h 08001056h 2 unchanged 00000000h xx1x

13-176

TMS34020 Assembly Language Instruction Set

Memory Wait MWAIT

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MWAIT
Wait for current memory cycle to complete

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
[ofofoJofofJofofof+r]ofofoJofoJofo]

MWAIT delays further instruction execution to allow any pending write cycle
to complete. If no write cycle is currently pending, the next instruction begins
execution immediately. If a write cycle is pending, execution of the next instruc-
tion is delayed until the write cycle completes.

MWAIT is typically used to ensure that all pending 1/O register updates have
been completed prior to beginning a graphics instruction execution that
depends on the values in the I/O registers. It may also be used to ensure that
a pending write to a register in a memory-mapped peripheral external to the
TMS34020 has completed prior to executing an instruction whose operation
depends on the value in the register. Refer to Section 4.5.6 on page 4-13 for
a description of the potential latency of writes to 1/O registers.

minimum of 2

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ

MOVK 4, B1O
SETF 16,0,0
MOVE B10, €C0000150h ; load PSIZE
MWAIT ; wait for write to complete
DRAV A0,A2
; In this case the 16 bit MOVE to PSIZE results
; in 1 hidden state at the time MWAIT is
; entered. MWAIT will take 2 cycles to execute.

MOVK 4, B10O
SETF 6,0,0
MOVE B10, @€C0000150h ; load PSIZE
MWAIT ; wait for write to complete
DRAV AO0,A2
; In this case the 6 bit MOVE to PSIZE results
; in 2 hidden states at the time MWAIT is
; entered. MWAIT will take 3 cycles to execute.

13-177

NEG Negate Register

Syntax NEG Rd
Execution 2s complement of Rd — Rd
Instruction Words 15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0
lofofofoJofoft]t]tfoft][R] Rd |
Description NEG stores the 2s complement of the contents of the destination register back
into the destination register.
Machine States 1
Status Bits N 17 if the result is negative, 0 otherwise
C 1 ifthereis a borrow (Rd = 0), 0 otherwise
Z 1 ifthe result is 0, 0 otherwise
V 1 ifthere is an overflow (Rd = 80000000h), 0 otherwise
Examples Code Before After
A0 NCZV A0
NEG A0 00000000h 0 01 0 00000000h
NEG A0 55555555h 1100 AAAAAAABHh
NEG A0 7FFFFFFFh 1100 8000000th
NEG A0 80000000h 1101 80000000h
NEG A0 80000001h 0100 7FFFFFFFh
NEG A0 FFFFFFFFh 0100 00000001h

13-178

TMS34020 Assembly Language Instruction Set

Negate Register with Borrow NEGB

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

NEGB Rd
(2s complement of Rd) - C — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[olofofoJofofsfrftft]ofRr] Rd |

NEGB takes the 2s complement of the destination register’s contents and dec-
rements by 1 if the borrow bit (C) is set; the result is stored in the destination
register. This instruction can be used in sequence with itself and with the NEG
instruction for negating multiple-register quantities.

1

N 7 if the result is negative, 0 otherwise
C 1 ifthereis a borrow, 0 otherwise

Z 1ifthe resultis 0, 0 otherwise

V 1 ifthere is an overflow, 0 otherwise

Code Before After
A0 C NCZV A0

NEGB A0 00000000h 0 0010 00000000h
NEGB A0 00000000h 1 1100 FFFFFFFFh
NEGB A0 55555555h 0 1100 AAAAAAABHh
NEGB A0 55555555h 1 1100 AAAAAAAAh
NEGB A0 7FFFFFFFh 0 1100 80000001h
NEGB A0 7FFFFFFFh 1 1100 80000000h
NEGB A0 80000000h 0 1101 80000000h
NEGB A0 80000000h 1 0100 7FFFFFFFh
NEGB A0 80000001h 0 0100 7FFFFFFFh
NEGB A0 80000001h 1 0100 7FFFFFFEhQ
NEGB A0 FFFFFFFFh 0 0100 00000001h
NEGB A0 FFFFFFFFh 1 0110 00000000h

13-179

NOP No Operation

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Example

13-180

NOP

No operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lofofoJoJoJoJtf1fJoJofoJoJojofoJol]

The program counter is incremented to point to the next instruction. The
processor status is otherwise unaffected.

You can use the NOP instruction to pad loops and perform other timing func-
tions.

1

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ

Before After
PC PC
NOP 00020000h 00020010h

E

TMS34020 Assembly Language Instruction Set

Complement Register NOT

Syntax NOT Rd
Execution NOT Rd — Rd
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJoJofoJoJoftftft]1]1]R] Rd |
Description NOT stores the 1s complement of the destination register’s contents back into
the destination register.
Machine States 1
Status Bits N Unaffected
C Unaffected
Z 1ifthe resultis 0, 0 otherwise
V Unaffected
Examples ode Before After
A0 NCZV A0

NOT A0 00000000h x x 0 X FFFFFFFFh
NOT A0 55555555h xx0x AAAAAAAAh
NOT A0 FFFFFFFFh xx1Xx 00000000h
NOT A0 80000000h x x 0 x 7FFFFFFFh

13-181

OR OR Registers

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-182

OR Rs, Rd

Rs ORRd — Rd

15 14

i3 12 11

10

9 8 7 6 5 4

3 2 1 0

lofrfofrfof1]ol] Rs [R |

Rd

This instruction bitwise-ORs the contents of the source register with the con-
tents of the destination register; the result is stored in the destination register.

Rs and Rd must be in the same register file.

1

N Unaffected
C Unaffected
Z 1 ifthe resultis 0, 0 otherwise
V Unaffected
Code Before After

A0 Al Al
OR A0,Al FFFFFFFFh 00000000h FFFFFFFFh
OR A0,Al1 00000000h FFFFFFFFh FFFFFFFFh
OR AO0,Al 55555555h AAAAAAAAh FFFFFFFFh
OR A0,Al1 00000000h 00000000h 00000000h

NCZzZV
Xxx0x
XX 0Xx
XxX0x
xXx1Xx

TMS34020 Assembly Language Instruction Set

OR Immediate (32 Bits) ORI

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

ORI IL,Rd

32-bit immediate value OR Rd — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojofofJo[1]Jo[1]1[1]o]1]R] Rd
16 LSBs of IL
16 MSBs of IL

This instruction bitwise-ORs a 32-bit immediate value with the contents of the
destination register and stores the result in the destination register. (/L in the
syntax represents the 32-bit value.)

2 if immediate data is long-word aligned
3 ifimmediate data is long-word aligned

N Unaffected
C Unaffected
Z 1 ifthe resultis 0, 0 otherwise

V Unaffected
Code Before After

A0 A0 NCZV
ORI OFFFFFFFFh,A0 00000000h FFFFFFFFh xx0Xx
ORI 00000000h,A0 FFFFFFFFh FFFFFFFFh xxO0x
ORI OAAAAAAAAL,AQ 55555555h FFFFFFFFh XxX0x
ORI 00000000h,A0 00000000h 00000000h xx1x

13-183

PFILL Pattern Fill

Syntax

Execution

Instruction Words

Description

Aligning a pattern

Prealigning a pattern

13-184

PFILL XY
COLORO0 and COLORT1 pixels — pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJofoJoJtfoJsfoJoJoftfiJoftft]1]

PFILL XY fills a pixel array, one row at a time,with a 2-color pattern. The pattern
is defined by the PATTERN register. The 2 colors are defined by the COLORO
and COLOR1 registers. PFILL replaces the 1s in pattern with the pixel value
in COLORU{; it replaces the Os in the pattern with the pixel value in COLORO.

Tofill an array with a 2-dimensional pattern, execute PFILL once for each row
of the array. If the width of the specified fill region (defined by DX in DYDX) is
more than 32 pixels, PFILL replicates the same 32-bit pattern as many times
as necessary to fill the row. After each line is drawn, you will typically update
the contents of the PATTERN register to define the next row of the pattern.

If you do not update the PATTERN register between rows, or if the number of
rows in the fill region is =1, then the same 1-dimensional pattern is repeated
for each row of the destination array. If the destination array pitch is a power
of 2, and a pattern is drawn to the screen in this manner, then the filled area
appears to contain stripes. If the destination array pitch is not a power of 2, then
the pattern is defined for only the first line of the array.

The contents ofthe PATTERN register control the pattern. As an example, con-
sider the pixel addressed by the XY address in DADDR at the start of the PFILL
instruction. Letthat pixel be the nth pixel from the least significant end of along-
word boundary, where n is in the range:

32
0O=sn= (PSIZE_1)

Bit n in the PATTERN register determines if the first pixel drawn is a COLORO
or COLORT1 pixel. Bit n +1 determines if the second pixel drawn is a COLORO
or COLOR1 pixel, and so on. The PATTERN register works cyclically to draw
aline. If the DX value in DYDX is large, then eventually bit 31 of the PATTERN
register will be used to control an output pixel. If a further pixel is drawn, then
it will be controlled by bit 0 of the pattern and so on.

The last example demonstrated that PFILL does not perform any internal align-
ment of the PATTERN register. This cuts the overhead time required to start
executing and enables you to perform a pattern prealignment to suit your
needs.

TMS34020 Assembly Language Instruction Set

Pattern Fill PFILL

Consider this case where no prealignment is performed:

PSIZE = 04h

DADDR (B2) = 00000 0000h
DPTCH (B3) = 00000 0000h
OFFSET (B4) = 00000 0000h
DYDX (B7) = 00020 0060h
COLORO (B8) = 00000 0000h
COLOR1 (B9) = OFFFFFFFFh
PATTERN (B13) = OFFFOOOFFh

For this example, PFILL draws a rectangle 96 pixels wide and 32 pixels high.
The rectangle contains vertical stripes, alternating between COLOR1 and
COLORA1. The first pixel drawn, at bit address 00000000h, is controlled by bit
0 of the PATTERN register.

If the screen is clear and the X part of DADDR is incremented by 1 to
00000001h, PFILL will redraw the rectangle. The first pixel drawn by PFILL,
now at bit address 00000004h, will be controlled by bit 1 of the pattern register.
The drawn pattern now appears as if it were fixed relative to the screen (not
the rectangle edge).

This continues as the X component of DADDR is incremented until DADDR =
000000008h; at this point the first pixel drawn by PFILL, now at bit address
000000020, will no longer be in the first 32-bit long-word of the screen. In this
case, by the argument used above, the first drawn pixel is controlled, once
again, by bit 0 of the PATTERN register and thus changing from DADDR =
000000007h to DADDR = 0000000008h the pattern will appear to jump within
the rectangle. This may not always be a desirable way to manage the pattern.
You may wish to do one of the following:

4 Createapatternthatappearsto befixed relative to the screen background.
[Create a pattern that appears fixed relative to the edge of the rectangle.

Placing the pattern relative to the screen background

There are three ways to fixing or placing a pattern relative to the screen back-
ground.

1) Letthe number of pixels in a long-word be p, where

32

P =PpsizE "

If the pattern in the PATTERN register repeats every p pixels, then it will
appear fixed with respect to the screen background.

If you set B13 = FFOOFFOOFFh in the last example, the pattern will not
jump.

13-185

PFILL Pattern Fill

Placing the pattern relative to the rectangle

13-186

2)
3)

Use a pixel size of 1 bit.

Manually rotate the contents of B13 before executing PFILL. The rotation
amount depends on the following two things:

2 Pixel size
X X component of DADDR

Let the total number of bits controlled by the entire pattern (that is 32 x
PSIZE bits), be known as a super-word (range 32 to 1024 bits in size).

Letthe long-word containing the pixel addressed by DADDR at the start of
the PFILL XY be the n™ long-word in a super-word (range 0 to 32).

Let the number of pixels in a 32-bit long-word be p, where

P = 55i7E (range 0 to 32).
Before starting PFILL XY, the pattern should be rotated right by m x p bits,
before placing it in PATTERN.

This may appear complex, but because pixel size is usually fixed, the
prealignment operation can be reduced to a simple sequence of instruc-
tions. For example, at 4 bits per pixel, ANDing the XY address in DADDR
(available before execution of PFILL) with 018h yields the value m x p
which can be used to rotate the pattern before placing it into the PATTERN
register. At other pixel sizes the following will yield m x p:

PSIZE mxp

1 000h AND DADDR always 0 (no rotation required)
2 010h AND DADDR

4 018h AND DADDR

8 01Ch AND DADDR

16 01Eh AND DADDR

32 01Fh AND DADDR

Placing or fixing the pattern relative to the rectangle means that the first pixel
drawn by PFILL is always controlled by bit 0 of the PATTERN register. (This
is how the LINE and FLINE instructions use PATTERN register.)

You can achieve a similar effect for PFILL by rotating the pattern left by a certain
amount before placing it into the PATTERN register. The rotation amount
depends on the following two things:

d Pixel size
L X component of DADDR

TMS34020 Assembly Language Instruction Set

Pattern Fill PFILL

Implied Operands

Pixel Processing

Windovs Checking

The rotation amount is derived by ANDing DADDR with a constant as follows:

PSIZE Rotate Amount

1 01Fh AND DADDR

2 00Fh AND DADDR

4 007h AND DADDR

8 003h AND DADDR

16 001h AND DADDR

32 000h AND DADDR always 0 (no rotation required)
Note:

This description describes a striped rectangle, but in practice PFILL is used
to pattern-fill a single line followed by a change of pattern before pattern filling
asecondline, and so on. The reference to a rectangle is made for the purpose
of illustration only.

Register = Name Format Description
B2 DADDR XY Destination pixel block address
B3 ¢t DPTCH Linear Destination pixel block pitch
B7 DYDX XY Dimensions of drawn rectangle
B13 PATTERN Binary Pattern register
B14 POFFSET Integer Offset into the pattern

T IfDY > 1, then DPTCH must be a power of 2, or the pattern will not be well defined.

Address Name Description and Elements (Bits)
C00000BCh CONTROL PPOP Pixel-processing operations (22 options)
T Transparency operation
™ Sets transparency mode
C0000150h PSIZE Pixel size (1,2,4,8,16,32)
C0000160h PMASK Plane mask — pixel format
(32 bits)

Due to the pipelining of memory writes, the /ast 1/O register that you write to
may not, in some cases, contain the desired value when you execute the PFILL
instruction. To ensure that this register contains the correct value for execution,
you may want to follow the write to that location with an MWAIT (page 13-177).
Refer to Section 4.5.6 on page 4-13 for a description of the potential latency
of writes to 1/O registers.

Pixel processing can be used with this instruction. For more information, refer
to Section 12.8, Pixel Processing, on page 12-27.

Window checking can be used with this instruction.

13-187

PFILL Pattern Fill

Transparency

Plane Masking

Corner Adjust
Machine States

Status Bits

Examples

STK .set
DADDR .set
DYDX .set
PATTERN .set
.globl
_fill patnrect:
mmtm
mmtm
move
move
move
move
move
move
move
sll
movy
sll
movy
clip
jrz
move
move
srl
movi

13-188

Al4
B2
B7
B13

You can enable transparency for this instruction by setting TLCONTROLJ to 1.
Select 1 of 3 transparency modes by setting TM[CONTROL]. For more infor-
mation, refer to Section 12.9, Transparency, on page 12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

Corner adjust cannot be used with this instruction.
Complex Instruction

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws a rectan-
gle onthe screen; the screen is filled with a 16 x 16 binary pattern. This routine
expects 5 arguments on the C parameter stack: width, height, xleft, ytop, and
a pointer to the pattern.

This routine assumes the following registers were previously initialized by the
caller:

B-file registers DPTCH, OFFSET, WSTART, WEND, COLOR1, COLORO
I/O registers CONTROL, CONVDP, PSIZE and PMASK

;C-parameter stack pointer
;Destination address register
;Delta X/delta Y register
;Pattern register

_fill patnrect ;provide reference for external calls

spP,A0,Al1,A2,A3 ;save required registers
sp,B0,B1,B2,B7,B10,B11,B13,B14

STK,B14
*-B14,DYDX,1 ;pop W
*-B14,B10,1 ;pop h
*-B14 ,DADDR, 1 ;pop xleft
*—-Bl14,B11,1 ;pop ytop
B14,STK
*—STK,A3,1 ;pop pointer to pattern
16,B10
B10,DYDX ;jconcatenate w, h
16,B11
B11,DADDR ;concatenate xleft, ytop
;jclip the rectangle to the window
exit ;jump if rectangle outside window
DYDX,Al ;set up y count
Al,A2
16,A1
00010000H,A0

TMS34020 Assembly Language Instruction Set

Pattern Fill

PFILL

loop:

exit:

movy
move
move
getps
rmo
neg
movk
srl
subk
move
andn
neg

move
movk
sll
and
srl
add
move
move
sll
movy
rl
move
pfill
addxy
move
dsj

mmfm
mmfm
rets

A0,A2
A2,DYDX
DADDR, A2
BO

BO, B0

BO

32,B1
BO,B1
1,B1
DADDR, BO
B1,B0

BO

A3,B10
15,B11
16,B11
DADDR,B11
12,B11
B11,B10
*B10,B10,0
B10,B11
16,B11
B11,B10
B0,B10
B10,PATTERN
XY

A0,A2
A2,DADDR
Al,loop

;calculate pattern adjustment

;number pixels per 32 bit word
;so complement will count pix’s wrd

;address rounded to pix’s/word bndry
;shift count = —(LSBs of Xx)

;pattern start address

;load 4-bit mask

;align mask with 4 LSBs of y
;isolate 4 LSBs of y
;convert y to index value
;index into pattern

;get 16-bit row of pattern

;replicate row to 32 bits
;align pattern for x address
;load aligned pattern

sp,B0,B1,B2,B7,B10,B11,B13,B14

sp,A0,Al,A2,A3

2

;restore required registers
;return

13-189

PIXBLT Pixel Block Transfer Instructions

PIXBLT Instructions The PIXBLT instruction moves a 2-dimensional array of pixels from one
memory location to another. Section 12.5, Pixel-Array Instructions, on page
12-8 provides additional information about the PIXBLT instructions. The fol-
lowing list describes characteristics common to all PIXBLT instructions. Note
that PIXBLT L,M,L is discussed independently on page 13-204.

13-190

N

G

The source and destination addresses of the arrays are designated by the
SADDR and DADDR registers, respectively.

B, L, and XY are not actually operands. Instead, they identify the source
or destination array starting addresses as binary, linear, or XY addresses.
B, L, and XY are referred to as qualifiers.

Qualifiers are entered exactly as shown in the syntax; for example,
PIXBLT B, L. The first qualifier indicates the format of the starting address
of the source array; the second qualifier indicates the format of the starting
address of the destination array.

You can select a pixel-processing option by setting PPOP[CONTROLJ.
When the PIXBLT has binary source data, the pixel-processing operation
is applied to expanded pixels as they are processed with the destination
array; that is, the data is first expanded and then processed. There are 16
Boolean and 6 arithmetic operations; the default case at reset is the S —
D operation. Not that the 6 arithmetic operations do not operate with pixel
sizes of 1 bit per pixel. For more information, refer to Section 12.8, Pixel

Processing, on page 12-27.

You can enable transparency by setting TICONTROL] to 1. The
TMS34020 supports 3 transparency modes; TM[CONTROL] selects 1 of
3 transparency options. For more information, refer to Section 12.9,

Transparency, on page 12-36.

The plane mask is enabled. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. For more information, refer to Section6.6, Interrupting Graph-
ics Instructions, on page 6-13.

If CSTIDPYCTL] s set, each memory read or write initiated by the PIXBLT
generates a shift register transfer read or write cycle at the selected ad-
dress. This operation can be used for bulk memory clears or transfers. (Not
all VRAMs support this capability.) For more information, refer to subsec-
tion 9.13.4, VRAM Bulk Initialization, on page 9-47.

The status bits are undefined unless otherwise noted in the individual
descriptions.

The machine states are not presented because the PIXBLT instructions
are complex instructions.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT

Table 13-6. Summary of Array Types for the PIXBLT Instruction

Destination Array

Linear XY
Binary v Vv
Linear v v
XY v v

Table 13-7. Summary of B-File Registers for PIXBLT Instructions

Format
Reg. Name B, L B,XY |L,L L, XY XY, L XY, XY | Description

BO SADDR Linear | Linear | Linear| Linear| XY XY Source pixel array starting
address

B1 SPTCH Linear | Linear | Linear | Linear | Linear| Linear| Source pixel array pitch

B2 DADDR Linear | XY Linear | XY Linear | XY Destination pixel array
starting address

B3 DPTCH Linear | Linear | Linear | Linear | Linear| Linear | Destination pixel array
pitch

B4 OFFSET Linear Linear | Linear | Linear | Screen origin (0,0)

B5 WSTART XY XY XY Window starting corner

B6 WEND XY XY XY Window ending corner

B7 DYDX XY XY XY XY XY XY Pixel array dimensions
(rows:columns)

B8 COLORO | Pixel Pixel Background expansion
color

B9 COLOR1 | Pixel Pixel Foreground expansion
color

B14 res res res res res res Reserved register

Note: PIXBLT L,M,L is discussed independently on page 13-204. ‘

Due to the pipelining of memory writes, the last 1/O register that you write to
may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT.
Refer to Section 4.5.6 on page 4-13 for a description of the potential latency
of writes to 1/O registers.

13-191

PIXBLT Pixel Block Transfer Instructions

Table 13-8. Summary of I/O Registers for the PIXBLT Instructions

Format
Address Name B,L |B,XY|L L |LXY |XY,L |XY,XY Description and Elements
C00000B0h CONTROL | v v Vv v v PPOP-Pixel-processing
operations (22 options)
v v v W — Window clipping or pick
operation
v v v Vv v v T — Enables transparency
v v v v Vv Vv TM —selects 1 of 3 transpar-
ency options
v v v 4 PBH — PIXBLT horizontal di-
rection
Vv v v Vv PBV — PIXBLT vertical direc-
tion
C0000130h CONVSP v Vv v v XY-to-linear conversion
(source pitch) Used for
source preclipping.
C0000140h CONVDP Vv v v v XY-to-linear conversion
(destination pitch)
C0000150h PSIZE v Vv v Vv v v Pixel size (1,2,4,8,16,32)
coooo160h PMASK / v v v v v Plane mask — pixel format
(32 bits)

Note: PIXBLT L,M,L is discussed independently on page 13-204.

The PIXBLT instruction has 6 combinations, which are listed below with their
corresponding instruction words and descriptions. Note that PIXBLT L,M,L is
discussed independently on page 13-204.

PIXBLT B, L
binary to linear

Description

Source Array

13-192

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofoJofaJsrfe]rft1foJofJofJoJofofol]

This instruction expands, transfers, and processes a binary source pixel array;
it operates on 2-dimensional arrays of pixels using linear starting addresses
for both the source and the destination. The source pixel array is treated as a
1-bit-per-pixel array. As the PIXBLT proceeds, the source pixels are expanded
and then combined with the corresponding destination pixels based on the
selected graphics operations.

The source pixel array for the expand operation is defined by the contents of
the SADDR, SPTCH, and DYDX registers. For more details, refer to Section
12.5, Pixel-Array Instructions, on page 12-8.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT

Source Expansion

Destination Array

Corner Adjust

Window Checking

PIXBLT B, XY
binary to XY

Description

Source Array

Source Expansion

Destination Array

Corner Adjust

The actual values of the source pixels are determined by the interaction of the
source array with contents of the COLOR1 and COLORO registers. In the
expansion operation, a 1 bit in the source array selects a pixel from the
COLOR1 register for operation on the destination array. A 0 bit in the source
array selects a COLORQO pixel for this purpose. The pixels selected from the
COLOR1 and COLORO registers are those that align directly with their
intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADDR, DPTCH, and DYDX registers. For more details, refer to Section 12.5,
Pixel-Array Instructions, on page 12-8.

No corner adjust is performed for this instruction.The pixel transfer simply
proceeds in the order of increasing linear addresses.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HERE

15
Lo o] [ttt]rJofrfofofofofol]

This PIXBLT instruction expands, transfers, and processes a binary source
pixel array with a destination pixel array; it operates on 2-dimensional arrays
of pixels using a linear starting address for the source and an XY address for
the destination. The source pixel array is treated as a 1-bit-per-pixel array. As
the PIXBLT proceeds, the source pixels are expanded and then combined with
the corresponding destination pixels based on the selected graphics opera-
tions.

The source pixel array for the expand operation is defined by the contents of
the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The actual values of the source pixels are determined by the interaction of the
source array with contents of the COLOR1 and COLORO registers. In the
expansion operation, a 1 bit in the source array selects a pixel from the
COLOR1 register for operation on the destination array. A 0 bit in the source
array selects a COLORQO pixel for this purpose. The pixels selected from the
COLOR1 and COLORO registers are those that align directly with their
intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

No corner adjust is performed for this instruction. The transfer executes in the
order of increasing linear addresses.

13-193

PIXBLT L,L Pixel Block Transfer Instructions

Window Checking

Status Bits

PIXBLT L, L

linear to linear

Description

Source Array

Destination Array

Corner Adjust

Window Checking

PIXBLT L, XY
linear to XY

Description

13-194

You can use window checking with this instruction by setting the W bits in the
CONTROL register to the desired value. If you select window checking mode
1, 2, or 3, the WSTART and WEND registers define the XY starting and ending
corners of a rectangular window. For more information, refer to Section 12.7,
Window Checking, on page 12-19.

Undefined

Undefined

Undefined

1 ifawindow violation occurs, 0 otherwise; undefined if window checking is
not enabled (W=00)

<NOZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0|1

lofofol] [+]1]rJofoJoJoJojofoJol]

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using
linear starting addresses for both the source and the destination. As the
PIXBLT proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

The source pixel array for the processing operation is defined by the contents
ofthe SADDR, SPTCH, and DYDX registers. For more details, refer to Section
12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, and DYDX registers. For more details, refer to Section 12.5,
Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lofoJofofeJs+]s[1JoJoJsrfofoJoJoJo]

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using a
linear starting address for the source array and an XY address for the
destination array. As the PIXBLT proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT XY, L

Source Array

Destination Array

Corner Adjust

Window Checking

Status Bits

PIXBLT XY, L

XY to linear

Description

Source Array

Destination Array

Corner Adjust

Window Checking

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more detalils,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

You can use window checking with this instruction by setting WICONTROL]
to the desired value. If you select window checking mode 1, 2, or 3, the
WSTART and WEND registers define the XY starting and ending corners of
a rectangular window. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

Undefined

Undefined

Undefined

1 if window violation occurs, 0 otherwise; undefined if window checking is
not enabled (W=005)

<NOZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lofofoJofaJ+]t[s+]of1fofofoJofol]o]

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using an
XY starting address for the source pixel array and a linear address for the
destination array. As the PIXBLT proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, DYDX, and (potentially) CONVDP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

13-195

PIXBLT XY, XY Pixel Block Transfer Examples

PIXBLT XY, XY
XY to XY

Description

Source Array

Destination Array

Corner Adjust

Window Checking

Status Bits

Transparency example for PIXBLT B, L

13-196

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
| o

0
LoJoJoJofstf1f1f1foft1ft1fJofJoJoJoJol]

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using XY
starting addresses for both the source and destination pixel arrays. As the
PIXBLT proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Startin
Corner for a PIXBLT, on page 12-10.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. If you select window checking mode 1, 2, or 3, the
WSTART and WEND registers define the XY starting and ending corners of
a rectangular window. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

Unaffected

Unaffected

Unaffected

1 if a window violation occurs, 0 otherwise; unaffected if window clipping
not enabled

<NOZ

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied op-
erand setup:

Register File B: 1/0 Registers:

SADDR = 00002030h PSIZE = 0010h
SPTCH = 00000100h

DADDR = 00033000h

DPTCH = 00001000h

DYDX = 00020010h

COLORO = FEDCFEDCh

COLOR1 = BA98BA98h

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples

Additional implied operand values are listed with each example. For this exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data

Address

02000h xxxxh, xxxxh, xxxxh, 1234h, xxxxh, xxxxh, xxxxh, xxxxh
02080h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, 5678h, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

33000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
33080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
34080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

Example 1 This example uses the replace (S — D) pixel-processing operation. Before in-
struction execution, PMASK = 0000h and CONTROL = 0000h (T=0,
PP=00000).
After instruction execution, memory contains the following values:
Linear Data
Address

33000h FEDCh, FEDCh, BA98h, FEDCh, BA98h, BAS8h, FEDCh, FEDCh
33080h FEDCh, BA98h, FEDCh, FEDCh, BA98h, FEDCh, FEDCh, FEDCh

34000h FEDCh, FEDCh, FEDCh, BA98h, BA98h, BA98h, BA98h, FEDCh
34080h FEDCh, BA98h, BA98h, FEDCh, BA98h, FEDCh, BA98h, FEDCh

Example 2 This example uses transparency with COLORO0 = 00000000h. Before instruc-
tion execution, PMASK = 0000h and CONTROL = 0020h (T=1, W=00,
PP=00000).
After instruction execution, memory contains the following values:
Linear Data
Address

33000h FFFFh, FFFFh, BA98h, FFFFh, BA98h, BA98h, FFFFh, FFFFh
33080h FFFFh, BA98h, FFFFh, FFFFh, BA98h, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, BA98h, BA98h, BA98h, BA98h, FFFFh
34080h FFFFh, BA98h, BA98h, FFFFh, BA98h, FFFFh, BA98h, FFFFh

13-197

Pixel Block Transfer Examples

Window-clipping example for PIXBLT B, XY

Example 1

13-198

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied op-
erand setup:

Register File B: I/O Registers:

SADDR = 00002010h PSIZE = 0008h
SPTCH = 00000010h CONVSP = 001Bh
DADDR = 00300022h CONVDP = 0013h
DPTCH = 00001000h

OFFSET = 00010000h

WSTART = 00000026h

WEND = 00400050h

DYDX = 00040010h

COLORO = 00000000h

COLOR1 = 7C7C7C7Ch

Additionalimplied operand values are listed with each example. For this exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data

Address

2000h xxxxh, 0123h 4567h, 89ABh, CDEFh, xxxxh, xxxxh, xxxh
40000h to

43200h FFFFh

This example uses the replace (S — D) pixel-processing operation. Before in-
struction execution, PMASK = 0000h and CONTROL = 0000h (T=0, W=00,
PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

41100h FFFFh, 7C7Ch, 007Ch, 7C00h, 007Ch, 007Ch, 007Ch, 0000h
41180h 007Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
42100h FFFFh, 7C7Ch, 7C00h, 7C00h, 7CO00h, 007Ch, 7CO00h, 0000h
42180h 7C00h, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
43100h.- FFFFh, 7C7Ch, 7C7Ch, 7C00h, 7C7Ch, 007Ch, 7C7Ch, 0000h
43180h 7C7Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

XY Addressing

Y
A
d 30
d
r 31
e
s 32
] 33

X Address
2 2 2222 22 222 22222 33 33 3
01 2345 67 8 9 ABCDETFU O1 23 4

FF FF 7C 7C00 00 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
FF FF 7C 7C7C 00 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF

FF FF 7C 7C00 7C 00 7C 00 7C7C 00 00 7C 00 00 00 7C FF FF FF
FF FF 7C 7C7C 7C 00 7C 7C 7C7C 00 7C 7C 00 00 7C 7C FF FF FF

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples

Example 2

This example uses window operation 3 (clipped destination). Before instruc-
tion execution, PMASK = 0000h and CONTROL = 00COh (T=0, W=11,
PP=00000).

After instruction execution, memory contains the following values:

XY Addressing

Y
A
d 30
d
r 31
e
S 32
s

33

Pixel-processing example for PIXBLT L, L

X Address
2 22 2 22 22 2 22 3 3 33 3
5 6 7 8 9ABCDETFO1 23 4
FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FFFF FF
FF FF FF FFFF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
FF FF FF FF FF FF 00 7C 00 7C7C 00 00 7C 00 00 00 7C FF FF FF

FF FF FF FFFF FF 00 7C 7C 7C7C 00 7C 7C 00 00 7C 7C FF FF FF

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied op-
erand setup:

Register File B: 1/0 Registers:

SADDR = 00002004h PSIZE = 0004h
SPTCH = 00000080h

DADDR = 00002228h

DPTCH = 00000080h

OFFSET = 00000000h

DYDX = 0000200Dh

Additional implied operand values are listed with each example. For this exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data

Address

02000h 000xh, 1111th 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 1111h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxh, xoxh xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxh xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, »oxh xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xoxh, xxxxh

13-199

Pixel Block Transfer Examples

Example 1

Example 2

'Plane mask example for L, XY

13-200

This example uses the replace (S — D) pixel-processing operation. Before in-
struction execution, PMASK = 0000h and CONTROL = 0000h (T=0, W=00,

After instruction execution, memory contains the following values:

PP=00000).
Linear

Address

02000h 000xh,
02080h 000xh,
02100h xxxxh,
02180h xxxxh,
02200h xxxxh,
02280h xxxxh,
02300h xxxxh,

1111h,
1111h,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,

2222h, xx33h,
2222h, xx33h,
xxxxh, xxxxh,
xxxxh, xxxxh,
FFxxh, EEEFh,
00xxh, 1110h,
xxxxh, xxxxh,

Data

xxxxh, xxxxh, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh, xxxxh
DDDEh, xCCDh, xxxxh, xxxxh
2221h, x332h, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh, xxxxh

This example uses the (D — S) — D pixel-processing operation. Before instruc-
tion execution, PMASK = 0000h and CONTROL = 4800h T=0, W=00,

After instruction execution, memory contains the following values:

PP=10010).
Linear

Address

02000h 000xh,
02080h 000xh,
02100h xxxxh,
02180h xxxxh,
02200h xxxxh,
02280h xxxxh,
02300h xxxxh,

1111h,
1111h,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,

2222h, xx33h,
2222h, xx33h,
xxxxh, xxxxh,
xxxxh, xxxxh,
OFFxxh, 111Fh,
OFFxxh, 111Fh,
xxxxh, xxxxh,

Data

xxxxh, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh
x332h, xxxxh, xxxxh
x332h, xxxxh, xxxxh
xxxxh, xxxxh, xxxxh

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. This PIXBLT examples uses the following implied op-

erand setup:

Register File B:
SADDR

SPTCH

DADDR

DPTCH
OFFSET
WSTART
WEND

DYDX

| O 1 1 (Y TR [B 1}

00002004h
00000080h
00520007h
00000100h
00001000h
0030000Ch
00530014h
00030016h

1/0 Registers:

PSIZE = 0004h
PMASK = 0000h
CONVDP = 0017h
CONTROL = 0000h

(W=00, T=0, PP=00000)

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples

Example

XY Addressing

Y 0
0

A

d 52 8

d

r 53 8

e

s 54 8

s

Example for PIXBLT XY, L

- O

(o] (o] (o] N O
o o« o] wo

For this example, assume that memory contains the following data before in-
struction execution.

Linear Data

Address

02000h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
02080h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
02100h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh

15200h to
15480h 8888h

This example uses the replace (S — D) pixel-processing operation. Before in-
struction execution, PMASK = 7777H and CONTROL = 0000h (T=0, W=00,
PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

15200h, 8888h, 1888h, 5432h, 9876h, DCBAh, 10FEh, 5432h, 8886h
15300h 8888h, 1888h, 5432h, 9876h, DCBAh, 10FEh, 5432h, 8886h
15400h 8888h, 1888h, 5432h, 9876h, DCBAh, 10FEh, 5432h, 8886h

X Address
ooooo01111111 11111111
BCDEFO0O123456789BCCDEF
2

~
N [c- W]
w © o

> o

N

56789 ABCDEFO0 1 3458888

[o2]
—_
N

5678 9ABCDEFO0123458888

(o]
@
@
-
N
w W
>~

56789 ABCDEFO0123458888

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. This PIXBLT examples use the following implied oper-
and setup:

Register File B: 1/0 Registers:

SADDR = 00400001h PSIZE = 0004h
SPTCH = 00000080h CONVSP = 0016h
DADDR = 00002228h CONVDP = 0016h
DPTCH = 00000080h PMASK = 0000h
OFFSET = 00010000h CONTROL = 0000h
WSTART = 00300009h (W=00, T=0, PP=00000)
WEND = 00420012h

DYDX = 00030016h

For this example, assume that memory contains the following data before in-
struction execution.

13-201

Pixel Block Transfer Examples

Linear Data

Address ,
02000h 000xh, 1111h 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h 000xh, 111th, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xoxh xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, »xoxh xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxh xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh

Example This example uses transparency. Before instruction execution, PMASK =
0000h and CONTROL = 0200h (T=1,W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Data

Address

02000h 000xh, 1111h, 2222h, xx33h, xxxxh, Xxxxxh, xxxxh, xxxxh
02000h 000xh, 1111h, 2222h, xx383h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh xxxxh, FFxxh, 111Fh 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, FFxxh, 111Fh, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

Example for PIXBLT XY, XY

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied op-
erand setup:

Register File B: I/0 Registers:

SADDR = 00200004h PSIZE = 0004h
SPTCH = 00000200h CONVSP = 0016h
DADDR = 00410004h CONVDP = 0016h
DPTCH = 00000200h PMASK = 0000h
OFFSET = 00010000h CONTROL = 0000h
WSTART = 00300009h (W=00, T=00, PP=00000)
WEND = 00420012h

DYDX = 00030016h

For this example, assume that memory contains the following data before in-
struction execution.

13-202 TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples

Example

XY Addressing

Y 0
0

A

d 4 3

d

r 41 3

e

s 41 3

S

—

w w N O
(5] W wo

Linear Data

Address

04000h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
04200h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
04400h 3210h, 7654h, BA98h, FEDCh, 3210h, 7654h, BA98h, FEDCh
18200h to

18680h 3333h

This example uses the (D ADDS S) — D pixel-processing operation. Before
instruction execution, PMASK = 0000h and CONTROL = 4400h (T=0, W=00,
PP=10001).

After instruction execution, memory contains the following values:

X Address
ooooo0oo0o0000001T111111111111111
456789 ABCDEFO0123456789BCCDETF
789 ABCDEFFFF3456789ABC333333

789 ABCDEFFFF3456789ABC333333

789 ABCDEFFFF3456789ABC3333383

13-203

PIXBLT L,L with Mask Pixel Block Transfer Instructions

Syntax
Execution

Instruction Words

Description

Implied Operands

Corner Adjust

Window Checking

13-204

PIXBLT L,M,L
Linear pixel array to linear pixel array using a binary mask array

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LofofoJoftJrfsfoJofoJoJtfofJrt]i1]r]

This instruction transfers a pixel array from the source location specified by a
linear address in SADDR to the destination location specified by a linear
address in DADDR, which is under the control of the binary mask pixel array
specified by a linear address in MADDR. The array dimensions are in DYDX.

Each source pixel is combined with the destination pixel according to the
selected pixel-processing option. The resulting pixel can then be written to the
destination pixel only if the corresponding bit in the mask array is a 7.

Register Name Format Description
BO + SADDR Linear Source pixel array address
B1 SPTCH Linear Source pixel array pitch
B2 t DADDR Linear Destination pixel array address
B3 DPTCH Linear Destination pixel array pitch
B7 DYDX b:a Dimensions of drawn rectangle
B10 t MADDR Linear Mask pixel array address
B11 MPTCH Linear Mask array pitch

B12 & B14 t Reserved Temporary Registers
T These registers are changed by instruction execution

Address Name Description and Elements (Bits)
C00000B0Oh CONTROL PPOP Pixel-processing operations (22 options)
T Transparency operation

™ Sets transparency mode
PBH PIXBLT horizontal direction
PBV PIXBLT vertical direction

C0000150h PSIZE Pixel size (1,2,4,8,16,32)
C0000160h PMASK Plane mask — pixel format
(32 bits)

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Startin
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT L,L with Mask

Pixel Processing

Transparency

Plane Masking

Machine States

Status Bits

Select a pixel processing option for this instruction by setting PPOP[CON-
TROLJ. The pixel processing option is applied to pixels as they are processed
with the destination array. Note that the data is read through the plane mask
and then processed. There are 16 Boolean and 6 arithmetic operations; the
default case at reset is the replace (S — D) operation. The 6 arithmetic opera-
tions do not operate with pixel sizes of 1 or 2 bits per pixel. For more informa-
tion, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting TTCONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

complex instruction

Undefined
Undefined
Undefined
Undefined

<NOZ

13-205

PIXT Pixel Transfer Instructions

PIXT Instructions

The PIXT instruction transfers a pixel from one location to another. The follow-

ing list describes characteristics common to all PiXT instructions.

Ld Rs and Rd must be in the same register file.

[The plane mask is enabled for all PIXT instructions. For more information,
refer to Section 12.10, Plane Masking, on page 12-39.

[d The status bits are undefined unless otherwise noted in the individual

descriptions.

4 For machine states information, refer to Section 15.1 on page 15-2.

Section 12.3, Single-Pixel Instructions, on page 12-6 provides additional
information about the PIXBLT instructions.

Table 13-9. Summary of Operand Formats for the PIXT Instructions

Destination Pixel

Rd *Rd *Rd. XY
Rs v Vv
*Rs v v
*Rs. XY v v

Table 13-10.Summary of B-File Registers for PIXT Instructions

Format
Reg. Name Rs, *Rd. XY *Rs. XY, Rd *Rs. XY, *Rd.XY | Description
B1 SPTCH Linear Linear Source pixel array pitch
B3 DPTCH Linear Linear Linear Destination pixel array pitch
B4 OFFSET Linear Linear Linear Screen origin (0,0)
B5 WSTART XY XY Window starting corner
B6 WEND XY XY Window ending corner

Due to the pipelining of memory writes, the /ast I/O register that you write to
may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT
(page 13-177). Refer to Section 4.5.6 on page 4-13 for a description of the
potential latency of writes to 1/O registers.

13-206

TMS34020 Assembly Language Instruction Set

Pixel Transfer Instructions PIXT

Table 13—11. Summary of I/O Registers for the PIXT Instructions

P
> 3
he]
x s c
Ris (gl s|s
A A I A I
Address Name g|lg | €| €| & | ¢ |Descriptionand Elements
C00000B0Oh CONTROL | v v v v PPOP — Pixel processing operations (22
options)
v v W — Window clipping or pick operation
vV v v | T— Enables transparency
v v v v TM — Selects transparency options
C0000130h CONVSP v | v | XY-to-linear conversion (source pitch)
Used for source preclipping.
C0000140h CONVDP Vv v XY-to-linear conversion (destination
pitch)
C0000150h PSIZE vVIivIivIivIv]v Pixel size (1,2,4,8,16,32)
C0000160h PMASK / vVIivivIVv]V Plane mask — pixel format

(32 bits)

PIXT Rs, *Rd
register to memory

The PIXT instruction has 6 addressing modes, which are listed below with their
corresponding instruction words and descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111]1]1]o]o] Rs | R | Rd |

The source pixelisthe 1,2, 4, 8, 16, or 32 LSBs of the source register, depend-
ing on the pixel size specified in the PSIZE register. The destination register
contains a linear address; the source pixel is transferred to this memory loca-
tion.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

Window checking cannot be used with this instruction.

You can enable transparency by setting TTCONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. Atreset, the default case for transparency is off. For more information,
refer to Section 12.9, Transparency, on page 12-36.

13-207

PIXT Pixel Transfer Instructions

PIXT Rs, *Rd. XY
register to memory

Status Bits

PIXT *Rs, Rd
memory to register

Status Bits

13-208

<NOZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1[1]1[1]o]o]o] Rs [R | Rd |

The source pixelisthe 1, 2, 4, 8, 16, or 32 LSBs of the source register, depend-
ing on the pixel size specified in the PSIZE register. The destination register
contains an XY address; the X value occupies the 16 LSBs of the register, and
the Y value occupies the 16 MSBs. The source pixel is moved to the XY
address specified in Rd.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting TTCONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

Unaffected

Unaffected

Unaffected

1if pixelis outside the windowand W =1, 2, 3; 0 otherwise. Unaffected if W
=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EEERERERERERER Rs | R | Rd |

The source register contains a linear address; the pixel at this address is trans-
ferred into the destination register. When the pixel is moved into Rd, it is
right-justified and zero-extended to 32 bits, according to the pixel size specified
in-the PSIZE register.

Window checking cannot be used with this instruction. The W bits are
ignored.

Pixel processing cannot be used with this instruction.
Transparency cannot be used with this instruction.

Unaffected
Unaffected
Unaffected
Unaffected

<NOZXZ

TMS34020 Assembly Language Instruction Set

Pixel Transfer Instructions PIXT

PIXT *Rs, *Rd
memory to memory

PIXT *Rs.XY, Rd
memory to register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 {1 0
L1 1111]1]o0] Rs | R | Rd |

The source and destination registers both contain linear addresses. The
address in Rs is the address of the source pixel; the pixel is moved into the
address in Rd.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

Window checking cannot be used with this instruction.

You can enable transparency by setting TTCONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(1] 111 [o]o]1] Rs | R | Rd |

The source register contains an XY address; the X value occupies the 16 LSBs
of the register, and the Y value occupies the 16 MSBs. The address in Rs is
the address of the source pixel; this pixel is moved into the destination register.
When the pixel is moved into Rd, it is right-justified and zero-extended to 32
bits according to the pixel size specified in the PSIZE register.

Pixel processing cannot be used with this instruction.
Transparency cannot be used with this instruction.

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected
PIXT *Rs.XY, *Rd. XY

memory to memory

15 14 13 12 1110 9 8 5 4 3 2 1 0
EREREREREREREN [A | R& |
The source and destination registers both contain XY addresses; the X value
occupies the 16 LSBs of the register, and the Y value occupies the 16 MSBs.

Rs contains the address of the source pixel; Rd contains the address where
the pixel is moved.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

Rs

13-209

PIXT Pixel Transfer Instructions

Status Bits

PIXT examples

Example 1

Example 2

13-210

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting TTCONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. Atreset, the default case for transparency is off. For more information,
refer to Section 12.9, Transparency, on page 12-36.

Unaffected

Unaffected

Unaffected

1 if the pixel lies outside the window and W=1, W=2, or W=3; 0 otherwise.
Unaffected if W=0.

<NOZ2

Section 12.3, Single-Pixel Instructions, on page 12-6 provides additional
information about the PIXT instructions.

PIXT A0, *Al

Before After
A0 Al @20500H PSIZE PP T PMASK @20500h
1) O0000FFFFh 00020500h 0000h 0001h 00000 O 0000h 0001h
1) O0000FFFFh 00020500h 0000h 0002h 00000 O 0000h 0003h
1) O0000OFFFFh 00020500h 0000h 0004h 00000 O 0000h OOOFh
1) 0000FFFFh 00020500h 0000h 0008h 00000 O 0000h OOFFh
1) O0000FFFFh 00020500h 0000h 0010h 00000 O 0000h FFFFh

0

0

0

0

0

1) 00000006h 00020508h 0000h 0004h 00000 O 0000h 0600h
2) 00000006h 00020508h 0300h 0004h 01010 O 0000h 0500h
3) 00000006h 00020508h 0100h 0004h 00001 0000h 0000h
4) 00000006h 00020508h 0100h 0004h 00001 0000h 0100h
5) 00000006h 00020508h 0000h 0004h 00000 0 AAAAh 0400h

Notes:

1) Sreplaces D

2) (SXORD,) =0, replaces D

3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) =0, transparency is on, D is not replaced
5) S replaces unmasked bit of D

Before executing a PIXT instruction, load the implied operand registers with
appropriate values. These PIXT examples use thefollowing implied operand
setup:

Register File B: 1/0 Registers:

DPTCH = 00000800h CONVDP = 0014h
OFFSET = 00000000h

WSTART = 00300020h

WEND = 00500142h

TMS34020 Assembly Language Instruction Set

Pixel Transfer Examples

PIXT A0, *Al.XY

Before After

A0 Al @20500H PSIZE PP w
1) O00OFFFFh 00400500h 0000h 0001h 00000 0O
1) O0000OFFFFh 00400280h (000Ch 0002h 00000 00
1) O0000OFFFFh 00400140h 0000h 0004h 00000 00
1) OOOOFFFFh 004000A0h 0000h 0008h 00000 OO0
1) 0000FFFFh 00400050h 0000h 0010h 00000 OO0
1) 00000006h 00400142h 0000h 0004h 00000 00
2) 00000006h 00400142h 0300h 0004h 01010 00
3) 00000006h 00400142h 0100h 0004h 00001 00
4) 00000006h 00400142h 0100h 0004h 00001 00
5) 00000006h 00400142h 0000h 0004h 00000 00
6) 00000006h 00400142h 0000h 0004h 00000 00
7) 00000006h 00400143h 0000h 0004h 00000 00
8) 00000006h 00400143h 0000h 0004h 00000 00

XY Address in A1 = Linear Address 20500h
Notes:
1) Sreplaces D
2) (SXORD) =0, replaces D
) (S AND D) = 0, transparency is off, D is replaced
) (S + D) =0, transparency is on, D is not replaced
5) S replaces unmasked bit of D
)
)

PMASK @20500h
0000h 0001h
0000h 0003h
0000h 00OFh
0000h OOFFh
0000h FFFFh
0000h 0600h
0000h 0500h
0000h 000Ch
0000h 0100h
AAAAh 0400h
0000h 0600h
0000h 0000h
0000h 0000h

(=N eleloloNoNoNoNoNoNolNeNol |

Window Option = 3, D inside window, S replaces D

Window Option = 3, D outside window, D not replaced, V bit set in status
register

8) Window Option = 2, D outside window, D not replaced, WV interrupt

Example 3 Assume that memory contains the following values:
Address Data
@20500h OFFFFh
@20510h 3333h
PIXT *A0,Al
Before After
A0 PSIZE PMASK Al
00020500h 0001h 0000h 00000001h
00020500h 0001h FFFFh 00000000h
00020500h 0002h 0000h 00000003h
00020500h 0002h 5555h 00000002h
00020500h 0004h 0000h 0000000Fh
00020510h 0004h 9999h 00000002h
00020500h 0008h 0000h 000000FFh
00020510h 0008h 5454h 00000023h
00020500h 0010h 0000h 0000FFFFh
00020500h 0010h BA98h 00004567h
00020510h 0010h BA98h 00000123h

13-211

Pixel Transfer Examples

Example 4

13-212

PIXT *A0,*Al

Before

AO
1) 00020500h
1) 00020500h
1) 00020500h
1) 00020500h
1) 00020500h
2) 00020500h
3) 00020500h
4) 00020500h

After

A1l

00020508h
00020508h
00020508h
00020508h
00020508h
00020508h
00020508h
00020508h

5) 000020500n00020508h

Notes:
S replaces D

1)
2)
3)
4)
5)

These PIXT examples use the following implied operand setup.

Register File B:

(S XOR D) replaces D

@20500H PSIZE

000Fh
000Fh
000Fh
00EFh
1234h
030Fh
010Eh
020Eh
000Fh

0001h
002h

0004h
0008h
0010h
0004h
0004h
0004h
0004h

PP
00000
00000
00000
00000
00000
01010
00001
00001
00000

[eNeNoNoNeNoNoNoNo N |

PMASK
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
AAAAh

(S AND D) = 0, transparency is off, D is replaced
(S + D) = 0, transparency in on, D not replaced

S replaces unmasked bits of D

DPTCH
OFFSET

=800h

=00000000h

1/0 Registers:

@20500h 20510h

010Fh
030Fh
OFOFh
EFEFh
3434h
0COFh
000Eh
020Eh
050Fh

XXXX
XXXX

CONVSP = 0014h

Assume that memory address @20500h contains CF3Fh before instruction
execution.

PIXT *A0.XY,Al

Before After

A0 PSIZE PMASK At1
00400500h 0001h 0000h 00000001h
00400500h 0001h FFFFh 00000000h
00400280h 0002h 0000h 00000003h
0400280h 0002h AAAAh 00000001h
00400140h 0004h 0000h 0000000Fh
00400140h 0004h 9999h 00000006h
004000A0N 0008h 0000h 0000003Fh
004000A0h 0008h 8989h 00000036h
00400050h 0010h 0000h 0000CFCFh
00400050h 0010h 7310h 00008C2F
Note:

The XY addresses stored inregister A1 in these examples translate to the lin-
ear memory address 20500h. The pitch of the line source was not changed
for any of these examples

TMS34020 Assembly Language Instruction Set

Pixel Transfer Examples

Example 5

These PIXT examples use the following implied operand setup.

Register File B: 1/0 Registers:

SPTCH = 800h CONVSP = 0014h
DPTCH = 800h CONVDP = 0014h
OFFSET = 00000000h

WSTART = 00300020h

WEND = 00500142h

PIXT *A0.XY,*Al.XY

Before

1)
1)
1)
1)
1)
2)
3)
4)
5)
6)
7)
8)

A0

00400500h
00400280h
00400140h
004000A0h
0040005Fh
00400050h
00400140h
00400140h
00400140h
00400140h
00400140h
00400140h

After

Al @20500H PSIZE PP w
00400508h 000Fh 0001h 00000 0O
00400284h O000OFh 0002h 00000 0O
0400142h 000Fh 0004h 00000 00
004000A1h O000Fh 0008h 00000 00
00400051h OOEFh 0010h 00000 00
00400142h 0306h 0004h 01010 00
00400142h 0106h 0004h 00001 00
00400142h 0106h 0004h 10001 00
00400142h 0006h 0004h 00001 00
00400142h 0006h 0004h 00000 11
00400142h 0006h 0004h 00000 11
00400143h 0006h 0004h 00000 10

PMASK @20500h @20510h
0000h O010Fh xxxx
0000h 030Fh xxxx
0000h OFOFh xxxx
0000h EFEFh xxxx
0000h CDEFh CDEFh
0000h 0506h xxxx
0000h 0006h xxxx
0000h 0106h xxxx
0000h 0406h xxxx
AAAAh 0606h xxxx
0000h 0006h xxxx
0000h 0006h XXXXY

[eelejoNoloNeloNeNolNoNol, |

XY Address in A1 = Linear Address 20500h

Notes:

1) Sreplaces D

2) (S XORD,) replaces D

3) (S AND D) = 0, transparency is off, D is replaced

4) (S + D) =0, transparency in on, D not replaced

5) S replaces unmasked bits of D

6) Window Option = 3, D inside window, S replaces D

7) Window Option = 3, D outside window, D not replaced, V bit set in status
register

8) Window Option =2, D outside window, D notreplaced, WV interrupt gener-

ated, V bit set in status register

13-213

POPST Pop Status Register from Stack

Syntax POPST
Execution *SP+ — ST
Instruction Words i5 14 18 12 11 10 9 8 7 6 5 4 3 2 A1 0

loJoJoJoJoJoJoft1fi]ifoJojoJojo]ol]

Description POPST pops the status register from the stack and increments the SP by 32
after the status register is removed from the stack.

31 30 29 11 10—6 5 4—0
| N] c | Z | v ||||l|||||l| BFI |x1].k ||||||l||||ll SS| IE le;:::|1|::::l|.|:::::;,.un:j,.uu::l.mI::l|::::::."m::,.uu:;,n::;:;,q:ﬂ".| FE1 ' FS1 | FEO I FSO

LT L L L L

Note: Shaded portions are reserved.

For more information, refer to Section 4.1, The Status Reqister, on page 4-2.

Machine States 6 if the SP is aligned
7 if the SP is not aligned

Status Bits All bits are restored.

Examples Assume that memory contains the following values before instruction execu-
tion:
Address Data

O0FF00000h 0010h
O0FF00010h C000h

Examples Code Before After
SP ST SP
POPST OFF00000h C0000010h OFF00020h

13-214 TMS34020 Assembly Language Instruction Set

Push Status Register onto Stack PUSHST

Syntax PUSHST

Execution ST — —*SP

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[oJoJofofofofo sttt]r[ofofJoJofo |

Description PUSHST writes the status register contents to the address contained in the
SP-32.

31 _30 29 28 2625 22 21 11 10—6 5 4—0
ey LT LT Tl e A e e e
[N [c [z]|V pwiler]x mlss| e i) FE1 | Fs1 |[Feo| Fso |

Note: Shaded portions are reserved.

For more information, refer to Section 4.1, The Status Register, on page 4-2.

Machine States 2 (1) if the SP is aligned
2 (2) if the SP is not aligned

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example Code Before After
SP ST SP

PUSHST OFF00020h C0000010h O0FF00000h
Memory contains the following values after instruction execution:

Address Data
OFF00010h 0010h
OFF00020h C000h

13-215

PUTST Put Register Contents into Status Register

Syntax PUTST Rs
Execution Rs — ST
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lofJoJoJoJofoJoft]tfofrt]R] R |
Description PUTST copies the contents of the specified register into the status register.
31 30 29 28 2625 2 21 11 10—6 5 4—0
[NJ oz v fler]x i ss] € frmiiiimp] Fe1] Fst_[Feo] Fso

Note: Shaded portions are reserved.

For more information, refer to Section 4.1, The Status Reqister, on page 4-2.

Machine States
Status Bits N Set from bit 31 of Rs
C Set from bit 30 of Rs
Z Set from bit 29 of Rs
V Set from bit 28 of Rs
Example Code Before After

A0 ST ST
PUTST A0 C0000010h XXXXXXXxh C0000010h

13-216 TMS34020 Assembly Language Instruction Set

Return from Interrupt RETI

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Interrupts

RETI

*SP+ — ST
*SP+ — PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofoJofoJtJoJoJrfofrfofoJofofol]ol]

RETI returns to an interrupted routine from an interrupt service routine. The
instruction restores the ST and PC to their original values that were stored on
the system stack.

The stack is located in external memory and the top is indicated by the stack
pointer (SP). The stack grows inthe direction of decreasing linear address. The
ST and PC are popped from the stack and the SP is incremented by 32 after
each register is removed from the stack.

Note:

RETI checks the IX (instruction execution) and BF (bus fault) bits in the
restored ST register. If IX or BF is set, the RETI expects to find the internal
register values that define the state of the TMS34020 on the stack along with
the ST and PC.

If this is the case, the RETI restores the additional register values that were
pushed on the stack and clears the IX and BF bits in the restored ST value.

The CONTROL register and any B-file registers modified by an interrupt
routine should be restored before RETI is executed. Otherwise, interrupted
instructions may not resume execution correctly.

52 if BF status bit = 1
38 if IX status bit = 1
else 7

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of carresponding bit in stack location
IE Copy of corresponding bit in stack location

Ifthe IE bitin the restored ST is a 1, interrupts are enabled by the time the RETI
instruction finishes executing. If an interrupt request is active during the last
state of the RETI instruction, and the interrupt is enabled in the INTENB regis-
ter, the interrupt will be taken immediately following the RETI. If the source of
the interrupt is not cleared automatically, the interrupt service routine should
take steps to clear the source of the interrupt. If this is not done, the interrupt
will be serviced repeatedly. Sections 6.7, External Interrupts, on page 6-15,

13-217

RETI Return from Interrupt

6.8, Internal Interrupts, on page 6-16, and 6.9, The Bus Fault Interrupt, on page
6-19 discuss each interrupt and the details for clearing the source of the inter-

rupt.

Examples Assume that memory contains the following values before instruction execu-
tion:
Address Data

CCC0000h 0010h
CCCO0010h €000h
CCC0020h FFFOh
CCC0030h 0044h

Code Before After
SP ST PC SP

RETI CCCO0000h C0000010h 0044FFFOh CCC0040h

13-218 TMS34020 Assembly Language Instruction Set

Return From Monitor RETM

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

RETM

*SP+ — ST
*SP+ — PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofoJof1]oJoJoJof1]JtJofoJofofol]

RETM is used at the end of a single step trap routine. RETM acts similar to
RET]I, but RETM forces the next instruction from the interrupted program to be
read directly from memory, that is, it is not read from the cache. The fetched
instruction is executed and the single step trap is then taken again; this
sequence repeats.

Note:

RETM uses the cache read mechanism to access the next instruction in the
interrupted code. When the single-step bit (bit 22 in ST) is set the cache fills
are blocked, so if the next instruction in the interrupted code is not already in
cache when RETM is executed, then the single step trap will be taken repeat-
edly without executing any of the main program opcodes. This makes RETM
unsuitable for terminating single-step traps.

52 if BF status bit = 1
38 if IX status bit = 1
else 10

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

Assume that memory contains the following values before instruction execu-
tion:

Address Data
CCC0000h 0010h
CCCo0010h C000h
CCCO0020h FFFOh
CCCO0030h 0044h
Code Before After
SP ST PC SP

RETM CCC0000h C0000010h 0044FFFOh CCC0040h

13-219

RETS Return from Subroutine

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-220

RETS [N]

*SP — PC (N defaults to 0)
SP + 32 + 16N — SP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lofofoJof1Jofofstfofe]r] N |

RETS returns from a subroutine by popping the program counter from the
stack and incrementing the stack pointer.

The parameter N is a value in the range of 0 to 31; it specifies the number of
words by which the stack pointer SP is incremented after the return address
is popped from the system stack. N is optional, if the value of N is not specified
explicitly, the assembler sets it to the default value of 0.

Following completion of the RETS instruction, execution continues at the
address pointed to by the PC popped from the stack.

5
6 if the stack isn't aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction execu-
tion:

Address Data
OFF00000h OFFFOh
OFF00010h 0001h

Code Before After
SP PC SP
RETS OFF00000h 0001FFFOh OFF00020h

RETS 1 OFF00000h 0001FFFOh OFF00030h
RETS 2 OFF00000h 0001FFFOh OFF00040h
RETS 16 OFF00000h 0001FFFOh OFF00120h
RETS 31 OFF00000h 0001FFFOh O0FF00210h

TMS34020 Assembly Language Instruction Set

Store Revision Number in Register REV

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

REV Rd

revision number — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofJofJoJoJofoJoJoJofoJt]r] R& |

REV stores the number which uniquely identifies the revision of silicon in the
destination register. The format of the REV number is:

bits 0—2 silicon revision number

bit3=1if TMS34010 (if bit 3 = 0, then TMS34020; bits 3 and 4
cannot both be 1)

bit4=1if TMS34020 (if bit 4 = 0, then TMS34010; bits 3 and 4
cannot both be 1))

bits 5—15 reserved for future generation parts
bits 16—23 spin-offs
bits 24—31 reserved

—

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ2

REV A0
Before A0 = FFFFFFFF
After A0 = 00000010 (TMS34020 revision 1.0)

After A0 = 00000011 (TMS34020 revision 2.0)

13-221

RL Rotate Left, Constant

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-222

RL constant, Rd

left-rotate Rd by constant — Rd

5 14 13 12 1 10 8 8 7 6 5 4 3 2 1 0
oo 1 [1]0o]o] constant | R | Rd [

RL rotates the contents of the destination register left by the specifed number
of bits. RL performs a circular left shift that moves each bit shifted out the MSB
of the register into the register’s LSB. The rotate count is specified as a value
inthe range 0to 31 and is stored in the 5-bit constant field of the RL instruction
word.

The assembler only accepts absolute expressions for the rotate count. If the
specified rotation value is greater than 31, the assembler issues awarning and
sets the constant to its 5 LSBs.

The carry bit is set to the value of the last bit that is shifted out of the MSB (this
value is the same as the final value of the LSB). You can use a rotate count of
0 to clear the carry and test a register for 0 simultaneously.

—

N Unaffected
C Set to value of bit [32 — constant], 0 for rotate count of constant = 0
Z 1ifresultis 0, 0 otherwise
V Unaffected
Code Before After
A1 NCzZzV A1

RL 0,A1 0000000Fh x 00x 0000000Fh
RL 1,2l FO000000h x 10x E0000001h
RL 4,Al FO000000h X 10x 0000000Fh
RL 5,Al FO000000h X 00x 0000001Eh
RL 30,A1 F0000000h x 10x 3C000000h
X

RL 5,A1 00000000h 0 1x 00000000h

TMS34020 Assembly Language Instruction Set

Rotate Left, Register RL

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

RL Rs, Rd
left-rotate Rd by 5 LSBs of Rs — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o] 11]o]1]o]o] Rs | R | Rd]

RL rotates the contents of the destination register left by the number of bits
specified in the source register. RL performs a circular left shift that moves
each bit shifted out of the MSB of the register into the register’s LSB. The rotate
count is specified as a value in the range 0 to 31 and is taken from the 5 LSBs
of the source register; the 27 MSBs of the source register are ignored.

The carry bit is set to the value of the last bit that is shifted out of the MSB (this
value is the same as the final value of the LSB). You can use a rotate count to
0 to clear the carry and text Rd for 0 simultaneously.

Rs and Rd must be in the same register file.

1

N Unaffected
C Set to value of bit [32 — Rs], 0 for rotate count of 0
Z 1ifresultis 0, 0 otherwise
V Unaffected
Code Before After

5LSBs A0 A1l NCZV At
RL AO0,Al 00000 0000000Fh x 00x 0000000Fh
RL AO0,Al 00100 F0000000h x 10x 0000000Fh
RL AO0,Al 00101 F0O000000h x 00x 0000001Eh
RL AO0,Al 11111 FO000000h X 00x 78000000h
RL A0,Al XX XXX 00000000h X 01x 00000000h

13-223

RMO Rightmost One

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-224

RMO Rs, Rd

bit number of rightmost 1 in Rs — Rd

15 14 13

121110

8

6 5

ENENENENEN KA ER

Rs

IEH

The RMO instruction locates the rightmost (least significant) 7 in the source
register. It then loads the bit number of the rightmost 7 bit into the destination
register. Bit 37 of Rs is the MSB (leftmost) and bit 0 is the LSB (rightmost). If
there are no 7 bits in the source register, then the destination result is 0 and
status bit Z is set .

The rightmost 7 in the source register can be right-justified by following the
RMO instruction with RL Rs, Rd instruction, where Rs is the destination regis-

ter of the RMO instruction and Rd is the source register.

The source and destination registers must be in the same register.

1

Unaffected
Unaffected

<NOZ

Unaffected

d

E

RMO AO,Al
RMO AO,Al
RMO AO,Al
RMO A0,Al
RMO A0,Al

Before

A0
00000000h
00000001h
00000010h
08000000h
80000000h

After
NCzv
xX1x
xx0x
XX0x
XX0x
xX0X

TMS34020 Assembly Language Instruction Set

1 if the source register contents are 0, 0 otherwise.

A1l

00000000h
00000000h
00000004h
0000001Bh
0000001Fh

Replicate Pixel RPIX

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

RPIX Rd

Rdnew = Rdoig

LS pixel replicated 32) 5times
PSIZE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofofofoJoJt]oJ1]Jofofn] Rd |

RPIX replicates the pixel value in the specified destination register. Prior to
executing the instruction, you should right-justifiy the value in Rd. The pixel
size is specified by PSIZE and must be 1, 2, 4, 8, 16, or 32 bits. Immediately
following completion of the instruction, the pixel value will have been replicated
throughout the 32 bits of the register.

Given a pixel size of n bits, the replication operation replaces the original pixel
value with 32/n copies of the pixel. The replication process overwrites the 32—n
bits to the left of the original pixel. For more information, refer to Section 12.6,
Auxiliary Graphics Instructions, on page 12-17.

Address Name Description and Elements (Bits)
C0000150h PSIZE Pixel size (1,2,4,8,16,32)

if PSIZE = 32
if if PSIZE = 16
if PSIZE = 8

if PSIZE = 4

if PSIZE = 2

if PSIZE =1

Unaffected
Unaffected
Unaffected
Unaffected

< NOZ ONOGOIADN

RPXL A0
PSIZE=8 Before A0 =XXXXXX34
After AO = 3434343434 Cycles =5

RPXL B8
PSIZE =4 Before B8 = XXXXXXXA
After B8 = AAAAAAAA Cycles =6

13-225

SETC Set Carry Bit

Syntax
Execution

Instruction Words

SETC
1-0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lofofoJoftf[rfofsfrfsfrfoJofofojol]

Description SETC sets the carry bit (C) in the status register to 1. The rest of the status reg-
ister is unaffected.
31 30 29 28 26 21 11 10—6 5 4—0
[N[c]z]vpwsr] |x | ss] IE [t FE1 [Fs1 | FEO| FSo

Note: Shaded portions are reserved.

This instruction is useful for returning a true/false value (in the carry bit) from
a subroutine without using a general-purpose register.

Machine States 1

Status Bits N Unaffected
c 1
Z Unaffected -
V Unaffected

Examples Code Before After

ST NCZV ST NCzV

SETC 00000000h 0000 40000000h 0100
SETC B0000010h 1011 F0000010h 1111
SETC 4000001Fh 0100 4000001Fh 0100

13-226

TMS34020 Assembly Language Instruction Set

Set CONVDP SETCDP

Syntax
Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

SETCDP

Destination pitch conversion factor - CONVDP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofoJoJoJoft1JoJoftJefrtfofJofa1]s]

SETCDP loads the CONVDP register with the appropriate value used in XY
to linear conversion based on the DPTCH register.

Remember to execute MWAIT after SETCDP to ensure that the CONVDP reg-
ister has been set before using its value in a CVXYL or similar instruction. For
more information, refer to Section 12.11, Setting up the Implied Operands for
Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)
B3 DPTCH (linear) Destination array pitch
C0000140h CONVDP Destination pitch conversion register

pitchis apowerof2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

Unaffected
Unaffected
Unaffected
Unaffected

< NOZ

Before: B3 =00001000h (512 x 8)
After: C0000140 = 0013h

Before: B3 = 00000400h (128 x 8)
After: C0000140 = 0015h

Before: B3 =00001400h (640 x 8)
After: C0000140 = 1513h

Before: B3 =00000019h (25 x 1)
After: C0000140 = 0000h

13-227

SETCMP Set CONVMP

Syntax
Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

13-228

SETCMP

Mask pitch conversion factor - CONVMP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJofoJojoJoJtfoJsfafafefrfofr]n]

SETCMP loads the CONVMP register with the appropriate value used in XY
to linear conversion based on the MPTCH register.

Remember to execute MWAIT after SETCMP to ensure that the CONVMP reg-
ister has been set before using its value in a CVMXYL or similar instruction.
For more information, refer to Section 12.11, Setting up the Implied Operands
for Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)
B11 MPTCH (linear) Mask array pitch
C0000180h CONVMP Mask pitch conversion register

pitchis apowerof2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ

Before: B3 = 00001000 (512 x 8)
After. C0000180 = 0013

Before: B3 =00000400 (128 x 8)
After: C0000180 = 0015

Before: B3 =00001400 (640 x 8)
After: C0000180 = 1513

Before: B3 =00000019 (25 x 1)
After: C0000180 = 0000

TMS34020 Assembly Language Instruction Set

Set CONVSP SETCSP

Syntax
Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

SETCSP

Source pitch conversion factor - CONVSP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJofoJofoJoftfoJoft1JoJtfoJofofH1]

SETCSP loads the CONVSP register with the appropriate value used in XY
to linear conversion based on the SPTCH register.

Remember to execute MWAIT after SETCSP to ensure that the CONVSP
register has been set before using its value in a CVSXYL or similar instruction.
For more information, refer to Section 12.11, Setting up the Implied Operands
for Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)
B1 SPTCH (linear) Source array pitch
C0000130h CONVSP Source pitch conversion register

pitchis apowerof2: 4
2 powers of 2: 6(1)
arbitrary 3

Unaffected
Unaffected
Unaffected
Unaffected

<NOZ

Before: B3 = 00001000 (512 x 8)
After: C0000130 = 0013

Before: B3 = 00000400 (128 x 8)
After: C0000130 =0015

Before: B3 = 00001400 (640 x 8)
After: C0000130=1513

Before: B3 =00000019 (25 x 1)
After. C0000130 = 0000

13-229

SETF Set Field Parameters

Syntax SETF FS,FE|, F]

Execution FS,FE — ST

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 8 2 1 0
loJoJofJolol1[Fr]1]o]1 Jre] FS |

Description SETF loads specified field size (FS) and field extension (FE) values into the

status register; depending on the value of the F parameter, this information
sets the field size and extension for either field O or field 1. (The remainder of
the status register is not affected.)

31 30 29 28 26 25 22 f 1 10—6 5 4—0
IN[c]z]|vwler|ix I.ﬂ:::.q:::::.mﬂ ss| I [l FE1 | FS1 | FEO| Fso

|
L L Lo

Note: Shaded portions are reserved.

For more information, refer to Section 4.1, The Status Regqister, on page 4-2.

[d The FS parameter is a value between 1 and 32; it selects the field size.
(Notethatan FSvalue of 0in the opcode corresponds to an actual selected
field size of 32.)

Ld The FE parameter is a value of 0 or 1:

FE=0 selects zero-extension for a field.
FE=1 selects sign-extension for a field.

L The F parameter is optional; the default value for Fis 0. The F value deter-
mines whether the SETF instruction sets the field size and extension for
field O or for field 1.

F=0 selects FS0, FEO to be altered.
F=1 selects FS1, FE1 to be altered.

Each MOVE instruction also has an F parameter that selects the field size and
extension of either field 0 or field 1 for the individual move. You can use the
SETF instruction to prepare for MOVE instructions.

Machine States 1

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected

13-230 TMS34020 Assembly Language Instruction Set

Set Field Parameters SETF

Examples Code Before After
ST ST
SETF 32,0,0 Xxxxx000h xxxxx000h
SETF 32,1,0 xxxxx000h xxxxx020h
SETF 31,1,0 xxxxx000h xxxxx03Fh
SETF 16,0,0 xxxxx000h xxxxx010h
SETF 32,0,1 Xxxxx000h xxXxxx000h
SETF 32,1,1 Xxxxx000h XxXxxx800h
SETF 31,1,1 xxxxx000h x0ooxFCOh
SETF 16,0,1 xxxxx000h x0xxx400h

13-231

SEXT Sign-Extend to Long

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-232

SEXT Rd [, F]

field in Rd — sign-extended field Rd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
LofoJofoJoftJr[1]ofoJofR] Rd |

SEXT sign-extends the right-justified field contained in the destination register
by copying the MSB of the field data into all the nonfield bits of the destination
register. The size of the field is determined by the current field size. The
optional F parameter, which must be specified as a 0 or a 1, selects the field
size:

F=0 selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is O.

2
N 7 if the result is negative, 0 otherwise
C Unaffected
Z 1 ifthe result is 0, 0 otherwise
V Unaffected
Code Before After
FS0/1 A0 NCZV A0

SEXT A0,0 17/x 00008000h 0x0x 00008000h
SEXT AO0,0 16/ 00008000h 1x0x FFFF8000h
SEXT A0,0 15/x 00008000h 0x1x 00000000h
SEXT AO0,1 Xx/17 00008000h 0x0x 00008000h
SEXT A0,1 X/16 00008000h 1x0x FFFF8000h
SEXT A0,1 x/15 00008000h 0x1x 00000000h

TMS34020 Assembly Language Instruction Set

Shift Left Arithmetic, Constant SLA

Syntax SLA constant, Rd
Execution left-shift Rd by constant — Rd
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|0|0|1|0|0|0| constant IRI Rd j
Description SLA left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant; this is a value between
0 and 31.
As shown in the diagram, Os are shifted into the LSBs. The last bit shifted out
ofthe destination register (the original value of bit [32 — constant)) is shifted into
the carry bit. If either the new sign bit (N) or any of the bits shifted out of the
register differ from the original sign bit, the overflow bit (V) is set.
. v @ @ @ 5
|- 1 ‘-' --- == \
" ehange? "]
The assembler accepts only absolute expressions for the shift count. Ifthe shift
countis greaterthan 31, the assembler issues a warning and sets the constant
to its 5 LSBs.
Note that SLA executes slower than SLL because it provides overflow detec-
tion.
Machine States 3
Status Bits N 1 ifthe result is negative, 0 otherwise
C Set to the value of bit [32 — constant], 0 for shift count of 0
Z 1 if a0 result generated, 0 otherwise
V 1 ifthe MSB changes during shift operation, 0 otherwise
Examples Code Before After
A1 A1 NCzvV
sLA 0,A1 33333333h 33333333h 0000
sLA 0,A1 CCCCCCCCh CCCCCCCh 1000
SLA 1,A1 CCCCCCCCh 99999998h 1100
sLa 2,A1 33333333h CCCCCCCCh 1001
SLA 2,A1 CCCCCCCCh 33333330h 0101
sLA 3,A1 CCCCCCCCh 66666660h 0001
SLA 5,A1 CCCCCCCCh 99999980h 1101
sLA 30,A1 CCCCCCCCh 00000000h 0111
sLA 31,A1 CCCCCCCCh 00000000N 0011
SLA 31,A1 00000000h 00000000N 0010

13-233

SLA Shift Left Arithmetic, Register

Syntax SLA Rs, Rd

Execution left-shift Rd by 5 LSBs of Rs — Rd

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o] 1|1 [o]lo]o]o] Rs | R | Rd |

Description SLA left-shifts the contents of the destination register by a specified number

of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count from 0 to 31.

The last bit shifted out of the destination register (the original value of bit
[82—Rs]) is shifted into the carry bit. If either the new sign bit (N) or any of the
bits shifted out of the register differ from the original sign bit, the overflow bit

(V) is set.
31 30 29 28 26 25 22 21 11 10—6 5 4—0
1 LT v LT |
[N[clz[vlmder]x uafss] e [y Fe1] Fs1 |FEo| Fso

Note: Shaded portions are reserved.

Note that SLA executes slower than SLL because it provides overflow detec-

tion.

Machine States 3

Status Bits N 1 if the result is negative, 0 otherwise
C Set to the value of [32 — Rs], 0 for shift count of 0
Z 1 ifthe resultis 0, 0 otherwise
V 1 ifthe MSB changes during shift operation, 0 otherwise

Examples Code Before After

5 LSBs A0 A1 A1 NCzZV

SLA AOQ0,Al 00000 33333333h 33333333h 0000
SLA A0 ,Al 00000 CCCCCCCCh ccceeeccceh 1000
SLA AOQ,Al 00001 CCCCCCCCh 99999998h 1100
SLA AO,Al 00010 33333333h CCCCCCCCh 1001
SLA A0,Al 00010 CcCcCcccccCh 33333330 0101
SLA AO,Al 00011 CCCCCCCCh 666666600 0001
SLA AO,Al 00101 CCCcCcCcCCh 99999980h 1101
SLA AOQ,Al 11110 CcCcccceecth o0o0o000000h 0111
SLA AO0,Al 11111 Ccccceeecth ooo0o00000h 0011
SLA AO,Al 11111 00000000h O0OO0OOOOOh 0010

13-234

TMS34020 Assembly Language Instruction Set

Shift Left Logical, Constant SLL

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SLL constant, Rd

left-shift Rd by constant — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]o]1]o]o]1] constant | R | Rd |

SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant, which is a value between
0 and 31.

The last bit shifted out of the destination register (the original value of bit [32
— constant]) is shifted into the carry bit. Os are shifted into the LSBs. This
instruction differs from the SLA instruction only in its effect on the overflow (V)
bit.

C 31 ; o '0.

e — - --0s

WsBEL o ise

The assembler only accepts absolute expressions for the shift count. If the
specified shift count is greater than 31, the assembler issues a warning and
sets the constants to its 5 LSBs.

1

N Unaffected
C set to the value of bit [32 — constant], 0 for shift count of 0
Z 1iftheresultis 0, 0 otherwise
V Unaffected
Code Before After
A1l Al NCZV
SLL 0,Al 00000000h 00000000h x01x
SLL 0,Al 88888888h 88888888h x00x
SLL 1,Al 88888888h 11111110h x10x
SLL 4,Al 88888888h 88888880h x00x

SLL 30,Al FFFFFFFCh 00000000h x11x
SLL 31,Al FFFFFFFCh 00000000h x01x

13-235

SLL Shift Left Logical, Register

Syntax SLL Rs,Rd

Execution left-shift Rd by 5 LSBs of Rs — Rd

Instruction Words 15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 _0
[o]1]1{ofo]ol]1] Rs | R | Rd |

Description SLL left-shifts the contents of the destination register by a specified number

of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count between 0 and 31.

The last bit shifted out of the destination register (the original value of bit [32
— Rs])) is shifted into the carry bit. Os are shifted into the LSBs. This instruction
differs from the SLA instruction only in its effect on the overflow (V) bit.

Rs and Rd must be in the same register file.

Machine States 1

Status Bits N Unaffected
C set to the value of bit [32 — Rs], 0 for shift count of 0
Z 1 iftheresultis 0, 0 otherwise
V Unaffected

Examples Code Before After

5 LSBs A0 A1 A1 NCZV

SLL AO0,Al 00000 00000000h 00000000h x01x
SLL A0,Al - 00000 88888888h 88888888h x00x
SLL AO0,Al 00001 88888888h 11111110h Xx10Xx
SLL AO0,Al 00100 88888888h 88888880h x00x
SLL A0,Al 11110 FFFFFFFCh 00000000h x11x
SLL A0,Al 11111 FFFFFFFCh 00000000h x01x

13-236 TMS34020 Assembly Language Instruction Set

Shift Right Arithmetic, Constant SRA

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SRA constant, Rd

right-shift Rd by constant — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 l 0 I 1 I 0 I 1 I 0 | 2s complement of constant I R I Rd I

SRA right-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by constantwhichis a 5-bitimmediate value;
this produces a shift count of 0 to 31.

The last bit shifted out of the destination register (the original value of
[constant—1]) is shifted into the carry bit. The sign bit (MSB) is extended into
the MSBs.

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning,
takes the 2s complement of the constant and places it in the opcode.

N 1 ifthe result is negative, 0 otherwise

C Set to the value of [constant — 1], 0 for shift count of O
Z 1 iftheresultis 0, 0 otherwise

\

Unaffected
Code Before After
Al A1 NCZV
SRA 0,Al 00000000h 00000000h 001x
SRA 0,Al FFFFOO000h FFFF0000h 100x
SRA 8,Al 7FFF0000h 007FFFO0Oh 000x

SRA 8,Al FFFFO000h FFFFFFOOh 100x
SRA 30,A1 7FFF0000h 00000001h 010x
SRA 31,A1 7FFF0000h 00000000h 011x
SRA 31,A1 FFFF0000h FFFFFFFFh 110x

13-237

SRA Shift Right Arithmetic, Register

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-238

SRA Rs, Rd
right-shift Rd by 2s complement of 5 LSBs in Rs — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o[1]1]o]lof1]o] Rs | R | Rd |

SRA right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the 2s complement-of the 5 LSBs of
Rs (the 27 MSBs of Rs are ignored); this produces a shift count between 0 and
31.

The last bit shifted out of the destination register (the original value of bit
[shift amount — 1]) is shifted into the carry bit. The sign bit (MSB) is extended
into the MSBs.

N 17 if the result is negative, 0 otherwise

C Set to the value of bit [shift amount — 1], 0 for shift count of 0
Z 1 ifthe resultis 0, 0 otherwise
Vv

Unaffected
ode Before After
5 LSBs A0 A1l Al NCzV
SRA A0,Al 00000 00000000h 00000000h 001x
SRA A0,Al 00000 FFFFO000h FFFFO000h 100x
SRA A0,Al 11111 7FFF0000h 3FFF8000h 000X
SRA A0,Al 11111 FFFFOO000h FFFF8000h 100x
SRA A0,Al 11000 7FFF0000h 007FFF00h 000x
SRA A0,Al 11000 FFFFO000h FFFFFFOOh 100x
SRA A0,Al 00010 7FFF0000h 00000001h 010x
SRA A0,Al 00001 7FFFO000h 00000000h 011x
SRA A0,Al 00001 FFFFOO000h FFFFFFFFh 110x

TMS34020 Assembly Language Instruction Set

Shift Right Logical, Constant

SRL

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SRL constant, Rd

right-shift Rd by constant - Rd

14 13

12 1

9 8 7

0

[oToT:ToTr]

2s complement of constant

5.];[3

SRL right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the constant which is a 5-bitimmediate
value; this produces a shift count between 0 and 31.

The last bit shifted out of the destination register (the original value of

[constant—1]) is shifted into the carry bit. Os are shifted into the MSBs.

3

05- - >

- MsB

- 1sB

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning,

takes the 2s complement of the constant and places it in the opcode.

1

N Unaffected
C Set to the value of [constant — 1], O for shift count of 0
Z 1 ifthe resultis 0, 0 otherwise
V Unaffected
Code Before After

A1l A1
SRL 0,Al 00000000h 00000000h
SRL 0,Al 7FFFFFFFh 7FFFFFFFh
SRL 1,Al 7FFFFFFFh 3FFFFFFFh
SRL 8,Al 7FFF0000h 007FFF0OOh
SRL 30,A1 7FFFO0000h 00000001h
SRL 31,Al1 7FFF0000h 00000000h
SRL 31,A1 3FFF0000h 00000000h

NCZV
x01x
x00x
x10x
x00x
x10x
x11x
x01x

13-239

SRL Shift Right Logical, Register

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-240

SRL Rs, Rd

right-shift Rd by 2s complement of 5 LSBs in Rs — Rd

14 13

12 1

9 8 7

2 1 0

15
| o

[ifrfofolt 1]

i‘T’; l 3

Rd |

SRL right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the 2s complement of the 5 LSBs of
Rs (the 27 MSBs of Rs are ignored); this produces a shift value of 0 to 31.

The last bit shifted out of the destination register (the original value of bit

[shift amount — 1]) is shifted into the carry bit. Os are shifted into the MSBs.

YOSf;i

—

<NOZ

Sy

Unaffected

Set to the value of bit [shift amount — 1], 0 for shift count of 0
1 if the result is 0, 0 otherwise

Unaffected

’g
Q.
©

SRL
SRL
SRL
SRL
SRL
SRL

A0,Al
A0,Al
AQ0,Al
A0,Al
AO0,Al
A0,Al
AQ,Al

Before

5 LSBs A0
00000
00000
11111
11000
00010
00001
00001

A1
00000000h
7FFFFFFFh
7FFFFFFFh
7FFF0000h
7FFFO000N

‘7FFFO0000h

3FFF0000h

After
A1l
00000000h
7FFFFFFFh
3FFFFFFFh
007FFFOOh
00000001h
00000000h
00000000h

NCzZV
x01x
x00x
x10x
x00x
x10x
x11x
x01x

TMS34020 Assembly Language Instruction Set

Subtract Registers SUB

Syntax SUB Rs, Rd

Execution Rd—Rs — Rd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 10
o1][o]ofo]1]o] Rs [R | Rd |
SUB subtracts the contents of the source register from the contents of the
destination register and stores the result in the destination register.

Instruction Words

Description

You can accomplish multiple-precision arithmetic by using SUB in conjunction
with the SUBB instruction.

Rs and Rd must be in the same register file.

Machine States

1

Status Bits N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 ifthe resultis 0, 0 otherwise
V 1 ifthere is an overflow, 0 otherwise

Examples Code Before After

A0 Al NCzZV A0

SUB Al,A0 7FFFFFF2h 7FFFFFF1h 0000 00000001h
SUB Al,A0 7FFFFFF2h 7FFFFFF2h 0010 00000000h
SUB Al,A0 7FFFFFF1h 7FFFFFF2h 1100 FFFFFFFFh
SUB Al,A0 7FFFFFF1h FFFFFFFFh 0100 7FFFFFF2h
SUB Al,A0 7FFFFFFFh FFFFFFFFh 1101 80000000h
SUB Al,A0 FFFFFFFDh FFFFFFFFh 1100 FFF#FFFEh
SUB Al,A0 FFFFFFFDh FFFFFFFDh 0010 00000000h
SUB Al,RA0 FFFFFFFEh FFFFFFFDh 0000 00000001h
SUB Al,A0 FFFFFFFFh 00000001h 1000 FFFFFFFEh
SUB Al,A0 80000000h 00000001h 0001 7FFFFFFFh

13-241

SUBB Subtract Registers with Borrow

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-242

SUBB Rs, Rd

Rd—-Rs—-C — Rd (the carry bit acts as a borrow)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo{1]ofoo[1]1] Rs | R | Rd |
SUBB subtracts both the contents of the source register and the carry bit from

the contents of the destination register, and stores the result in the destination
register.

You can use this instruction with the SUB, SUBK, and SUBI instructions for

extended-precision arithmetic.

Rs and Rd must be in the same register file.

1

N 17 ifthe result is negative, 0 otherwise
C 1 ifthereis a borrow, 0 otherwise
Z 1 ifthe resultis 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise
Code Before After

C A0 Al NCZV A0
SUBB Al1,A0 O 00000002h 00000001h 0000 00000001h
SUBB Al,A0 1 00000002h 00000001h 0010 00000000h
SUBB Al,A0 0O 00000002h 00000002h 0010 00000000h
SUBB Al1,A0 1 00000002h 00000002h 1100 FFFFFFFFh
SUBB Al1,A0 0 00000002h 00000003h 1100 FFFFFFFFh
SUBB Al1,A0 O 7FFFFFFEh FFFFFFFFh 0100 7FFFFFFFh
SUBB Al1,A0 O 7FFFFFFEh FFFFFFFEh 1101 80000000h
SUBB Al,A0 1 7FFFFFFEh FFFFFFFEh 0100 7FFFFFFFh
SUBB Al,A0 O FFFFFFFEh FFFFFFFFh 1100 FFFFFFFFh
SUBB Al1,A0 O FFFFFFFEh FFFFFFFEh 0010 - 00000000h
SUBB Al1,A0 1 FFFFFFFEh FFFFFFFEh 1100 FFFFFFFFh
SUBB Al1,A0 O FFFFFFFEh FFFFFFFDh 0000 00000001h
SUBB Al,A0 1 FFFFFFFEh FFFFFFFDh 0010 00000000h
SUBB Al,A0 O 80000001h 00000001h 1000 80000000h
SUBB Al,A0 1 80000001h 00000001h 0001 7FFFFFFFh
SUBB Al,A0 O 80000001h 00000002h 0001 7FFFFFFFh

TMS34020 Assembly Language Instruction Set

Subtract Immediate, 16 Bits SUBI

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SUBI W, Rd [, W]

Rd-IW — Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJoJofol1 o]t]1]1]1]1]R] = Rd

1s complement of IW

SUBI subtracts a sign-extended, 16-bit immediate value from the contents of
the destination register, and stores the result in the destination register. (The
IL in the syntax represents a sign-extended, 16-bit immediate value.)

The assembler uses this form of the SUBI instruction if the immediate value
was previously defined and is in the range —32,768 to 32,767. You can force

the assembler to use the short form by following the register operand with ,\W:
SUBI IW, Rd, W

The assembler truncates any upper bits and issues an appropriate warning
message. You can accomplish multiple-precision arithmetic by using SUBI! in

0

conjunction with the SUBB instruction.

2
N 1 if the result is negative, 0 otherwise
C 1 ifthereis a borrow, 0 otherwise
Z 1 iftheresultis 0, 0 otherwise
V 1 ifthere is an overflow, 0 otherwise

ode Before After

A0 A0 NCZV

SUBI 32765,A0 00007FFEh 00000001h 0000
SUBI 32766,A0 00007FFEh 00000000h 0010
SUBI 32767,A0 00007FFEh FFFFFFFFh 1100
SUBI 32766,A0 80007FFEh 80000000h 1000
SUBI 32767,A0 80007FFEh 7FFFFFFFh 0001
SUBI —32766,A0 FFFF8001h FFFFFFFFh 1100
SUBI —32767,A0 FFFF8001h 00000000h 0010
SUBI —32768,A0 FFFF8001h 00000001h 0000
SUBI —32767,A0 FFFF8000h 7FFFFFFFh 0100
SUBI —32768,A0 7FFF8000h 80000000h 1101

13-243

SUBI Subtact Immediate, 32 Bits

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-244

SUBI /L, Rd [, L]
Rd-IL — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofofo|t1[1]o]1]ofofo]|R] Rd
1s complement of 16 LSBs of IL

1s complement of 16 MSBs of IL

SUBI subtracts-a signed 32-bit immediate value from the contents of the desti-
nation register, and stores the result in the destination register. (The /L in the
syntax represents a signed 32-bit immediate value.)

The assembler uses this version of the SUBI instruction if it cannot use the
SUBI IW,Rd opcode, or if you request the long opcode by following the register
operand with ,L.

SUBI IL, Rd, L

You can accomplish multiple-precision arithmetic by using SUBI in conjunction
with the SUBB instruction.

2 if immediate data is long-word aligned
3 if immediate data is not long-word aligned

N 1 ifthe result is negative, 0 otherwise

C 1 ifthereis a borrow, 0 otherwise
Z 1 iftheresultis 0, 0 otherwise

V 1 ifthere is an overflow, 0 otherwise

Code Before After
A0 A0 NCZV

SUBI 2147483647,A0 7FFFFFFFh 00000000h 0001
SUBI 32768,A0 00008001h 00000001h 0000
SUBI 32769,A0 00008001h 00000000h 0010
SUBI 32770,A0 00008001h FFFFFFFFh 1100
SUBI 32768,A0 80008000h 80000000h 1000
SUBI 32769,A0 80008000h 7FFFFFFFh 0001
SUBI —2147483648,A0 80000000h 00000000h 0010
SUBI —32769,A0 FFFF7FFEh FFFFFFFFh 1100
SUBI —32770,A0 FFFF7FFEh 00000000h 0010
SUBI —32771,A0 FFFF7FFEh 00000001h 0000
SUBI —-32770,A0 7FFF7FFDh 7FFFFFFFh 0100
SUBI —-32771,A0 7FFF7FFDh 80000000h 1101

TMS34020 Assembly Language Instruction Set

Subtract Constant

SUBK

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SUBK constant, Rd

Rd — constant — Rd

15 14 13 12 11

9 8 7

5

[ofofofi]oft]

constant

[R

SUBK subtracts the 5-bit constant from the contents of the destination register;

theresultis stored inthe destination register. The constant is an unsigned num-
ber inthe range 1—32. Note that constant=0 in the opcode corresponds to the
value 32; the assembler converts the value 32 to 0. Using this instruction, the

assembler issues an error if you try to subtract 0 from a register.

You can accomplish multiple-precision arithmetic by using SUBK in conjunc-
tion with the SUBB instruction.

1

N 7 if the result is negative, 0 otherwise
C 1 ifthereis a borrow, 0 otherwise
Z 1 iftheresultis 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise
Code Before After

A0 A0
SUBK 5,A0 00000008h 00000004h
SUBK 9,A0 00000008h 00000000h
SUBK 32,A0 0000000%h FFFFFFESh
SUBK 1,A0 80000000h 7FFFFFFFh

NCZV
0000
0010
1100
0001

13-245

SUBXY Subtract Registers in XY Mode

Syntax SUBXY Rs, Rd
Execution Rd.X - Rs.X — Rd.X
Rd.Y - Rs.Y — Rd.Y
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111]ofo]o]1] Rs R Rd
Description SUBXY subtracts the source X and Y values individually from the destination

X and Y values; the result is stored in the destination register.

You can use this instruction for manipulating XY addresses; it is particularly
useful forincremental figure drawing. These addresses are stored as XY pairs

Machine States

in the register file.

Rs and Rd must be in the same register file.

—

Status Bits N 7 if source X field = destination X field, 0 otherwise
C 1ifsource field > destination Y field, 0 otherwise
Z 1ifsource field = destination Y field, 0 otherwise
V 1 if source X field > destination X field, O otherwise

Examples Code Before After

A0 A1 A0 NCZV

SUBXY Al,A0 0009000Sh 00010001h 00080008h 0000
SUBXY Al1,A0 00090009h 00090001h 00000008h 0010
SUBXY Al1,A0 00090008h 00010009h 00080000h 1000
SUBXY Al,A0 00090009h 00090008h 00000000h 1010
SUBXY Al1,A0 00090009h 00000010h 0009FFF9%h 0001
SUBXY Al,A0 00090009h 00090010h 0000FFF9h o011
SUBXY Al,A0 00090009h 00100000h FFF90009h 0100
SUBXY Al1,A0 0009000Sh 00100009h FFF90000h 1100
SUBXY Al,A0 00090008h 00100010h FFFOFFF9h 0101

13-246

TMS34020 Assembly Language Instruction Set

Swap Field SWAPF

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

SWAPF *Rs, Rd,0

Field specified by *Rs and FSO — Rd
Rd — field specified by *Rs and FSO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ERERERERERERER Rs [R] Rd |

This instruction performs a read (modify) write operation on a field in the
memory space. It exchanges the field specified by the contents of Rs and FS0
with Rd. The new contents of Rd are right-justified and either sign- or zero-
extended, depending on the value of FEO.

The main reason for the inclusion of this instruction is to allow the implementa-
tion ofthe testand set and test and clear operations needed for the lowest level
of interprocess and interprocessor synchronization.

Note that this instruction does not complete until the write is complete (implicit
MWAIT). This makes the instruction useful in some 1/O register operations.
Once the instruction starts, host access requests will not be granted until all
the memory SWAPF accesses required are complete. Ifthe read (modify) write
is interrupted after the read by a screen refresh or a loss of of bus grant (Gl
high), or if a retry or bus fault occurs at any time during the cycle, the operation
is restarted from the beginning of the read. This makes the operation indivis-
ible. The bus lock status cade is output during all SWAPF cycles.

Note:
The following restrictions apply to SWAPF:
1) Thefield must not span a 32-bit word boundary. The field is ignored if any

part of it is not contained in the same 32-bit word specified by the bit
address contained in Rs.

2) IfSWAPF isused to access 16-bit memories, any part of the field not con-
tained in the first 16-bit word is ignored.

Refer to Section 15.1 on page 15-2.

N 7 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected '

Z 1 if the field-extended data moved to register 0, 0 otherwise.

vV o

13-247

SWAPF Swap Field

Examples

13-248

WAS_SET:

WAS_CLR:

SETF
MOVI
MOVK
SWAPF
JRNE

SETF
MOVI
CLR
SWAPF
JREQ

MOVI
SETF
MOVI
SWAPF
CALL
MOVE

1,0,0
SEMA,Al
1,80
*A1,A0
WAS_SET

1,0,0
SEMA,Al
A0
*A1l,A0
WAS_CLR

CONTROL4+5,Al
10,0,0
NEWMODE, A0
*Al,A0
GRAPHOP
A0,*Al,0

;Test and Set—wait for resource
;Single bit

;Bit to test and set

;Set is not already set

;Test and set

;Already set—did not get resource
;Test and Clear—wait for resource
;Single bit

;Bit to test and clear

;Clear if not already clear

;Test and clear

;Already clear—did not get resource
;Graphics mode save

;Point at CONTROL register

;Ten bits

;New value

;Read oldmode, set new mode
;Perform some operation

;Restore old mode

TMS34020 Assembly Language Instruction Set

Trapezoidal Fill TFILL

Syntax

Execution

Instruction Words

Description

TFILL XY
COLOR1 pixels fill the horizontal line from (X1, Y) to (X, Y) then

X-] X-| + DX1
X2 X2 + DX2
Y Y +1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lodofofoJrtfsfsfoJe]sfefrftfofr]ol]

TFILL draws a horizontal line and then adjusts its implied operands. The oper-
ands are set so that each subsequent call to TFILL will draw one more horizon-
tal line, creating lines that build up to form a trapezoid.

The trapezoid is defined as shown in the diagram:

Figure 13-11. A Trapezoidal Fill

Note that the coordinate parameters for this instruction are specified in the
fixed-point format; that s, the 16 MSBs define the signed part of the coordinate
and the 16 LSBs define the fractional part of the coordinate. This is the case
for both X and Y coordinates, although the Y coordinate will never have a
fractional part.

The DX4 and DX» values can have fractional components. This allows for
nonintegral slopes at the trapezoid sides. The fractional components are used
to determine the new endpoints for the next line. However, only the 16 MSBs
are used to determine the XY address of the endpoints.

Note that if X5 = X4 no pixels are drawn, but the contents of X4 and X, are still
incremented by DX4 and DX5 respectively.

13-249

TFILL Trapezoidal Fill

Implied Operands

Pixel Processing

Window Checking

13-250

Register Name Format Description

BO SADDR Fixed X coordinate of X1

B1 SPTCH Fixed DX1 (adjustment for X1)

B2 DADDR XY Used as temp (not user determined)

B3 DPTCH Linear Destination pixel array pitch (usually

screen pitch)

B4 OFFSET Linear Screen offset

B5 WSTART XY Window start

B6 WEND XY Window end

B7 DYDX Fixed X coordinate of of X2

B9 COLOR1 Pixel Foreground color

B10 MADDR Fixed DX2 (adjustment for X2)

B11 MPTCH Fixed Y coordinate of X1 and X2
Address Name Description and Elements (Bits)

C00000B0Oh CONTROL PP — Pixel-processing operations (22 options)
W — Window checking operation
T — Transparency operation
TMODE — Selects 1 of 3 transparency options

C0000140h CONVDP XY-to-linear conversion (destination pitch)

C0000150h PSIZE Pixel size (1,2,4,8,16,32)
C0000160h PMASK (32 Plane mask — pixel format
bits)

To set up the initial values for X1, Xo, and Y from 2 starting addresses (X1, Y)
and (Xo, Y), complete the following steps:

1) Use MOVY to copy the Y address into MPTCH.

2) Use SLL to shift the 2 XY addresses left by 16 bits. This results in 2 fixed-
point X coordinates. .

3) Use MOVY to copy the 2 X addresses into SADDR and DYDX, respec-
tively.

Pixel processing can be used with this instruction. PPOP[CONTROL] speci-
fies the pixel-processing operation that is applied to pixels as they are
processed with the destination array. There are 16 Boolean and 6 arithmetic
operations; the default case atreset s the replace (S — D) operation. Note that
the destination data is read through the plane mask and then processed. The
6 arithmetic operations do not operate with a pixel size of 1 bit per pixel. For
more information, refer to Section 12.8, Pixel Processing, on page 12-27.

The window operations can be used with this instruction. For more information,
refer to Section 12.7, Window Checking, on page 12-19.

TMS34020 Assembly Language Instruction Set

Trapezoidal Fill TFILL

Transparency

Interrupts

Plane Masking

Status Bits

Example

STK .set
SADDR .set
SPTCH .set
DYDX .set
MADDR .set
MPTCH .set
_tfill:
mmtm
move
move
sll
move
sll
move
move
sll
move
sll
move
move
sub
sub
sub
divs

You can enable transparency for this instruction by setting TTCONTROL] to 1.
Select 1 of 3 transparency modes by setting TM[CONTROL]. For more infor-
mation, refer to Section 12.9, Transparency, on page 12-36.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Opera-
tions, on page 6-13.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws trape-
ziums on the screen, using the TFILL instruction.This function has 6 argu-
ments:

(x1a, x2a, ya) — coordinates of top of trapezoid
(x1b, x2b, yb) — coordinates of bottom of trapezoid

This routine assumes the following registers have beeninitialized by the caller:

B-file registers DPTCH, OFFSET, WSTART, WEND, and COLORH1
I/O registers CONTROL, CONVDP, PSIZE and PMASK

Al4 ; C-parameter stack pointer

BO ; Source address register

Bl ; Source pitch register

B7 ; Delta X/delta Y register

B10O ; Mask address register

B1l1 ; Mask pitch register .globl _tfill

sp,B0,B1,B2,B7,B10,B11,B12,B13,B14

STK,B14 ;get C-parameter stack into B—file
*—B14,SADDR, 1 ;pop xla

16,SADDR ;convert to fixed point
*—-B14,DYDX,1 ;pop x2a

16,DYDX ;convert to fixed point
*-B14 ,MPTCH, 1 ;pop ya

*—B14,SPTCH, 1 ;pop x1b

16,SPTCH ;convert to fixed point
*-~B14,B13,1 ;pPop x2b

16,B13 ;convert to fixed point
*-B14,B12,1 ;pop yb

B14,STK ;update C-parameter stack
SADDR, SPTCH ;delta x1

DYDX,B13 ;delta x2

MPTCH,B12 ;delta y

B12,SPTCH ;dx1

13-251

TFILL Trapezoidal Fill

loop:

13-252

divs

move
sll

tfill
dsjs
mfm
rets

B12,B13

B13,MADDR
16 ,MPTCH

B12,loop

;dx1l (cant use MADDR since divs

;requires odd numbered register)
;copy into MADDR
;convert y to fixed point

sp,B0,B1,B2,B7,B10,B11,B12,B13,B14

2

TMS34020 Assembly Language Instruction Set

 Software Im:errupt TRAP

Syntax TRAP N
Execution PC — —*SP
ST — —*SP
trap vector N - PC
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loloJofof[1fofof1[ofofo] N |
Description TRAP executes a software interrupt. The N parameter is a trap number from

0 to 31 that selects the trap to be executed. During a software interrupt:

3 The 32-bit return address, PC (the address of the next instruction), is
pushed on the stack.

L3 The 32-bit status register, ST, is pushed on the stack.

(8

The stack pointer, SP, is decre‘mented by 64.

(4 ThelE (interrupt enable) bitin ST is setto 0, disabling maskable interrupts,
and ST is set to 00000010h.

[d Finally, the trap vector is loaded into the PC.

The TMS34020 generates the trap vector addresses as shown on the following
page:

13-253

TRAP Software Interrupt

Figure 13-12. Vector Address Map

Trap Number Address Name Description
0 FFFF FFEOh Reset Reset
1 FFFF FFCOh INT1 External interrupt 1
2 FFFF FFAOh External interrupt 2
3 FFFF FF80h |
4 FFFF FF60h | Reserved for future
5 FFFF FF40h | hardware or on-chip
6 FFFF FF20h | interrupts
7 FFFF FFOOh |
8 FFFF FEEOh NMI Nonmaskable interrupt
9 FFFF FECOh HI Host interrupt
10 FFFF FEAOh DI Display interrupt
1 FFFF FE8Oh Window violation interrupt
12 FPFF FEGOn Reserved for future
13 FFFF FE4Oh hardware or on-chip
14 FFFF FE20h interrupts
15 FFFF FEOOh |
16 FFFF FDEOh|
; Application defined
29 FFFF FC40h |
30 FFFF FC20h ILLOP | Illegal opcode interrupt
31 FFFF FCOOh Trap 31 Application defined

—32 bits —]
Note: Traps 0—31 may be accessed by either TRAP or TRAPL instructions.

The stack, which is located in external memory, grows toward lower
addresses. Unlike an interrupt, a software trap cannot be disabled.

Note:

1) TRAP 0 differs from all other traps; it does not save the old status register
or program counter. This may be useful in cases where the stack pointer
is corrupted or uninitialized; such a situation could cause an erroneous
write.

2) NMIM[IHSTCTLH] does not affect the operation of TRAP 8: the PC and
ST are always pushed onto the stack.

L J

Machine States 7 if TRAP 0,
: else 10 if ST aligned,
else 12

13-254 : TMS34020 Assembly Language Instruction Set

Software Interrupt TRAP

Status Bits

<NOZ
OO 0O

Examples Assume that memory contains the following values before instruction
execution:

Address Data
FFFFFCO00 0000
FFFFFC10 FFEO
FFFFFC20 0000
FFFFFC30 FFDO

FFFFFFCO 0000
FFFFFFDO . FFBO
FFFFFFEO 0000
FFFFFFFO FFAO

Code Before After

PC SP PC SP ST
TRAP 0 xxxxxxxxh 80000000 FFA00000 80000000h 00000010h
TRAP 1 xxXxxxxXxxh 80000000 FFB00000 7FFFFFCOh 00000010h
TRAP 30 xXxxXxxxxxh 80000000 FFD00000 7FFFFFCOh 00000010h
TRAP 31 XxXXxxXxxh 80000000 FFE00000 7FFFFFCOh 00000010h

13-255

TRAPL Software Interrupt, Signed

Syntax

Execution

Instruction Words

Description

13-256

TRAPL
PC — —+SP
ST — —+SP

trap vector N — PC

15 14 13 12 11 10 9

o To To To [+ ToTo oo o o ol [+ Tt]

16-bit trap number N

0
1

TRAPL executes a software interrupt. The N parameter is a signed number
from —-32,768t0 32,767. The trap address is formed by taking the 16-bit signed
immediate operand N, shifting it left by 5 bits and then sign-extending it. TRAPL
can cover a significantly larger address range than the TRAP instruction.
During a software interrupt:

X The 32-bit return address, PC (the address of the next instruction), is
_pushed on the stack.

(d The 32-bit status register, ST, is pushed on the stack.

(8

The stack pointer, SP, is decremented by 64.

[d ThelE (interrupt enable) bitin ST is set to 0, disabling maskable interrupts,
and ST is set to 00000010h.

Ld Finally, the trap vector is loaded into the PC.

Note that unlike TRAP 0, the TRAPL 0 is not treated as an exception. That is,
TRAPL 0 saves the PC and ST on the stack, whereas TRAP 0 does not.

The TMS34020 generates the trap vector addresses as shown on the following
page:

TMS34020 Assembly Language Instruction Set

Software Interrupt, Signed TRAPL

Figure 13-13. Vector Address Map

Trap Number Address Name Description
-32768 000F FFEOh| Trap-32768
Application defined
-1 0000 0000h ‘Trap—1-:
0 FFFF FFEOh Reset Reset
1 FFFF FFCOh INT1 External interrupt 1
2 FFFF FFAOh | ____INT2 External interrupt 2
3 FFFF FFOh | Trap3
4 FFFF FF60h | Reserved for future
5 FFFF FF40h | - | hardware or on-chip
6 FFFF FF20h | j | interrupts
7 FFFF FFOOh| Trap:
8 FFFF FEEOh Nonmaskable interrupt
9 FFFF FECOh Host interrupt
10 FFFF FEAOh Display interrupt
11 FFFF FE80h Window violation interrupt
12 FFFF FEGOR| Tra Reserved for future
13 FFFF FEA40h hardware or on-ch:p
14 FFFF FE20h | interrupts
15 FFFF FEOOh| ° .
16 FFFF FDEOh| Trapi6
- b Application defined
29 FFFF FC40h Trap 29
30 FFFF FC20h ILLOP lllegal opcode interrupt
31 FFFF FCOOh Trap 31 Application defined
32 FFFF FBEOh SS Single-step/Emulator
33 FFFF FBCOh BF Bus fault
34 FFFF FBAOh| = Trap34
» i Application defined
32767 FFFO 0000h | Trap 32767
p—32 bits }

Notes: 1) Traps (—1)— (-32,768) use the memory at the bottom of the address space
for vector addresses. Traps 0—32,767 use the memory at the top of the ad-
dress space.

2) Traps 0—31 may be accessed by either TRAP or TRAPL instructions.
3) Traps (—1)— (-32,768) and 32—32,767 are only accessed by TRAPL.
4) Traps 3—7 and 12—15 are reserved for future interrupts.

Machine States 10 if ST is aligned
else 12

13-257

TRAPL Software Interrupt, Signed

Status Bits N 0
c o
Z 0
vV 0
Examples Assume that memory contains the following values before instruction execu-
tion:
Address Data

FFFFFBCO 0000
FFFFFBDO FFOE

FFFFFCO0 0000
FFFFFC10 FFEO

FFFFFFEO 0000
FFFFFFFO FFAO
00000000 0000
00000010 FFOF

Code Before After
PC SP PC SP ST

TRAPL -1 xxxxxxxxh 80000000 FFOF0000- 7FFFFFCOh 00000010h
TRAPL 0 xxxxxxxxh 80000000 FFA00000 7FFFFFCOh 00000010h
TRAPL . 31 xxxxxxxxh 80000000 FFE00000 7FFFFFCOh 00000010h
TRAPL 33 xxxxxxxxh 80000000 FFOEQ000 7FFFFFCOh 00000010h

13-258 TMS34020 Assembly Language Instruction Set

Linear VRAM Block Transfer VBLT B, L

Syntax
Execution

Instruction Words

Description

Implied Operands

Pixel Processing

VBLT B, L

Binary pixel array — linear pixel array using VRAM block write

15 14 13 12 11 10 9 8 7 6 65 4 3 2 4 0
[ofofofofrJofoJoJoJrJofstJof1]r]1]

VBLT moves a binary array of pixels defined by SADDR and DYDX to a
corresponding block defined by DADDR and DYDX using VRAM block mode
expansion. Both SADDR and DADDR contain linear starting addresses.There
is an expansion implicit in the transfer, such that a bit value of 7 in the source
data is written to the destination array as a COLOR1 pixel (from the VRAM
color register). Source bits of the value 0 leave the corresponding destination
pixel unchanged. Note this instruction assumes that the VRAM color register
has been loaded by the VLCOL instruction. For more information, refer to
subsection 12.5.4, VRAM Block Mode, page 12-14.

Note:
1) DPTCH must be an integral multiple of 80h, and
2) this instruction works only if the PSIZE is 4,8,16, and 32.

Register Name Format Description
BO SADDR Linear Source pixel array address
B1 SPTCH Linear Source pixel array pitch
B2 DADDR Linear Destination pixel array address
B3 DPTCH Linear Destination pixel array pitch
B7 DYDX XY Pixel array dimensions
B14 TEMP Temp Intermediate value
Address Name Description and Elements (Bits)
C0000150h PSIZE Pixel size (4,8,16,32)
C0000160h PMASK (32 bits) Plane mask — pixel format
C00001ACh CONFIG Bit 8 (VEN) enables VRAM write mask
Address Name Description
VRAM Pixel Must have COLOR1 pixels loaded using VLCOL
Color Register
VRAM Pixel Loaded automatically when PMASK is written and
Write Mask VEN =1

Pixel processing is not possible with this instruction, because the pixel data is
written from the VRAM color register into the VRAM memory array.

13-259

VBLT B, L Linear VRAM Block Transfer

Window Checking

Transparency

Plane Masking

Interrupts

Corner Adjust

Machine States

Status Bits

Example

13-260

Window checking cannot be used with this instruction.

Transparency bits are ignored. This instruction has a form of implicit transpar-
ency in that source pixels which are 0 correspond to destination pixels which
are not changed.

The plane mask is implemented in the VRAM using the write mask function,
enabled by VEN[CONFIG]. For more information, refer to Section 12.10,

Plane Masking, on page 12-39.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Instruc-

- tions, on page 6-13.

Corner adjust cannot be used with this instruction.
complex instruction

N Undefined
C Undefined
Z Undefined
V Undefined

This is an example of a C-compatible assembly routine which draws a charac-
teronthe screen using the VBLT instruction. It expects the following arguments

-on the C parameter stack: width, height, xleft, ytop, and a pointer to the start

of the character data. The character data should be a binary representation of
the character.

This routine makes the following assumptions:

[d These B registers and I/O registers have been initialized by the calling
program:

B-file registers DPTCH, OFFSET, WSTART, WEND, COLORO, COLOR1
/O registers CONTROL, CONVDP, PSIZE, PMASK and CONFIG

L The system contains a global flag _vblt_ok which is cleared if the VBLT is
not possible. Reasons for this.may be:

B DPTCH is not an integral multiple of 80 hex

PSIZEis1or2

Pixel processing is not set to replace

Transparency is not set to source equals 0

The system does not contain VRAMs that support this feature

TMS34020 Assembly Language Instruction Set

Trapezoidal Fill

TFILL

STK
SADDR
SPTCH
DADDR
DPTCH
DYDX

_vblt:

“vblt:

no_vblt:
exit:

rets

.set
.set
.set
.set
.set
.set
.globl

.ref

mmtm
move
move
move
move
sll

movy
move
move
move
move
sll

movy
move
jrz

clip
jrz
cvdxyl
vlcol
vblt
jruc

pixblt

mmfm
2

Al4
BO
Bl
B2
B3
B7
_vblt ; provide

_vblt_ok

; C-parameter stack pointer
; Source address register

; Source pitch register

; Destination address register
; Dest. pitch register

; Delta X/delta Y register
reference for external calls

; flag to enable VBLTs

sp,B0,B1,B2,B7,B10,B11,B12 ;save required registers

STK,B10
*-B10,DYDX, 1
DYDX, SPTCH
*-B10,B12,1
16,B12
B12,DYDX
*-B10,DADDR, 1
*-B10,B12,1
*-B10,SADDR, 1
B10,STK
16,B12
B12,DADDR
@_vblt_ok,A8,1
no_vblt

exit
DADDR

B,L
exit

B,XY

;move c-stack pointer into B—file
;get width

;save the width as source pitch
;get height

;concatenate width & height
;get xleft

;get ytop

;get source address
;jrestore c-stack pointer

;concatenate xleft & ytop
;get state of vblt flag

;clip to the window

;1f outside the window, exit
;convert to linear dest address
;load VRAM color latches
;perform linear vblt

sp,B0,B1,B2,B7,B10,B11,B12 ;restore required registers

13-261

VFILL L Linear VRAM Fast Fill

Syntax VFILL L

Execution Contents of VRAM color latch — array of pixels

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofJofoJsfJoJ1JofoJs+Jo[tJofe]1T]1]

Description VFILL fills an array of pixels defined by DADDR and DYDX using the VRAM

block mode writes. Note this instruction assumes that the VRAM color register
has been loaded by the VLCOL instruction. For more information, refer to
subsection 12.5.7, VRAM Block Mode Fill, on page 12-16.

'Note:

1) DPTCH must be an integral multiple of 80h, and
l2) this instruction works only for PSIZE's 4,8,16, and 32.

Implied Operands Register Name Format Description
B2 DADDR Linear Destination pixel block address
‘B3 DPTCH Linear Destination pixel block pitch
B7 DYDX XY Pixel block dimensions
Address Name Description and Elements (Bits)
C0000150h PSIZE Pixel size (4,8,16,32)
C0000160h PMASK (32 bits) Plane mask — pixel format
C00001AOh CONFIG Bit 8 (VEN) enables VRAM write mask
Address Name Description
VRAM Pixel Must have COLORT1 pixels loaded using VLCOL
Color Register
VRAM Pixel Loaded automatically when PMASK is written and
Write Mask VEN = 1
Pixel Processing Pixel processing is not possible with this instruction, because the pixel data is
written from the VRAM color register into the VRAM memory array.
Window Checking Window checking cannot be used with this instruction.
Transparency Transparency cannot be used with this instruction.
Plane Masking The plane mask is implemented in the VRAM using the write mask function,

enabled by VEN[CONFIG]. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

Interrupts This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Instruc-
tions, on page 6-13.

Corner Adjust There is no corner adjust for this instruction.

13-262 TMS34020 Assembly Language Instruction Set

Linear VRAM Fast Fill VFILL L

Machine States

Status Bits

Example

DADDR
DYDX
CONTROL

_fill rect:

no_vfill:
exit:

.set
.set
.set
.globl
.ref
mmtm
move
move
move
sll
movy
move
move
move
sll
movy
move
jrz
clip
jrz
cvdxyl
vlicol
vEill
jruc
£ill
mmfm
rets

complex instruction

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLIP instruction is used to clip the rectangle to the screen.

This routine makes the following assumptions:

(4 The calling program sets up these registers:
B-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1
I/O registers CONTROL, CONVDP, PSIZE, PMASK and CONFIG

A The system contains a global flag _Vfill_ok which is cleared if the VFILL
is not possible. Reasons for this may be:

B DPTCH is not an integral multiple of 80 hex

B PSIZEis1or2

M Pixel processing is not set to replace

B Transparency is hot set

B The system does not contain VRAMs that support this feature
B2 ;Destination address register
B7 ;Delta X/delta Y register
0C00000BOh ;Control IO register
_fill rect ;provide reference for external calls
_vfill ok ; flag to enable VFILLs
sp,B2,B7,B10,B11,B12 ;save required registers
Al4,B10 " ;move c—stack pointer into B—file
*—~B10,DYDX, 1 ;get width
*-B10,B12,1 ;get height
16,B12
B12,DYDX ;concatenate width & height
*~B10,DADDR, 1 ;get xleft
*-B10,B12,1 ;get ytop
B10,Al4 ;restore c—stack pointer
16,B12
B12,DADDR ;concatenate xleft & ytop
@ vfill ok,A8,1 ;get state of vfill flag
no_vfill

;clip to the window
exit ;if outside the window, exit
DADDR ;convert to linear dest address
;s load VRAM color latches

L ;perform linear fill
exit
XY ;£i11 the rectangle using standard £ill
sp,B2,B7,B10,B11,B12 ;restore required registers

2

13-263

VLCOL Latch the COLOR1 Register (B9) in the VRAM Color Latches

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Example

13-264

VLCOL
COLOR1 — Color Registers in all VRAMS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ofofoJoJt1JoftfoJoJofofJoJoJofoJol]

VLCOL writes the value in the COLOR1 register to the color registers in all
external VRAMS. The field size is ignored and the flood write outputs to nomi-
nal address 0. This instruction should be executed before attempting to use
VFILL or VBLT. This instruction performs color expansion in the VRAM as pix-
els are written. The VRAM color registers are used for this purpose.

Register Name Format Description
B9 COLOR1 Pixel COLOR1

2(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaifected

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLIP instruction is used to clip the rectangle to the screen.

This routine makes the following assumptions:

[d These B-registers and I/O registers have been set up by the calling pro-
gram:
B-file registers DPTCH, OFFSET, WSTART, WEND and COLORH1
/O registers CONTROL, CONVDP, PSIZE, PMASK and CONFIG

(d The system contains a global flag _vfill_ok which is cleared if the VFILL
is not possible. Reasons for this may be:

B DPTCH is not an integral multiple of 80 hex

PSIZEis 1 or2

Pixel processing is not set to replace

Transparency is not set

The system does not contain VRAMs that support this feature

TMS34020 Assembly Language Instruction Set

Latch the COLORT1 Register (B9) in the VRAM Color Latches

VLCOL

DADDR
DYDX

.set
.set

CONTROL .set

.globl
.ref

_fill rect:

mmtm
move
move
move
sll
movy
move
move
move
sll
movy
move
jrz
clip
jrz
cvdxyl
vlcol
vEill
jruc

no_vfill:

exit:

fill

mmfm
rets

B2 ;Destination address register
B7 ;Delta X/delta Y register
0Cc00000BOK ;Control IO register
_fill rect ; provide reference for external calls
_vfill ok ; flag to enable VFILLs
sp,B2,B7,B10,B11,B12 ;save required registers
Al4,B10 ;move c-stack pointer into B—file
*-B10,DYDX,1 ;get width
*-B10,B12,1 ;get height
16,B12
B12,DYDX ;concatenate width & height
*-B10,DADDR, 1 ;get xleft
*-B10,B12,1 ;get ytop
B10,Al4 ;restore c-stack pointer
16,B12
B12,DADDR ;concatenate xleft & ytop
@_vfill_ ok,As8,1 ;get state of vfill flag
no_vfill

;clip to the window
exit ;1f outside the window, exit
DADDR ;convert to linear dest address

;load VRAM color latches
L ;perform linear fill
exit
XY ;£i11 the rectangle using standard fill
sp,B2,B7,B10,B11,B12 ;restore required registers
2

13-265

XOR Exclusive-OR Registers

Syntax XOR ARs, Rd

Execution Rs XOR Rd — Rd

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1]of1]of1]1] Rs [R | Rd |

Description XOR bitwise-exclusive-ORs the contents of the source register with the con-

tents of the destination register, and stores the result in the destination register.

You can use this instruction to clear registers (for example, xor Bo,B0); the
CLR instruction also supports this function.

Rs and Rd must be in the same register file.
Machine States 1

Status Bits Unaffected
Unaffected
1 if the result is 0, 0 otherwise

Unaffected

0 <NOZ2

Examples ode Before After

A0 Al NCZV A1
XOR AO0,Al FFFFFFFFh 00000000h xx0x FFFFFFFFh
XOR AO0,Al FFFFFFFFh AAAAAAAAQ xx0x 55555555h

XOR A0,Al FFFFFFFFh FFFFFFFFh xx1x 00000000h

13-266 TMS34020 Assembly Language Instruction Set

Exclusive-OR Immediate XORI

Syntax
Execution

Instruction Words

Description

Machine States

Status Bits

Examples

XORI /L, Rd
ILXORRd — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJoflofo 1o+t][1][1]o0o]R] Rd
16 LSBs of IL
16 MSBs of IL

XORI bit-wise exclusive-ORs a 32-bit immediate data with the contents of the
destination register and stores the result in the destination register. (The /L
parameter in the syntax above represents a 32-bit immediate value.)

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z 1 ifthe resultis 0, O otherwise
V Unaffected

Code Before After
A0 NCzZV A0
XORI OFFFFFFFFh,A0 00000000h XX 0x FFFFFFFFh

XORI OFFFFFFFFh,A0 AAAAAAAAh X X0 X 55555555h
XORI OFFFFFFFFh,A0 FFFFFFFFh xx1x 00000000h
XORI 00000000h,A0 00000000h xx1x 00000000h
XORI 00000000h,A0 FFFFFFFFh xx0Xx FFFFFFFFh

13-267

ZEXT Zero-Extend to Long

Syntax ZEXT Rd |, F]

Execution field in Rd — zero-extended field Rd

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJoJoJoJoJiJrltfoJo]1]R] Rd !

Description ZEXT zero-extends a right-justified field in the destination register by zeroing

all the nonfield bits in Rd. The size of the field is determined by the current field
size. The optional F parameter, which must be specified asa 0 ora 1, selects
the field size:

F=0 selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is 0.

Machine States 1

Status Bits N Unaffected
C Unaffected
Z 1 iftheresultis 0, 0 otherwise
V Unaffected

Examples Code Before After
FSO FS1 A0 NCZV A0
ZEXT A0,0 32 X FFFFFFFFh xx0Xx FFFFFFFFh
ZEXT A0,0 31 X FFFFFFFFh X X 0 X 7FFFFFFFh
ZEXT 20,0 1 X FFFFFFFFh X X0 X 00000001h
ZEXT A0,0 16 X FFFF0000h XxX1x 00000000h

ZEXT AO,1 X 16 FFFFO000h xx1x 00000000h

13-268 TMS34020 Assembly Language Instruction Set

Chapter 14

TMS34082 Pseudo-ops

Many TMS34020 applications require floating-point operations. The
TMS34082 Floating-Point Processor is designed specifically to serve as a
coprocessor in a TMS34020 system. To extend the TMS34020’s direct inter-
face to the TMS34082, the TMS34020 supports a subset of the TMS34082
assembly-language instruction set by supplying a group of TMS34082
pseudo-ops. These pseudo-ops are special versions of the TMS34020’s gen-
eral-purpose coprocessor instructions. Instead of designing a protocol for
sending instructions and data back and forth between the TMS34020 and
TMS34082, you can use these pseudo-ops, which are hard-coded versions of
instructions such as the CMOVCG instruction.

This chapter provides a general description of the pseudo-op protocol and
provides an alphabetical reference to the TMS34082 pseudo-ops.

Section Page
Basic information includes a 14.1 Overview and Key Features
review of related TMS34020 ofthe TMS34082 14-2
signals and an overview of the 142 Pseudo-op Format 14-3
coprocessor interface. 14.3 RegisterOperandscovutn 14-6

Alphabetical reference of beginsonpagecouieiiiiiiinnnnann.
pseudo-ops

14-1

Overview and Key Features of the TMS34082

14.1 Overview and Key Features of the TMS34082

14-2

The TMS34082 is a high-speed floating-point processor, implemented in TI's
advanced 1-micron CMOS technology. On a single chip, the TMS34082 com-
bines a 16-bit sequencer, a 3-operand FPU, and 22 64-bit data registers. An
instruction register controls FPU execution, and a status register retains the
most recent FPU status outputs. The TMS34082 also contains 8 control regis-
ters and a 2-deep stack.

The TMS34082 is fully compatible with IEEE Standard 754—1985 for binary
floating-point arithmetic. Floating-point operands can be in either single- or
double-precision |IEEE format.

Key features and benefits include

3 Closely coupled with the TMS34020
B Direct TMS34020 instruction extension
B Multiple-TMS34082 capability

L& Internal programs for vector, matrix, and graphics operation

L Fast multiply/accumulate cycle time
B 40 MHz (TMS34082-40) ... 50 ns

B 32 MHz (TMS34082-32) ... 60 ns

Cd External memory addressing capability
B External program storage (up to 64K words)
B External data storage (up to 64K words)

L Full IEEE standard 754—1985 compatibility

B Addition B Subtraction
B Multiplication B Division
B Square root B Comparison

Ld Selectable data formats
B 32-bit integer
B 32-bit, single-precision floating-point value
B 64-bit, double-precision floating-point value

Cd Supported by TMS34020 code-generation tools
L3 More than 30 complex instructions targeted at graphics math

L Use as a floating-point coprocessor eliminates the need for external logic
interface

Ld Standardized approach to floating-point for full system compatibility

(]

Eliminates multiple-cycle software implementation

L3 Superior performance for 2-D and 3-D graphics applications

TMS34082 Psuedo-ops

Pseudo-op Format

14.2 Pseudo-op Format

Section 10.2, Overview of the Coprocessor Interface (page 10-3), lists the
TMS34020’s general-purpose coprocessor instructions. Section 10.3, Format

of Commands Passed to a Coprocessor (page 10-5), describes the general

format of these instructions; specific implementations of this format depend
entirely on the coprocessor that you choose to include in your system.

The TMS34020 provides a set of TMS34082 pseudo-ops. These pseudo-ops
extend the general-purpose format by hard-coding TMS34082 opcodes into
certain fields of the general-purpose coprocessor instructions.

Figure 10-1 (which appears in Section10.3, page 10-5) is repeated below as
Figure 14—1 (a). This figure shows the general format of coprocessor informa-
tion that is placed on the LAD bus. Figure 10-1 (b) shows the TMS34082 im-
plementation of this format.

Figure 14—1. Coprocessor Instruction Information on the LAD bus

(a) General Format

LAD 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211 10 9 8

pin # z T
S rl'::,,nll
ID coprocessor command yl1]s| BosT
e l“l“!:l“
Key: ID 3-bit coprocessor ID field size Parameter size field
I Coprocessor parameter index bit S 16-bit word select (always output as 0)

BCST 4-bit bus status (always 0 for coprocessor cycles)
Coprocessor command 21-bit instruction for the coprocessor
Reserved (always output as 0)

Note: Section 10.3 (page 10-5) describes these bit fields in detall

(b) TMS34082-Specific Format

LAD #
31—29 28

25 24 21 20 16 15 14 13 9

ID

CRs1

— |0
o |
o

size

CRs2 CRd md fpuop

Ld As Figure 10-1 (b) shows, the bus cycle status code portion is 0000o.
This indicates that the local-memory cycle generated by this type of
instruction is a coprocessor cycle.

L Bit 4, the S (16-bit word select) bit, is also 0; this indicates that only 32-bit
accesses will occur.

4 TheIbit serves the same purpose for the TMS34082 as it does for other
processors (refer to subsection 10.3.4, Coprocessor Parameter Index, on
page 10-7).

143

Pseudo-op Format

14-4

[d Bit7 still serves as the size (parameter size) bit. The TMS34082 uses the

LSB of the coprocessor command as T (bit 8) that works with the size bit
to identify the type and size of the parameter(s) that are passed to the
TMS34082:

T size Operand Type
0 0 32-bit integer
0 1 reserved
1 0 single-precision (32-bit) floating-point number
1 1 double-precision (64-bit) floating-point number

The coprocessor command is divided into 5 fields:

B The 5-bit fpuop field contains the opcode of a TMS34082 assembly-
language instruction.

B The 2-bit md field conveys the coprocessor command’s addressing

mode:
Mode Operation
00, FPU internal operation, no jumps or external moves
015 Transfer to/from TMS34020 registers
100 Transfer to/from TMS34020 local memory
115 External microcode

® CRd is the TMS34082 destination register.

B CRsj is the second TMS34082 source register for instructions that
use two source operands. CRs» also serves as the count operand for
instructions that use a count operand. CRso must be a member of the
TMS34082 B register file.

B CRsqis the TMS34082 source register for instructions that have one
source operand; it is the first source register for instructions that use
two source operands. CRs{ must be a member of the TMS34082 A
register file.

The ID field serves the same purpose in the TMS34082 protocol as it
serves in the general-purpose protocol. For more details, refer to subsec-
tion 10.3.1, Coprocessor ID, on page 10-5. The pseudo-ops default to an
ID of 0005; to define another ID as the current ID, use the .coproc assem-
bler directive.

For the TMS34082, these bits are hard-coded into special versions of the
TMS34020’s general-purpose coprocessor instructions. As an example,
Figure 14-2 compares the general syntax of the CMOVGC instruction (a gen-
eral-purpose coprocessor instruction) to the LOAD-and-ADD (ADD) pseudo-

TMS34082 Psuedo-ops

Pseudo-op Format

Figure 14-2. How General Coprocessor Instruction Syntax Corresponds to TMS34082 Pseudo-ops

(a) General syntax for CMOVGC instruction

109 8 7 6 5 4 3 2 1 0
ofloJojJoJo]Jt1|[1fofofH1 0|R Rsi1

8 LSBs of coprocessor command size| O 0 R Rs2
coprocessor 1D | 13 MSBs of coprocessor command

15 14 13 12 11

(b) General syntax for TMS34082 ADD pseudo-op

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
oJoJoJoJoJi1]1J]oJo]1]oOo]R Rs1
0ol1]olololololo|loJo[]o]|R Rs2

D CRs1 CRs2 CRd

Note: This portion of the figure shows the ADD pseudo-op. ADD is a special form of the TMS34020 CMOVGC
instruction. The coprocessor command and size portions of the CMOVGC instruction are hardcoded to spe-

cifically match the needs of the TMS34082's ADD instruction.
(c) What is output on the LAD bus for the ADD pseudo-op

LAD #
31—29 28 25 24 21 20 16 15 14 13 9 8765 4 0
ID CRs1 CRs2 CRd 01 00000 ofofojojojo 0 0 O

Note:
To identify the 3-bit ID, use the .coproc assembler directive (refer to the
TMS340 Family Code Generation Tools User’s Guide for information about

the .coproc directive).

14-5

Register Operands

14.3 Register Operands

The TMS34082 pseudo-ops use register operands only. Table 14-1 lists the
register-operand symbols used in the psuedo-op syntaxes in this chapter.

Table 14-1. Symbols Used in Pseudo-op Syntax Listings

Symbol Description Symbol Description

CRs TMS34082 source register CRd TMS34082 destination register

CRsy For pseudo-ops that use 2 TMS34082 CRs» For pseudo-ops that use 2 TMS34082
source registers, this register supplies source registers, this register supplies the
the first operand second operand
This operand must be a TMS34082 A-file This operand must be a TMS34082 B-file
register register

Rs TMS34020 source register Rd TMS34020 destination register

Note that some pseudo-ops use information from a TMS34020 register or
place information into a TMS34020 register. In this case, Rs or Rd should be
a TMS34020 general-purpose register (A0—A14 or BO—B14), just as it would
be for a TMS34020 instruction. Most of the pseudo-ops, however, use
TMS34082 registers as operands. As Figure 14-3 shows, the TMS34082 con-
tains 2 register banks of 10 64-bit registers, plus 2 feedback registers.

Figure 14-3. TMS34082 Registers That Can Be Used as Pseudo-op Operands

Note: These register files contain TMS34082 registers.

Most pseudo-ops operate on one value from TMS34082 register file A or B,
andreturnthe resulttofile A, file B, or one of the feedback registers. Valid oper-
and/register use includes:

14-6 TMS34082 Psuedo-ops

Register Operands

CRs or CRsy: RA0—RA9 CRsy: RBO—RB9
CRd: RA0—RA9, RBO—RB9, C, and CT
When more than one value is requested from/sent to the TMS34082, the regis-
ters are read from/written to in the sequence shown in Figure 14—4. Note that

the control, status, and stack registers are in the middle of the list. The
sequence bypasses C and CT because they can't be accessed externally.

Figure 14-4. TMS34082 Register Sequence List

14-7

ABORT Abort Coprocessor Operation

Syntax ABORT
Execution Halts coprocessor
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 lol1 1 lofofofolof1{1]1]1
DefaultlD | 0 |0 |0 [O |1 O |1 |1]JOfOo]oO

Description ABORT halts the operation of the TMS34082 coprocessor and places the
coprocessor in a wait-for-next-instruction state. Register values are indetermi-
nate.

Machine States 2

Instruction Type CEXEC, short

Example ABORT

This example halts the TMS34082 coprocessor.

14-8 TMS34082 Pseudo-ops

~ Absolute Value, Integer ABS

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ABS CRs, CRd
|CRs| — CRd
15 14 13 12 11 i0 9 8 7 6 5 4 3 2 1 0

11 o1]1]ofofJofofo]t1]1]1]1]o0o]o
Default ID CRs 0 0 1 0 CRd

CRs Coprocessor source register containing the 32-bit integer operand
CRd Coprocessor destination register

ABS takes the absolute value of the contents (integer) of CRs and stores the
result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

ABS RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB7.

14-9

ABS Load and Absolute Value, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-10

ABS Rs, CRs, CRd

Rs — CRs
|CRs| — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofofofof[1]1]o]o]o]n Rs
1 fof{1 11 {1]ofofo]ofo]ofofol]o
Default ID CRs o Jo[1]o CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor
CRs Coprocessor register to contain the 32-bit integer operand
CRd Coprocessor destination register

ABS loads the contents (integer) of Rs into CRs, takes the absolute value of
the contents of CRs, and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long-word aligned
2 if the first instruction word is not long-word aligned

CMOVGC, one register
ABS A5, RA6, RB7

This example loads the contents of TMS34020 register A5 into coprocessor
register RAB, takes the absolute value of the contents of RAB, and stores the
result in RB7.

TMS34082 Pseudo-ops

Absolute Value, Double Precision ABSD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

ABSD CRs, CRd

|CRs| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1t 1ot 1]ofolofofo|l+ {11]1]1]1
Default ID CRs oo |1]o CRd

CRs Coprocessor source register containing a 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

ABSD takes the absolute value of the contents of CRs and stores the result in
CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

ABSD RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB7.

14-11

ABSF Absolute Value, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-12

ABSF CRs, CRd

|CRs| — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2
1t]1Jol1l1]ofololoJoJ1Jafs]1]1]o
Default ID CRs 0[O0 |1 0 CRd

CRs Coprocessor source register containing a 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

ABSF takes the absolute value of the contents (single-precision value) of CRs
and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

ABSF RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB7.

TMS34082 Pseudo-ops

Load and Absolute Value, Single Precision ABSF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ABSF Rs, CRs, CRd

Rs — CRs
|CRs| — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o{oJofo|1]1]ofo]o]H Rs
o1 o111]1[1]ofoflofo]ofof[o]o
Default ID CRs o Jof1]o CRd

Rs TMS34020 source register for the 32-bit single-precision
floating-point value to coprocessor

CRs Coprocessor register containing a 32-bit single-precision floating-
point operand

CRd Coprocessor destination register

ABSF loads the contents (single-precision value) of Rs into CRs, takes the
absolute value of the contents of CRs, and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
ABSF A5, RA6, RB7

This example loads TMS34020 register A5 into coprocessor register RAB,
takes the absolute value of the contents of RA6, and stores the result in RB7.

14-13

ADD Add, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-14

ADD CRsy, CRsp, CRd
CRsq + CRso — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 {1 o1 [1JoJoJoJoJoJoJofJoJoJo]o
Default ID CRs; CRs, CRd

CRs4 Coprocessor register containing the first 32-bit integer operand
CRss Coprocessor register containing the second 32-bit integer operand
CRd Coprocessor destination register

ADD adds the contents (integer) of CRs{ and CRsp and stores the result in
CRd.

2
CEXEC, short
ADD RA5, RB6, RB7

This example adds the contents of RA5 and RB6 and stores the result in RB7.

TMS34082 Pseudo-ops

Load and Add, Integer ADD

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ADD Rsy, Rso, CRsy, CRsp, CRd

Rs{ — CRs4
Rso — CRso
CRsq + CRso — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 0 1 0 R Rs,
1 0 0 0 0 0 0 0 0 0 R Rs,
Default ID CRs; CRs, CRd

Rsq TMS34020 source register for the first 32-bit integer value to
coprocessor

Rsp, TMS34020 source register for the second 32-bit integer value to
coprocessor

CRsqy Coprocessor register to contain the first 32-bit integer operand
CRso Coprocessor register to contain the second 32-bit integer operand
CRd Coprocessor destination register

ADD loads the contents (integer) of Rsy and Rsy into CRsq and CRso
respectively, adds the contents of CRs{ and CRsp, and stores the result in
CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
ADD A5, A6, RA5, RB6, RB7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RAS and RB6 respectively, adds the contents of RA5 and RB6, and stores the
result in RB7.

14-15

ADDD Add, Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-16

ADDD CRsy, CRsp, CRd

CRsq¢ + CRs» — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
t[1 o1]1]ofofofofo]o|o|[o|[o]|1]H1
Default ID CRs, CRs, CRd

CRsy Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRso Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

ADDD adds the contents (double-precision value) of CRsqy and CRso and
stores the result in CRd.

2
CEXEC, short
ADDD RAS5, RB6, RA7

This example adds the contents of RA5 and RB6 and stores the resultin RA7.

TMS34082 Pseudo-ops

Add, Single Precision ADDF

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

ADDF CRs;, CRsp, CRd

CRs{ + CRsy — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11]ol1]1]ofoflofofofofofo|o|[1]o
Default ID CRs; CRs, CRd

CRsy Coprocessor register containing the first 32-bit single-precision
floating-point operand

CRso Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

ADDF adds the contents (single-precision value) of CRs{ and CRso and stores
the result in CRd.

2
CEXEC, short
ADDF RA5, RB6, RB7

This example adds the contents of RA5 and RB6 and stores the resultin RB7.

14-17

ADDF Load and Add, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-18

ADDF Rsj, Rso, CRsy, CRso, CRd

Rs{ — CRs4
Rso — CRs»o
CRs¢ + CRs» — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1 0 R Rs4
1lo]lo]Jo]o|lo]1|o|[o]o0o]R . Rsy
Default ID CRs; CRs, CRd

Rs{ TMS34020 source register for the first 32-bit single-precision
floating-point value to coprocessor

Rso TMS34020 source register for the second 32-bit single-precision
floating-point value to coprocessor

CRsy Coprocessor register to contain the first 32-bit single-precision
floating-point operand

CRso> Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

ADDF loads the contents (single-precision value) of Rs{ and Rs» into CRs4
and CRso respectively, adds CRs1 and CRs», and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
ADDF A5, A6, RA5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RAS5 and RB6 respectively, adds the contents of RAS and RB6, and stores the
result in RA7.

TMS34082 Pseudo-ops

Check Coprocessor Status CHECK

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CHECK Rd

If coprocessor is busy
FFFF FFFFh — Rd

If coprocessor is idle
0000 0000h — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ololofo|1]1]o]o]1]1]|nR Rs

o|t1 o1 |1]1]1|o]o]o]|lofjo]ofo 0

Default ID olofofo|1[1|ofl1]oflo]o|o]o

Rd Destination register for status information

CHECK checks the status of the coprocessor. If the TMS34082 coprocessor
is busy, CHECK sets all the bitsin Rd to 1. Ifthe TMS34082 coprocessor is idle,
CHECK sets all the bits in Rd to 0.

5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVGC, one register
CHECK A4

If the TMS34082 coprocessor is busy, this example sets all the bits in register
A4 to 1. If the TMS34082 coprocessor is idle, this example resets all the bits
in register A4 to 0.

14-19

CMP compare, Integer

Syntax CMP CRsj, CRso

Execution Flags (CRs{ — CRso) — Coprocessor Status Registers

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o1 (1]ofjofofofofJo]Jo]1]o]o]o
Default ID CRs;, CRs, oJ]o]Joj|o]oO

Operands CRsq1 Coprocessor register containing the first 32-bit integer operand

CRso Coprocessor register containing the second 32-bit integer operand

Description CMP subtracts the contents (integer) of CRso from CRs4 and sets the appro-
priate status bits in the coprocessor status register.

Machine States 2

Instruction Type CEXEQG, short

Example CMP RA5, RB6

This example subtracts the contents of RA5 from RB6 and sets the status bits
in the coprocessor status register.

14-20 TMS34082 Pseudo-ops

Load and Compare, Integer CMP

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CMP Rsy, Rsp, CRsy, CRso

Rs{ — CRs4
Rso — CRs»o
Flags (CRs4 — CRs») — Coprocessor Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 0 0 1 R Rs,
0 1 0 0 0 1 0 0 0 0 0 R Rs,
0

Default ID CRs; CRs, o lojolo

Rs TMS34020 source register for the first 32-bit integer value to copro-
cessor

Rso TMS34020 source register for the second 32-bit integer value to
coprocessor

CRsqy Coprocessor register to contain the first 32-bit integer operand
CRs, Coprocessor register to contain the second 32-bit integer operand

CMP loads the contents (integer) of Rs4 and Rs» into CRs¢ and CRs» respec-
tively, subtracts CRs, from CRs4, and sets the appropriate status bits in the
coprocessor status register.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
CMP A5, A6, RAS5, RB6

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RAS5 and RB6, subtracts the contents of RB6 from RA5, and sets the status bits
in the coprocessor status register

14-21

CMPD Compare, Double Precision

" Syntax
Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-22

CMPD CRsy, CRso

Flags (CRs¢ — CRsp) — Coprocessor Status Registers

15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
1{1]ofl1]{1]olofo]olofjolo|1]o]1]H1
Default ID CRs, CRs, 0jJ]O0Of[OoO]O]O

CRsq Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRso Coprocessor register containing the second 64-bit double-precision
floating-point operand

CMPD subtracts the contents (double-precision value) of CRs» from CRs4 and
sets the appropriate status bits in the coprocessor status register.

2
CEXEC, short
CMPD RA5, RB6

This example subtracts the contents of RB6 from RA5 and sets the status bits
in the coprocessor status register.

TMS34082 Pseudo-ops

Compare, Single Precision CMPF

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

CMPF CRs;, CRsy

Flags (CRsq — CRso) — Coprocessor Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
t 1ot 1]oJofJofJo]ofJof[of1]o]H
Default ID CRs; CRs, 0[O0 0 0 0

CRsq Coprocessor register containing the first 32-bit single-precision
floating-point operand

CRso Coprocessor register containing the second 32-bit single-precision
floating-point operand

CMPF subtracts the contents (single-precision value) of CRso from CRs1 and
sets the appropriate status bits in the coprocessor status register.

2
CEXEC, short
CMPF RAS5, RB6

This example subtracts the contents of RB6 from RA5 and sets the status bits
in the coprocessor status register.

14-23

CMPF Load and Comhare, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-24

CMPF Rsy, Rsp, CRsy, CRsp

Rs{ — CRs4
Rss — CRso
Flags (CRsq — CRsy) — Coprocessor Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 0 1 R Rs;
1 0 0 0 1 0 1 0 0 0 R Rs,
0

Default ID CRs; CRs,

o [ofo]o

Rsy TMS34020 source register for first the 32-bit single-precision float-
ing-point value to coprocessor

Rso TMS34020 source register for the second 32-bit single-precision float-
ing-point value to coprocessor

CRsqy Coprocessor register to contain the first 32-bit single-precision
floating-point operand

CRso Coprocessor register to contain the second 32-bit single-precision
floating-point operand ‘

CMPF loads the contents (single-precision value) of Rs4 and Rs» into CRs
and CRso respectively, subtracts CRs» from CRs4, and sets the appropriate
status bits in the coprocessor status register.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
CMPF A5, A6, RA5, RB6

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, subtracts the contents of RB6 from the contents of
RA5, and sets the status bits in the coprocessor status register.

TMS34082 Pseudo-ops

Convert, Double Precision to Single Precision CVDF

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

CVDF CRs, CRd

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 38 2 1 0
11 o1 1 Jofofofofo[t 111]1]H
Default ID CRs 0 1 0 0 CRd

CRs Coprocessor source register containing a 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

CVDF converts a 64-bit IEEE double-precision floating-point number to a
32-bit IEEE single-precision floating-point number. The double-precision num-
berresides in CRs, and the converted single-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

CVDF RAS5, RA7

This example converts the contents of RA5 to a single-precision floating-point
number and stores the result in RA7.

14-25

CVDI Convert, Double Precision to Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-26

CVDI CRs, CRd

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 38 2 1 0
tl1fof1 1]ofJofoloJol1 11][1]1]n
Default ID CRs 0 |1 0 | 1 CRd

CRs Coprocessor source register containing a 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

CVDI converts a 64-bit IEEE double-precision floating-point number to a 32-bit
integer number. The double-precision number resides in CRs, and the con-
verted integer number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

CVDI RA5, RB7

This example converts the contents of RA5 to an integer and stores the resuit
in RB7.

TMS34082 Pseudo-ops

Convert, Single Precision to Double Precision CVFD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

CVFD CRs, CRd
(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 o1 [1]ofofofofo|[1]1]1]1]1]o

Default ID CRs 0 1 0 0 CRd

CRs Coprocessor source register containing a 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

CVFD converts a 32-bit IEEE single-precision floating-point value to a 64-bit
IEEE double-precision floating-point value. The single-precision number
resides in CRs, and the converted double-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

CVFD RAS5, RB7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

14-27

CVFD Load and Convert, Single Precision to Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-28

CVFD Rs, CRs, CRd

Rs —» CRs

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olojJoJolo |11]ofo]o]H Rs

o [1{ofl1 1111]ofofJololofofofo
Default ID CRs oj1]o]o CRd

Rs TMS34020 source register for the 32-bit single-precision float-
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision floating-
point operand

CRd Coprocessor destination register

CVFD loads the contents (single-precision) of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-preci-
sion floating-point value. The single-precision number resides in CRs, and the
converted double-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
CVFD B5, RAS5, RA7

This example loads TMS34020 register B5 into coprocessor register RA5, con-
verts the contents of RA5 to a double-precision number, and stores the result
in RA7.

TMS34082 Pseudo-ops

Convert, Single Precision to Integer CVFI

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

CVFl CRs, CRd

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11]ol1[1]ofofoflofo|[1[1]1]1]1]o0
Default ID CRs 0 1 0 1 CRd

CRs Coprocessor source register containing a 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

CVFI converts a 32-bit IEEE single-precision floating-point value to a 32-bit
integer value. The single-precision number resides in CRs, and the converted
integer number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

CVFI RA5, RA7

This example converts the contents of RA5 to an integer and stores the result
in RA7.

14-29

CVFI Load and Convert, Single Precision to Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-30

CVFl Rs, CRs, CRd

Rs — CRs

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofJolofo]1[1fofo]olH Rs

o {1 o1 {1111]olofofofo]o|ofo
Default ID CRs o [1]o]1 CRd

Rs TMS34020 source register for the 32-bit single-precision float-
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision floating-
point operand

CRd Coprocessor destination register

CVFI loads the contents (single-precision) of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 32-bit integer value. The
single-precision number resides in CRs, and the converted integer number
resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
CVFI B5, RA5, RB7

This example loads TMS34020 register B5 into coprocessor register RA5, con-
verts the contents of RA5 to an integer, and stores the result in RB7.

TMS34082 Pseudo-ops

Convert, Integer to Double Precision CVID

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

CVID CRs, CRd

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o1 {1 [ofofofofo]1]1[1]1]1]n
Default ID CRs 0 1 1 0 CRd

CRs Coprocessor source register containing the 32-bit integer operand
CRd Coprocessor destination register

CVID converts a 32-bit integer value to a 64-bit IEEE double-precision floating-
point value. The integer resides in CRs, and the converted double-precision
number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

CVID RA5, RB7

This example converts the contents of RA5 to a double- precnsmn number and
stores the result in RB7.

14-31

CVID Load and Convert, Integer to Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-32

CVID Rs, CRs, CRd

Rs — CRs
(CRs) — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofolo]Jojt1{1]o|lo]l1]0]|R Rs
of1lo|1 1|1 |1 |1]1]|]o}]lo]|R Rs
Default ID CRs o|1]11]o CRd

Rs TMS34020 source register forthe 32-bit integer values to coprocessor
CRs Coprocessor source register to contain the 32-bit integer operand
CRd Coprocessor destination register

CVID loads the contents (integer) of Rs into CRs and converts a 32-bit integer
value to a 64-bit IEEE double-precision floating-point value. The integer
resides in CRs, and the converted double-precision number resides in CRd.
(Constraints of the TMS34082 require that the integer in Rs be sent as both
words of the 64-bit transfer.)

The coprocessor source register, CRs, must be in the A coprocessor file.

4 if first instruction word is long word-aligned
3 if first instruction word is not long word-aligned

CMOVGC, two registers
CVID B5, RAS5, RA7

This example loads TMS3420 register B5 into coprocessor register RA5, con-
verts the contents of RA5 to a double-precision number, and stores the result
in RA7.

TMS34082 Pseudo-ops

Convert, Integer to Single Precision CVIF

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

CVIF CRs, CRd

(CRs) - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
t 1ot 1 fofolofofol1{1]1]1]1]o0
Default ID CRs 0 | 1 1 0 CRd

CRs Coprocessor source register containing the 32-bit integer operand
CRd Coprocessor destination register

CVIF converts a 32-bit integer value to a 32-bit IEEE single-precision floating-
point value. The integer resides in CRs, and the converted single-precision
number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.
2

CEXEC, short

CVIF RAS, RA7

This example converts the contents of RA5 to a single-precision number and
stores the result in RA7.

14-33

CVIF Load and Convert, Integer to Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-34

CVIF Rs, CRs, CRd

Rs — CRs

(CRs) — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oJofoJofo|1]1]{ofo]o]H1 Rs
o1]olt1 111 [1]ofofjolofo]o|o]o
Default ID CRs 0 |1 1 0 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor
CRs Coprocessor source register to contain the 32-bit integer operand
CRd Coprocessor destination register

CVIF loads the contents (integer) of Rs into CRs and converts a 32-bit integer
value to a 32-bit IEEE single-precision floating-pointvalue. The integer resides
in CRs, and the converted single-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if first instruction word is long word-aligned
2 if first instruction word is not long word-aligned

CMOVGC, one register
CVIF RA5, RA7

This example converts the contents of RA5 to a single-precision number and
stores the result in RA7.

TMS34082 Pseudo-ops

Divide, Double Precision DIVD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

DIVD CRs;, CRsy, CRd

CRs;
(CRSZ> CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1]1Jof1[1]oloJoJoJo[1o]ol]1]1]H

Default ID CRs, CRs, CRd

CRsqy Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRsy; Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

DIVD divides the contents (double-precision value) of CRsy by CRs» and
stores the result CRd.

2
CEXEC, short

DIVD RA5, RB6, RA7

This example divides the contents of RA5 by RB6 and stores the resultin RA7.

14-35

DIVF Divide, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-36

DIVF CRs;, CRs,, CRd

CRs;
(CRSZ) CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o1]1Jo]oJofoJo[t1]ofJo]1]1]o
Default ID CRs, CRs, CRd

CRsy Coprocessor register containing the first 32-bit smgle precision floa-
ting-point operand

CRs> Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

DIVF divides the contents (single-precision value) of CRs1 by CRs» and stores
the result in CRd.

2
CEXEG, short
DIVF RA5, RB6, RA7

This example divides the contents of RA5 by RB6 and stores the resultin RA7.

TMS34082 Pseudo-ops

Load and Divide, Single Precision DIVF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

DIVF Rsy, Rsp, CRsy, CRso, CRd
Rs; — CRs;

Rs, — CRs;,

CRs,
(CRSZ) CRa

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

olo]Jofo]| 1|1]o0o]|o0]1 R Rs;
0 1 0 1 0| 0|1 1 0 0 0 | R Rs;
Default ID CRs, CRs, CRd

Rsq TMS34020 source register for the first 32-bit floating-point single-pre-
cision value to coprocessor

Rso TMS34020 source register for the second 32-bit floating-point single-
precision value to coprocessor

CRsqy Coprocessor register to contain the first 32-bit single-precision floa-
ting-point operand

CRs, Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

DIVF loads the contents (single precision, floating point) of Rs1 and Rs» into
CRs1 and CRsorespectively, divides the contents of CRs ¢ by CRsy,, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
DIVF A5, A6, RA5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RAS5 and RB6 respectively, divides the contents of RA5 by RB6, and stores the
result in RA7.

14-37

DIVS Divide, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example 4

14-38

DIVS CRs;, CRsp, CRd

CRs;
(822~ ono

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 lofl1]1fofofjo]JoJo|1]ofo[1]o]o
Default ID CRs, CRs, CRd

CRS1
CRs» Coprocessor register containing the second 32-bit integer operand

Coprocessor register containing the first 32-bit integer operand

CRd Coprocessor destination register

DIVS divides the contents (integer) of CRs¢ by CRs5 and stores the result in
CRd.

2
CEXEC, short
DIVS RA5, RB6, RB7

This example divides the contents of RA5 by RB6 and stores the result in RB7.

TMS34082 Pseudo-ops

Load and Divide, Integer DIVS

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

DIVS Rsy, Rso, CRsy, CRso, CRd

Rs, — CRs;
Rs, — CRs,
CRs
L] — CRd
CRs,
15 14 13 12 11 10 6 4 2 1 0
olo]|o|o 1 1 R Rs,
110 0 0 R Rs,
Default ID CRs, CRs, CRd

Rs4 TMS34020 source register for the first 32-bit integer value to copro-

cessor

Rso TMS34020 source register for the second 32-bit integer value to
coprocessor

CRsq{ Coprocessor register to contain the first 32-bit integer operand

CRso Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

DIVS loads the contents (integer) of Rs¢ and Rs, into CRs{ and CRs, respec-
tively, divides the contents of CRs{ by CRsy, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

DIVS A5, A6, RA5, RB6, RB7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RAS5 and RB6 respectively, divides the contents of RA5 by RB6, and stores the

result in RB7.

14-39

GETCST Get Coprocessor Status Register

Syntax

Execution

Instruction Words

Description

Machine States

Instruction Type

Example

14-40

GETCST

Coprocessor Status Register — ST

i5 14 18 12 11 10
0 0 0 0 0 1

o|=|=|o©
olo|o|s
~lojo|w
slololn
o|l=x]o|o

o|o|o |-

oljo|—=|Oo

ojo|—=|o

o|lo|o|N

OoO|lO|O |

Default ID 0 0 0

GETCST loads 4 MSBs of the coprocessor status register (STATUS) into the
TMS34020 status register (ST).

'5 if the first instruction word is long word-aligned

4 if the first instruction word is not long word-aligned
CMOVCS
GETCST

This example sends the coprocessor status register to the TMS34020. The
TMS34020 takes the value and masks off the 4 MSBs; it then stuffs the values
in the TMS34020 status register corresponding to the N, C, Z, V bits.

TMS34082 Pseudo-ops

Invert, Double Precision INVD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

INVD CRsp, CRd

1
(CRSZ)—»CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1]t o1 1]oflofJofJoJo|l1 o1]o]1]H
DefaultiD [0 [0 [o |0 CRs, CRd

CRso, Coprocessor register-B file containing the 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

INVD divides 1.0 by the contents (double precision) of CRs» and stores the
result in CRd.

2
CEXEG, short
INVD RB3, RAlL

This example divides 1.0 by RB3 and stores the result in RA1.

14-41

INVF Invert, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-42

INVF CRs,, CRd

1
(CRsz) — CRd

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 o1]1]o oJofof1]o]1]ol1]o

Default ID 0 0 0 0 CRs, CRd

CRsy Coprocessor register-B file containing the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

INVF divides 1.0 by the contents (single precision, floating point) of CRs» and
stores the result in CRd.

2
CEXEC, short
INVF RB3, RAl

This example divides 1.0 by RB3 and stores the result in RA1.

TMS34082 Pseudo-ops

Load and Invert, Single Precision INVF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

INVF Rs, CRso, CRd

Rs — CR52

1
(o) ~ cRe

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
oJofJoJo |11]ofofo]1]nr Rs
1 0 ojofofofo]o]o
Defautid [0 [0 oo CRs, CRd

Rs TMS34020 source register for the 32-bit floating-point single-preci-
sion value to coprocessor

CRsy Coprocessor register-B file to contain the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

INVF loads the contents (single precision, floating point) of Rs into CRsy,
divides 1.0 by CRs», and stores the result in CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
INVF A7, RB3, RAl

This example loads TMS34020 register A7 into coprocessor register RB3,
divides 1.0 by RB3, and stores the result in RA1.

14-43

JUMPC Execute Coprocessor External Instructions

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-44

JUMPC n

Execute external coprocessor instructions found at address 2 x n

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
oloJoJofof[1[1][ofo]o]Jo]o]ofo|o]o
1 n ‘olofo]ofofjo|ofo]o
Defauti> [0 Jo{ofloloflololoJoflo]lofo]o

n Specifies the address to which the TMS34082 instruction execution

is sent

JUMPC begins execution of TMS34082 external instructions stored in
TMS34082 local memory. The starting address is specified as TMS34082 local
memory address 2 x n. Usually, a jump table is stored in these locations to per-
mit complex operations.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CEXEC, long
JUMPC 4

This example executes TMS34082 instructions stored in the default
TMS34082’s local memory. The executed instructions are stored beginning in
address 8.

TMS34082 Pseudo-ops

Move, Double Precision, Two Registers to Coprocessor MOVD

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVD Rsy, Rss, CRd
Rs4, Rso — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olo|lo]lo|1]|1]oflo|[1]|o0o]|R Rs,

0|1 ol1]1]lofo]|R Rs,
Default ID oflo|lo|lo|lo]o]o]o CRd

Rsqy TMS34020 source register for the 32 MSBs (sign, exponent, and 20
MSBs of mantissa) of the 64-bit double-precision floating-point value
to coprocessor

Rsp, TMS34020 source register for the 32 LSBs of the 64-bit
double-precision floating-point value to coprocessor

CRd Coprocessor destination register that holds the 64-bit double-preci-
sion floating-point value

MOVD moves the double-precision value in Rsq and Rs» into CRd. Rs{ holds
the 32 MSBs, and Rs, holds the 32 LSBs of the double. You must setthe LOAD
bit of the TMS34082 configuration register to 0 to indicate that the MSBs are
transferred before the LSBs.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

This example uses the MOVD instruction to load a 64-bit double-precision val-
ue into register RB5. Note that the 32 MSBs of the value are loaded into a1 and
thenthe 32 LSBs are loaded into AO. Assume that the LOAD bit of the configu-
ration register is set to 0, indicating transfers of MSBs before LSBs.

00000000 .ieeefl

00000000 0540 setf 32,0,0
00000010 05a0 move @dval,a0,0
00000020 00000000"

00000040 05al move @dval+32,al1,0
00000050 00000020~

00000070 0641 movd al,al,rb5
00000080 5£80

00000090 1£95

00000000 .data

00000000 8a6ab5lad dval: .double 347.6942238
00000020 4075bblb

14-45

MOVD Move, Double Precision, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

14-46

MOVD *Rs+, CRd, Rd
If TMS34082 LOAD bit =0 If TMS34082 LOAD bit = 1
and Rd =0 and Rd =1 — 31
Repeat 16 times Repeat Rd/2 times
*Rs — CRd (32 MSBs) *Rs — CRd (32 MSBs)
Rs +32 —Rs Rs + 32 - Rs
*Rs — CRd (32 LSBs) *Rs — CRd (32 LSBs)
RS + 32 = Rs Rs + 32 — Rs
advance to next coprocessor advance to next coprocessor
register register

If TMS34082 LOAD bit = 1
andRd=0

If TMS34082 LOAD bit =1
and Rd =1 — 31

Repeat 16 times Repeat Rd/2 times
*Rs — CRd (32 LSBs) *Rs — CRd (32 LSBs)
Rs + 32 - Rs Rs + 32 - Rs
*Rs — CRd (32 MSBs) *Rs — CRd (32 MSBs)
Rs + 32 = Rs Rs + 32 — Rs
advance to next coprocessor advance to next coprocessor
register register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojJojJoJo]Jo|1|1]of|1|[1]|]1]R Rd
ojojo|1|1fof1|[1|ofo]|R Rs
Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register (indirect postincrement) containing the

address of the first 32-bits of the first double-precision value to move

to the coprocessor

CRd
sion floating-point value

Coprocessor destination register to hold the first 64-bit double-preci-

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31.

A IfRd=0,
L IfRd=1-31

then 32 32-bit transfers are made

then Rd 32-bit transfers are made

Note that because 64-bit doubles require two 32-bit moves, an odd
number in Rd will give unpredictable results.

MOVD moves 64-bit double-precision values from memory beginning at the
address in Rsinto coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented; after every two 32-bit transfers, the copro-
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 32-bit transfers made is determined by the con-
tents of Rd. The results will be unpredictable if Rd is an odd number.

TMS34082 Pseudo-ops

Move, Double Precision, Indirect to Coprocessor (Postincrement), Register Count MOVD

Machine States

Instruction Type

Example

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

[J Ifthe LOAD bit=1, then the LSBs are moved first
(82 LSBs of the fraction)

(4 Ifthe LOAD bit =0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

If Rd =0 and Rs is aligned 36
If Rd = 0 and Rs is nonaligned 37
IfRd=1—31and Rsisaligned 5+ (Rd-1)

fRd=1—31and Rsis nonaligned 6+ (Rd—1)
CMOVMC, postincrement, register count
MOVD *AS5+, RB7, B7

This example moves 64-bit double-precision values from the TMS34020
memory location pointed to by A5 to coprocessor registers beginning with RB7.
After each 32-bit transfer, register A5 is incremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. B7 holds the number of 32-bit transfers to
be made.

14-47

MOVD Move, Double Precision, Indirect to Coprocessor (Postincrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

14-48

MOVD *Rs+, CRd, [, count]

If TMS34082 LOAD bit=0 If TMS34082 LOAD bit = 1
Repeat count times Repeat count times
*Rs — CRd (32 MSBs) Repeat count times
Rs + 32 —Rs *Rs — CRd (32 LSBs)
*Rs — CRd (32 LSBs) Rs + 32 — Rs
Rs +32 —Rs *Rs — CRd (32 MSBs)
advance'to next coprocessor Rs + 32 — Rs
register advance to next coprocessor
register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 1 0 0 transfers
ololo o1]1]ofo|[R] Rs
Default ID e [ofloflofjo]o]joOo]|oO CRd
Rs TMS34020 source register (indirect postincrement) containing the

address of the first 32-bits of the first double-precision value to move
to the coprocessor

CRd Coprocessor destination register that holds the first 64-bit double-pre-
cision floating-point value

count Containsthe number of 64-bit transfers to make.This value mustin the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

3 Ifcount = 16, then transfers = 0

& Ifcount=1—15, then transfers = 2 x count
MOVD moves 64-bit double-precision values from memory beginning at the
address in Rsinto coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented; after every two 32-bit transfers, the copro-
cessor destination is advanced to the next register in the coprocessor register

sequence list. The number of 64-bit transfers made is determined by the con-
tents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

k Ifthe LOAD bit=1, then the LSBs are moved first
(82 LSBs of the fraction)

3 Ifthe LOAD bit=0, thenthe MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

Rs Aligned 5 + ((count x 2) — 1)
Rs Nonaligned 6 + ((count x 2) — 1)

TMS34082 Pseudo-ops

Move, Double Precision, Indirect to Coprocessor (Postincrement), Constant Count MOVD

Instruction Type CMOVMC, postincrement, constant count
Example MOVD *A5+, RB7, 4

This example moves four 64-bit double-precision values from the TMS34020
memory location pointed to by A5 to coprocessor registers beginning with RB7.
After each 32-bit transfer, register A5 is incremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. Count specifies that four 64-bit transfers
are made (eight 32-bit transfers).

14-49

MOVD Move, Double Precision, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

14-50

MOVD -*Rs, CRd [, count]

If TMS34082 LOAD bit =0 If TMS34082 LOAD bit = 1
Repeat count times Repeat count times
Rs-32 - Rs Rs—-32 —=Rs
*Rs — CRd (32 MSBs) *Rs — CRd (32 LSBs)
Rs —32 —Rs Rs — 32 — Rs
*Rs — CRd (32 LSBs) *Rs — CRd (32 MSBs)
advance to next coprocessor advance to next coprocessor
register register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0| o0 0 0 0 1 transfers
1]ofofo o1 [1]ofo]R] Rs
Default ID olo|o|olo|o]|o]o CRd

Rs TMS34020 source register (indirect predecrement) containing the
address of the bit immediately following the 64-bits used to store the
first 64-bit double-precision floating-point value that is transferred

CRd Coprocessor destination register that holds the first 64-bit double-
precision floating-point value

count Containsthe number of 64-bit transfers to make.This value mustin the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

(d Ifcount = 16, then transfers = 0

X Ifcount=1- 15, then transfers = 2 x count
MOVD moves 64-bit double-precision values from memory beginning at the
address (Rs —32) into coprocessor registers beginning at CRd. Before each
32-bit transfer, the contents of Rs are decremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the

coprocessor register sequence list. The number of 64-bit transfers made is
determined by the contents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

[Ifthe LOAD bit=1, then the LSBs are moved first
(32 LSBs of the fraction)

[d Ifthe LOAD bit =0, thenthe MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

Rs Aligned 5+ ((count x 2) — 1)
Rs Nonaligned 6 + ((count x 2) — 1)

TMS34082 Pseudo-ops

Move, Double Precision, Indirect to Coprocessor (Predecrement), Constant Count MOVD

Instruction Type CMOVMC, predecrement, constant count
Example MOVD —*A5, RB7, 4

This example moves four 64-bit double-precision values from the TMS34020
memory location pointed to by (A5 — 32) to coprocessor registers beginning
with RB7. Before each 32-bit transfer, register A5 is decremented; after every
two 32-bit transfers, the coprocessor destination is advanced to the next regis-
ter in the coprocessor register sequence list. Count specifies that four 64-bit
transfers are made (eight 32-bit transfers).

14-51

MOVD Move, Double Precision, Coprocessor to Indirect (Postincrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

14-52

MOVD CRd, *Rd+ [, count]

If TMS34082 LOAD bit=0 If TMS34082 LOAD bit = 1
Repeat count times Repeat count times

CRd (32 MSBs) —*Rd CRd (32 LSBs) — *Rd

Rd + 32 — Rd , Rd + 32 — Rd

CRd (32 LSBs) — *Rd CRd (32 MSBs) — *Rd

Rd +32 — Rd Rd + 32 — Rd

advance to next coprocessor advance to next coprocessor

register register
15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
o Jofofofo[1 1ot]o|[1][R] Rd
1 0 0 0 1 1 1 0 0 transfers
Default ID oJo|lo]Jo|o]Jofo]o CRd

CRd Coprocessor source register for the first 64-bit double-precision
floating-point value to the TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address of
the first double-precision value transferred

count Containsthe number of 64-bit transfers to make.This value mustinthe
range 1 to 16; the default value is 1. Count determines the value of
transfers:

O If count = 16, then transfers = 0

X [Ifcount=1-—15, then transfers = 2 x count

MOVD moves the 64-bit double-precision values from coprocessor registers
beginning at CRd to memory beginning at the address in Rd. After each 32-bit
transfer, Rdis incremented, and after every two transfers, the coprocessorreg-
isteris advanced to the next register in the coprocessor register sequence. The
number of 64-bit transfers made is determined by the contents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

[Ifthe LOAD bit=1, then the LSBs are moved first
(82 LSBs of the fraction)

[Ifthe LOAD bit=0, thenthe MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

Rd aligned 5 + (count*2 — 1)
Rd nonaligned 6 + (count*2 — 1)

CMOVCM, postincrement, constant count

TMS34082 Pseudo-ops

Move, Double Precision, Coprocessor to Indirect (Postincrement), Constant Count MOVD

Example MOVD RB7, *A5+, 2

This example moves four 64-bit double-precision values from coprocessor
registers beginning at RB7 to TMS34020 memory pointed to by A5. After each
32-bit transfer, register A5 is incremented, and after every two transfers, the
coprocessor destination is advanced to the next register in the coprocessor
register sequence list. Count specifies that two 64-bit transfers are made (four
32-bit transfers).

14-53

MOVD Move, Double Precision, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

14-54

MOVD CRd, —*Rd [, count]

If TMS34082 LOAD bit=0 If TMS34082 LOAD bit = 1
Repeat count times Repeat count times
Rd -32 — Rd Rd-32 — Rd
CRd (32 MSBs) —*Rd CRd (32 LSBs) — *Rd
Rd-32 — Rd Rd-32 — Rd
CRd (32 LSBs) — *Rd CRd (32 MSBs) — *Rd
advance to next coprocessor advance to next coprocessor
register register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofofofof[1|1]of1]1]0]|R] Rd
0 0 0 1 1 1 0 0 transfers
Defautidb [0 o [ofofo]o]o]o CRd

CRd Coprocessor source register for the first double-precision value to
TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 64-bits used to store the first 64-bit
double-precision floating-point value that is transferred

count Containsthe number of 64-bit transfers to make.This value mustinthe
range 1 to 16; the default value is 1. Count determines the value of
transfers:

2 Ifcount = 16, then transfers = 0

@ Ifcount=1-—15, then transfers = 2 x count
MOVD moves the 64-bit double-precision values from coprocessor registers
beginning at CRd to memory beginning at the address (Rd — 32). Before each
32-bit transfer, Rd is decremented; after every two 32-bit transfers, the copro-
cessor register is advanced to the next register in the coprocessor register

sequence. The number of 64-bit transfers made is determined by the contents
of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

[[fthe LOAD bit=1, then the LSBs are moved first
(82 LSBs of the fraction)

(2 Ifthe LOAD bit =0, thenthe MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is 0.

Rd aligned 5 + (count*2 — 1)
Rd nonaligned 6 + (count*2 — 1)

CMOQVCM, predecrement, constant count

TMS34082 Pseudo-ops

Move, Double Precision, Coprocessor to Indirect (Predecrement), Constant Count MOVD

Example MOVD RB7, —*A5, 2

This example moves two 64-bit double-precision values from coprocessor reg-
isters beginning at RB7 to TMS34020 memory pointed to by (A5 —32). Before
each 32-bit transfer, register A5 is decremented; after every two 32-bit trans-
fers, the coprocessor destination is advanced to the next register in the copro-
cessor register sequence list. Count specifies that two 64-bit transfers are
made (four 32-bit transfers).

14-55

MOVD Move, Double Precision, Coprocessor to Coprocessor

Svntax

Execution

Instruction Words

Operands

Description
Machine States
Instruction Type

Example

14-56

MOVD CRs;y, CRd
CRs{ — CRd

15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0

11 fof1 1 fofofJololof1f1]o]1]1]1

Default ID CRs; 0 0 0 1 CRd

CRsy Coprocessor source register A that holds the 64-bit double-precision
floating-point value

CRd Coprocessor destination register

MOVD moves a 64-bit double-precision value from CRsq (register A) to CRd.
2

CEXEC, short

MOVD RA7, RB4

This example moves the 64-bit double-precision value from coprocessor regis-
ter RA7 to coprocessor register RB4.

TMS34082 Pseudo-ops

Move, Double Precision, Coprocessor to Coprocessor MOVD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

MOVD CRs,, CRd
CRs, — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
t 1 o1 [1Jofofo]Jofo 1|1 [1]o]1]H1
Default ID CRs, 0|0 0 1 CRd

CRs, Coprocessor source register B that holds the 64-bit double-precision
floating-point value

CRd Coprocessor destination register

MOVD moves a 64-bit double-precision floating-point value from CRs» (regis-
ter B) to CRd.

2
CEXEC, short

MOVD RB3, RB4

This example moves the 64-bit double-precision value from coprocessor regis-
ter RB3 to coprocessor register RB4.

14-57

MOVE Move, Integer, One Register to Coprocessor

Syntax MOVE Rs, CRd
Execution Rs — CRd
Instruction Words i5 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0
ojloflojoft1|1{o]o]|o |1 Rs
1 oot [1]o]lolo]o|ofof[o]ofo]o
Default ID o|loJoJo|lo|lo]ofo CRd
Operands Rs TMS34020 source register for 32-bit integer value to coprocessor

CRd Coprocessor destination register to hold the 32-bit integer

Description MOVE moves the contents (integer) of Rs into CRd.
Machine States 3 if the first instruction word is long word-aligned

2 if the first instruction word is not long word-aligned
Instruction Type CMOVGC, one register
Example MOVE A5, RA7

This example moves the contents of TMS34020 register A5 into coprocessor
register RA7.

14-58 TMS34082 Pseudo-ops

Move, Integer, Two Registers to Coprocessor MOVE

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVE Rs;, Rsy, CRd

Rsy — CRd
Rsp — CRd+1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 1 0 0 1 0 R Rsy
0 1 0 0 1 0 0 0 0 0 R Rs,
Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register for the first 32-bit integer value to copro-
cessor

Rso TMS34020 source register for the second 32-bit integer value to
coprocessor

CRd Coprocessor destination register that holds the first 32-bit integer val-
ue. The second integer will be placed in the next register in the copro-
cessor register sequence list.

MOVE moves the contents (integer) of Rs1 and Rss into CRd and CRd +1.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
MOVE A5, A6, RA7

This instruction moves the contents of TMS34020 registers A5 and A6 into co-
processor register RA7 and RA8, respectively.

14-59

MOVE Move, Integer, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-60

MOVE *Rs +, CRd, Rd

IfRD=0 fRd=1— 31
Repeat 32 times Repeat Rd times
*Rs — CRd *Rs — CRd
Rs + 32 - Rs Rs + 32 — Rs
advance to next coprocessor advance to next coprocessor
register register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oflofofofo|l1]|1|of[1]1]1]nR Rd
1t{o|lofo]H1 ololo|lo|o|R Rs
Defaultib | 0 [o oo |of{o]o]o CRd

Rs TMS34020 source register (indirect postincrement) containing the ad-
dress of the first 32-bit integer to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31

4 fRd=0, then 32 32-bit transfers are made
Q fRd=1- 31, then Rd 32-bit transfers are made

MOVE moves integer values from memory beginning at the address in Rs into
coprocessor registers beginning at CRd. After each transfer, Rs is increm-
ented, and CRd is advanced to the nextregister in the coprocessor register se-
quence list. The number of 32-bit transfers made is determined by the contents
of Rd.

If Rd = 0 and Rs is aligned 36
If Rd = 0 and Rs is nonaligned 37
IfRd=1—=31and Rsis aligned 5+ (Rd—1)

IfRd=1—31and Rsis nonaligned 6+ (Rd—1)
CMOVMC, postincrement, register count
MOVE *A5+, RA7, B7

This instruction moves integer values from TMS34020 memory location
pointed to by A5 to coprocessor registers beginning at RA7. After each 32-bit
transfer, register A5 is incremented, and the coprocessor destination is ad-
vanced to the next register in the coprocessor register sequence list. B7 holds
the number of 32-bit transfers to be made.

TMS34082 Pseudo-ops

Move, Integer, Indirect to Coprocessor (Postincrement), Register Count MOVE

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVE *Rs+, CRd, [, count]

Repeat count times
*Rs — CRd
Rs + 32 — Rs
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 0 0 transfers
oo olofofo|o|R] Rs

Default ID oJjojJojo|o|o|o]foO CRd

Rs TMS34020 source register (indirect postincrement) containing the ad-
dress of the first 32-bit integer to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

count Contains the number of 32-bit transfers to make. This value must be
intherange 1to 32; the default value is 1. Count determines the value
of transfers:

X If count = 32, then transfers = 0

L Ifcount=1-31, then transfers = count

MOVE moves 32-bit integer values from memory beginning at the address in
Rs into coprocessor registers beginning at CRd. After each transfer, Rs is in-
cremented, and the coprocessor destination is advanced to the next register
inthe coprocessor register sequence list. The number of 32-bit transfers made
is determined by the contents of count.

Rs Aligned 5 + (count —1)
Rs Nonaligned 6 + (count — 1)

CMOVMC, postincrement, constant count
MOVE *A5+, RB7, 4

This example moves four 32-bit integer values from TMS34020 memory loca-
tion pointed to by A5 to coprocessor registers beginning at RB7. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. Count
specifies that four 32-bit transfers are made.

14-61

MOVE Move, Integer, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-62

MOVE —*Rs, CRd [, count]

Repeat count times
Rs —-32 — Rs
*Rs — CRd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0|0 0]0 1 transfers
oo oloJofo]o][R] Rs
Defautd [0 [o o fofofo]o]o CRd

Rs TMS34020 source register (indirect postincrement) containing the ad-
dress of the bit immediately after first 32-bit integer to move to the co-
processor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

count Containsthe number of 32-bit transfers to make.This value mustinthe
range 1 to 32; the default value is 1. Count determines the value of
transfers:

L Ifcount =32, then transfers = 0

A lfcount=1—31, then transfers = count

MOVE moves 32-bit integer values from memory beginning at the address in
(Rs — 32) into coprocessor registers beginning at CRd. Before each transfer,
the contents of Rs are decremented; after each transfer, the coprocessor desti-
nation is advanced to the next register in the coprocessor register sequence
list. The number of 32-bit transfers made is determined by the contents of
count.

Rs Aligned 5 + (count — 1)
Rs Nonaligned 6 + (count —1)

CMOVMC, predecrement, constant count
MOVE —*A5, RB7, 4

This example moves four 32-bit integer values from TMS34020 memory loca-
tion pointed to by (A5 — 32) to coprocessor registers beginning at RB7. Before
each 32-bittransfer, register A5 is decremented; after each transfer, coproces-
sor destination is advanced to the next register in the coprocessor register se-
quence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Move, Integer, Coprocessor to Indirect (Postincrement), Constant Count MOVE

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVE CRd, *Rd+ [, count]

Repeat count times
CRs — *Rd
Rd + 32 — Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 1 0 1 R Rd
0 0 0 1 1 1 0 0 0 0 transfers
Default ID 0 0 0 0 0 0 0 0 CRd

CRd Coprocessor source register for the first 32-bit integer value to
TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address
for the first integer transferred

count Contains the number of 32-bit transfers to make. This value must in
the range 1 to 32; the default value is 1. Count determines the value
of transfers:

d If count = 32, then transfers = 0

L Ifcount=1— 31, then transfers = count

MOVE moves the 32-bit integer values from coprocessor registers beginning
at CRd to memory beginning at the address in Rd. After each 32-bit transfer,
Rd is incremented, and the coprocessor register is advanced to the next regis-
terinthe coprocessor register sequence. The number of 32-bit transfers made
is determined by the contents of count.

Rs Aligned 5 + (count — 1)
Rs Nonaligned 6 + (count — 1)

CMOVCM, postincrement, constant count
MOVE RB7, *A5+, 4

This example moves four 32-bit integer values from coprocessor registers be-
ginning at RB7 to TMS34020 memory pointed to by A5. After each 32-bit trans-
fer, register A5 is incremented, and the coprocessor destination is advanced
to the next register in the coprocessor register sequence list. Count specifies
that four 32-bit transfers are made.

14-63

MOVE Move, Integer, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-64

MOVE CRd, —*Rd [, count]

Repeat count times

Rd —-32 — Rd
CRd — *Rd
advance to the next coprocessor register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olofofJofof1[1]o|1][1]1][R] Rd
1 0 0 0 1 1 1 0 0 0 0 transfers
Default ID oJo|o]Jo|o|]o]o]oO CRd

CRd Coprocessor source register for the first 32-bit integer value to
TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 32-bits used to store the first 32-bit
integer value transferred

count Contains the number of 32-bit transfers to make. This value must in

the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q1 Ifcount = 32, then transfers = 0
X Ifcount=1—-31, then transfers = count

MOVE moves the 32-bit integer values from coprocessor registers beginning
at CRdto memory beginning atthe address (Rd—32). Before each 32-bittrans-
fer, Rd is decremented; after each 32-bit transfer, the coprocessor register is
advanced to the next register in the coprocessor register sequence. The num-
ber of 32-bit transfers made is determined by the contents of count.

Rs Aligned 5+ (couht -1)
Rs Nonaligned 6 + (count — 1)

CMOVCM, predecrement, constant count
MOVE RB7, —*A5, 4

This example moves four 32-bit integer values from coprocessor registers be-
ginning at RB7 to TMS34020 memory pointed to by (A5 — 32). Before each
32-bit transfer, register A5 is decremented; after each 32-bit transfer, the co-
processor destination is advanced to the nextregister in the coprocessor regis-
ter sequence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Move, Integer, Coprocessor to One Register MOVE

Syntax
Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVE CRd, Rd
CRd — Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o JoJoJoJol1]J1]oJo]1]1]R Rd
1 1Joflofofo]o]o|o[o]o
Defauttid [0 [oJo[ofofoJo]o CRd

CRd Coprocessor source register holding the 32-bit integer value

Rd TMS34020 destination register

MOVE moves 32-bit integer from coprocessor register CRd to TMS34020 reg-
ister Rd.

5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVCG, one register
MOVE RA7, AS

This example moves the contents of coprocessor register RA7 to TMS34020
register A5.

14-65

MOVE Move, Integer, Coprocessor to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description
Machine States
Instruction Type

Example

14-66

MOVE CRs;, CRd
CRs{ — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11]o|1|[1]ofofo]o]o]1[1]of{1]o]o
Default ID CRs, o Jo]o]1 CRd

CRsy Coprocessor source register A that holds the 32-bit integer value

CRd Coprocessor destination register

MOVE moves 32-bit integer value from CRs1 (register A) to CRd.
2

CEXEC, short

MOVE RA7, RB4

This example moves the 32-bit integer value from coprocessor register RA7
to coprocessor register RB4.

TMS34082 Pseudo-ops

Move, Integer, Coprocessor to Coprocessor MOVE

Syntax

Execution

Instruction Words

Operands

Description
Machine States
Instruction Type

Example

MOVE CRs,, CRd
CRs, —> CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 lofl1[1fofo]o]o]Jo|1|[1][1]o]o]o
Default ID CRs, 0 0 0 1 CRd

CRs, Coprocessor source register B that holds the 32-bit integer value

CRd Coprocessor destination register

MOVE moves a 32-bit integer value from CRs» (register B) to CRd.
2

CEXEC, short

MOVE RB3, RB4

This example moves the 32-bit integer value from coprocessor register RB3
to coprocessor register RB4.

14-67

MOVF Move, Single Precision, One Register to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-68

MOVF Rs, CRd

Rs — CRd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
ofofofo]o|1]1]ofofo]H1 Rs
of{t1tfofjol1f1]o]l1][o]oflo]o|lofo|o]o
Defautd> [0 [oJoJofoJofo]o CRd

Rs TMS34020 source register for the 32-bit single-precision float-
ing-point value to coprocessor

CRd Coprocessor destination register to hold the 32-bit single-precision
floating-point value

MOVF moves the contents (single-precision value) of Rs into CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
MOVF A5, RA7

This example moves the contents of TMS34020 register A5 into coprocessor
register RA7.

TMS34082 Pseudo-ops

Move, Double Precision, Two Registers to Coprocessor MOVF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF Rsy, Rsp, CRd

Rs{ — CRd
Rss — CRd+1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 0 1 0 R Rs,
1 0 0 0 1 0 0 0 R Rs,
Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register for the first 32-bit single-precision float-
ing-point value to coprocessor

Rso TMS34020 source register for the second 32-bit single-precision float-
ing-point value to coprocessor

CRd Coprocessor destination register to hold the first single-precision val-
ue. The second single-precision value will be placed in the next regis-
ter in the coprocessor register sequence list.

MOVF moves the contents (single-precision value) of Rs{ and Rss into CRd
and CRd+1.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
MOVD A5, A6, RB7

This example moves the contents of TMS34020 registers A5 and A6 into co-
processor registers RB7 and RB8.

14-69

MOVF Move, Single Precision, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-70

MOVF *Rs+, CRd, Rd

IfRd=0 IfRd=1— 31
Repeat 32 times Repeat Rd times
*Rs — CRd *Rs — CRd
Rs + 32 —Rs Rs + 32 — Rs
advance to next coprocessor advance to next coprocessor
register register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
olojofjo|o]|1|[1]ofj1]|1]|]1]R Rd
0o o o|1|lo|o]|o]|R Rs
Default ID ojlojo|lo]Jo|ojo]oO CRd

Rs TMS34020 source register (indirect postincrement) containing the ad-
dress of the first 32-bit single-precision floating-point value to move to
the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci-
sion floating-point value

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31

d Rd=0, then 32 32-bit transfers are made
Q fRd=1-31, then Rd 32-bit transfers are made

MOVF moves 32-bit single-precision values from memory beginning at the ad-
dress in Rs into coprocessor registers beginning at CRd. After each transfer,
Rsisincremented, and CRd is advancedto the nextregister in the coprocessor
register sequence list. The number of 32-bit transfers made is determined by
the contents of Rd.

If Rd =0 and Rs is aligned 36
If Rd =0 and Rs is nonaligned 37
IfRd=1—31and Rsis aligned 5+ (Rd-1)

IfRd=1—31and Rsisnonaligned 6+ (Rd—1)
CMOVMC, postincrement, register count

MOVF *A5+, RB7, B7

This instruction moves 32-bit single-precision values from TMS34020 memory
location pointed to by A5 to coprocessor registers beginning at RA7. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. B7
holds the number of 32-bit transfers to be made.

TMS34082 Pseudo-ops

Move, Single Precision, Indirect to Coprocessor (Postincrement), Constant Count MOVF

Syntax MOVF *Rs+, CRd [, count]
Execution Repeat count times

*Rs — CRd

Rs + 32 = Rs

advance to the next coprocessor register

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 1 0 0 transfers
1 Jofofo]1|[1]o]1]ofo]o]|R] Rs
Default ID oflo]Jojo|lo]|o|o|o CRd
Operands Rs TMS34020 source register (indirect postincrement) containing the

address of the first 32-bit single-precision floating-point value to move
to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci-
sion floating-point value

count Containsthe number of 32-bit transfers to make. This value mustinthe
range 1 to 32; the default value is 1. Count determines the value of
transfers:

L .If count = 32, then transfers = 0
X Ifcount=1—31, then transfers = count

Description MOVF moves 32-bit single-precision values from memory beginning at the
addressin Rsinto coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. The
number of 32-bit transfers made is determined by the contents of count.

Machine States Rs Aligned 5 + (count — 1)

Rs Nonaligned 6 + (count — 1)
Instruction Type CMOVMC, postincrement, constant count
Example MOVF *AS5+, RB7, 4

This example moves four 32-bit single-precision values from TMS34020
memory location pointed to by A5 to coprocessor registers beginning at RB7.
After each 32-bittransfer, register A5 isincremented, and the coprocessor des-
tination is advanced to the next register in the coprocessor register sequence
list. Count specifies that four 32-bit transfers are made.

14-71

MOVF Move, Single Precision, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-72

MOVF —*Rs, CRd [, count]

Repeat count times
Rs—-32 —Rs
*Rs — CRd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 1 transfers
1]0 o1]olofo]|Rr] Rs
Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register (indirect postincrement) containing the
address of the bit immediately after first 32-bit single-precision float-
ing-point value to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci-
sion floating-point value

count Contains the number of 32-bit transfers to make. This value must be
inthe range 1 to 32; the default value is 1. Count determines the value
of transfers:

1 If count = 32, then transfers = 0
Qd Ifcount=1-—31, then transfers = count

MOVF moves 32-bit single-precision values from memory beginning at the
address (Rs — 32) into coprocessor registers beginning at CRd. Before each
transfer, the contents of Rs are decremented; after each transfer, the copro-
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 32-bit transfers made is determined by the con-
tents of count.

Rs Aligned 5+ (count — 1)
Rs Nonaligned 6 + (count — 1)

CMOVMC, predecrement, constant count
MOVF —*A5, RB7, 4

This example moves four 32-bit single-precision values from TMS34020
memory location pointed to by (A5 —32) to coprocessor registers beginning at
RB7. Before each 32-bit transfer, register A5 is decremented; after each trans-
fer, the coprocessor destination is advanced to the next register in the copro-
cessor register sequence list. Count specifies that four 32-bit transfers are
made.

TMS34082 Pseudo-ops

Move, Single Precision, Coprocessor to Indirect (Postincrement), Constant Count MOVF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF CRd, *Rd+ [, count]

Repeat count times
CRd — *Rd
Rd + 32 — Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4-3 2 1 0
olojofJoJoflt1{1]ol1]of[1]|R] Rd
1 0]0]O0 1 1 1 1 0|0 0 transfers
Defaultid | 0 [o Jo oo ofo]o CRd

CRd Coprocessor source register for the first 32-bit single-precision float-
ing-point value to TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address
for the first 32-bit single-precision floating-point value transferred

count Contains the number of 32-bit transfers to make. This value must be
intherange 1 to 32; the default value is 1. Count determines the value
of transfers:

i If count = 32, then transfers = 0
G Ifcount=1— 31, then transfers = count

MOVF moves the 32-bit single-precision values from coprocessor registers
beginning at CRd to memory beginning at the address in Rd. After each 32-bit
transfers, Rd is incremented, and the coprocessor register is advanced to the
nextregister inthe coprocessor register sequence. The number of 32-bit trans-
fers made is determined by the contents of count.

Rs Aligned 5 + (count —1)
Rs Nonaligned 6 + (count — 1)

CMOVCM, postincrement, constant count
MOVF RB7, *AS5+, 4

This example moves four 32-bit single-precision values from coprocessor reg-
isters beginning at RB7 to TMS34020 memory pointed to by A5. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. Count
specifies that four 32-bit transfers are made.

14-73

MOVF Move, Single Precision, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-74

MOVF CRd, —*Rd [, count]

Repeat count times
Rd-32 — Rd
CRd — *Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 1 1 0 R Rd
1 0 0 1 1 0 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

CRd Coprocessor source register for the first 32-bit single-precision float-
ing-point value to TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 32-bits used to store the first 32-bit
single-precision floating-point value transferred

count Containsthe number of 32-bit transfers to make.This value mustin the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

Qa Ifcount = 32, then transfers = 0
X Ifcount=1—31, then transfers = count

MOVF moves the 32-bit single-precision values from coprocessor registers
beginning at CRd to memory beginning at the address (Rd —32). Before each
32-bit transfer, Rd is decremented; after each transfer, the coprocessor regis-
ter is advanced to the next register in the coprocessor register sequence. The
number of 32-bit transfers made is determined by the contents of count.

Rs Aligned 5 + (count — 1)
Rs Nonaligned 6 + (count — 1)

CMOVCM, predecrement, constant count
MOVF RB7, —*A5, 4

This example moves four 32-bit single-precision values from coprocessor reg-
isters beginning at RB7 to TMS34020 memory pointed to by (A5 —32). Before
each 32-bit transfer, register A5 is decremented; after each 32-bit transfer, the
coprocessor destination is advanced to the next register in the coprocessor
register sequence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Move, Single Precision, Coprocessor to One Register MOVF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF CRd, Rd

CRd — Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2. 1 0
ofofofofofl1]1]ofo]1]H1 Rd
o[1]o]o 11]ofofo]o]Jofofo]o
Defaulttd |0 J o o |ofofofo]o CRd

CRd Coprocessor source register for the 32-bit single-precision float-
ing-point value

Rd TMS34020 destination register

MOVF moves the contents (single-precision value) of CRd to Rd.

5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVGC, one register
MOVF RA7, A5

This example moves the 32-bit single-precision value from coprocessor regis-
ter RA7 to TMS34020 register A5.

14-75

MOVF Move, Single Precision, Coprocessor to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-76

MOVF CRs;, CRd
CRs; —> CRd

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t 1 o1 [1lofo]JofJofJo[t1[1]o[1]17]o0

Default ID CRs; 0 0 0 1 CRd

CRsy Coprocessor source register A that holds the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MOVF moves the contents (single-precision value) of CRsq (register A) to
CRd.

2
CEXEC, short
MOVF RA7, RB4

This example moves the 32-bit single-precision value from coprocessor regis-
ter RA7 to coprocessor register RB4.

TMS34082 Pseudo-ops

Move, Single Precision, Coprocessor to Coprocessor MOVF

Syntax

Execution

Instruction Words

Operands

Description
Machine States
Instruction Type

Example

MOVF CRs,, CRd
CRs, — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 o1]1]ofofjo]Jo]Jo]1]1][1]o]1]o
Default ID CRs, 0 0 0 1 CRd

CRso, Coprocessor source register B that holds the 32-bit single-precision
floating-point value

CRd Coprocessor destination register

MOVF moves 32-bit single-precision value from CRs» (register B) to CRd.
2

CEXEC, short

MOVF RB3, RB4

This example moves the 32-bit single-precision value from coprocessor regis-
ter RB3 to coprocessor register RB4.

14-77

MPYD Muitiply, Double Precision

Syntax MPYD CRsy, CRso, CRd
Execution CRsq x CRsp — CRd
Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ 11]o |11 fofofofo]o|1[ofofo]i1]1
Default ID CRs; CRs, . CRd
Operands CRs¢ Coprocessor register containing the first 64-bit double-precision floa-

ting-point operand

CRsy, Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

Description MPYS multiplies the contents (double-precision value) of CRs1 by the contents
of CRs» and stores the result in CRd.

Machine States 2 |

Insfructlon Type CEXEC, short

Example MPYD RA5, RB6, RA7

This example multiplies the contents of RA5 by RB6 and stores the result in
RA7. ' :

14-78 TMS34082 Pseudo-ops

Muitiply, Single Precision MPYF

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

MPYF CRsy, CRsp, CRd
CRsq x CRso — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11]Jol1]1]o]Jo]JofJofJo|l1]o]o|o]|1]o

Default ID CRs, CRs, CRd

CRs¢y Coprocessor register containing the first 32-bit single-precision floa-
ting-point operand

CRs> Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MPYF multiplies the contents (single-precision value) of CRs{ by the contents
of CRs» and stores the result in CRd.

2
CEXEC, short
MPYF RA5, RB6, RA7

This example multiplies the contents of RA5 by RB6 and stores the result in
RA7.

14-79

MPYF Load and Multiply, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

" 14-80

MPYF Rsy, Rsp, CRsy, CRsp, CRd

RS1 i CRS1
R82 s CR82
CRs{ x CRso — CRd

15 14 13 12 11 10 - 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 R Rs,
1 0 1 0 0 0 1 0 0 0 R Rs,
Default ID CRs; CRs, CRd

Rsq TMS34020 source register for the first 32-bit single-precision float-
ing-point value to coprocessor

Rs» TMS34020 source register for the second 32-bit single-precision float-
ing-point value to coprocessor

CRsy Coprocessor register to contain the first 32-bit single-precision floa-
ting-point operand

CRs, Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MPYS loads the contents (single-precision value) of Rs{ and Rs» into CRs
and CRss respectively, multiplies CRs{ x CRs», and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
MPYF A5, A6, RA5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RAS and RB6 respectively, multiplies the contents of RA5 by RB6, and stores
the result in RA7.

TMS34082 Pseudo-ops

Multiply, Integer MPYS

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

MPYS CRsy, CRso, CRd
CRs{ x CRsy — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 o1 [1]oflofofofo|[1]o]o]o]o]o

Default ID CRs; CRs, CRd

CRsy Coprocessor register containing the first 32-bit integer operand
CRs, Coprocessor register containing the second 32-bit integer operand

CRd Coprocessor destination register

MPYS multiplies the contents (integer) of CRs{ by the contents of CRs» and
stores the result in CRd.

2
CEXEC, short
MPYS RA5, RB6, RB7

This example multiplies the contents of RA5 by RB6 and stores the result in
RB7.

14-81

MPYS Load and Multiply, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-82

MPYS Rs;, Rsp, CRs;, CRso, CRd

Rs{ — CRsy
Rs> — CRsa
CRs¢ x CRsp — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 0 R Rs,
0 1 0 1 0 0 0 0 0 0 0 R Rs,
Default ID CRs; CRs, CRd

Rsq TMS34020 source register for the first 32-bit integer value to copro-
cessor

Rso TMS34020 source register for the second 32-bit integer value to
coprocessor

CRsy Coprocessor register to contain the first 32-bit integer operand
CRso Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

MPYS loads the contents (integer) of Rs1 and Rso into CRs1 and CRss respec-
tively, multiplies CRsy x CRs», and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers
MPYS A5, A6, RA5, RB6, RB7

This exémple loads TMS34020 registers A5 and A6 into coprocessor registers
RAS5 and RB6, multiplies the contents of RA5 by RB6, and stores the result in
RB7.

TMS34082 Pseudo-ops

Negate, Integer, 2s Complement NEG

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

NEG CRs, CRd
—CRs — CRd

15 14 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
11 fol1]1]ofofo]ofofl1[1]1]1]0]o
Default ID CRs 0]0 1 1 CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

NEG takes the 2s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.
, .

CEXEC, short

NEG RA5, RB7

This example takes the 2s complement of the contents of RA5 and stores the
result in RB7.

14-83

NEG Load and Negate, Integer, 2s Complement

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-84

NEG Rs, CRs, CRd

Rs — CRs
—CRs — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojojofJo|1[1]ofofo]H1 Rs
o1]Jof{1 1|11]ofofofo]o]olo|o]o
Default ID CRs o [o 1] CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor
CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

NEG loads the contents (integer) of Rs into CRs, takes the 2s complement of
the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, one register
NEG A5, RA5, RB7

This eXampIe loads TMS34020 register A5 into coprocessor register RA5
takes the 2s complement of the contents of RA5, and stores the result in RB7.

TMS34082 Pseudo-ops

Negate, Double Precision NEGD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

NEGD CRs, CRd
—CRs — CRd

15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o1 1]ofofJofJo ol]t]1]1]1]1
Default ID CRs 0|0 |1 1 CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

NEGD negates the contents (double-precision value) of register CRs and
stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEC, short

NEGD RAS5, RB7

This example negates the contents of RA5 and stores the result in RB7.

14-85

NEGF Negate, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-86

NEGF CRs, CRd
—CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 Jol1 {1 fofloJoJofJo[1[1]1][1]17]o
Default ID CRs 0o Jo |1 [1 CRd

CRs - Coprocessor register containing the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

NEGF negates the contents (single-precision value) of CRs and stores the re-
sult in CRd.

The source register, CRs, must be in the A coprocéssor register file.
2

CEXEC, short

NEGF RA5, RA7

This example negates the contents of RA5 and stores the result in RA7.

TMS34082 Pseudo-ops

Load and Negate, Single Precision NEGF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

NEGF Rs, CRs, CRd

Rs — CRs
—CRs — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ojJoflojo]Jo 1|1]ofjofo]1]|R Rs
1tfofl1 1|11][1]oflofo]lo]ofo]o]o
Default ID CRs o [o 1[4 CRd

Rs TMS34020 source register for the 32-bit single-precision float-
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

NEGF loads the contents (single-precision value) of Rs into CRs, negates the
contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
NEGF A5, RA5, RB7

This example loads TMS34020 register A5 into coprocessor register RAS ne-
gates the contents of RA5, and stores the result in RB7.

14-87

NOT Not, Integer, 1s Complement ‘

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-88

NOT CRs, CRd
NOT CRs — CRd

i5 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0

tl1]Jof1 1 Jofolololo[1 |1][1][1]o]o

Default ID CRs 0 0 0 1 CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

NOT takes the 1s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEG, short

NOT RA5, RA7

This example takes the 1s complement of the contents of RA5 and stores the
result in RA7.

TMS34082 Pseudo-ops

Load and Not, Integer, 1s Complement NOT

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

NOT Rs, CRs, CRd

Rs — CRs
NOT CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o jofofol1]1]ofofo]H1 Rs
1]1]ofloflofofo]Jo|o]o]o
Default ID CRs 0 0 0 1 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor
CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

NOT loads the contents (integer) of Rs into the CRs, takes the 1s complement
of the contents of register CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
NOT A5, RA5, RA7

This example loads TMS34020 register A5 into coprocessor register RAS
takes the 1s complement of the contents of RA5, and stores the result in RA7.

14-89

SQR Square, Integer

Syntax SQR CRs, CRd

Execution CRs x CRs — CRd

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 38 2 1 0
11 lof1][1]o]o]o]o]Jo|1[1][1]1]0]o
Default ID CRs 1 0 0 0 CRd

Operands CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register
Description SQR squares the contents (integer) of CRs and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

Machine States 2
Instruction Type CEXEC, short
Example SQR RA5, RA7

This example squares the contents of RA5 and stores the result in register
RA7.

14-90 TMS34082 Pseudo-ops

Load and Square, Integer SQR

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SQR Rs, CRs, CRd

Rs — CRs
CRs x CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oloJoJoJo[t1[1]olo]of[1]R Rs

tfo|1[1]1]1]of]o]lofo]ofo]ofo]o
Default ID CRs 1 Jofo]o CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor
CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

SQR loads the contents (integer) of Rs into CRs, squares the contents of CRs,
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
SQR A5, RA5, RB7

This example loads TMS34020 register A5 into coprocessor register RAS
squares the contents of RA5, and stores the result in RB7.

14-91

SQRD Square, Double Precision

Syntax
Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-92

SQRD CRs, CRd
CRs x CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 [ol1[1]ofofofofo|1 |11][1][1]1
Default ID CRs 1 00 /(0 CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

SQRD squares the contents (double-precision value) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEG, short

SORD RAS5, RA7

This example squares the contents of RA5 and stores the result in RA7.

TMS34082 Pseudo-ops

Square, Single Precision SQRF

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

SQRF CRs, CRd

CRs x CRs — CRd

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 Jof1 1]JofJofJofJofJo[t[1][1]1]1]o
Default ID CRs 1 0)]0 (O CRd

CRs Coprocessor source register containing the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRF squares the contents (single-precision value) of CRs and stores the re-
sult in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEC, short

SQRF RA5, RB7

This example squares the contents of RA5 and stores the result in RB7.

14-93

SQRF Load and Square, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-94

SQRF Rs, CRs, CRd

Rs — CRs
CRs x CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oloJoJoJ1[1]ofo]o]Ht Rs
of{t1Jof1 {11 {1]1]oflolofo]lofo]o]o

Default ID CRs 1]JoJo]o CRd

Rs TMS34020 source register for the 32-bit single-precision float-
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision float-
ing-point operand

CRd Coprocessor destination register

SQRF loads the contents of Rs into CRs, squares the contents
(single-precision value) of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
SQRF A5, RA5, RB7

This example loads TMS34020 register A5 into coprocessor register RAS
squares the contents of RA5, and stores the result in RB7.

TMS34082 Pseudo-ops

Square Root, Integer SQRT

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SQRT CRs, CRd

VCRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o1 [1JoJo]JoJoJo [t][1][1]1]0o]o
Default ID CRs 1 ool CRd

CRs Coprocessor register containing the 32-bit integer operand

CRd Coprocessor destination register

SQRT takes the square root of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEC, short

SQRT RA5, RB7

This example takes the square root of the contents of RAS and stores the result
in RB7.

14-95 .

SQRT Load and Square Root, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-96

SQRT ARs, CRs, CRd

Rs — CRs
vCRs — CRd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o{ofJofo|1[1]o]o|o]H Rs
1t lof1 |11]1]lofo]Jofo]ofo]o|o]o
Default ID CRs 1 o |0 |1 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor
CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

SQRT loads the contents (integer) of Rs into CRs, takes the square root of the
contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register
SQRT A5, RA5, RA7

This example loads TMS34020 register A5 into coprocessor register RAS,
takes the square root of the contents of RA5, and stores the result in RA7.

TMS34082 Pseudo-ops

Square Root, Double Precision SQRTD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

SQRTD CRs, CRd

VvCRs — CRd

15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o1 [1Jo]JoJoJoJo]t 11]1]1T1

Default ID CRs 1 0 0 1 CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

SQRTD takes the square root of the contents (double-precision value) of CRs
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEQG, short

SQRTD RA5, RA7

This example takes the square root of the contents of RA5 and stores the result
in RA7.

14-97

SQRTF Square Root, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-98

SQRTF CRs, CRd

J/CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 o1 1 fofofo]oJolr1[1[1]1]1]o
Default ID CRs 1]1]0 {01 CRd

CRs Coprocessor register containing the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRTF takes the square root of the contents (single-precision value) of CRs
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.
2

CEXEC, short

SQORTF RA5, RA7

This example takes the square root of the contents of RA5 and stores the result
in RA7.

TMS34082 Pseudo-ops

Load and Square Root, Single Precision SQRTF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SQRTF Rs, CRs, CRd

Rs — CRs
JCRs — CRd
15 14 13 12 11 10 9 8 7 6 5 3 2 1 0
olofJololo[11 Tololol]H Rs
1 11]1]ofo]o o [ofo]o
Default ID CRs 1 0 0 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float-

ing-point value to coprocessor

CRs

Coprocessor

register

floating-point operand

CRd

Coprocessor destination register

to contain the 32-bit single-precision

SQRTF loads the contents (single-precision value) of Rs into CRs, takes the
square root of the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRTF A5, RAS5, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the square root of the contents of RA5, and stores the result in RA7.

14-99

SUB Subtract, Integer, (A Register — B Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-100

SUB CRs;, CRs,, CRd

CRS1 - CRSQ — CRd

15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 _ 0
11]lof1[1]o]ofo]ofofo[ofo[1]0o]o
Default ID CRs; CRs, CRd

CRsy Coprocessor Aregister containing the 32-bit minuend integer operand

CRs, Coprocessor Bregister containing the 32-bit subtrahend integer oper-
and

CRd Coprocessor destination register

SUB subtracts the contents (integer) of CRs» from CRsq and stores the resuit
in CRd.

2
CEXEC, short
SUB RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Load and Subtract, Integer, (A Register — B Register) SUB

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SUB Rsy, Rsp, CRsy, CRso, CRd

Rsq — CRs4
Rso — CRsa
CRS1 - CR82 — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0|0 of1]o0|R Rs,
o|1|o|lofofo|1]|]o]oOo]|]O]|O]|R Rs,
Default ID CRs;, CRs, CRd
Rs1 TMS34020 source register for the first (minuend) 32-bit integer value
to coprocessor
Rso TMS34020 source register for the second (subtrahend) 32-bit integer
value to coprocessor
CRsy Coprocessor Aregister to contain the 32-bit minuend integer operand
CRs, Coprocessor B register to contain the 32-bit subtrahend integer
operand
CRd Coprocessor destination register

SUB loads the contents (integer) of Rs4 and Rs» into CRs4 and CRs» respec-
tively, subtracts the contents of CRs» from CRs{, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUB A0, B6, RA5, RB3, RA7

This example loads TMS34020 registers A0 and B6 into coprocessor registers
RAS5 and RB3, subtracts the contents of RB3 from RA5, and stores the result
in RA7.

14-101

SUB Subtract, Integer, (B Register — A Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-102

SUB CRs,, CRs;, CRd
CRsy — CRs — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1]1]Joli]l1]ofofofoflo]Jo]o|1]1]o]o
Default ID CRs; CRs, CRd

CRs4 Coprocessor Aregister containing the 32-bit subtrahend integer oper-
and

CRs, Coprocessor Bregister containing the 32-bit minuend integer operand
CRd Coprocessor destination register

SUB subtracts the contents (integer) of CRs¢ from CRs» and stores the result
in CRd.

2
CEXEQG, short
SUB RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Load and Subtract, Integer, (B Register — A Register) SUB

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SUB Rsp, Rsy, CARso, CRsy, CRd

Rsq — CRsy4
Rso — CRs»
CRSQ-CRS1—>CFM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0] o ofo|t1|1|]o|lo0o]1|O0]|R Rs,
o|1|o|lofof|1|1]o]ojo]o]|R Rs,
Default ID CRs, CRs, CRd
Rsq TMS34020 source register for the first (subtrahend) 32-bit integer val-
ue to coprocessor
Rso TMS34020 source register for the second (minuend) 32-bit integer
value to coprocessor
CRsy Coprocessor A register to contain the 32-bit subtrahend integer
operand
CRso Coprocessor B register to contain the 32-bit minuend integer operand
CRd Coprocessor destination register

SUB loads the contents (integer) of Rs{ and Rs, into CRs1 and CRs» respec-
tively, subtracts the contents of CRs4 from CRs», and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUB B6, A0, RB5, RA3, RA7

This example loads TMS34020 registers B6 and A0 into coprocessor registers
RB5 and RAS3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

14-103

SUBD Subtract, Double Precision, (A Register — B Register) \

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-104

SUBD CRsy, CRso, CRd
CRs{ — CRs, — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t]l1]oft1]1]oJoJoJofJo]o|oJo]1]1]H

Default ID CRs, CRs, CRd |

CRsqy Coprocessor A register containing the minuend 64-bit double-preci-
sion floating-point operand

CRsy Coprocessor B register containing the subtrahend 64-bit double-
precision floating-point operand

CRd Coprocessor destination register

SUBD subtracts the contents (double-precision value) of CRs, from CRs4 and
stores the result in CRd.

2
CEXEC, short
SUBD RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Subtract, Double Precision, (B Register — A Register) SUBD

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

SUBD CRs,, CRsy, CRd

CRsp — CRs{ — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11]of1[1]ofo]ofofo o o1][1]1]1
Default ID CRs, CRs, CRd

CRsq Coprocessor A register containing the subtrahend 64-bit double-pre-
cision floating-point operand

CRs, Coprocessor B register containing the minuend 64-bit double-preci-
sion floating-point operand :

CRd Coprocessor destination register

SUBD subtracts the contents (double-precision value) of CRs4 from CRs» and
stores the result in CRd.

2
CEXEC, short

SUBD RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the resultin
RA7.

14-105

SUBF Subtract, Single Precision, (A Register — B Register)

Syntax SUBF CRsy, CRs», CRd
Execution CRs{ — CRs» — CRd
Instruction Words i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tl1]ol1]1]ofofjo]o]JoJo|lofo[1]1]o
Default ID CRs; CRs, CRd
Operands CRsqy Coprocessor Aregister containingthe minuend 32-bit single-precision

floating-point operand

CRsy Coprocessor B register containing the subtrahend 32-bit single-preci-
sion floating-point operand

CRd Coprocessor destination register

Description SUBF subtracts the contents (single-precision value) of CRso from CRs¢ and
stores the result in CRd.

Machine States 2

Instruction Type ‘CEXEC, short

Example SUBF RAS5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

14-106 TMS34082 Pseudo-ops

Load and Subtract, Single Precision, (A Register — B Register) SUBF

Syntax SUBF Rsy, Rsy, CRsy, CRsy, CRd
Execution Rsq — CRsq
Rs> — CRso
CRs¢ — CRs» — CRd
Instruction Words i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofojJofojJo}1]|]1|o}jo|[1]0O0]|R Rs;
o{1{ojojJofof1|{1]|ofo|o0o]|R Rs;
Default ID CRs; CRs, CRd
Operands Rsq TMS34020 source register for the first (minuend) 32-bit single-preci-

sion floating-point value to coprocessor

Rso TMS34020 source register for the second (subtrahend) 32-bit
single-precision floating-point value to coprocessor

CRsqy Coprocessor Aregister to contain the minuend 32-bit single-precision
floating-point operand

CRs, Coprocessor B register to contain the subtrahend 32-bit single-preci-
sion floating-point operand

CRd Coprocessor destination register
Description SUBF loads the contents (single-precision value) of Rsq and Rs; into CRs4

and CRs, respectively, subtracts the contents of CRs, from CRs1, and stores
the result in CRd.

Machine States 4 if the first instruction word is long word-aligned

3 if the first instruction word is not long word-aligned
Instruction Type CMOVGC, two registers
Example SUBF A0, B6, RAS5, RB3, RA7

This example loads TMS34020 registers A0 and B6 into coprocessor registers
RAS5 and RB83, subtracts the contents of RB3 from RAS5, and stores the result
in RA7.

14-107

SUBF Subtract, Single Precision, (B Register — A Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States
Instruction Type

Example

14-108

SUBF CRs», CRsy, CRd
CRs, — CRsy — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1]1Jol1]1]JoJoJofJo]JoJo|o|1]1]1]o0
Default ID CRs; CRs, CRd

CRs¢y Coprocessor Aregister containing the subtrahend 32-bit single-preci-
sion floating-point operand

CRsy Coprocessor Bregister containing the minuend 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SUBF subtracts the contents (single-precision value) of CRs{ from CRso and
stores the result in CRd.

2
CEXEC, short
SUBF RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Load and Subtract, Single Precision, (B Register — A Register) SUBF

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SUBF Rsp, Rsy, CRs», CRsy, CRd

Rs1 — CRsq
Rsy — CRSz
CRss — CRs{ — CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0| O 0] o0 1 1 ofo 1 0| R Rs;
0 1 0|0 | 0|1 1 1 0 0 0 | R Rs,
Default ID CRs, CRs, CRd

Rs1 TMS34020 source register for the first (subtrahend) 32-bit single-pre-
cision floating-point value to coprocessor

Rso TMS34020 source register forthe second (minuend) 32-bit single-pre-
cision floating-point value to coprocessor

CRsy Coprocessor A register to contain the subtrahend 32-bit single-preci-
sion floating-point operand

CRso Coprocessor B register to contain the minuend 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SUBF loads the contents (single-precision value) of Rs¢ and Rs, into CRs4
and CRss respectively, subtracts the contents of CRs{ from CRs», and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUBF B6, A0, RB5, RA3, RA7

This example loads TMS34020 registers B6 and A0 into coprocessor registers
RB5 and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RAY.

14-109

14-110 TMS34082 Pseudo-ops

Chapter 15

Instruction Timing

This chapter summarizes the timings of the TMS34020 assembly-language
instruction set. It contains two sections:

Section Page
These sections are divided 15.1 Timing for All Instructions
between MOVE and MOVB Except MOVEs and MOVBs 15-2
instructions and the remainder of 152 Timing for MOVE and
the instructions. MOVB Instructionscvvvunn.n. 15-10

Please note these characteristics about the timings listed in this book:
[Numbers identify TMS34020 machine states.

L& Alltimings assume that the cache is enabled and that the instruction is in
the cache.

(X Numbers in parentheses identify hidden cycles.

The TMS34020 may execute some instructions in parallel, “hiding” some
instruction states. Hidden cycles are memory-write cycles that occur at the
end of aninstruction. The machine states consumed by the instruction that
the CPU is executing hide the machine states consumed by the write
cycles. These hidden cycles are not counted against he instruction that in-
curs them, but are counted against subsequent instructions. If an instruc-
tion uses the local bus before all of the hidden cycles have been over-
lapped by subsequent instructions, that instruction must wait for the hid-
den cycles to complete.

[These timings assume that

B All memory requests are granted when requested; no higher priority
memory requests are pending.

B When the CPU requests page-mode access, the memory grants it.
B No wait states occur.
B No retries occur.

15-1

Timing for All Instructions Except MOVEs and MOVBs

15.1 Timing for All Instructions Except MOVEs and MOVBs

This section lists the instructions for all instructions except the MOVE and
MOVB instructions. Please note that

(& [f the timing for an instruction states that this is a complex instruction,
than no simple formula is available for providing the timing for the instruc-
tion. The number of machine states consumed by this instruction’s execu-
tion will vary depending on the circumstances of its execution.

Instruction timing for graphics instructions varies, depending on the pixel-

processing option you've selected. The timing formulas for graphics in-
structions (such as DRAV and LINE) ask you to add the values shown in
Table 15—1 into your timing calculations.

Table 15-1. Effects of Pixel-Processing Options on Graphics Instructions

Number of Cycles Required for the Following
Pixel Sizes
Pixel-Processing Option 1 2o0r4 8,16, or 32
Replace 0(2) 0(2) 0 (1)
ADD — 2 (2) 2(1)
ADDS — 3(2) 3(1)
SUB — 2(2) 2(1)
SUBS — 3(2) 3(1)
MAX — 3(2 3(1)
MIN — 3(2) 3(1)
PPCODE 2(2) 2(2) 2(1)

Number of machine cycles

Instruction consumed by instruction execution
ABS 1
ADD 1
ADDC 1
ADDI (short) 2
ADDI (long) 2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned
ADDK 1
ADDXY 1
ADDXYI 2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned
AND 1
15-2 Instruction Timing

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution
ANDI 2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned
ANDN 1
ANDNI 2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned
BLMOVE complex instruction

BTST (constant)

1

BTST (register)

1

CALL 3+ (1) ifthe SPis aligned
3 + (4) ifthe SPis not aligned
CALLA 3 if immediate data is long-word aligned, 4 if SP is also long-word aligned
3+(3) if immediate data is not long-word aligned, 4+(3) if SP is also not long-
word aligned
CALLR 3 + (1) ifthe SPis long-word aligned

3 + (4) if the SP is long-word not aligned

CEXEC (long)

2 (1) if the immediate data is long-word aligned
3 (1) if the immediate data is not long-word aligned

CEXEC (short)

2 (1)

CLIP complex instruction

CLR 1

CLRC 1

CMOVCG Single: 4 if the immediate data is long-word aligned

5 if the immediate data is not long-word aligned

Double: 5 if the immediate data is long-word aligned
6 if the immediate data is not long-word aligned

CMOVCM (count*+)

5 + [count—1] if the immediate data is long-word aligned
6 + [count—1] if it is not
(count is the number of 32-bit transfers)

CMOVCM (count—*)

5 + [count—1] if the immediate data is long-word aligned
6 + [count-1] if it is not
(count is the number of 32-bit transfers)

CMOVCS

4 if the immediate data is long-word aligned
5ifitis not

CMOVGC (one register)

2 (1) if the immediate data is long-word aligned
3 (1) if it is not

CMOVGC (two registers)

3 (1) if the immediate data is long-word aligned
4 (1) if it is not

15-3

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution

CMOVMC (constant*+) 5 + [constant—1] if the immediate data is long-word aligned
6 + [constant—1] if it is not
(constant is the number of 32-bit transfers)

CMOVMC (constant*—) 5 + [constant—1] if the immediate data is long-word aligned
6 + [constant—1] if it is not
(constant is the number of 32-bit transfers)

CMOVMC (register*+) 5 + [register value—1] if the immediate data is long-word aligned
6 + [register value—1] if it is not
(the register value is the number of 32-bit transfers)

CMP 1
CMPI (long) 2 if the immediate data is long-word aligned
3ifitis not
CMPI (short) 2
CMPK 1
CMPXY 1
CPW 1
CVDXYL pitch is apowerof2: 2
2powersof2: 3
arbitrary: 14
CVMXYL pitch is apowerof2: 2
2powersof2: 3
arbitrary: 14
CVSXYL pitch is a power of 2:
2powersof2: 3
arbitrary: 14
CVXYL pitch is apowerof2: 3
2 powersof2: 4
arbitrary: 15
DEC 1
DINT 3
DIVS Rd Odd: 39 (normal case)
41 (if result = 80000000h)
7 (if Rs = 0)
Rd Even: 40 (normal case)
41 (if result = 80000000h)
7 (if Rs = 0 or Rs < Rd)
DIVU Rd Odd: 37 (normal case)
7 (if Rs = 0)
Rd Even: 37 (normal case)

5 (if Rs = 0 or Rs < Rd)

15-4 v Instruction Timing

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution
DRAV Window option 4] 1 2 3
inside 4+P+CD 5 4+P+CD 4+P+CD
outside 4+P+CD 3 5 3
Key: P Selected pixel-processing option; see Table 15—1.

CD Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con-

tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.

DSJ 2 ifnojump
3 if jump
DSJEQ 2 ifnojump
3 ifjump
DSJUNE 2 if no jump
3 ifjump
DSJS 2 ifnojump
3 ifjump
EINT 3
EMU 8 (more if the TMS34020 enters emulation mode)
EXGF 1if FO
2if F1
EXGPC 2
EXGPS 2(1)
FILLL complex instruction
FILL XY complex instruction
FLINE 12+3CD+[2+PIE+3
Key: P Selected pixel-processing option; see Table 15-1. If the number of
hidden cycles is greater than 1, then P = P + (hidden cycles — 1).
E Total number of pixels drawn.
CD Complexity of destination pitch. CD =0if CONVDP contains a pow-
er of 2; CD = 1 if CONVDP contains a sum of powers of 2; CD =
12 if CONVDP contains an arbitrary pitch.
FPIXEQ complex instruction
FPIXNE complex instruction
GETPC 1
GETPS 2
GETST 1
IDLE minimum execution time of 1 cycle before taking interrupt
EMU: 5 cycles min before responds to halt
NMI model: 8
NMI mode0, HINT, DPYINT, WINT, INT1, or INT2: 11 if SP aligned, else 13
INC 1

15-5

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution
JAcc 3 if no jump, else 4
JRce (short) 1if no jump, else 2
JRce (long) 2 if no jump, else 3
JUMP 2
LINE Window option O: 13+ 3CD + [3 +PJE + 2

Window option 1: 13+ 3CD + [3 +P]Q + 2
Window option2: 13 + 3CD + [3+PJE + WV + 2
Window option3: 13 + 3CD + [3 +PJE + 3Q + 2

Key: P Selected pixel-processing option; see Table 15-1, but ignore the hidden cycles.
WV =8 ifthere is a window violation, = 0 otherwise.
Q Total number of pixels calculated but not drawn.
E Total number of pixels drawn.
CD Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con-
tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.

LINIT 9

LMO 1
MMFM # registers moved 1 2 3 4 n

cycles 6 7 8 9 n+5
MMTM # registers moved 1 2 3 4 n

long-word aligned 4(1) 6(1) 7(1) 8(1) [4+n](1)
byte aligned 4(1) 8(1) 9(1) 10(1) [6+n](1)
bit aligned 4(2) 92 10(2) 11(2) [7+nj(1)

Note: Add 1 to all timings if the MMTM instruction is not long-word aligned.

MODS 40
41 if result = 8000 0000h
3 ifRs=0
MODU 35
3 ifRs=0
MOVE Rs, Rd 1
MOVI (long) 2 ifimmediate data is long-word aligned
3 ifitisn’t
MOVI (short) 2
MOVK 1
MOVX 1
MOVY ' 1
MPYS Rs negative: 5 + (field size 1)/2
Rs positive: 6 + (field size 1)/2
MPYU 5 + (field size 1)/2

15-6 Instruction Timing

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution
MWAIT minimum of 2
NEG 1
NEGB 1
NOP 1
NOT 1
OR 1
OR! 2 if immediate data is long-word aligned
3ifitisn't
PFILL complex instruction
PIXBLT B, L complex instruction
PIXBLT B, XY complex instruction
PIXBLT L, L complex instruction
PIXBLT L, M, L complex instruction
PIXBLT L, XY complex instruction
PIXBLT XY, L complex instruction
PIXBLT XY, XY complex instruction
PIXT Rs, *Rd 2+P
PIXT Rs, *Rd.XY Window option 0 1 2 3
inside 4+CD+P 5 4+CD+P 3+CD+P
outside 4+CD+P 3 5+CD 3+CD
PIXT *Rs, Rd 3
PIXT *Rs, *Rd 4+P
PIXT *Rs.XY, Rd 6+CS
PIXT *Rs.XY, *Rd.XY Window option 0 12 3
inside 7+CS+CD+P 5 7+CS+CD+P 7+CS+CD+P
outside 7+CS+CD+P 3 5+CD 3+CD

Key: P Selected pixel-processing option; see Table 15—1 (page 15-2).
CD Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con-
tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.
CS Complexity of source pitch. CS = 0 if CONVSP contains a power of 2; CS = 1 if CONVSP contains
a sum of powers of 2; CS = 12 if CONVSP contains an arbitrary pitch.

POPST 6 if the SP is aligned
7 ifitisn’t

PUSHST 2 (1) ifthe SPis aligned
2 (2) ifitisn’t

PUTST 3

15-7

Timing for All Instructions Except MOVESs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution
RETI 52 if BF status bit=1 -
38 if IX status bit = 1
else 7
RETM 52 if BF status bit = 1
38 if IX status bit = 1
else 10
RETS 5
6 if the stack isn’t aligned
REV 1
RL (constant) 1
RL (register) 1
RMO 1
RPIX 2if PSIZE = 32
4if PSIZE = 16
5if PSIZE =8
6 if PSIZE = 4
7ifPSIZE =2
8if PSIZE =1
SETC 1
SETCDP pitch is a power of 2: 4(1)
2powersof2: 6(1)
arbitrary: 3(1)
SETCMP pitch is a power of 2: 4(1)
2powersof2: 6(1)
arbitrary: 3(1)
SETCSP pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3(1)
SETF 1
"SEXT 2
SLA (constant) 3
SLA (register) 3
~ SLL (constant) 1
SLL (register) 1
SRA (constant) 1
SRA (register) 1
SRL (constant) 1
SRL (register) 1

15-8 Instruction Timing

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles

Instruction consumed by instruction execution

SuB 1

sSuUBB 1

SUBI (long) 2 if the immediate data is long-word aligned
3 ifitisn't

SUBI (short) 2

SUBK 1

SUBXY 1

SWAPF 5

TFILL complex instruction

TRAP 7 if TRAP O, else 10 if ST aligned
else 12

TRAP L 10 if ST aligned
else 12

VBLT complex instruction

VFILL complex instruction

VLCOL 2(1) '

XOR 1

XORI 2 if the immediate data is long-word aligned
3 ifitisn't

ZEXT 1

15-9

Timing for MOVE and MOVB Instructions

15.2 Timing for MOVE and MOVB Instructions

This section contains the timing for MOVE and MOVB instructions. These
timings are divided into three categories:

L Timings for memory-to-register moves (reads)
L Timings for register-memory moves (writes)
Ld Timings for memory-to-memory moves

General assumptions

The timing of the move instructions depends on how the accessed field is
aligned in memory. The following cases of field alignment characterize the
move instruction timing.

1) Thefieldis aligned on the boundaries of along word or on any byte bound-
aries.

2) Atleast one end of the field is not aligned to a byte boundary.

3) Thefield crosses along-word boundary, but both ends are aligned on byte
boundaries.

4) The field crosses a long-word boundary, and only one end is aligned on
a byte boundary.

5) The field crosses a long-word boundary, and neither end is aligned on a
byte boundary.

Table 15-2. Cases Table for MOVE and MOVB Timings

Number of Read Cycles Number of Write Cycles

Case Number Required Required
1 2 2
2 2 3
3 3 3
4 3 4
5 3 5

The timing tables refer to these cases.

15-10 Instruction Timing

Timing for MOVE and MOVB Instructions

Memory-to-register moves

Case
Instruction 1 2 3 4
MOVB *Rs, Rd 4 4 — —
MOVB *Rs(SOffset), Rd 6 6 — —
MOVB @SAddress, Rd 5/6 5/6 — — 6/7
MOVE *Rs, Rd 3 3 4 4 4
sign extended: 4 4 5 5 5
MOVE *Rs+, Rd 3 3 4 4 4
sign extended: 4 4 5 5 5
MOVE —*Rs, Rd 4 4 5 5 5
sign extended: 5 5 6 6 6
MOVE *Rs(SOffset), Rd 4 4 5 5 5
sign extended: 6 6 7 7 7
MOVE @Rs, Rd 4/5 4/5 5/6 5/6 5/6
sign extended: 5/6 5/6 6/7 6/7 6/7
Register-to-memory moves
Case
Instruction 1 2 3 4 5
MOVB Rs, *Rd 1(1) 1(2) — — 1(4)
big endian 2 2(1) — — 2(3)
MOVB Rs, *Rd 3(1) 3(2) — — 3(4)
MOVB Rs, @Rd 2M/3(1) 2(2)/3(2) — — 2(4)/3(4)
big endian 3(1)/3(1) 3(2)/3(2) — — 3(4)/3(4)
MOVE Rs, *Rd 1(1) 1(2) 1(2) 1(3) 1(4)
big endian 2(1) 2(2) 2(2) 2(3) 2(4)
MOVE Rs, *Rd+ 1(1) 1(2) 1(2) 1(3) 1(4)
2(1) 2(2) 2(2) 2(3) 2(4)
MOVE Rs, —*Rd 2(1) 2(2) 2(2) 2(3) 2(4)
MOVE Rs, —*Rd 3(1) 3(2) 3(2) 3(3) - 3(4)
MOVE Rs, @Rd 2(1)/3(1) 2(2)/3(2) 2(2)/3(2) 2(3)/3(3) 2(4)/3(4)
big endian 3(1)/3(1) 3(2)/3(2) 3(2)/3(2) 3(3)/3(3) 3(4)/3(4)

15-11

Timing for MOVE and MOVB Instructions

Memory-to-memory moves

First, look in Table 15-2 (page 15-10) to find the source alignment (case 1-5)
and the destination alignment (case1-5). Then, useTable 15-3 to find which
column to use in the timing table below.

Table 15-3. Source/Destination Alignment for MOVE and MOVB Timings

Destination
Source 1 2 3 4 5
1 A C C H - E
2 A C C H E
3 B D D G F
4 B D D G F
5 B D D G F
R/W Cycles 2/2 3/2 2/3 3/3 2/5 3/5 3/4 2/4
A B C D E F G H
MOVB *Rs, *Rd 3(1) 4(1) 3(2) 4(2) 3(4) 4(4)
MOVB *Rs(SOffset), *Rd(DOffset) 5(1) 6(1) 5(2) 6(2) 5(2) 6(4)
MOVB @SAddress,@DAddress
even 5(1) 6(1) | 5 | 6() | 5(4) | 6(4)
odd 7(1) 8(1) | 7 | 8@ | 7(4) | 8(4)
MOVE *Rs, *Rd | o8() 4(1) 3(2) 4(2) 3(4) 4(4) | 4(3) | 3(3)
MOVE *Rs+, *Rd+ 3(1) 4(1) 3(2) 4(2) 3(4) 4(4) | 433) | 3@
MOVE —*Rs, —*Rd 4(1) 5(1) 4(2) 5(2) 4(4) 54) | 53) | 4@
MOVE *Rs(SOffset), *Rd+ 5(1) 6(1) 5(2) 6(2) 5(4) | 6(4) | 6(3) | 5@
MOVE *Rs(SOffset), *Rd(DOffset) 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) | 6(3) | 5@
MOVE @Rs, *Rd+
even 4(1) 5(1) 4(2) 5(2) 4(4) 5(4) | 53) | 4(@)
odd 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) | 6(3) | 5(3)
MOVE @Rs, @Rd
even 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) | 6(3) | 5(3)
odd 7(1) 8(1) 7(2) 8(2) 7(4) 8(4) | 83) | 7(3)

15-12 Instruction Timing

Appendix A

Test and Emulation Considerations

This appendix provides information that you’ll need if you're building a
TMS34020 target system and you plan to use the TMS34020 Emulator. The
TMS34020 Emulator supports realtime in-circuit emulation; key features
include

(4 Serial scan-path technology. The emulator uses TI's revolutionary serial
scan-path technology, eliminating the need for the typical emulator target
cable, which uses a full device pinout. Instead, the target system needs
only a 12-pin header to connect between the TMS34020 and the
TMS34020 emulator board through the emulation target cable.

4 PC-compatible emulator board. The emulator board is a PC/XT-com-
patible emulator board. It provides a high-speed communication path be-
tween a PC and the TMS34020.

[Symbolic debugger with windowed interface. The emulator’s symbolic
debugger provides the following features through its windowed interface:

B Ability to upload/download application code and emulation setup

B Software breakpoints on selected instructions
B Single-step execution
B Access to registers and memory
B TMS34020 patch assembler/disassembler
= Benchmark timing
v Section Page
The remainder of this appendix A.1 Overview of an Emulation System A-2
contains information about setting A2 Emulation Connector (12-Pin Header) A-3
Up your target system. p 3 Signal BURERNG « . .. eeeeeeeeennnn. A4
A4 BufferDelays oot A-5
A.5 Design Considerations A-7
A.6 Mechanical Dimensions A-9

Overview of an Emulation System

A.1 Overview of an Emulation System

Figure A—1 shows atypical setup using the emulator, target cable, and your tar-
get system.

Figure A-1. Typical Setup Using the TMS34020 Emulator and Your Target System

target system

12-pin connector
active buffer pod

target cable

_ TMS34020

Figure A—2 shows how you connect the emulator and target cable to your tar-
get system.

Figure A-2. Connecting the TMS34020 Emulator to Your Target System

/— target cable

TMS34020 Emulator board

your TMS34020
target system

12-pin connector \
active buffer pod
12-pin header

TMS34020

Test and Emulation Considerations

A.2 Emulation Connector (12-Pin Header)

To use the target cable, your target system must have a 12-pin header (2 rows
of 6 pins) with the connections that are shown in Figure A-3. The header pins
connect directly to the TMS34020 except when the header is farther than 2
inches from the TMS34020 (see Section A.3 on page A-4).

Figure A-3. 12-Pin Header Signals

Header Dimensions: EMU1 1 2 GND
Pin-to-pin spacing: 0.100 inches (X, Y)
Pin width: 0.025 inches EMUO | 3 4 | GND
square post EMU2 | 5 6 | GND
Pin length: 0.235 inches no pin
nominal PD (+5V) 7 (key)
EMU3 | 9 10| GND
LCLK1 11 12| GND
TMS34020
Signal Description Pin Number
EMUO Emulation pin 0 J1
EMU1 Emulation pin 1 J3
EMU2 Emulation pin 2 K1
EMU3 Emulation pin 3 H2
LCLK1 TMS34020 local clock 1 H1
PD Presence detect. Indicates that the cable is connected and target sys-
tem is powered up. Tie PD to +5 volts in the target system.
Although you can use other headers, recommended parts include
straight header, unshrouded DuPont Connector Systems
part number 67996-112
right-angle header, unshrouded DuPont Connector Systems

part-number 68405-112

right-angle header, 4-wall shrouded AMP, Incorporated
part number 103167-3

Signal Buffering

A.3 Signal Buffering

It is extremely important to provide high-quality signals between the emulator
and the TMS34020 on the target system. In many cases, the signal must be
buffered to produce a high-quality signal. The need for signal buffering and
placement of the emulation header can be divided into 3 categories:

X No signal buffering. In this situation, the distance between the header
and the TMS34020 should be no more than 2 inches.

EMUO, EMU1, EMU2

LCLK1, EMU3

(4 Buffered transmission signals. In this situation, the distance between
the emulation header and the TMS34020 is greater than 2 inches but less
than 6 inches. The transmission signals—LCLK1 and EMU3—are buff-
ered through the same package. .

2 , [\LCLK1, EMU3

7 /

4 Alisignals buffered. The distance between the emulation header and the
TMS34020 is greater than 6 inches but less than 12 inches. All TMS34020
emulation signals—EMUO, EMU1, EMU2, and EMU3—are buffered

through the same package.

6 to 12 inches
EMUO, EMU1, EMU2

LCLK1, EMU3

A-4 Test and Emulation Considerations

Buffer Delays

A.4 Buffer Delays

The absolute maximum propagation delay for both —32 and —40 TMS34020
devices is 10 ns. The buffer is noninverting, and all emulation signals that are
buffered should be buffered through the same package.

The distance between the TMS34020 and the buffers depends on the PWB
layout and loading on LCLK1. However, Texas Instruments suggests that the
distance be as short as possible and less than 4 inches.

When you buffer LCLK1, don't place another device between the buffer output
and header. Connecting another device to this signal could cause false trigger-
ing of the device due to cable reflections (see Figure A—4).

Figure A4. LCLK1 Buffer Restrictions

Lotk NN
|~

Don’tconnect any devices be-
tween the buffered LCLK1
output and the header!

Figure A-5 shows a portion of logic in the emulator pod. Note that 33-Q resis-
tors are added to EMUO, EMU1, and EMU2; this minimizes cable reflections.

A-5

Buffer Delays

Figure A-5. Emulator Pod Interface

EMU1 (pin 1)
EMUO (pin 3)

EMU2 (pin 5)

EMU3 (pin 9)

LCLK1 (pin 11)

PD (+5V,pin7)

GND (pins 2, 4, 6, 10, 12)

no pin (key, pin 8)

A-6 Test and Emulation Considerations

Design Considerations

A.5 Design Considerations

When designing a TMS34020 target system, please observe these hardware
and software emulation constraints. Portions of these design considerations
are advanced information and may not apply to all Texas Instruments emula-
tors.

(2 Resetandinterrupts. Whenanemulatoris active, the TMS34020 will ser-
vice reset and interrupts only if the emulator is in an execution mode. The
target system must provide a reset to the TMS34020 before the emulator
is activated.

L Host/emulation coordination. If the emulator has stopped execution of
the TMS34020 (program execution is halted), the TMS34020 will continue
to respond to host port accesses. If TMS34020 program execution is re-
quired to provide aresponse to a host access, the host could hang or time-
out. Also, functions such as reset, interrupts, NMI, and HLT will not take
effect until the emulator is placed back in an execution mode; this could
also hang the host application if a response is required. Emulators and
host applications typically use timeouts to keep from hanging if a
TMS34020 function is not performed properly. If both the emulator and
host are accessing the TMS34020 memory space at the same time, false
timeouts could occur in both the emulator and the host.

Note:

Both the host and emulator can access the same memory space at effectively
the same time. Thus, the emulator’s memory display could be inaccurate if
the host is modifying a memory location within the display range.

To minimize these conflicts, the host can use 3 bits within HSTCTLL to
grant access of the TMS34020 to the emulator. These bits are:

B EMR (emulator request),
B EMG (emulator grant), and
@ EMIEN (emulator interrupt enable).

The emulator sets EMR when the emulator requires access to the device.
If EMIEN is set, a host interrupt is generated via the HINT pin. When the
host sets EMG, the interrupt is cleared and the emulator performs its pend-
ing function.

TMS34020 execution will be stopped immediately if an emulation halt con-
dition (such as a breakpoint) is encountered, although emulation access of
the TMS34020 will not start until EMG is set. The host processor can use
either the host interrupt or the EMR bit to indicate that an emulator halted
the TMS34020.

Design Considerations

When the emulator no longer requires access to the device, the emulator
clears EMR. Once again, this causes a host interrupt if EMIEN is set. The
host interrupt is deactivated when the host clears EMG.

Using this handshake protocol is optional and should be used in applica-
tions that are sensitive to emulation access of the TMS34020. Before at-
tempting to integrate this protocol into your system, consult the TMS34020
XDS Emulator User’s Guide for additional information.

Test and Emulation Considerations

Mechanical Dimensions

A.6 Mechanical Dimensions
Figure A—6 shows the TMS34020 emulator target cable, which consists of

an emulator connector,

a 3-foot section of jacketed cable,

an active cable pod,

a short section of jacketed cable that connects to the target system, and
a 12-pin connector that connecits to the target system’s 12-pin header.

(EEEpEREE N

Figure A-6. Target Cable

""" /— emulator connector

3-foot jacketed cable
\ short jacketed cable,

connects to target system

active cable pod e

The overall cable length is approximately 3'10”. Figure A-7 shows the
mechanical dimensions for the target cable pod. The cable pod box is noncon-
ductive plastic with 4 recessed metal screws.

Figure A~7. Pod Dimensions

Note: Alldimensions are ininches and are nominal dimensions unless otherwise spe-
cified.

Mechanical Dimensions

Figure A-8. 12-Pin Connector Dimensions

(a) Side view

(b) Top view

key, pin 8
0.100 ——‘ ’-— /

A

0.70

T.|

D/

aad|HINININININ
— (OO0

pins 1,3,5,7,9,1t pins 2,4,6,8,10,12

Notes: 1) Alldimensions are ininches and are nominal dimensions unless otherwise
specified.
2) Pin-to-pin spacing on the connector is 0.100 inches in both the X and Y
planes.

A-10 Test and Emulation Considerations

Appendix B

Glossary

address/status subcycle: First part of a local-memory cycle, sometimes
referred to as row-address time.

aliasing: Stairstep effect on a raster display of a line or arc segment.

ALTCH: Address latch signal. You can use the high-to-low transition of
ALTCH to capture the address and status present on the LAD bus.

antialiasing: Method for reducing the severity of aliasing effects by adjust-
ing the intensity of a pixel according the pixel’s proximity to the line or
edge of an object.

back porch: Portion of horizontal or vertical blanking that follows the trailing
edge of the horizontal- or vertical-sync pulse.

bandwidth: Number of bits per second that can be transferred by a device.

BEN: Big-endian enable (bit 0 of CONFIG register). BEN=0 (default) selects
little-endian addressing mode; BEN=1 selects big-endian addressing
mode.

big-endian: Addressing mode in which the "big” or most significant end of
an address (bit 31) points to the least significant end (bit 0) of a word of
data.

binary array: 2-dimensional bitmap in which each pixel is represented as a
single bit (a0 ora 1).

bitblt: Bit-aligned block transfer. Transfer of arectangular array of pixel infor-
mation from one location in a bitmap to another.

bitmap: 1. Digital representation of animage in which bits are mapped to pix-
_ els. 2. Block of memory used to hold raster images in a device-specific
format.

B-1

Glossary

B-2

bit plane: Hardware used as a storage medium for a bitmap.

black level: Amplitude of the composite signal at which the beam of the pic-
ture tube is extinguished (becomes black) to blank retrace of the beam.
This level is established at 75% of the signal amplitude. -

blanking signals: Pulsesthatextinguish the scanning beam during horizon-
tal or vertical retrace periods.

breakpoint: Point within a routine at which the routine may be interrupted
by external intervention.

BSFLTD: Bus-faultdataregisters (32-bitl/O register, address CO00 0320h).
The TMS34020’s memory controller saves the LAD data into BSFLTD
when a bus fault occurs on a CPU-initiated memory access.

BSFLTDL: 16 LSBs of BSFLTD, accessed at address C000 320h.
BSFLTDH: 16 MSBs of BSFLTD, accessed at address C000 330h.

BSFLTST: Bus-fault status register (16-bit /O register, address
C000 02D0h). The TMS34020's memory controller saves its state in
BSFLTST before it signals that a bus fault occurred.

BUSFLT: Bus fault signal. External logic asserts BUSFLT to indicate that a
fault occurred on the current bus cycle.

cache memory: A fast, on-chip memory.

cache hit: The cache contains the requested instruction word.

cache miss: The cache does not contain the requested instruction word.
CAD: Computer-aided design.

CAMD: Column-address mode. Shifts the column address on the RCA bus
to allow mixing of DRAM and VRAM address matrices.

CAS: Column-address strobes (CAS0—CASS3). Drive the CAS inputs of
DRAMs and VRAMs.

CBP: Configuration byte protect (bit 4 of CONFIG register). CBP=0 is the
default; CBP=1 write-protects the LSbyte of CONFIG until areset occurs.

CD: Cache disable (bit 15 of CONTROL register). CD=0 (default) enables
cache operation; CD=1 forces the TMS34020 to ignore the contents of
the cache and to fetch instructions from memory.

CF: Cache flush (bit 14 of HSTCTLH register). Setting CF to 1 flushes and
disables the cache. Normal cache operation resumes when CFis cleared
to 0.

Appendix B

Glossary

clipping: Removing parts of display elements that lie outside a defined
boundary (the boundary is usually a window or a viewport).

COLORO0: Background color register (B8). Identifies the replacement color
for 0-value pixels in a source array.

COLOR1: Foreground color register (B9). Identifies the replacement color
for pixels that will be altered in the destination array.

column-address time: See data subcycle.

composite video: Color-picture signal plus all blanking and sync signals.
The signals include luminance and chrominance signals, vertical- and
horizontal-sync pulses, vertical- and horizontal-blanking pulses, and the
color-burst signal.

CONFIG: Configuration register (16-bit I/O register, address C000 01AQh).
Contains fields that selectively enable/disable various aspects of system
configuration.

CONTROL: Memory control register (16-bit 1/0O register, addresses
C000 00BOhand C000 0190h). Controls various aspects of CPU activity.

CONVDP: Destination pitch conversion factor register (16-bit 1/O register,
address C000 0140h). Contains a control parameter used for converting
an XY destination address to a linear address.

CONVMP: Mask pitch conversion factor register (16-bit I/O register, address
C000 0180h). Contains a control parameter used for converting an XY
mask address to a linear address.

CONVSP: Source pitch conversion factor register (16-bit 1/O register,
address C000 0130h). Contains a control parameter used for converting
an XY source address to a linear address.

coprocessor: Anadditional processor in a system; extends the functionality
of the main processor. For example, the TMS34082 is a coprocessor for
the TMS34020; in a TMS34020 system, the TMS34082 adds floating-
point capabilities to the TMS34020’s functions.

CSD: Composite-sync direction (bit 2 of DPYCTL register). When the
CSYNC/HBLNK pin is configured as CSYNC (CVD=0), CSD determines
if CSYNC is configured as in input (CSD=0) or an output (CSD=1).

CST: CPU shift-register transfer enable (bit 11 of DPYCTL register). When
CST=1, the TMS34020 converts pixel accesses into VRAM shift-register
transfer cycles.

CVD: Composite video disable (bit 3 of DPYCTL register). Controls the func-
tions of the CSYNC/HBLNK and CBLNK/VBLNK pins. CVD=0 selects
CSYNC and CBLNK; CVD=1 selects HBLNK and VBLNK.

B-3

Glossary

B-4

DAC: Digital-to-analog converter.

DADDR: Destination address register (B2). Contains the destination array
address for graphics instructions.

data subcycle: Second part of a local-memory cycle, sometimes referred
to as column-address time.

DDIN: Data bus direction input-enable signal. Drives the active-high input
enables on bidirectional transceivers.

DDOUT: Data bus direction output-enable signal. Drives the active-low out-
put enables on bidirectional transceivers.

DGIS: Direct graphics interface standard.

DIE: Display interrupt enable (bit 10 of INTENB register). Setting DIE to 1
enables the display interrupt.

DIP: Display interrupt pending (bit 10 of INTPEND register). DIP is set to 1
when a display interrupt is requested.

DINC: Display increment registers (32-bit /O register, address
C000 0240h). Contains the increment value for the DPYNX register.

DINCL: 16 LSBs of DINC, accessed at address C000 0240h.
DINCH: 16 MSBs of DINC, accessed at address C000 0250h.

display area: Rectangular portion of the physical display screen in which in-
formation is visibly displayed; does not include the border area.

display element: Basic graphic element that can be used to construct a dis-
play image.

display memory: Area of memory used to hold the graphics image output
to the video monitor.

display pitch: Difference in memory addresses between two vertically adja-
cent positions on the screen.

dotclock: Clock that cycles the rate at which video data is output to a CRT.

DPTCH: Destination pitch register (B3). Defines the linear difference
between starting addresses of adjacent rows in a destination array.

DPYADR: Display address register. Provides compatibility with the
TMS34010.

DPYCTL: Display control register (16-bit 1/O register, address CO00 0080h).
Controls video timing and VRAM serial-register transfers.

Appendix B

Glossary

DPYINT: Display interrupt register (16-bit /O register, address
C000 00AO0h). Identifies the next scan line (in some circumstances, the
next half scan line) at which a display interrupt can be requested.

DPYNX: Display next address registers (32-bit I/O register, address
C000 0220h). Contains a 32-bit address thatis outputduring a screen-re-
fresh cycle.

DPYNXL: 16 LSBs of DPYNX, accessed at address C000 0220h.
DPYNXH: 16 MSBs of DPYNX, accessed at address C000 0230h.

DPYMSK: Display mask register (16-bit I/O register, address CO00 02EOh).
When midline reload screen refreshes are enabled, DPYMSK deter-
mines which bits of DPYNX & DPYST correspond to the tap-point portion
of the address output during screen-refresh cycles.

DPYST: Display start address registers (32-bit /O register, address
C000 0200h). Contains a 32-bit address that points to the pixel at the left
of the 18! line displayed on the screen.

DPYSTL: 16 LSBs of DPYST, accessed at address C000 0200h.
DPYSTH: 16 MSBs of DPYST, accessed at address C000 0210h.

DPYSTRT: Display start address register. Provides compatibility with the
TMS34010.

DPYTAP: Display tap-point address register. Provides compatibility with the
TMS34010.

DQ: Data in/data out pin for a VRAM.
DRAM: Dynamic RAM.

DRAM refresh: Maintenance of data stored in dynamic RAMs. Data are
stored in DRAMs as electrical charges across a grid of capacitive cells.
The charge stored in a cell will leak off over time unless the data is
refreshed.

DYDX: Delta Y/delta X register (B7). Defines the X and Y dimensions of a
rectangular destination array.

EMIEN: Emulator host-interrupt enable (bit 12 of HSTCTLL register). The
value of EMIEN determines if EMG XOR EMR asserts HINT active low
(EMIEN=1) or not (EMIEN=0).

EMG: Emulator handshake (bit 11 of HSTCTLL register). In an emulation
system, the host sets EMG to 1 to gran the emulator access to TMS34020
memory.

B-5

Glossary

B-6

EMR: Emulator handshake (bit 10 of HSTCTLL register). In an emulation
system, the emulator sets EMR to 1 to request access to TMS34020
memory.

ENV: Enable video (bit 15 of DPYCTL register). ENV enables (ENV=1) or
disables (ENV=0) the video screen.

field: 1. Group of contiguous bits in a register or memory location, dedicated
to a particular function or representing a single entity. 2. Software-confi-
gurable data type supported by the TMS34010 and TMS34020; the field
length can be programmed to be any value in the range of 1 to 32 bits.

fill: Solid coloring or shading of a display surface, often achieved as a pattern
of horizontal segments.

frame: 1. Time required to refresh an entire screen. 2. Screen image output
during a single vertical sweep.

frame buffer: Portion of memory used to buffer raster data to be output to
a CRT. Frame buffer contents are often referred to as the bitmap of the
display and contain the logical pixels corresponding to the points on the
monitor screen.

frontporch: Portion of a vertical- or horizontal-blanking pulse that precedes
the leading edge of the vertical- or horizontal-sync pulse.

Gl: Bus grant input. External bus arbitration logic pulls GI low to enable the
TMS34020 to gain access to the local-memory bus.

GKS: Graphics kernel system. Application programmer’s standard interface
to a graphics display.

gray scale: Scale of light intensities from black to white.

GSP: Graphics system processor. A single-chip device embodying all the
processing power and control capabilities necessary to manage a high-
performance bitmapped graphics system. The TMS34010 and
TMS34020 are GSPs.

HA: Host address input bus (HA5—HA31). A host processor requests an
address over these lines.

Appendix B

Glossary

HACK: Halt acknowledge (bit 4 of HSTCTLH register). Setting the HLT bit
halts TMS34020 execution at the next interruptible instruction boundary;
the TMS34020 sets HACK when the halt actually takes place.

HBFI: Host-bus-fault interrupt (bit 14 of HSTCTLL register). The TMS34020
sets HBFI to 1 if a bus fault occurs on a host access.

HBREN: Host-bus-fault/retry-interrupt (bit 15 of HSTCTLL register). If
HBREN=1, the TMS34020 interrupts the host when a retry or bus fault
occurs.

HBS: Hostbyte select-bus (HBS0—HBS3). Identify the bytes to be selected
within a specific word.

HCOUNT: Horizontal count register (16-bit /O register, address
C000 01D0h). HCOUNT counts the number of VCLK periods per
horizontal scan line.

HCS: Host chip-select signal. A host drives HCS low to latch the current
address and byte-select requests.

HDST: Host data strobe signal.

HEBLNK: Horizontal end blank register (16-bit I/O register, address C000
0030h). HEBLNK identifies the endpoint for the horizontal blanking inter-
val.

HESERR: Horizontal end serration register (16-bit I/O register, address
C000 0270h). HESERR determines the endpoint for the composite-sync
pulse during the serration region of vertical blanking.

HESYNC: Horizontal end sync register (16-bit /O register, address
€000 0010h). HESYNC identifies the endpoint for horizontal sync.

HIE: Host interrupt enable (bit 9 of INTENB register). Setting HIE to 1
enables the host interrupt.

high impedance: The third state of a three-state output driver, in which the
output is driven neither high or low but behaves as an open connection.

HIP: Hostinterrupt pending (bit 9 of INTPEND register). HIP is setto 1 when
a host interrupt is requested.

HINC: Host increment (bit 12 of HSTCTLH register). Setting HINC to 1
enables the TMS34020 to compare the fetched address to the address
requested by a host processor, to increment the current address, and to
prefetch the contents of the next address.

HINT: Host interrupt signal.

HLBO,HLB1: Host lastbyte (bits 5&6 of HSTCTLH register). The HLB code
tells the TMS34020 which byte of a 32-bit word that a host processor will
access last. The TMS34020 uses this information to determine the cor-
rect time to prefetch the next word.

B-7

Glossary

B-8

HLT: Halt TMS34020 program execution (bit 15 of HSTCTLH register). Set-
ting HLT to 1 suspends TiViS34020 instruction processing at the next
instruction boundary.

HOE: Host output-enable signal.

hold signal: Signal capable of controlling a processor bus; sentto a bus arbi-
ter to request bus control. Typically, the arbiter grants the request by
sending a hold-acknowledge signal to the requestor.

horizontal back porch: Portion of horizontal blanking that follows the trail-
ing edge of the horizontal-sync pulse.

horizontal-blanking interval: Time during which the display is blanked to
cover the horizontal retracing of the electron beam on a screen.

horizontal front porch: Portion of a horizontal-blanking pulse that precedes
the leading edge of the horizontal-sync pulse.

horizontal sync: Synchronization signal that enables horizontal retrace of
the electron beam on a screen.

host address bus: Lines used by a host processor to identify the address
of a TMS34020 local-memory location.

host processor: Main processor in a system.

HPFW: Hostprefetch-after-write enable (bit 10 of HSTCTLH register). When
host prefetches are enabled (HINC=1), the value of HPFW determines
if the TMS34020 performs prefetches after reads (HPFW=0) or after
writes (HPFW=1).

HRDY: Hostready signal. Driven high when the TMS34020 is ready to com-
plete a host-initiated access.

HREAD: Host read strobe. Driven low during a host’s read request.

HRYI: Host-retry interrupt (bit 13 of HSTCTLL register). The TMS34020 sets
HRYI to 1 if it retries a host access.

HSBLNK: Horizontal start blank register (16-bit I/O register, address
C000 0050h). HSBLNK identifies the startpoint for the horizontal blank-
ing interval.

HSD: Horizontal-sync direction (bit 0 of DPYCTL register). Determines if
HSYNC is configured as an input (HSD=0) or an output (HSD=1).

HSTADRL: Host address register. Provides compatibility with the
TMS34010.

HSTADRH: Host address register. Provides compatibility with the
TMS34010.

HSTCTLH: Host control /O register, high word (16-bit I/O register, address
C000 0100h). Controls aspects of host-interface communications.

Appendix B

Glossary

HSTCTLL: Host control I/O register, low word (16-bit I/O register, address
C000 00F0h). Controls aspects of host-interface communications.

HSTDATA: Host data /O register. Provides compatibility with the
TMS34010.

HTOTAL: Horizontaltotal register (16-bit I/O register, address C000 0070h).
Number of VCLK periods per horizontal scan line; defines the startpoint
for the horizontal sync pulse.

HWRITE: Host write strobe. Driven low during a host’s write request.

interlaced video: Video system in which odd-numbered scan lines (odd
field) are interlaced with even-numbered scan lines (even field). The odd
and even fields constitute one frame. In effect, the number of transmitted
pictures is doubled; this reduces flicker.

IHOST: Internal hostinterface address registers (4 32-bit registers: IHOSTH,
address C000 0308h; IHOST2, address C000 03A0h; IHOST3, address
C000 03C0h; IHOST4, address C000 03EQOh). The TMS34020 uses
these registers for storing information provided by the host.

implied operand: A register value that must be supplied for an instruction
to execute properly. The B-file registers and several of the 1/0 registers
serve as implied operands for the TMS34020’s graphics instructions.

INTENB: Interruptenable register (16-bit I/O register, address C000 0110h).
Selective enables /disables external interrupts 1 and 2, the host interrupt,
the display interrupt, and the window violation interrupt.

INTPEND: Interrupt pending register (16-bit /O register, address
C000 0120h). Identifies the pending/not pending status of external inter-
rupts 1 and 2, the host interrupt, the display interrupt, and the window vio-
lation interrupt.

iNTIN: Interrupt-in (bit 3 of HSTCTLL register).
INTOUT: Interrupt-out (bit 7 of HSTCTLL register).

K: 1) 1024. 2) Approximately 1000. 3) A 5-bit constant for a TMS34020
instruction.

Kbyte: Approximately 1000 bytes.

LAD bus: 32-bit local address/data multiplexed bus (LADO—LAD31).

Glossary

B-10

little-endian: Anaddressing mode in which the "little” or least significant end
of an address (bit 0) points to the least significant end (bit 0) of a word
of data.

long word: 32-bit word.

look-up table: Table used during scan conversion of a digital image that
converts color-map addresses into the actual color values displayed.

LRDY: Local ready signal. External circuitry drives LRDY low to stop the
TMS34020 from completing a local-memory cycle.

LRU: Least recently used (cache-replacement algorithm). When a cache
miss occurs, this algorithm selects the cache segment that will be over-
written, based on the likelihood that the data in the discarded segment
will not be needed again for some time. The LRU algorithm selects the
segment that was used least recently.

LSB: Least significant bit.
LSbyte: Least significant byte.

LSW: Least significant word.

mask: Pattern used to control retention or elimination of portions of another
pattern.

Mbyte: Megabyte.
memory map: Map of memory space, partitioned into functional blocks.

MPTCH: Mask pitch register (B11). Defines the linear difference between
starting addresses of adjacent rows in a mask array.

MSB: Most significant bit.

MSbyte: Most significant byte.

MSGIN: Message-in (bits 0—2 of HSTCTLL register).
MSGOUT: Message-out (bits 4—6 of HSTCTLL register).
MSW: Most significant word.

NIL: Noninterlaced video enable (bit 14 of DPYCTL register). The value of
NIL selects interlaced video timing (NIL=0) or noninterlaced video timing
(NIL=1).

Appendix B

Glossary

NMI: Nonmaskable interrupt (bit 8 of HSTCTLH register). A host processor
sets NMI to send a nonmaskable interrupt to the TMS34020.

NMIM: Nonmaskable interrupt mode (bit 9 of HSTCTLH register). If
NMIM=0, the TMS34020 saves the PC and ST contents on the stack
before executing a nonmaskable interrupt routine. If NMIM=1, the
TMS34020 discards the PC and ST contents before executing the NMI
routine.

nonmaskable interrupt: Interrupt request that cannot be disabled.

NTSC: National television system committee. Group representing a wide
range of interests in the television broadcasting and video industry;
NTSC is instrumental in developing graphics and video standards.

OFFSET: XY-address offset register (B4). OFFSET contains the linear ad-
dress of the 15t pixel in the XY-coordinate address space.

operand: Any one of the quantities entering into or arising out of an opera-
tion.

origin: Zero intersection of X and Y axes from which all points are calculated.

palette: Digital look-up table used in a graphics display for translating data
from the bitmap into the pixel values to be shown on the screen.

pan: Apparent horizontal or vertical movement of a graphics screen or
window over an image contained in a frame buffer that is too large to be
completely displayed in a single static picture.

PATTERN: Fill-pattern register (B13).

PBH: PIXBLT horizontal direction (bit 8 of CONTROL register). PBH=0
(default) selects left-to-right pixel processing; PBH=1 selects right-to-left
processing.

PBV: PIXBLT vertical direction (bit 9 of CONTROL register). PBV=0 (default)
selects top-to-bottom pixel processing; PBV=1 selects bottom-to-top
processing.

pending: Requested but not yet performed. For example, a pending inter-
ruptis aninterrupt that has been requested but has not yetbeen serviced.

PGA: Pin grid array (type of chip package).
PGMD: Page-mode signal. Memory decode logic asserts PGMD low if the
currently addressed memory supports page-mode accesses.

B-11

Glossary

B-12

phase: The time interval for each clock period in a system is divided into
phases;one phase corresponds to the time when the clock signal is high,
the other to the time that the signal is low.

PHIGS: Programmer's hierarchical interactive graphics standard.

~ pipelining: Design technique for reducing the effective propagation delay

per operation by partitioning the operation into a series of stages, each
of which performs a portion of the operation. A series of data is typically
clocked through the pipeline in sequential fashion, advancing one stage
per clock period.

pitch: Difference in starting addresses of two adjacent rows of pixels in a
2-dimensional pixel array.

pixel: Picture element. 1. Smallest controllable point of light on a display
screen. 2. In a bitmapped display, the logical data structure that contains
the attributes to be shown at the corresponding physical pixel position on
a display screen.

pixel-processing option: Boolean or arithmetic operation for combining
two pixel values (source and destination); defined by PPOP[CON-
TROLI.

PIXBLT: Pixel-blocktransfer. Pixel-array operation in which each pixel is rep-
resented by one or more bits. PIXBLTs are a superset of bitblts and
include commonly-used Boolean functions as well as integer arithmetic
and multi-bit operations.

plane: (also bit plane or color plane) Bitmap layer in a multiple-bit-per-pixel
display device. If the pixel size is n bits and the bits in each pixel are num-
bered 0 to n—1, plane 0 is made up of 0-numbered bits in all the pixels,
and plane n—1 is made up of n—1-numbered bits in all the pixels. A layered
graphics display allows planes or groups of planes to be manipulated
independently of the other planes.

PMASK: Plane mask registers (32-bit I/O register, address C000 0160h).
PMASK contains a mask of Os and 1s; the 1s represent protected desti-
nation bits, and the Os represent modifiable destination bits.

PMASKL: 16 LSBs of PMASK, accessed at address C000 0160h.
PMASKH: 16 MSBs of PMASK, accessed at address C000 0170h.

PPOP: Pixel-processing operation (bits 10—14 of CONTROL register).
Selects a method for combining source and destination pixels. You can
choose from 16 Boolean and 6 arithmetic operations; the default opera-
tion is S—D (source pixels replace destination pixels).

propagation delay: Time required for a change in logic level at an input to
a circuit to be translated into a resuiting change at an output.

Appendix B

Glossary

protocol: Set of rules, formats, and procedures governing the exchange of
information.

pseudo-op: (pseudo-operation) An operation which is not part of the com-
puter’s operation repertoire as realized by hardware; hence, an exten-
sion of the set of machine operations.

PSIZE: Pixelsize register (16-bit /O register, address C0O00 0150h). Defines
the current pixel size as 1, 2, 4, 8, 16, or 32 bits.

pulse width: Time interval between specified reference points on the lead-
ing and trailing edges of a pulse waveform.

QFP: Quad flat package (type of chip package).

quarter phase: One-fourth of a local-memory cycle.

RO, R1: Bus request and control signals. These signals identify the type of
request for use of the bus in a multiprocessor system.

RAM: Random access memory. A memory from which all information can be
obtained with approximately the same time delay by choosing an address
randomly and without first searching through a vast amount of irrelevant
data.

RAS: Row-address strobe. Drives the RAS inputs of DRAMs and VRAMSs.

raster: Rectangular grid of picture elements whose intensity levels are
manipulated to represent images. In a bitmapped display, the bits within
the frame buffer are mapped to the raster pattern of a display screen.

raster graphics: Computed graphics in which a display image is composed
of a pixel array arranged in rows and columns.

raster-op: Arithmetic or logical combination that takes place during the
transfer of a pixel array from one location to another.

raster scan: Grid pattern traced by the electron beam on a display screen.

RCA: Multiplexed row-/column-address bus (RCA0—RCA12). At the begin-
ning of a memory-access cycle, identifies the row address for DRAMs;
later in the cycle, the bus identifies the column address.

RCMO, RCM1: RCAO0O—RCA12 row address configuration (bits 1&2 of
CONFIG register). Determines which bits of the logical address are
output on RCA0—RCA12 at row-address time.

B-13

Glossary

B-14

ready signal: Signal from a memory or memory-mapped peripheral that
informs the processor when a memory cycle is about to complete. Slower
memories and peripherals must extend the length of the memory cycle
by negating the ready signal (in other words, by sending the processor
‘a “not ready” signal) until the cycle can be completed.

REFADR: Refresh pseudo-address register (16-bit I/O register, address
C000 01FO0h). Contains the address output during DRAM-refresh cycles.

refresh: Method of restoring the charge capacitance to a memory device
(such as a DRAM or VRAM) or of restoring memory contents.

request strobe: Any control signal that begins or ends a read request or a
write request.

reset: Restore to normal action and initial conditions.

resolution: Number of visible, distinguishable units in the device coordinate
space.

retrace: Linetraced by the scanning beam(s) of adisplay screen as ittravels
from the end of one horizontal (or vertical) line or field to the beginning
of the next horizontal (or vertical) line or field.

RGB monitor: Red-green-blue monitor. Type of monitor capable of display-
ing colors; has separate inputs for the three signals that drive the red,
green, and blue guns of a display.

relative coordinates: Location of a point relative to the location of another
point.

ROM: Read-only memory.

rotate: Transform an item or display by revolving it around an axis or center
point.

row-address time: See address/status subcycle.

RR0—RR2: Refresh rate (bits 10—12 of CONFIG register). Determines the
frequency of DRAM refreshes.

RST: Reset (bit 7 of HSTCTLH register). Setting this bit has the same effect
as asserting RESET low; however, only the TMS34020 is reset (other
devices in the system are not affected).

SADDR: Source address register (B0). Contains the source array address
for graphics instructions.

SAM: Serial access memory or serial data register.

Appendix B

Glossary

scale: Size change made by multiplying or dividing coordinate dimensions
by a scale factor (a constant value).

scan line: Horizontal line traced across a display screen by the electron
beam in a monitor or similar raster-scan device.

SCOUNT: Shift clock counter register (16-bit 1/O register, address
C000 02C0h). During horizontal blanking, SCOUNT is loaded with the
right-justified tap-point value and is then incremented once on the rising
edge of each SCLK pulse.

screen refresh: Operation of dumping the contents of the frame buffer to a
CRT monitor in synchronization with the movement of the electron beam.

scrolling: Moving a display vertically or horizontally.

serial register transfer: Transfer between the RAM storage and internal
serial register in a VRAM.

SETHCNT: Set horizontal count register (16-bit I/O register, address
CO000 0310h). During external horizontal or composite video, SETHCNT
is loaded into HCOUNT when HSYNC or CSYNC is pulsed.

setup time: Minimum amount of time that valid data must be present at an
input before the device is clocked; ensures proper data acceptance.

SETVCNT: Set vertical count register (16-bit /O register, address
C000 0300h). During external horizontal or composite video, SETVCNT
is loaded into VCOUNT when VSYNC or CSYNC is pulsed.

SF: Special-function signal that drives a VRAM’'s DSF pin.

SIZE16: Bus size signal. Memory decode logic may pull SIZE16 low if the
currently addressed memory or port supports only 16-bit transfers.

SPTCH: Source pitch register (B1). Defines the linear difference between
starting addresses of adjacent rows in a source array.

SRAM: Static RAM.

SRE: Screen-refresh enable (bit 12 of DPYCTL register). Setting SRE to 1
when video is enabled (ENV) enables screen-refresh cycles.

SRINC: Screen-refresh address increment value (bits 5—31 of DINC regis-
ters). Defines the amount by which the address in SRNX is incremented
after a screen-refresh cycle.

SRNX: Next screen-refresh address (bits 5—31 of DPYNX registers). Rep-
resents the long-word address that is output during a screen-refresh
cycle.

SRST: Screen-refresh start address (bits 5—31 of DPYST registers). Con-
tains the address of the pixel at the left of the 15t line displayed on the
screen.

B-15

Glossary

SSA: Cache segment start address register.

SSV: Split-shift-register midline-reload enable (bit 6 of DPYCTL register).
Determines whether split-shift-register midline reload is disabled
(SSV=0) or enabled (SSV=1 and SRE=1).

stairstepping: Visual effectin bitmapped display devices; produces images
by brightening or dimming individual pixels in a pixel array. Also called
aliasing.

strobe: Any control signal that begins or ends a memory access.

subsegment: Blockof4 longwordsinacache segment. Each ofthe 4 cache
segments contains 8 subsegments, for a total of 32 long words per seg-
ment.

T: Pixeltransparency (bit 5 of CONTROL register). T=1 enables transparen-
cy; T=0 (default) disables transparency.

tap point: Column address provided to a VRAM during a memory-to-serial-
register cycle. The column address specifies the point at which the shift
register is to be tapped; in other words, which cell of the serial register
is to be connected to the VRAM's serial output.

TM: Transparency mode (bits 0—2 of CONTROL register). Selects the
transparency mode for pixel operations.

trace: Line of the graphics display.

transformation: Geometric alteration of a graphics display, such as scaling,
translation, or rotation.

transparency: Pixel attribute that renders a source pixel invisible so that
portions of the destination array show through portions of the source
array.

TR/QE: Transfer/output enable signal. Drives the TR/QE input of VRAMs.

VCE: Video capture enable (bit 7 of DPYCTL register). Selects memory-to-
register screen-refresh cycles (VCE=0) or register-to memory screen-re-
fresh cycles (VCE=1).

VCOUNT: Vertical count register (16-bit I/0 register, address C000 01COh).
VCOUNT counts the horizontal scan lines in the video display.

VEBLNK: Vertical end blanking register (16-bit /O register, address
C000 0020h). VEBLNK defines the endpoint for the vertical blanking
interval.

Appendix B

Glossary

VEN: VRAM internal register load enable (bit 8 of CONFIG register). VEN=1
enables the TMS34020 to use VRAMs with internal write-mask and color
registers; VEN=0 (default) prohibits this.

vertical back porch: Portion of vertical blanking that follows the trailing
edge of the vertical-sync pulse.

vertical-blanking interval: Time during which the display is blanked to cov-
er the vertical retracing of an electron beam.

vertical-blanking pulse: Positive or negative pulse developed during verti-
calretrace, appearing at the end of each field. Used to blank out scanning
lines during the vertical-retrace interval.

vertical front porch: Portion of a vertical-blanking pulse that precedes the
leading edge of the vertical-sync pulse.

vertical sync: Synchronization signal that enables vertical retrace of the
electron beam of a display screen.

VESYNC: Vertical end sync register (16-bit 1/O register, address
C000 0000h). VESYNC defines the endpoint of the vertical-sync pulse;
in interlaced video, it also defines the endpoint of the 2" equalization
region.

VRAM: Video RAM. A dual-ported memory device for computer graphics
applications, containing two interfaces: one that allows a processor to
read/write data from an internal memory array, a second that provides a
serial stream of screen-refresh data to a display screen.

VSBLNK: Vertical start blank register (16-bit /O register, address
C000 0040h). VSBLNK defines the startpoint for the vertical blanking
interval.

VSD: Vertical sync direction (bit 1 of DPYCTL register). Determines if
VSYNC is configured as in input (VSD=0) or an output (VSD=1).

VTOTAL: Vertical total register (16-bit I/O register, address C000 0060h).
Number of horizontal scan lines in the display; defines the startpoint for
the vertical-sync pulse.

W: Window checking (bits 6&7 of CONTROL register). Selects the action
that the TMS34020 takes when a pixel operation would write a pixel
inside or outside defined window limits.

wait state: Clock period inserted into a memory cycle in order to permit
accesses of slower memories and slower memory-mapped devices.

WE: Write enable signal. Drives the WE inputs of DRAMs and VRAMs.

B-17

Glossary

B-18

l

WEND: Window ending address register (B6). WEND contains the XY
address of the most significant pixel of the clipping window.

WSTART: Window starting address register (B5). WSTART contains the XY
address of the least significant pixel of the clipping window.

window: Defined rectangular area of a virtual space on a display screen.

window checking: Checking a pixel's address to see if it lies inside or out-
side the boundaries of a defined window.

WVE: Window-violation interrupt enable (bit 11 of INTENB register). Setting
WVE to 1 enables the window-violation interrupt.

WVP: Window-violationinterrupt pending (bit 11 of INTPEND register). WVP
is set to 1 when a window-violation interrupt is requested.

X1E: External interrupt 1 enable (bit 1 of INTENB register). Setting X1E to
1 enables external interrupt 1.

X2E: External interrupt 2 enable (bit 2 of INTENB register). Setting X2E to
1 enables external interrupt 2.

X1P: - External interrupt 1 pending (bit 1 of INTPEND register). X1P is set to
1 when an external interrupt 1 is requested.

X2P: External interrupt 2 pending (bit 2 of INTPEND register). X2P is set to
1 when an external interrupt 2 is requested.

YZCNT: Y-zoom count (bits 0—4 of DPYNX registers). Determines when the
address in SRNX can be incremented.

YZINC: Y-zoom increment value (bits 0—4 of DINC registers). This value
provides the increment value for the Y-zoom feature; valid values include
0,2, 4,8, 16, and 32.

Y-zoom: TMS34020 feature that aids in display magnification.

zoom: Scaling adisplay (or display item) so it is magnified or reduced on the
screen.

Appendix B

I/0 Registers
TEXAS U Register Offset [HESYNC 0010h

INSTRUMENTS BSFLTDH 0330h HSTADRH 00EOh
TMS34020 BSFLTDL 0320h HSTADRL 00DOh
Reference Card BSFLTST 02D0h HSTCTLH 0100h
CONFIG 01ACGh HSTCTLL 00FOh
00BOh or
Phone Numbers CONTROL 0190h HSTDATA 00COh
Tl Customer Response CONVDP 0140h HSBLNK 0050h
Center (CRC) Hotline: (800) 232-3200 CONVMP 0180h HTOTAL 0070h
Graphics Hotline: (713) 274-2340
P (713) CONVSP 0130h IHOST 0380h to
03FOh
General-Purpose Register Files DINCH 0250h INTENB 0110h
Register File A Register File B DINCL 0240h INTPEND 0120h
bit 31 bit 0 bit 31 bit 0 DPYADR 01EOh
MSB __LsB MSB LSB p— v PMASKH 0170h
A0 | . __SADDR PMASKL 0160h
A2 | DADDR DPYNXH 0230h
A3 PTCH DPYNXL 0220h REFADR 01FOh
Ad ‘ ;YV;QFF.SET. - DPYMSK 02E0h SCOUNT 02C0h
A5 . WSTART DPYSTH 0210n SETHCNT 0310h
A6 _WEND
—— SETVCNT 0300h
a7 T DPYSTL 0200h
A8 COLOR0 DPYSTRT 0090h VGOUNT 01G0h
A9 COLOR1 DPYTAP 01BOh VEBLNK 0020h
A10 _ MADDR. HCOUNT 01DOh VESYNC 0000h
AN | MPTCH | | HEBLNK 0030h VSBLNK 0040h
A12 | TEMET HESERR 0270h VTOTAL 0060h
A13 _ PATTERNT
Al4 TEMPT Note: Register address = CO00 000h + offset.

1 Theline instructions use these registers for a different purpose.

Some graphics instructions use these registers as temporary ~ CONTROL Register (C000 00B0h)

registers. 15 14 13 12 11 10 9 8 7 6 5 4 2 1.0
[co] PPOP [per|PBv] W [T [| ™
Initial State Following Reset TM 000 transparency on PBV 0 PIXBLT processes
: : result=0 top to bottom
Immediately following reset, 001 transparency on 1 PIXBLT processes
B All I/O registers are cleared to 0000h. (Possible excep- source=COLORO bottom to top
tions are HLT[HSTCTLH], REFADR, and SCOUNT). 100 transparency on PBH 0 PIXBLT processes
i o S result=0 left to right
General. purposeregister files A and B are uninitialized. 101 transparency on 1 PIXBLT processes
The ST is set to 0000 0010h. : dest.=COLORO right to left
The PC is uninitialized. T 0 disables trans. PPOP pixel-processing option
The cache SSA registers are uninitialized. w éoe”ab"?s;’a"?- CD 0 enables cache
The cache LRU stack is set to the sequence 0, 1, 2, 3. 01 \r:l?nv;rw%vi\;mg ! disables cache
All cache P flags are cleared. 10 window miss
The DRAM refresh-pending counter is setto 9. 11 window clip

1 ' 2

CONFIG Register (C000 01A0h)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
rnni] mR LveNl 777 e rom[eeq

i o
o R R o

BEN O selects little-endian CBP 1 write-protects CON-

addressing (default) FIG's LSbyte
1 selects big-endian 0 no write protection
addressing VEN 0 system has special-
RCM determines which log- feature VRAMs
ical address bits are 1 system has no spe-
output at row-address cial-feature VRAMs
time RR DRAM refresh rate
DPYCTL Register (C000 0080h)
156 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
E|N [S| C s] V]S [C]C|]V]|H
N1 P RIS el | 8 [t V]S is|s
VILFAMETT W eIV Dl DIDID
HSD 0 HSYNC s an input VCE screen-refresh mode

1 HSYNC is an output 1 mem-to-reg cycles
0 VSYNC is an input 0 reg-to-mem cycles

VvSD

1 VSYNCisanoutput CST 0 normal pixel-access
cycles
csb WM.: 0, 1 pixel-access cycles
- 0 CSYNGisan input become serial-regis-
1 CSYNC is an output
ter-transfer cycles
CVD selects CYSNC/ SRE 0 disables automatic
HBLNK screen refresh
0 selects CSYNC 1 enables screen re-
1 selects HBLNK fresh when ENV=1
SSV 0 disables midline NIL 0 interlaced video
reload 1 noninterlaced video
1 enables midline ENV 0 blanks screen
reload when SRE=1 1 enables display

INTENB Register (C000 0110h)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

..l"'||,|n" -""',.-""',.v""l,ll""..--"'ll AW|DI|H "‘l.n""".-""..-""» ""Il."‘"ll I""l,.-""',.-""l .-"'. .-"",, X xt ,-""I
-"‘II .v'" ".n""ll.l"ll',u" x,.-" ‘||"'I':I'I \ | | "'ll,.ll"ll .n''"I,|l'"’:,:"lll,y"'l‘::4'.‘“',.5''lII|.-"'|:’:l"lll:l"'1 r 2 1 I.:" 'l",
R I =3 I = I = L= =

IE status bit must be enabled before these interrupts are enabled

X1E 1 enablesint. 1 DIE 1 enablesdisplay int.
X2E 1 enablesint. 2 WVE 1 enables window-vio-
HIE 1 enables hostint. lation int.

INTPEND Register (C000 0120h)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I,.nl"“,ul"ll,n"'l,;"'II,.l"l',nl"'l,ul"'l Y, |] I||'Il'“l'“I.l'llll|l'l’|'|'l“"I'II‘II,I"I'II'IrI.|"“'I|""'||I'I“ 2 i 'lIIII'|'I
s I I L . I L
X1P 1 int. 1 pending DIP 1 display int. pending
X2P 1 int. 2 pending WVP 1 window-violation int.
HIP 1 hostint. pending pending

HSTSTLH Register (C000 0100h)

15 14 1312 11 10 9 8 7 6 5§ 4 3 2 1 0
HI bl b (me NINTR HA P
L | CF | W M I M| S| HB Lty
T "":,1 NC [FW '::" IM | T CK ::I' :.,n"‘:',.v"‘:l:t"':',:".:,n:":',u I:
HA 0 '34020is running HP 0 prefetch after any
CK 1 '34020 is halted FW access
HLB identifies last byte that 1 prefetch after writes
host will access HI 0 disables prefetch &
. NC autoincrement
RST O norme'll operation 1 enables prefetch &
1 reset 34020 autoincrement
NMI 0 no NMIrequest CF 0 no effect
1 host requests NMI 1 flush cache
NM 0 save context when HLT 0 allow '34020 to run
M there's an NMI 1 halt ‘34020 instruc-

HSTSTLL Register (C000 00FOh)

1 discard context

tion execution

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

El E -l"'“ -

“INT

E o L
RHE?\, 1-'|:1I3 lﬁ g,\'l g "F"‘ *ﬁ out| MSGOUT lmT MSGIN
MSG message from hostto EMI 0 nointerrupt to host
IN '34020 EN 1 interrupt to host
INT 0 nointerruptto HRYI 0 hostaccess not re-
IN '34020 tried
1 host interrupt re- 1 host access retried
quest to '34020 HBFI 0 hostaccess not
MSG message from '34020 faulted
OUT tohost 1 host access faulted
INT 0 nointerrupttohost HB If HRYI or HBFI is set,
OUT 1 '34020interruptre- REN 0 nointerrupt to host
quest to host 1 interrupt to host
EMG/ 00 norequest,noin- 10 hostreleased by
EMR terrupt EMU, interrupt (if
01 host request from enabled)
EMU, interrupt (if 11 host grant to EMU, -
enabled) no interrupt
LAD Bus Status Codes
Code Bus Status Type
0000 Coprocessor cycle misc.
0001 Emulator operation (00xx)
0010 Host cycle
0011 DRAM refresh
0100 Video-generated VRAM serial-register trans. VRAM
0101 CPU-generated VRAM serial-register trans. (01xx)
0110 Write-mask load
0111 Color-register load
1000 Data access CPU
1001 Cache fill (1300%)
1010 Instruction fetch
1011 Interrupt-vector fetch
1100 Bus-locked operation
1101 Pixel operation
1110 Block write
1111 Reserved

Memory Map TMS34020 Assembly Language Instruction Set
Address Range Size Use ABS Rd CMPI IL,Rd
FFFF FFEOh 34 words Interrupt & trap ADD Rs,Rd CMPK
FFFF FBCOh vectors ADDC Rs,Rd CMPXY Rs,Rd
Reserved for
w (]
IEIEEIE Egé&? 222 words interrupt & extended ADDI W,Ad CPW Rs,Rd
trap vectors ADDI IL,Rd CVDXYL Rd
FFFF DFEOh 32 512 words General use & ADDK K,Rd CVMXYL Rd
FFFO0 0000h _ extended trap vectors ADDXY As,Ad CVSXYL Rs,Rd
FFEF FFEOh 24°-33,024 words
C0002000h (35,521,408 words) General use ADDXYI IL,Rd CVXYL As,Rd
C000 1FECh 224 words Reserved for /0 AND As,Rd DEC Ad
€000 0400h registers ANDI IL,Ad DINT
C000 03EOh 32 words /O registers ANDN Rs,Rd DIVS As,Ad
C000 0000h 1 DIvU As Ad
= ANDNI IL,Ad S
BFFF FFEOh 3x2°-32K words General use DRAV As.Ad
0010 0000h (100,630,528 words) BLMOVE S,D S,
000F FFEOh 32768 words General use & BTST K,Ad DSJ Ad,Address
0000 0000h ! extended trap vectors BTST Rs.Ad DSJEQ Rd,Address
CALL Rs DSJNE Rd,Address
Interrupt Priorities CALLA Addr DSJS Rd,Address
Interrupt Priority Source Description 'CALLR Addr EINT
RESET 1 fexternaI/ Device reset CEXEC size, instruction], /D] EMU
internal EXGF Rd.F
- CEXEC size,instructionf,ID] 4
BF 2 external Bus fault interrupt EXGPC Ad
NMI 3 internal Nonmaskable interrupt ct::ﬁ' I EXGPS Rd
HI 4 internal Host interrupt. c d FILL L
DI 5 internal Display interrupt CLRC . FILL XY
wv 6 internal Window violation interrupt CMOVCG Rd; [,Rdy[size]],
command],ID] FLINE {0 | 1}
INT1 7 external External interrupt 1
- CMOVCM *Rd-+, transfers, FPIXEQ
INT2 8 external External interrupt 2 size,command], ID] FPIXNE
SS 9 internal Single-step interrupt CMOVCM —*Ra,transfers,size, MGeTpo g
ILLOP 10 internal llegal-opcode interrupt command|[,I1D]
CMOVCS command([,ID] GETPS Rd
GETST Rd
Vector Address Map CMOVGC Rs,command],ID] —
Trap# Address Desc. Trap# Address Desc. CMOVGC Rs;,Rs,,size,com-
" mand [,ID] INC
-32768 | O00OF FFEOh | Applica- 12 FFFF FE60h Re-
to to tion to to served CMOVMC *Rs+,transfers, JAcc Address
-1 0000 0000h | specific 15 FFFF FDEOh size,command],ID] JRoc Address
0 | FFFFFFEOh | RESET :g FFFFtEDEOh A’iﬁ:ﬁa‘ CMOVMC —*Rs, transfers, size, " JRce Address
1 FFFF FFCOh INT1 29 FFFF FC40h | specific command[,ID] H JUMP A
s
2 FFFF FFAOh INT2 30 FFFF FC20h | ILLOP CMOVMC *Rs+,Rd,size,com-
3 | FFFFFFBON [o coan | A2PleE" mand [,ID] " LINE {0 | 1}
to to 31 FFFF FCOOh tion
| rerroeoon | served spatic CMP Rs,Rd {| LT
8 | FFFFFEEOh [NMI 32 |FFFFFBEOh | sS CMPI/W,Rd Il LMo Rs,Rd
9 FFFF FECOh HI 33 FFFF FBCOh BF
10 FFFF FEAOh DI 34 FFFF FBAOh | Applica-
to to tion
1 FFFF FE80h wv 32767 | FFF00000h | specific

TMS34020 Assembly Language Instruction Set

TMS34020 Assembly Language Instruction Set

(continued) (continued)
MMFM Rs, [, List] " NEGB Rd SRA K,Rd SWAPF Rs,Rd,0
MMTM Rs, [, List] " NOP SRA Rs,Rd TFILL XY
MODS Rs,Rd NOT Rd SRL K,Rd TRAPN
MODU Rs,Rd OR As,Ad SRL As,Rd TRAPL
MOVB RS,*Rd ORI /L,Rd SUB RS,Rd VBLT
MOVB *RS,Rd !‘ PFILL XY SUBB RS,Rd VFILL
MOVB *Rs(Offset),Rd PIXBLT B,L SUBI/W,Rd VLCOL
MOVB *As(SOffset), PIXBLT B,XY SUBI/L,Rd XOR Rs,Ad
*Rd(DOffset) PIXBLT L.L SUBK K,Rd XORI IL,Rd
MOVB Rs,@DAddress g PIXBLT LiiL SUBXY Rs,Rd ZEXT Rd,F
MOVB @SAddress,Rd [f
MOVB @SAddress 1t PIXBLT LXY ; ; :
@DAddress PIXBLT XY,L Boolean Pixel-Processing Options
MOVE Rs,Rd PIXBLT XY,XY 00000 Source — Destination
MOVE Rs,*Rd[,F] PIXT Rs,*Rd 00001 Source AND Destination — Destination
MOVE Rs,—*Rd[F] PIXT As,*Ad XY 00010) Source AND ~Destination — Destination
00011 0s — Destination
MOVE As,*Rd+[F] PIXT *Hs,Rd 00100 Source OR ~Destination — Destination
MOVE *Rs,Rd],F] PIXT *Rs,*Rd 00101 Source XNOR Destination — Destination
MOVE —*Rs,Rd|[,F] PIXT *Rs.XY,Rd 00110 ~Destination — Destination
MOVE *Rs+,Rd[,F] PIXT *Rs.XY,*Rd.XY 00111 Source NOR Destination — Destination
MOVE *Rs,*Rd],F] POPST 01000 Source OR Destination — Destination
MOVE —*As,—RdF] SUSHST 01001 Destination — Destination
d 4 01010 Source XOR Destination — Destination
MOVE *Rs+*Rd+ | PUTST As 01011 ~Source AND Destination — Destination
MOVE Rs,*Rd(Offset)[,F] RETI 01100 1s — Destination
MOVE *Rs(Offset),Rd[.F] RETM 01101 ~Source OR Destination — Destination
MOVE *Rs(Offset),*Rd-+[,F] RETS [N 01110 Source NAND Derstin.ation —> Destination
MOVE *Rs(SOffset), REV g 01111 ~Source —> Destination
*Rd(DOffset)[,F] ALK Ad . - . .
MOVE Rs, @DAddress[,F] AL As.Ad Arithmetic Pixel-Processing Options
MOVE @SAddress, RdLF1 RMO 10000 Source + Destination — Destination
MOVE @SAddress,*Rd+/[,F] RPIX g 10001 ADDS(Source, Destination) — Destination
MOVE @SAddress, 10010 Destination — Source — Destination
@DAddress|,F] SETC 10011 SUBS(Source, Destination) — Destination
MOVI IW,Rd SETCDP 10010 MAX(Source, Destination) — Destination
MOVI IL,Rd SETCMP 10101 MIN(Source, Destination) — Destination
MOVK K Ad SETCSP 10110—11111 Reserved
MOVX Rs,Rd SETF FS,FE,F
MOVY Rs.Ad SEXT AAF Status Register
1 222726252423222121181716
MPYS Rs,ARd SLA K,Rd SN | 300 | 29 I V8 :I.' ||':::: BFI X |I‘ " ,. ,.,' ssliE ~:" "E y J,:‘l".,.9:.."_‘.;.‘“,,;“.,,:""I‘,i:“"',ﬂ’“‘,..
MPYU Rs,Ad SLA As,Rd | FE Fs1 FEO FSO
MWAIT SLLK.Rd 1514131211109 8 7 6 5 4 3 2 1 0
NEG Rd SLL Rs,Rd Note: Shaded portions are reserved.
7 8

Index

12-pin connector, mechanical dimensions, A-10 . linear addressing, 3-3, 3-15
12-pin header, A-3 little-endian, 3-20—3-25, 4-21, 7-44
3-wire interface, 11-1 local memory, 3-3
multiplexed addressing, 8-51—8-53
n nonmultiplexed addressing, 8-50
modes, 13-2—13-9
A-file registers (AO—A14), 4-6 absolute addresses, 13-3

constants, 13-2
immediate values, 13-2
register-direct, 13-4
register-indirect, 13-5

initial state following reset, 6-23
ABS instruction, 13-32
ABS (’34082 pseudo-op), 14-9, 14-10

ABSD ('34082 pseudo-op), 14-11 in XY mode, 13-9
ABSF ('34082 pseudo-op), 14-12, 14-13 with offset, 13-6
absolute addresses, 13-3 with postincrement, 13-7
ADD instruction, 13-33 __ With predecrement, 13-8
ADD (34082 pseudo-op), 14-14, 14-15 multiplexing, 4-22
. . pixel arrays, 4-30, 4-79
ADDC mstruct_lon, 13-34 prefetching (for host accesses), 4-60, 7-10—7-12
ADDD ('34082 pseudo-op), 14-16 range, 3-3
ADDF ('34082 pseudo-op), 14-17, 14-18 RCA values at row-address time, 4-21
ADDI screen-refresh address, 4-41, 4-42, 4-78
16-bit (short) version, 13-35 segments within the cache, 5-2, 5-3
32-bit (long)version, 13-36 subsegments within a cache segment, 5-2, 5-3
ADDK instruction, 13-37 tap point, 4-44, 4-45
address/status portion (local-memory cycle), 8-8, two 16-bit registers as a 32-bit register, 4-15,
8-12 4-32, 4-46, 4-75
addressing window
address latch, 2-11 end address, 4-90
autoincrementing (for host accesses), 4-59, 4-60, start address, 4-91
7-12—7-15 XY addressing, 3-14, 4-25, 4-28, 4-34, 4-50,
big-endian, 3-20—3-25, 4-21, 7-44 4-73, 4-90, 4-91
comparison feature (for host accesses), 4-60, XY-to-linear conversion, 3-15—3-17, 4-28, 4-34,
7-12 4-72,4-83

display screen, 4-32, 4-40, 4-46) i
implicit addressing, 7-12 ADDXY instruction, 13-38

instruction words, in cache, 5-3, 5-5 ADDXY!] instruction, 13-39

Index-1

Index

algorithms
cache
control, 5-3
replacement, 5-4
display pitch, 3-13

least-recently-used (cache replacement), 5-4

XY-to-linear conversion, 3-15
ALTCH signal, 2-9, 2-11, 8-2, 10-2
American video standards

NTSC, 9-27

RS-170, 9-27
AND instruction, 13-40
ANDI instruction, 13-41
ANDN instruction, 13-42
ANDN!I instruction, 13-43
ANSIC, 1-11
applications of the TMS34020, 1-3
arbitration logic

examples, 11-15—11-18

multiprocessor systems, 11-13—11-15
archiver, 1-11

arithmetic instructions, 13-24
ABS, 13-32
ADD, 13-33
ADDC, 13-34
ADDI (16 bits), 13-35
ADDI (32 bits), 13-36
ADDK, 13-37
ADDXY, 13-38
ADDXY]I, 13-39
DEC, 13-94
DIVS, 13-96—13-97
DIVU, 13-98—13-99
INC, 13-134
MODS, 13-152
MODU, 13-153—13-157
MPYS, 13-172—13-174
MPYU, 13-175—13-176
SUB, 13-241
SUBB, 13-242
SUBI, 13-243, 13-244
SUBK, 13-245
SUBXY, 13-246

arithmetic pixel-processing options, 4-26
array sizes for DRAMs, 8-52

arrays. See pixel arrays

assembler, 1-11

assembly-language, tools, 1-10—1-13, 3-24

Index-2

autoincrementing, 7-12—7-15

disabled, 7-14

legal HBS combinations, 7-13
reads and writes, 7-14

writes only, 7-14

auxilary graphics instructions

CLIP, 13-55

FPIXEQ, 13-126—13-127
FPIXNE, 13-128—13-129
PFILL, 13-184—13-189
RPIX, 13-225

TFILL, 13-249—13-252
VBLT, 13-259—13-261
VFILL, 13-262—13-263
VLCOL, 13-264—13-265

B-file registers (B0—B14), 4-6, 4-7, 4-

COLORO, 4-18, 4-74
COLORH1, 4-19, 4-74
DADDR, 4-30
DPTCH, 4-34
DYDX, 4-50

initial state following reset, 6-23
MADDR, 4-71
MPTCH, 4-72
OFFSET, 4-73
PATTERN, 4-74
SADDR, 4-79
SPTCH, 4-83
WEND, 4-90
WSTART, 4-91

background color, 4-18, 4-74
bandwidth, host interface, 7-34—7-36
bank selects, 8-57

BEN bit, 3-20, 4-21, 8-4

write protecting the bit, 4-22

BF (bus fault) status bit, 4-3, 6-3, 6-19
big-endian addressing, 3-20—3-25

assembling code for, 3-24—3-25
default at reset, 3-20, 4-21

effect of BEN bit, 3-20, 4-21

host interface, 7-44

instruction timing, 3-256—3-26
processors that use it, 3-20
selecting, 3-20, 4-21

binary PIXBLTs

use of COLORO, 4-18
use of COLOR1, 4-19

Index

blanking
composite blanking, CBLNK, 2-15
horizontal blanking, 9-9
ending (HEBLNK), 4-53
HBLNK, 2-15
starting (HSBLNK), 4-66
vertical blanking, 9-9
ending (VEBLNK), 4-86
starting (VSBLNK), 4-88
VBLNK, 2-15
BLMOVE instruction, 13-44—13-45
implied operands
DADDR, 4-30
SADDR, 4-79
block of pixels. See arrays

block accesses
reads

of TMS34020 memory (by host), 4-59, 4-60

writes, 4-22

to TMS34020 memory (by host), 4-59, 4-60

with mask, 4-22

block diagram, TMS34020, 1-5
block-write cycles

data expansion, 8-42

data mapping, 8-41

status code on local-memory cycle, 8-11
Boolean pixel-processing options, 4-26
branch instructions, effects on PC, 4-4
breakpoints, 6-28
British video standards

PAL, 9-27
BSFLTD registers, 4-15—4-17, 6-19
BSFLTDH, 4-15—4-17, 6-19
BSFLTDL, 4-15—4-17, 6-19
BSFLTST register, 4-17, 6-19
BTST

constant version, 13-46
register version, 13-47
buffer delays for emulator connections, A-5
bulk initialization, 9-47
bus error/bus fault, 2-11, 7-9
bus-fault interrupt, 6-19—6-20, 7-9
service routine, 6-20
coprocessor cycles, 10-9
CPU-initiated access, 8-14
host-initiated access, 8-14
local-memory cycles, 8-14
on a host-initiated access, 4-64

screen-refresh cycle, 8-14

use of BSFLST to save memory controller state,

4-17

use of BSFLTD to store LAD data, 4-15—4-17

bus-fault interrupt, priority, 6-7
bus-locked operation
and dynamic bus sizing, 8-29
status code on local-memory cycle, 8-11
bus-request codes
access termination, 11-5—11-12
high-priority request, 11-5—11-12
low-priority request, 11-5—11-12
no request, 11-5—11-12
bus-requests priorities, 2-13, 8-6

bus size signal (SIZE16), 2-11

BUSFLT signal, 2-9, 2-11, 6-2, 6-19, 7-9, 8-2, 8-12,

8-18, 10-2
bus cycle completion codes, 2-12

byte-select strobes, 4-57, 7-2
big-endian addressing, 7-44
little-endian addressing, 7-44

bytes, 3-1

C (carry) status bit, 4-3

C compiler, 1-11, 1-13

cache, 5-1—5-12
accessible words, 5-3
architecture, 5-2
bypassing the cache, 5-8

cache fill, status code on local-memory cycle,

8-11
cache hit, 5-5
cache miss, 5-5

segment miss, 5-6

subsegment miss, 5-5
CD (cache disable) bit, 5-8
CF (cache flush) bit, 5-8
control algorithm, 5-3
disabling the cache, 4-27, 5-8
downloading new code from a host, 5-8
fetching data after a cache miss, 5-6
flushing the cache (CF), 4-61, 5-8
initial state following reset, 6-23
internal parallelism, 5-10
least-recently-used algorithm, 5-4
operation, 5-5—5-8
organization, 5-2

Index-3

Index

P flags, 5-2, 5-4
performance when enabled vs. disabled, 5-9
reason it's provided, 5-1
replacement algorithm, 5-4
segments, 5-2
self-modifying code, 5-8
setting the CD bit, 5-8
setting the HLT bit, 5-8
size, 5-3
SSA registers, 5-2
subsegments, 5-2
CALL instruction, 13-48
CALLA instruction, 13-49
CALLR instruction, 13-50
CAMD signal, 2-9, 2-12, 8-2, 8-18
capturing a video image, 9-48
Cartesian coordinates, 3-14, 3-19
CAS0—CAS3 signals, 2-9, 2-12, 8-2, 10-2
CBLNK/VBLNK signal, 2-10, 2-15, 9-2
selection, 4-38
CBP bit, 3-20, 4-22, 8-4
CD bit, 4-27, 5-8
CEXEC instruction, 13-51—13-93
CF bit, 4-57, 4-61, 5-8, 7-4
CHECK (’34082 pseudo-op), 14-19
CL30, 1-11

CLIP instruction, 13-55—13-56
implied operands, DADDR, 4-30
CLKIN signal, 2-10, 2-16, 8-2
clocks
CLKIN (clock in), 2-16
LCLK1, LCLK2 (local output clocks), 2-16
SCLK (serial data clock), 2-15
VCLK (video clock), 2-15

CLR instruction, 13-57

CLRC instruction, 13-58

CMOVCG instruction, 13-59—13-60

CMOVCM instruction, 13-61—13-62, 13-63—13-65
CMOVCS instruction, 13-66

CMOVGC instruction, 13-67—13-68, 13-69—13-70

CMOVMC instruction, 13-71—13-73, 13-74—13-77,
13-78—183-79

CMP instruction, 13-80

CMP (34082 pseudo-op), 14-20, 14-21
CMPD ('34082 pseudo-op), 14-22
CMPF ('34082 pseudo-op), 14-23, 14-24

Index-4

CMPl instruction, 13-81, 13-82
CMPK instruction, 13-83
CMPXY instruction, 13-84
code
debugging, single-step mode, 6-28—6-32
downloading new code from a host, 5-8, 7-32
restrictions for compatibility between TMS34010
and TMS34020, 1-17
self-modifying, effects on instruction cache, 5-8
COFF, 1-11
color-latch register loads, status code on local-
memory cycle, 8-11
COLORQO register, 4-18, 4-74
COLORT1 register, 4-19, 4-74
column address
bus, 2-12
mode, 2-12
strobes, 2-12
column-address time, 4-21, 8-9

compare instructions, 13-24
BTST (constant), 13-46—13-50
BTST (register), 13-47—13-50
CMP, 13-80
CMPI, 13-81—13-93
CMPK, 13-83—13-93
CMPXY, 13-84
CPW, 13-85—13-86
compatibility
with future GSPs
local-memory read & write cycles, 8-19
status register values, 4-3
with the TMS34010, 1-16—1-18
code restrictions, 1-17—1-18
CONTROL register, 4-24
DPYADR register, 4-35
DPYSTRT register, 4-48
DPYTAP register, 4-49
HSTADRH register, 4-56
HSTDATA register, 4-65
screen-refresh registers, 9-8
completing a successful local-memory cycle, 8-13
composite video, 9-156—9-17
display example, 9-40—9-42
enabling/disabling, 4-38
equalization pulses, 9-15—9-16
serration pulses, 9-15—9-16
sync direction, 4-37
condition codes for jump instructions, 13-26

Index

CONFIG register, 4-20—4-24, 8-4
BEN bit, 3-20, 4-20, 4-21, 8-4
CBP bit, 3-20, 4-20, 4-22, 8-4
RCM bits, 4-20, 4-21, 8-4
RR bits, 4-20, 4-23, 8-4
VEN bit, 8-4
write protecting the register, 4-22

constants, 13-2

context-switching instructions, 13-25—13-27
CALL, 13-48
CALLA, 13-49
CALLR, 13-50
RETI, 13-217—13-218
RETS, 13-220
TRAP L, 13-256—13-258
TRAP N, 13-253—13-255

CONTROL register, 4-24—4-28
CD bit, 4-24, 4-27, 5-8
compatibility with TMS34010, 4-24
PBH bit, 4-24, 4-25
PBV bit, 4-24, 4-26
PPOP bits, 4-24, 4-26—4-27
T bit, 4-24, 4-25
TM bits, 4-24
VEN bit, 4-22
W bits, 4-24, 4-25, 6-17

CONVDP register, 4-286—4-30
SETCDP instruction, 4-28
XY-to-linear conversion, 3-15, 3-16

converting. . .
an XY address to a linear address, 3-15—3-17
composite video signals to separate signals, 9-34
pixel access into register transfers, 9-47
separate video signals to a composite signal,

9-34

CONVMP register, 4-286—4-30
SETCMP instruction, 4-28
XY-to-linear conversion, 3-15, 3-16

CONVSP register, 4-28—4-30
SETCSP instruction, 4-28
XY-to-linear conversion, 3-15, 3-16

coprocessor interface, 10-1—10-18

aborts, 10-17

general coprocessor commands
command field, 10-6—10-7
format, 10-5—10-7
ID field, 10-5—10-7
parameter size, 10-6—10-7

general coprocessor instructions, 10-3—10-4

local-memory cycles, 10-4, 10-8—10-16
bus faults, 10-9
ending, 10-9
inserting wait states, 10-9
retrying, 10-9
overview, 10-3
passing commands to a coprocessor, 10-8
signals, 10-2—10-18
ALTCH, 10-2
BUSFLT, 10-2
‘CAS0—CAS3, 10-2
LADO—LAD31, 10-2
LCLK1, LCLK2, 10-2
LINT1, LINT2, 10-2
LRDY, 10-2
SF, 10-2
WE, 10-2
status checks, 10-17
status code on local-memory cycle, 8-10
system configuration, 10-18
TMS34082, 14-1—14-7
TMS34082 pseudo-ops, 10-3
transferring data, 10-8
coprocessor to local memory, 10-15
coprocessor to TMS34020 register, 10-12
local memory to coprocessor, 10-14
sequence, 10-9
TMS34020 register to coprocessor, 10-11
CPW instruction, 13-85—13-86
implied operands
WEND, 4-90
WSTART, 4-91
CSD bit, 4-37, 9-6
CST bit, 4-39, 9-6
effect on local-memory cyles, 8-30, 8-33, 8-36
CSYNC signal
equalization pulses, 9-17
selecting as input or output, 4-37
serration pulses, 9-16
CSYNC/HBLNK signal, 2-10, 2-15, 9-2
selection, 4-38
CVD bit, 4-38, 9-6
CVDF ('34082 pseudo-op), 14-25
CVDI (34082 pseudo-op), 14-26
CVDXYL instruction, 13-87—13-88
implied operands
CONVDP, 4-29
DPTCH, 4-34
PSIZE, 4-77

Index-5

Index

CVFD ('34082 pseudo-op), 14-27, 14-28
CVF! ('34082 pseudo-op), 14-29, 14-30
CVID ('34082 pseudo-op), 14-31
CVIF (34082 pseudo-op), 14-32, 14-33, 14-34
CVMXYL instruction, 13-89—13-90
implied operands
CONVMP, 4-29
MPTCH, 4-72
PSIZE, 4-77
CVSXYL instruction, 13-91
implied operands
CONVSP, 4-29
PSIZE, 4-77
SPTCH, 4-83
CVXYL instruction, 3-16, 13-92—13-93
implied operands
CONVDP, 4-29
DPTCH, 4-34
OFFSET, 4-73
PSIZE, 4-77

DADDR register, 4-30
with DYDX for common rectangle function, 4-30
data
access, status code on local-memory cycle, 8-11
expansion, 8-37
mapping, during block-write cycles, 8-41
structures, 3-1—3-32
bytes, 3-1
fields, 3-1, 3-3, 3-5
pixel arrays, 3-1, 3-186—3-19
pixels, 3-1, 3-10—3-13
stacks, 3-26
subcycle (local-memory cycle), 8-12
data portion (local-memory cycle), 8-8, 8-9
DDIN signal, 2-9, 2-11, 8-2
DDOUT signal, 2-9, 2-11, 8-2, 8-18
debugging, A-1
debugging code in single-step mode, 6-28—6-32
DEC instruction, 13-94
delays. ..
buffer delays in emulation, A-5
recognizing interrupts, 6-11
to host accesses, 7-37—7-40
to video synchronization, 9-33
design considerations, for emulation, A-7

Index-6

destination pitch
CONVDRP register, 4-28—4-30
conversion factor, 4-28—4-30
DPTCH register, 4-34—4-35
development tools overview, 1-10—1-13
DIE bit, 4-69, 6-3
DINC registers, 3-11, 4-32, 9-7
SRINC bits, 4-32, 4-33, 9-7
YZINC bits, 4-32, 4-33, 9-7
DINCH, DINCL. See DINC registers
DINT instruction, 13-95
DIP bit, 4-70, 6-4, 6-17
direct operands, 13-4
display
address output during a screen refresh, 4-42
blanking ration (DBR), 9-36
control, 4-36—4-41
increment value, 4-32
interrupt
DPYINT register, 4-41
enabling, 4-69
pending indication, 4-70
mask, 4-44—4-46
memory, 8-56
coordinates, 3-13
dimensions, 3-12
requirements for hardware, 8-56
requirements for multiplexed addressing, 8-54
panning, 9-57
pitch, 3-13
screen origin
alternate, 3-12
default, 3-12
screen sizes, 9-36
start address, 4-46—4-48
display interrupt, 6-17, 9-37
disabling, 6-6
enabling, 6-6
priority, 6-7
trap number, 6-16
vector address, 6-8, 6-16
DIVD ('34082 pseudo-op), 14-35
DIVF ('34082 pseudo-op), 14-36, 14-37
DIVS instruction, 13-96—13-97
DIVS (34082 pseudo-op), 14-38, 14-39
DIVU instruction, 13-98—13-99
dot clock, 9-36
downloading new code from a host, 5-8

Index

DPTCH register, 4-34—4-35
XY-to-linear conversion, 3-15
DPYADR register, 4-35
DPYCTL register, 4-36—4-41, 8-4, 9-5
CSD bit, 4-36, 4-37, 9-6
CST bit, 4-36, 4-39, 9-6
CVD bit, 4-36, 4-38, 9-6
ENV bit, 4-36, 4-40, 9-6
HSD bit, 4-36, 9-5
NIL bit, 4-36, 4-40, 9-6
SRE bit, 4-36, 4-40, 9-6
SSV bit, 4-36, 4-38, 9-6
VCE bit, 4-36, 4-39, 9-6
VSD bit, 4-36, 4-37, 9-6
DPYINT register, 4-41—4-42, 6-17
DPYMSK register, 4-44—4-46, 8-58, 9-8
and SRST or SRNX, 9-55
DPYNX registers, 4-42—4-44, 9-7
increment value, 4-32
SRNX bits, 4-42, 4-43, 9-7
YZCNT bits, 4-42, 9-7
DPYNXH, DPYNXL. See DPYNXL registers
DPYST registers, 4-46—4-48, 9-7
SRST bits, 4-46

DPYSTH, DPYSTL. See DPYST registers
DPYSTRT register, 3-11, 4-48
DPYTAP register, 4-49

DRAM/VRAM interface, 8-1—8-60
block-mask local-memory cycles, 8-37—8-43
DRAM-refresh local-memory cycles, 8-44—8-45
serial-register transfers, 8-29—8-33
signals, 2-12, 8-2—8-3
CAMD, 2-12, 8-2
CAS0—CAS3, 2-12, 8-2
PGMD, 8-3
RAS, 2-12,8-3
RCA0O—RCA12, 2-12, 8-3
SF, 2-12, 8-3
SIZE16, 8-3
TR/QE, 2-12, 8-3
WE, 2-12, 8-3
write-mask local-memory cycles, 8-34—8-36
DRAMs
array sizes, 8-52.
CAS-before-RAS cycles, 4-78
refreshes, 4-78, 8-6, 8-44
status code on local-memory cycle, 8-10
selecting the refresh rate, 4-23

DRAV instruction, 13-100—13-102
implied operands
COLOR1, 4-19
CONTROL, 4-27
CONVDP, 4-29
DPTCH, 4-34
OFFSET, 4-73
PMASK, 4-76
PSIZE, 4-77
WEND, 4-90
WSTART, 4-91
DSJ instruction, 13-103
DSJEQ instruction, 13-104—13-105
DSJNE instruction, 13-106—13-107
DSJS instruction, 13-108
DYDX register, 3-18, 4-50—4-52
with DADDR for common rectangle function,
4-30, 4-50
dynamic bus sizing
and bus-locked operation, 8-29
data transfers, 8-26
page mode, 8-28
SIZE16 signals, 2-11

EINT instruction, 13-109
EMG bit, 4-63, 7-4, A-7
EMIEN bit, 4-64, 7-4, A-7
EMR bit, 4-63, 7-4, A-7
EMU instruction, 13-110
EMUO—EMUS signals, 2-10, A-3, A-4, A-6
emulation
buffer delays, A-5
design considerations, A-1—A-10, A-7
emulator connector, A-3
host communications, 4-63, A-7
inhibiting the host-interface port, 4-63
mechanical dimensions
12-pin connector, A-10
ped, A-9
target cable, A-9
overview of an emulation system, A-2
pod interface, A-6
preventing the host from accessing local memory,
4-63
requesting local memory, 8-7
reset and interrupts, A-7

Index-7

Index

signals
buffering, A-4
EMUO—EMUS3, A-3, A-4, A-6
status code on local-memory cycle, 8-10
endian addressing modes. See big-endian address-
ing
ENV bit, 4-40, 9-6
equalization pulses, 9-15—9-16
on CSYNC, 9-17
European video standards
PAL (British), 9-27
SECAM (French), 9-27
even field (interlaced video), 9-21
EXGF instruction, 13-111
EXGPC instruction, 13-112
EXGPS instruction, 13-113
extending a local-memory cycle with wait states,
8-12
external interrupts, 6-15
disabling, 6-6
enabling, 4-69, 6-6
pending indications, 4-70
priority, 6-7
recognition delay, 6-11
source, 6-15
vector addresses, 6-8, 6-15
external synchronization, 9-29—9-35
composite sync, 9-30—9-35
conversion, 9-34
horizontal sync, 9-30—9-35
interlaced video, 9-30—9-35
odd/even field alignment, 9-31—9-35
noninterlaced video, 9-30—9-35
vertical sync, 9-30—9-35
external syncrhonization
loading the video counters, 9-32
pulse widths, 9-35
syncing to VCLK, 9-32

fast fills, 8-37
FEO (field extension 0) status bit, 4-2
FE1 (field extension 1) status bit, 4-2
features, of the TMS34020, 1-2
fields, 3-1, 3-3, 3-5—3-9
alignment in memory, 3-7
aligned to 1-byte boundary, 3-7

Index-8

aligned to 2-byte boundaries, 3-6
straddling a word and aligned on 2 byte
boundaries, 3-7
straddling a word and aligned to 1 byte bound-
ary, 3-8
straddling a word and not byte aligned, 3-8
extraction, 3-6
field 0, 3-5
FEQ (field extension) bit, 3-5, 4-2
field size decoding, 3-5
FSO (field size) bits, 3-5, 4-2
sign-extending, 4-2
zero-extending, 4-2
field 1, 3-5
FET1 (field extension) bit, 3-5, 4-2
field size decoding, 3-5
FS1 (field size) bits, 3-5
sign-extending, 4-2
zero-extending, 4-2
field extension
sign-extending, 4-2
zero-extending, 4-2
in a general-purpose register, 3-5
insertion, 3-6, 3-8, 3-9
pixels, DPYSTRT register, 3-11
PSIZE register, XY-to-linear conversion, 3-15
reading, 3-5
size, 3-5
starting address, 3-5
storage in external memory, 3-6
writing, 3-5
FILL instructions
FILLL, 13-114—13-116
implied operands
COLOR1, 4-19
CONTROL, 4-27
DADDR, 4-30
DPTCH, 4-34
DYDX, 4-50
PMASK, 4-76
PSIZE, 4-77
FILL XY, 13-117—13-120
implied operands
COLORT, 4-19
CONTROL, 4-27
CONVDP, 4-29
DADDR, 4-30
DPTCH, 4-34
DYDX, 4-50
OFFSET, 4-73
PMASK, 4-76
PSIZE, 4-77

Index

WEND, 4-90
WSTART, 4-91
source address, 4-30, 4-79

FLINE instruction, 13-121—13-125
destination address, 4-30
implied operands

COLORQo, 4-18
COLOR1, 4-19
CONTROL, 4-27
CONVDRP, 4-29
DADDR, 4-30
DPTCH, 4-34
DYDX, 4-50
MPTCH, 4-72
PATTERN, 4-74
PMASK, 4-76
PSIZE, 4-77
SADDR, 4-79
WEND, 4-90
WSTART, 4-91
source address, 4-79

flushing the cache, 4-61, 5-8
foreground color, 4-19, 4-74

FPIXEQ instruction, 13-126—13-127
implied operands
COLORO, 4-18
MPTCH, 4-72
PMASK, 4-76
PSIZE, 4-77
FPIXNE instruction, 13-128—13-129
implied operands
COLORO, 4-18
MPTCH, 4-72
PMASK, 4-76
PSIZE, 4-77
French video standards
SECAM, 9-27

general-purpose coprocessor instructions
CEXEC, 13-51—13-93
CMOVCG, 13-59—13-60
CMOVCM, 13-61—13-62, 13-63—13-65
CMOVCS, 13-66
CMOVGC, 13-67—13-68, 13-69—13-70
CMOVMC, 13-71—13-73, 13-74—13-77,

138-78—13-79
general-purpose register files. See register files

GETCST (34082 pseudo-op), 14-40
GETPC instruction, 13-130
GETPS instruction, 13-131
GETST instruction, 13-132
Gl signal, 2-9, 2-13, 8-18, 11-2
graphics instructions
CPW, 13-85—13-86
CVXYL, 13-92—13-93
destination address, 4-30
DRAV, 13-100—13-102
FILL L, 13-114—13-116
FILL XY, 13-117—13-120
FLINE, 13-121—13-125
interrupts, 6-13—6-14
LINE, 13-142—13-145
LINIT, 13-146
LMO, 13-147
PIXBLT instructions, 13-190—13-205
PIXT instructions, 13-206—13-213
source address, 4-79
graphics operations
interrupts, 6-13—6-14
PIXBLT direction, 4-25, 4-26
pixel size, 4-77
pixel-processing operations
arithmetic options, 4-26
Boolean options, 4-26
selecting, 4-26—4-27
plane masking, 4-75
transparency, 4-24, 4-25
window checking, 4-25, 4-90, 4-91

HA5—HA31 signals, 2-10, 2-14,7-2,7-7
HACK bit, 4-57, 4-57, 7-3
halt latency, 7-39
halting TMS34020 execution, 7-32
acknowledging the halt state, 4-57
HLT bit, 4-61
HBFI bit, 4-64, 6-5, 6-21, 7-5, 7-9
HBREN bit, 4-64, 6-5, 6-21, 7-5, 7-9
HBS0—HBS3 signals, 2-10, 2-14,.7-2, 7-7
HCOUNT register, 4-52—4-53, 9-4
external synchronization, 9-29
loading with the SETHCNT value, 4-81

HCS signal, 2-10, 2-14, 7-2, 7-7
HDST signal, 7-2

Index-9

Index

HDST signal, 2-10, 2-14
HEBLNK register, 4-563—4-54, 9-4
HESERR register, 4-54—4-55, 9-4
HESYNC register, 4-565—4-57, 9-4
HIE bit, 4-69, 6-3
HINC bit, 4-57, 4-60, 7-4
effects on address comparison, 7-10
effects on autoincrementing, 7-13
effects on prefetching, 7-10
interaction with HPFW, 4-59, 7-10
HINT signal, 2-10, 2-14, 4-64, 6-2, 6-21, 7-2, 7-9
HIP bit, 4-70, 6-4, 6-17
HLB bits (HLBO—HLB1), 4-57, 4-57, 7-3
effects on prefetching, 7-11
HLT bit, 4-57, 4-61, 6-4, 6-22, 7-4
setting for downloading new code, 5-8
software reset, 7-32
HOE signal, 2-10, 2-14, 7-2
horizontal
back porch, 9-10
blanking
minimum duration, screen refreshes, 9-51
screen refreshes, 9-42
front porch, 9-10
video timing (internal), 8-11—9-12
horizontal blanking, 9-9
VRAM tap point, 4-80
horizontal sync, 9-9
direction, 4-36
horizontal timing
HCOUNT register, 4-52
HEBLNK register, 4-53
HESERR register, 4-54
HESYNC register, 4-55
HSBLNK register, 4-66
HTOTAL register, 4-67
SETHCNT register, 4-81
VEBLNK register, 4-86
host interface, 7-1—7-44
access delays, 7-37—7-40
address identification, 4-57, 7-7
autoincrementing, 7-12—7-15
bandwidth, 7-34
optimizing, 7-35
basic communication, 7-7—7-9
big-endian addressing, 7-44
block diagram, 7-6
buffering messages, 4-62

,Index-10

bus fault indication, 4-64
byte-select strobes, 2-14, 4-57, 7-7
illustration, 7-8
chip-select, 2-14
completing a host access, 7-16—7-17
data latch
output enable, 2-14
strobe, 2-14
default cycle, 7-15, 8-7
downloading new code from host, 7-32
emulation considerations, A-7
emulator communications, 4-63
features that improve performance, 7-10
address comparison, 4-60—4-61, 7-12
autoincrementing, 4-60—4-61, 7-12
host-default cycle, 7-15
prefetching, 4-59—4-61, 7-10
halt latency, 7-39
implicit addressing, 7-12—7-15
interrupts, 4-58, 4-64, 6-16, 6-21, 7-9
enabling, 4-69
HINT, 2-14
message to host, 4-63
message to TMS34020, 4-62
pending indication, 4-70
little-endian addressing, 7-44
messages, 4-62
multiple-TMS34020 system, 7-40—7-41
prefetching data, 7-10
read cycles, 7-8
back-to-back with autoincrementing, HREAD
as strobe, 7-23
back-to-back with prefetching, HCS as strobe,
7-22
single read from l/O register, HREAD as
strobe, 7-20 .
single read, 1 wait state, HCS as strobe, 7-21
single read, HCS as strobe, 7-19
successive reads to same location, HCS and
HREAD as strobes, 7-24
read strobe, 2-14
registers
CONFIG, 4-20
HSTCTLH, 4-57—4-62, 7-3
HSTCTLL, 4-62—4-65, 7-4
retry indication, 4-64, 7-9
signals, 2-13
BUSFLT, 7-9
HA5—HA31, 2-14, 7-2, 7-7
HBS0—HBS3, 2-14, 7-2, 7-7

Index

HCS, 2-14, 7-2
HDST, 7-2
HDST, 2-14 .
HINT, 2-14, 7-2, 7-9
HOE, 2-14, 7-2
HRDY, 2-14, 7-2
HREAD, 2-14, 7-2
HWRITE, 2-14, 7-2
LRDY, 7-9
status code on local-memory cycle, 8-10
synchronizing host requests, 7-35
systems with 16-bit memory devices, 7-42—7-43
timing examples, 7-18—7-31
TMS34020 acknowledges halt, 4-57
use of page mode, 8-24
worst-case delay, 7-37
bus-master arbitration, 7-38
CPU cycles, 7-39
DRAM-refresh cycles, 7-38
host request syncronization, 7-38
previous host cycle, 7-38
screen-refresh cycles, 7-38
write cycles, 7-9
back-to-back writes with autoincrementing,
HWRITE as strobe, 7-29
back-to-back writes with prefetching & autoin-
crementing, HREAD and HWRITE as
strobe, 7-31
back-to-back writes with prefetching, HCS as
strobe, 7-30
back-to-back writes, HCS as strobe, 7-28
single write to I/O register, HWRITE as strobe,
7-26
single write, 1 wait state, HCS as strobe, 7-27
single write, HCS as strobe, 7-25
write strobe, 2-14

host interrupt
disabling, 6-6
enabling, 6-6
host-address bus, 2-14, 7-2, 7-7

host-byte selects, legal combinations for autoincre-
menting, 7-13

host-interface, bus fault indication, 7-9
host-present mode, 6-25

HPFW bit, 4-57, 4-59, 7-3
effects on autoincrementing, 7-13
effects on prefetching, 7-10

interaction with HINC, 4-59, 7-10

HRDY signal, 2-10, 2-14, 7-2
activating for. . .

host reads, 7-16
host reads and writes after prefetches, 7-17
host writes, 7-16

HREAD signal, 2-10, 2-14, 7-2, 7-7
HRYI bit, 4-64, 6-5, 7-5, 7-9
HSBLNK register, 4-66—4-67, 9-4
HSD bit, 4-36, 9-5

HSTADRH, HSTADRL, 4-56, 7-5

HSTCTLH register, 4-57—4-62
CF bit, 4-61, 5-8, 7-4
HACK bit, 4-57, 7-3
HBFI bit, 7-9
HBREN bit, 7-9
HINC bit, 4-60, 7-4, 7-10, 7-13
HLB bit, 7-3, 7-11
HLB bits, 4-57
HLT bit, 4-61, 5-8, 6-4, 6-22, 7-4, 7-32
HPFW bit, 4-59, 7-3, 7-10, 7-13
HRYI bit, 7-9
NMI bit, 4-58, 6-4, 6-16, 7-3
NMIM bit, 4-59, 6-4, 6-16, 7-3
RST bit, 4-58, 6-4, 7-3

HSTCTLL register, 4-62—4-65
EMG bit, 4-62, 4-63, 7-4, A-7
EMIEN bit, 4-62, 4-64, 7-4, A-7
EMR bit, 4-62, 4-63, 7-4, A-7
HBFI bit, 4-64, 6-5, 6-21, 7-5
HBREN bit, 4-62, 4-64, 6-5, 6-21, 7-5
HBY! bit, 4-62
HRY! bit, 4-62, 4-64, 6-5, 6-21, 7-5
INTIN bit, 4-62, 6-5, 6-16, 7-4
INTOUT, 4-63
INTOUT bit, 4-62, 6-5, 6-21, 7-4
MSGIN, 4-62, 4-63
MSGIN bits, 4-62, 6-5, 6-16, 7-4
MSGOUT, 4-63
MSGOUT bits, 4-62, 6-5, 6-21, 7-4

HSTDATA register, 4-65, 7-5

HSYNC signal, 2-10, 2-15, 9-3
selecting as input or output, 4-36

HTOTAL register, 4-67—4-68, 9-4
HWRITE signal, 2-10, 2-14, 7-2, 7-7

Index-11

Index

I/O registers, 4-9—4-13
BSFLTD, 4-15
BSFLTST, 4-17
CONFIG, 4-20
CONTROL, 4-24
CONVDP, 4-28
CONVMP, 4-28
CONVSP, 4-28
DINC, 4-32
DPYCTL, 4-36
DPYINT, 4-41
DPYMSK, 4-44
DPYNX, 4-42
DPYST, 4-46
HCOUNT, 4-52
HEBLNK, 4-53
HESERR, 4-54
HESYNC, 4-55
host accesses, 8-24
HSBLNK, 4-66
HSTCTLH, 4-57—4-62
HSTCTLL, 4-62
HTOTAL, 4-67
IHOST, 4-68
in the memory map, 3-2, 3-3
initial state following reset, 6-23
INTENB, 4-69
INTPEND, 4-70
memory map, 4-9
PMASK, 4-77
PMASK registers, 4-75
REFADR, 4-78
SCOUNT, 4-80
SETHCNT, 4-81—4-82
SETVCNT, 4-82—4-83
summary, 4-10
VCOUNT, 4-84
VEBLNK, 4-86
VESYNC, 4-87
VSBLNK, 4-88
VTOTAL, 4-89

ID assignments, for coprocessors, 10-6

IDLE instruction, 13-133

IE (global interrupt enable) status bit, 4-2, 6-3, 6-6
IHOST registers, 4-68

illegal opcode interrupt, priority, 6-7

immediate values, 13-2

Index-12

implicit addressing, 7-12—7-15
implied operands
B-file registers, 4-7
summary, 4-8
COLORQO, 4-18, 4-74
COLORT, 4-19, 4-74
CONFIG, 4-20
CONTROL, 4-24
CONVDP, 4-28
CONVMP, 4-28
CONVSP, 4-28
DADDR, 4-30
DPTCH, 4-34
DYDX, 4-50
MADDR, 4-71
MPTCH, 4-72
OFFSET, 4-73
PATTERN, 4-74
PMASK, 4-75
PSIZE, 4-77
SADDR, 4-79
SPTCH, 4-83
WEND, 4-90
WSTART, 4-91
in-circuit emulation, A-1
host communications, 4-64
INC instruction, 13-134
incrementing . . .
automatically for host accesses, 4-60
display address, 4-32
DPYNX, 4-32
HCOUNT, 4-52
SCOUNT, 4-80
VCOUNT, 4-84
incrementing. . ., y-zoom value, 4-32, 4-33, 4-42
indirect operands, 13-5
in XY mode, 13-9
with an offset, 13-6
with postincrement, 13-7
with predecrement, 13-8
instruction cache, 5-1—5-12
accessible words, 5-3
architecture, 5-2
bypassing the cache, 5-8
cache hit, 5-5
cache miss, 5-5
segment miss, 5-6
subsegment miss, 5-5
CD (cache disable) bit, 5-8
CF (cache flush) bit, 5-8

Index

control algorithm, 5-3 NMI, 6-16

disabling the cache, 5-8 single-step interrupt, 6-17
downloading new code from a host, 5-8 window-violation interrupt, 6-17
fetching data after a cache miss, 5-6 internal parallelism, 5-10

flushing the cache, 4-61, 5-8

initial state following reset, 6-23 interrupt, saving information on the stack, 3-29

internal parallelism, 5-10 interrupts, 6-1—6-32

least-recently-used algorithm, 5-4 actions taken, 6-9, 6-10

operation, 5-5—5-8 bus-fault interrupt, 6-19—6-20
organization, 5-2 delays, 6-11

P flags, 5-2, 5-4 sources, 6-12

performance when enabled vs. disabled, 5-9 disabling, 6-6

reason it's provided, 5-1 display interrupt, 4-41, 4-69, 4-70, 6-17, 9-37
replacement algorithm, 5-4 during instruction execution, 4-2, 6-3, 6-9
segments, 5-2 effects on

self-modifying code, 5-8 PC, 6-9

setting the CD bit, 5-8 ST, 6-9

setting the HLT bit, 5-8 effectson. . .

size, 5-3 PC, 4-4

SSA registers, 5-2 SP, 4-5

subsegments, 5-2 emulation considerations, A-7

enabling, 4-2, 4-69, 6-6

instruction set. See TMS34020 instruction set external interrupts, 4-69, 4-70, 6-15

instructions graphics instructions, 6-10, 6-13—6-14
fetches, status code on local-memory cycle, 8-11 host interrupt, 2-14, 4-64, 4-69, 4-70, 6-16, 6-21
interrupting execution, 6-13 host interrupts, 4-64
timings, 15-1—15-12 how many supported?, 6-1

INTENB register, 4-69—4-70, 6-6 illegal-opcode interrupt, 6-18
DIE bit, 4-69—4-70, 6-3 internal interrupts, 6-16
HIE bit, 4-69—4-70, 6-3 latency, 6-11
WVE bit, 4-69—4-70, 6-3 LINT1, LINT2 (local interrupts), 2-16
X1E bit, 4-69—4-70, 6-3 nonmaskable interrupt, 4-58, 6-16
X2E bit, 4-69—4-70, 6-3 pending interrupts, 4-70

interlaced video, 9-21—9-28 priorities, 6-7

processing, 6-9

izati i isters, 6-2
equalization region, 9-17 registers,
serration region, 9-17 HSTCTLH, 4-57, 6-4

display example, 9-40—9-42 HSTCTLL, 4-62, 6-5

electron beam pattern, 9-22 INTENB, 4-69—4-70, 6-3

even field, 9-21 INTPEND, 4-70—4-71, 6-4

external synchronization, 9-31 ST, 4-2,6-3

odd field, 9-21 reset, 6-22—6-27

' host-present mode, 6-25
self-bootstrap mode, 6-25

RESET (system reset), 2-16

service routines, 6-10
returning, 6-10

composite sync

programming vertical registers, 9-24
selecting, 4-40
signal combinations, 9-22

interlist utility, 1-11

internal interrupts, 6-16—6-18 single-stepping through, 6-31
display interrupt, 6-17 signals, 6-2
host interrupt, 6-16 BUSFLT, 6-2
ilegal-opcode interrupt, 6-18 HINT, 6-2

Index-13

Index

LINT1, LINT2, 6-2
RESET, 6-2
single-step interrupt, 6-17, 6-28
interaction with other interrupts, 6-30
traps, 6-8, 6-21
numbers, 6-16
vector, fetches, status code on local-memory
cycle, 8-11
vector addresses, 6-8, 6-16
window violation, 4-69, 4-70, 6-17
INTIN bit, 4-62, 6-5, 6-16, 7-4
INTOUT bit, 4-62, 4-63, 6-5, 7-4
INTPEND register, 4-70—4-71
DIP bit, 4-70—4-71, 6-4, 6-17
HIP bit, 4-70—4-71, 6-4, 6-17
WVP bit, 4-70—4-71, 6-4, 6-17
X1P bit, 4-70—4-71, 6-4, 6-15
X2P bit, 4-70—4-71, 6-4, 6-15
INVD ('34082 pseudo-op), 14-41
INVF ('34082 pseudo-op), 14-42, 14-43

IX (interruptible instruction executing) status bit, 4-2,
6-3

JAcc instruction, 13-135—13-136
JRcc (long) instruction, 13-139—13-140
JRcc (short) instruction, 13-137—13-138
JUMP instruction, 13-141
jump instructions, 13-25—13-31
condition codes, 13-26
DSJ, 13-103
DSJEQ, 13-104—13-105
DSJNE, 13-106—13-107
DSJS, 13-108
effects on PC, 4-4
JAcc, 13-135—13-136
JRcc (long), 13-139—13-140
JRcc (short), 13-137—13-138
JUMP, 13-141

JUMPC ('34082 pseudo-op), 14-44

Kernighan and Ritchie, 1-11
key features of the TMS34020, 1-2

Index-14

-

LADO—LAD31 signals, 2-9, 2-11, 8-2, 10-2
connecting to VRAMs, 8-41, 8-43
4-bit VRAMs

4 bits per pixel, 8-41

8 bits per pixel, 8-43
connections to 16-bit host bus, 7-42
data remapping, 8-42, 8-43
LAD4 used as 16-bit word select, 8-25
latching data on the LAD bus, 8-8
saving data during a bus fault, 4-15
status code on LADO—LAD3, 8-9, 8-10—8-11
values for nonmultiplexed addressing, 8-50
when data is valid, 8-13
which half used during 16-bit accesses, 8-26

latency
halt latency, 7-39
host requests, 7-37—7-40
of screen refreshes, 9-50
recognizing interrupts, 6-11

LCLK1, LCLK2 signals, 2-10, 2-16, 8-2, 8-18, 10-2
LCLK1
effect on external interrupts, 6-15
used in emulation, A-3, A-4, A-5, A-6
LCLK2, identifying valid data on LAD bus, 8-12,
8-18

least-recently-used (cache replacement) algorithm,
5-4

LINE instruction, 13-142—13-145
destination address, 4-30
implied operands

COLORo, 4-18
COLOR1, 4-19
CONVDP, 4-29
DADDR, 4-30
DPTCH, 4-34
DYDX, 4-50
MPTCH, 4-72
OFFSET, 4-73
PATTERN, 4-74
PMASK, 4-76
PSIZE, 4-77
SADDR, 4-79
WEND, 4-90
WSTART, 4-91
source address, 4-79

Index

linear addressing, 3-3—3-4, 3-15
advantages, 3-19
array addresses

destination address (DADDR), 4-30
source address (SADDR), 4-79

pixels, 3-11

LINIT instruction, 13-146

linker, 1-12

LINT1, LINT2 signals, 2-10, 2-16, 6-2, 6-15, 8-2,
10-2 .
interrupt pending indication, 4-70
interrupt request, 4-69

little-endian addressing, 3-20—3-25
assembling code for, 3-24—3-25
default at reset, 3-20, 4-21
effect of BEN bit, 3-20
effect of the BEN bit, 4-21
host interface, 7-44
processors that use it, 3-20
selecting, 3-20, 4-21

LMO instruction, 13-147
load-write-mask cycles, 8-34

local-memory interface, 8-1—8-60

addressing mechanisms, 8-50—8-56
cycles

address/status portion, 8-8—8-9

bus errors/bus faults, 8-14

completing a successful cycle, 8-13

data portion, 8-8—8-9

ending, 8-12—8-14

extending with wait states, 8-12

general form, 8-8—8-9

page mode, 8-15—8-17

read & write cycles, 8-18—8-24

retrying, 8-13

status codes, 8-10—8-11

with wait states, 8-46—8-48
display examples, 8-57—8-60
dynamic bus sizing, 8-25—8-29
host-default cycles, 7-15, 8-7, 8-49—8-50
LADO—LAD31 (LAD bus), 2-11
multiplexed addressing, 8-51—8-53

* nonmultiplexed addressing, 8-50

page mode, 8-15—8-17
registers, 8-4—8-5

CONFIG, 4-20, 8-4

DPYCTL, 4-36

PMASK, 4-75, 8-5

PSIZE, 4-77

REFADR, 4-78, 8-5

request priorities, 8-6—8-7

signals, 8-2—8-3
ALTCH, 2-11, 8-2, 10-2
BUSFLT, 2-11, 8-2, 8-12, 8-18, 10-2
CAMD, 8-18
CAS0—CAS3, 10-2
DDIN, 2-11, 8-2
DDOUT, 2-11, 8-2, 8-18
Gl, 8-18
LADO—LAD31, 2-11, 8-2, 10-2
LCLK1, LCLK2, 8-12, 8-18, 10-2
LINT1, TINT2, 10-2
LRDY, 2-11, 8-2, 8-12, 8-18, 10-2
PGMD, 2-11, 8-3, 8-12, 8-18
Ro, R1, 8-18
SF, 10-2
SIZE16, 2-11, 8-3, 8-12, 8-18
WE, 10-2

logical instructions, 13-24

AND, 13-40

ANDI, 13-41

ANDN, 13-42

ANDNI, 13-43

LMO, 13-147

NEG, 13-178

NEGB, 13-179

NOT, 13-181

OR, 13-182

ORI, 13-183

RMO, 13-224

XOR, 13-266

XORI, 13-267

loss of bus grant, 8-6
LRDY signal, 2-9, 2-11, 7-9, 8-2, 8-12, 8-18, 10-2
bus cycle completion codes, 2-12

MADDR register, 4-71—4-72
SETCMP instruction, 4-71

major interfaces, 2-8

masks
display mask (DPYMSK), 4-44—4-46
mask array
address (MADDR), 4-71—4-72
pitch (MPTCH), 4-72
XY-to-linear conversion factor (CONVMP),
4-28

Index-15

Index

pitch
conversion factor, 4-28—4-30
CONVMP register, 4-28
MPTCH register, 4-72—4-73
plane mask (PMASK), 4-75
write-mask registers (for VRAMs), 4-20, 4-22

memory

address space, 3-3

display memory, 8-56
coordinates, 3-13
dimensions, 3-12

general use, 3-3

I/O registers, 3-3

map of local memory, 3-2

organization, 3-1—3-32
addressing, 3-3—3-4
bank selection, 8-55—8-56
bytes, 3-1
fields, 3-1, 3-3, 3-5
memory map, 3-2
pixel arrays, 3-1, 3-186—3-19
pixels, 3-1, 3-10
stacks, 3-26

reserved, 3-3

system memory, 8-56

vectors, 3-3

memory-to-serial-registers cycles, 8-30
memory-to-split-serial-registers cycles, 8-31

micellaneous instructions, CVDXYL, 13-87—13-88

midline reload, 4-38, 8-58, 9-55—9-56
example display memory dimensions, 8-59
midlines reload, 9-43—9-46

miscellaneous instructions
CLR, 13-57
CLRC, 13-58
CVMXYL, 13-89—13-90
CVSXYL, 13-91
REV, 13-221
SETCDP, 13-227
SETCMP, 13-228
SETCSP, 13-229

MMFM instruction, 3-27, 13-148—13-149
MMTM instruction, 3-27, 13-150—13-151
MODS instruction, 13-152

MODU instruction, 13-153—13-157

MOVB instructions, 13-154—13-157

MOVD pseudo-ops instructions, 14-45—14-57

Index-16

MOVE instructions, 13-158—13-166
move instructions
BLMOVE, 13-44—13-45
byte, 13-20
field, 13-20—13-31
MMFM, 13-148—13-149
MMTM, 13-150—13-151
MOVB instructions, 13-154—13-157
MOVE instructions, 13-158—13-166
MOVI (16 bits), 13-167
MOVI (32 bits), 13-168
MOVK, 13-169
MOVX, 13-170
MOVY, 13-171
multiple register, 13-20
register-to-register, 13-19
summary, 13-19—13-23
value-to-register, 13-19
XY, 13-19
MOVE pseudo-ops instructions, 14-58—14-67
MOVF pseudo-ops instruction, 14-68—14-110
MOVI instruction
16-bit (short) version, 13-167
32-bit (long) version, 13-168
MOVK instruction, 13-169
MOVX instruction, 13-170
MOVY instruction, 13-171
MPTCH register, 4-72—4-73
SETCMP instruction, 4-72
XY-to-linear conversion, 3-15
MPYD ('34082 pseudo-op), 14-78
MPYF (‘34082 pseudo-op), 14-79, 14-80
MPYS (‘34082 pseudo-op), 14-81, 14-82

MSGIN bits (MSGINO—MSGIN2), 4-62, 4-62, 4-63,

6-5, 6-16, 7-4
MSGOUT bits (MSGOUTO—MSGOUT2), 4-62,
4-63, 6-5,6-21, 7-4
multiple-TMS34020 system, 7-40—7-41
multiplexed addressing, 8-51—8-53
multiprocessor interface, 11-1—11-20
3-wire interface, 11-1
arbitration logic, 11-13—11-15
2 TMS34020s, 11-15—11-17
examples, 11-15—11-18
with a hold device, 11-17—11-20
bus request codes, 11-5
bus requests, 11-5
initializing multiple TMS34020s, 11-19

Index

local-memory bus
passing control, 11-6
releasing control, 11-5
requesting control, 11-5
overview, 11-2
protocols, 11-5
retries, 11-15
signals, 2-13, 11-2
Gl, 2-13, 11-2
Ro, R1, 2-13, 11-2
system configuration, 11-3—11-4
system with a host processor, 7-40—7-41
wait states, 11-15
with a host processor, 11-20

MWAIT instruction, 13-177
MYPS instruction, 13-172—13-174
MYPU instruction, 13-175—13-176

N (negative) status bit, 4-3

NEG instruction, 13-178

NEG ('34082 pseudo-op), 14-83, 14-84
NEGB instruction, 13-179

NEGD ('34082 pseudo-op), 14-85
NEGF ('34082 pseudo-op), 14-86, 14-87
NIL bit, 4-40, 9-6, 9-18, 9-21

NMI bit, 4-57, 4-58, 6-4, 6-16, 7-3

NMIM bit, 4-57, 4-59, 6-4, 6-16, 7-3

noninterlaced video, 9-18—9-20
display example, 9-38—9-39
electron beam pattern, 9-18
programming vertical registers, 9-20
selecting, 4-40
signal combinations, 9-18

nonmaskable interrupt, 6-16
NMI bit, 4-58
NMIM bit, 4-59
priority, 6-7
saving the context, 4-59
nonmultiplexed addressing, 8-50
NOP instruction, 13-180
NOT instruction, 13-181

NOT ('34082 pseudo-op), 14-88, 14-89

object format, 1-11
object format converter, 1-12
odd field (interlaced video), 9-21
OFFSET register, 4-73—4-74
XY-to-linear conversion, 3-15, 3-16
on-chip registers
PC, 4-4
register files, 4-6
status register (ST), 4-2
opcodes, illegal opcodes
interrupt, 6-18
range, 6-18
operand formats, 13-2—13-9
optimization, 1-11
OR instruction, 13-182
ORl instruction, 13-183

P flags, 5-2, 5-4
initial state following reset, 6-23
page mode, 8-15—8-17, 8-18
dynamic bus sizing, 8-28
multiple local-memory cycles, 8-15
read cycle timing, 8-20
read/write cycle timing, 8-22
read-modify-write cycle timing, 8-22
selecting page mode, 8-15
signal, 2-11
write cycle timing, 8-20
panning the display, 9-57
parameter size, for coprocessor data, 10-6
PATTERN register, 4-74
PBH bit, 4-25
PBV bit, 4-26
PC, 4-4
and the stack, 3-29
effects of instruction execution, 4-4
effects of interrupts, 6-9
illustration, 4-4
initial state following reset, 6-23
pending. . .
interrupts, 4-70, 6-4
local-memory requests, 8-7
refresh cycles, 4-23, 8-7

Index-17

Index

summary, 2-9—2-16
system control, 2-10, 2-16
video interface, 2-15

PFILL instruction, 13-184—13-189 DADDR, 4-30
implied operands DPTCH, 4-34
COLORQo, 4-18 DYDX, 4-50
COLOR1, 4-19 PMASK, 4-76
DADDR, 4-30 PSIZE, 4-77
DPTCH, 4-34 SADDR, 4-79
DYDX, 4-51 SPTCH, 4-83
OFFSET, 4-73 PIXBLT B, XY, implied operands
PATTERN, 4-74 COLORO, 4-18
PGA package pinout, 2-2 COLOR1, 4-19
PGMD signal, 2-9, 2-11, 8-3, 8-12, 8-18 ggx;ggzzgz 7
pin descriptions, 2-1—2-16 DADDR, 4-30
by category, 2-9—2-16 DPTCH, 4-34
DRAM/VRAM interface, 2-9, 2-12 DYDX, 4-50
emulation interface, 2-10 OFFSET, 4-73
host interface, 2-9, 2-13 PMASK, 4-76
local-memory interface, 2-9, 2-11—2-16 PSIZE, 4-77
major interfaces, 2-8 SADDR, 4-79
multiprocessor interface, 2-9, 2-13 SPTCH, 4-83
Gl, 2-13 WEND, 4-90
power, 2-16 WSTART, 4-91

PIXBLT L,L, implied operands

CONTROL, 4-27

DADDR, 4-31
pinouts, TMS34020, 2-2—2-7 DPTCH, 4-34
PGA package, 2-2—2-7 DYDX, 4-50, 4-51
QFP package, 2-5—2-7 PMASK, 4-76
pitches (for pixel arrays) PSIZE, 4-77
destination array, 4-28—4-30, 4-34—4-35 SADDR, 4-79
SPTCH, 4-83

legal pitch values, 4-29—4-30
mask array, 4-28—4-30, 4-72—4-73

PIXBLT L,M,L, implied operands

source array, 4-286—4-30, 4-83—4-84 DADDR, 4-31
XY-to-linear conversion DPTCH, 4-34
destination pitch, 4-34—4-35 MADDR, 4-71
factor MPTCH, 4-72
CONVDP register, 4-286—4-30 OFFSET, 4-73
CONVMP register, 4-28—4-30 PMASK, 4-76
CONVSP register, 4-28—4-30 PSIZE, 4-77
mask pitch, 4-72—4-73 SADDR, 4-79
source pitch, 4-83—4-84 SPTCH, 4-83

PIXBLT instructions, 13-190—13-205

alternate starting corners, 3-18

PIXBLT L,XY, implied operands

CONTROL, 4-27

destination address, 4-30 CONVDP, 4-29
display pitch, 3-13 CONVSP, 4-29
horizontal direction, 4-25 DADDR, 4-31
PIXBLT B,L, implied operands DPTCH, 4-34
COLORo, 4-18 DYDX, 4-50, 4-51
COLOR1, 4-19 OFFSET, 4-73
CONTROL, 4-27 PMASK, 4-76

Index-18

Index

PSIZE, 4-77
SADDR, 4-79
SPTCH, 4-83
WEND, 4-90
WSTART, 4-91
PIXBLT XY,L, implied operands
CONTROL, 4-27
CONVDP, 4-29
CONVSP, 4-29
DADDR, 4-31
DPTCH, 4-34
DYDX, 4-50
OFFSET, 4-73
PMASK, 4-76
PSIZE, 4-77
SADDR, 4-79
SPTCH, 4-83
PIXBLT XY, XY, implied operands
CONTROL, 4-27
CONVDP, 4-29
CONVSP, 4-29
DADDR, 4-31
DPTCH, 4-34
DYDX, 4-51
OFFSET, 4-73
PMASK, 4-76
PSIZE, 4-77
SADDR, 4-79
WEND, 4-90
WSTART, 4-91
pixel arrays, 3-18
source address, 4-79
vertical direction, 4-26
pixel
processing
arithmetic options, 4-26
Boolean options, 4-26
selecting, 4-26—4-27
size, 4-77
pixel access, conversion to a VRAM serial-register
transfer, 4-39
pixel arrays, 3-1, 3-18—3-19
addresses
destination (DADDR), 4-30
source (SADDR), 4-79
binary arrays, 4-18, 4-19
dimensions, 4-50
height (DY), 3-18
illustration, 3-18
mask address, 4-71

operations, window checking, 4-90, 4-91
pitch, 3-18 :
destination pitch, 4-28—4-30, 4-34—4-35
legal values, 4-29
mask pitch, 4-28—4-30, 4-72—4-73
source pitch, 4-28—4-30, 4-83—4-84
size, 4-50
starting address, 3-18
width (DX), 3-18
window checking, 3-19, 4-50, 4-90, 4-91
XY origin, 3-18

pixel operations

color information, 4-18, 4-19
pattern information, 4-74
status code on local-memory cycle, 8-11

pixels, 3-1, 3-10—3-13

DINC register, 3-11
display pitch, 3-13
extraction, 3-11
in memory, 3-10
insertion, 3-11
linear addressing, 3-11
on the screen, 3-11
configurable screen origin, 3-12
PSIZE register, 3-10
starting address, 3-10
storage in memory, 3-10
valid sizes, 3-10
within a general-purpose register, 3-10
XY addressing, 3-11

PIXT instructions, 13-206—13-213

implied operands
CONTROL, 4-27
CONVDP, 4-29
CONVSP, 4-29
DPTCH, 4-34
OFFSET, 4-73
PMASK, 4-76
PSIZE, 4-77
SPTCH, 4-83
WEND, 4-90
WSTART, 4-91

plane masking, PMASK register, 4-75—4-77
PMASK registers, 4-75—4-77, 8-5

and VEN, 4-22

block-write cycle (with mask), 8-40

enabling load-write-mask cycles, 8-34

local-memory write cycle (with mask), 8-36

writing 1s complement of PMASK to VRAM write-
mask registers, 8-34

Index-19

Index

PMASKH, PMASKL. See PMASK registers
POPST instruction, 13-214

power and ground, pins, 2-16
Ve, 2-16
Vgg, 2-16

PPOP bits (PPOP0—PPOP4), 4-26—4-27

prefetching, 7-10—7-12
accessing the correct address, 7-12
after reads, 7-10—7-12
after writes, 7-10—7-12
enabling, 7-10—7-12
size of host data bus, 7-11—7-12

priorities of. . ., memory bus requests, 8-6
program counter. See PC

program-control instructions, 13-25—13-27
DINT, 13-95
DSJ, 13-103
DSJEQ, 13-104—13-105
DSJNE, 13-106—13-107
DSJS, 13-108
EINT, 13-109
EMU, 13-110
EXGF, 13-111
EXGPC, 13-112
EXGPS, 13-113
GETPC, 13-130
GETPS, 13-131
GETST, 13-132
IDLE, 13-133
MWAIT, 13-177
NOP, 13-180
POPST, 13-214
PUSHST, 13-215
PUTST, 13-216
RETM, 13-219
SETC, 13-226
SETF, 13-230—13-231
SEXT, 13-232
ZEXT, 13-268

program-control instuctions, SWAPF,
13-247—13-248

PSIZE register, 3-10, 4-77—4-78

PUSHST instruction, 13-215

PUTST instruction, 13-216
single-step interrupt, 6-17

Index-20

QFP package pinout, 2-5

RO, R1 signals, 2-9, 2-13, 8-18, 11-2
RAS signal, 2-9, 2-12, 8-3
RCAO0—RCA12 signals, 2-9, 2-12, 8-3, 8-53
effect of RCM bits, 4-21
RCM bits (RCM0—RCM1), 4-21, 4-78, 8-4
effect on local-memory cyles, 8-51, 8-52
write protecting the field, 4-22
read cycles
adding wait states, 8-46
general timing, 8-19—8-24
initiated by the host, 8-24
local memory, 8-18
timing with page mode, 8-20
VRAM read transfer, 8-30
read/write cycles, timing with page mode, 8-22
read-modify-write cycles
steps in operation, 8-22
timing with page mode, 8-22
with-dynamic bus sizing, 8-26
REFADR register, 4-78—4-79, 8-5
address output to RCA and LAD buses, 8-44
refreshes
See also screen refreshes
address output, 4-42
automatic screen refreshes, 4-40
CAS-before-RAS, 8-44
DRAM refreshes, 4-78
selecting the refresh rate, 4-23
host-access delays, 7-38
pending counter, initial state following reset, 6-23
pseudo-address, 8-44
REFADR register, 4-78
refresh address, 4-78
VRAM screen refreshes, enabling for VRAMs
with split serial registers, 4-38
register files, 4-6—4-8
file A, 4-6—4-8
file B, 4-6—4-8
illustration, 4-6
register used as auxiliary stack pointer, 3-29
SP, 4-5, 4-6
storing registers on the stack, 3-27
register-direct operands, 13-4

Index

register-indirect operands, 13-5
in XY mode, 13-9
with an offset, 13-6
with postincrement, 13-7
with predecrement, 13-8

registers, 4-1—4-14, 4-62—4-92
cache registers
data, 5-2, 5-3
segment start address, 5-2, 5-3
general-purpose registers, 4-6—4-8
I/O registers, 4-9—4-13
program counter (PC), 4-4
SP, 3-26
stack pointer (SP), 4-5
status register (ST), 4-2
STK, 3-29

reserved. . .
bits in the status register, 4-3
memory, 3-3

reset, 6-22—6-27
activity following reset, 6-24
configuring the TMS34020 at reset
selecting the endian addressing mode, 4-20,
4-21
selecting the row-/column-address mode,
4-20, 4-21
effects on the cache, 5-4
emulation considerations, A-7
host-present mode, 6-25
how to reset the TMS34020, 6-22—6-27
initial state following reset
cache, 6-23
refresh-pending counter, 6-23
registers, 6-23
signals, 6-22
protecting the addressing-mode configuration,
4-22
RESET signal, 2-16
self-bootstrap mode, 6-25
software reset
using NMI, 4-58
using RST, 4-58
value of ST, 4-2
RESET signal, 2-10, 6-2, 6-22—6-27
effect on HLT bit, 4-61
priority, 6-7
RET]! instruction, 6-10, 13-217—13-218
how it differs from RETM, 6-32
single-step interrupt, 6-17

RETM instruction, 6-10, 13-219
how it differs from RETI, 6-32
single-step interrupt, 6-17

retries
coprocessor cycles, 10-9
local-memory cycles, 8-13
on a host access, 4-64, 7-9

RETS instruction, 13-220
restrictions, 6-10

REV instruction, 13-221

RL instruction, 13-222, 13-223

RMO instruction, 13-224

rotate/shift instructions
RL, 13-222, 13-223
SLA, 13-233, 13-234
SLL, 13-235, 13-236
SRA, 13-237, 13-238
SRL, 13-239, 13-240

row address
bus, 2-12
configuration, 4-21
strobe, 2-12
time, 4-21, 8-8

RPIX instruction, 13-225

RR bits (RR0—RR2), 4-23, 4-78, 8-4
effect on local-memory cyles, 8-44

RST bit, 4-57, 4-58, 6-4, 7-3

S (select) bit, 8-25
SADDR register, 4-79
scan line duration, 4-67
SCLK signal, 2-10, 2-15, 9-3
SCOUNT register, 4-80—4-81
screen origin
alternate, 3-12
default, 3-12
screen refreshes
address output during, 4-42
addressing sequence
interlaced video, 9-53
noninterlaced video, 9-53
automatic refreshes, 4-40
CAS-before-RAS, 8-44
disabling, 9-49
during horizontal blanking, 9-42
effect of the display mask, 4-44

Index-21

Index

generating addresses, 9-51
horizontal blanking
address generation, 9-52
minimum duration, 9-51
interlaced video, addressing sequence, 9-53
latency, 9-50
memory-to-register cycles, 4-39
midline reload, 9-43, 9-55
noninterlaced video, addressing sequence, 9-53
REFADR register, 4-78
refresh address, 4-78
register-to-memory cycles, 4-39
registers
DINC, 4-32
DPYMSK, 4-44
DPYNX, 4-42
DPYST, 4-46
scheduling, 9-50—9-51
split-serial-register midline reload, 4-38

screen sizes, 9-36

screens, configurable origin, 3-12

SDB, 1-12

segment miss, 5-6

self-bootstrap mode, 6-25

self-modifying code, effects on instruction cache, 5-8

serial registers, 4-38
converting pixel access to serial-register transfer
accesses, 4-39
register-to-memory cycles, 8-32, 8-33
split serial registers, 4-38
transfers, 8-6
status-code on local-memory cycle, 8-11

serration, ending (HESERR), 4-54

serration pulses, 9-15—9-16
on CSYNC, 9-16

SETC instruction, 13-226

SETCDP instruction, 13-227
implied operands
CONVDP, 4-29
DPTCH, 4-34

SETCMP instruction, 13-228
CONVMP register, 4-28
implied operands

CONVMP, 4-29
MADDR, 4-71
MPTCH, 4-72

Index-22

SETCSP instruction, 13-229
implied operands
CONVSP, 4-29
SPTCH, 4-83
SETF instruction, 13-230—13-231
SETHCNT register, 4-81—4-82, 9-4
SETVCNT register, 4-82—4-83, 9-5
SEXT instruction, 13-232
SF signal, 2-9, 2-12, 8-3, 10-2
shift instructions, 13-28
shift/rotate instructions
RL, 13-222, 13-223
SLA, 13-233, 13-234
SLL, 13-235, 13-236
SRA, 13-237, 13-238
SRL, 13-239, 13-240
sign-extending
field 0, 4-2
field 1, 4-2
signal buffering, for emulator connections, A-4
signal descriptions, 2-1—2-16
by category, 2-9—2-16
DRAM/VRAM interface, 2-12
host interface, 2-13
local-memory interface, 2-11—2-16
major interfaces, 2-8
multiprocessor interface, 2-13
pinouts, 2-2—2-7
PGA package, 2-2—2-7
QFP package, 2-5—2-7
power, 2-16
system control, 2-16
video interface, 2-15
single-step interrupt, 6-17, 6-28
disabling, 6-6
enabling, 6-6
interaction with other interrupts, 6-30
priority, 6-7
SIZE16 signal, 2-9, 2-11, 8-3, 8-12, 8-18
dynamic bus sizing, 8-25
SLA instruction, 13-233, 13-234
SLL instruction, 13-235, 13-236
software development board, 1-12

software libraries
8514 adaptor emulation, 1-12
CCITT data compression, 1-12
font, 1-12°
math/graphics, 1-12

Index

software reset, 7-32
using NMI, 4-58
using RST, 4-58
source pitch
conversion factor, 4-28—4-30
CONVSP register, 4-28
SPTCH register, 4-83—4-84
SP, 3-26, 4-5
effects of interrupts, 6-9
illustration, 4-5
position in the register files, 4-6
special-function pin, 2-12
SPTCH register, 4-83—4-84
XY-to-linear conversion, 3-15
SQR ('34082 pseudo-op), 14-90, 14-91
SQRD ('34082 pseudo-op), 14-92
SQRF ('34082 pseudo-op), 14-93, 14-94
SQRT ('34082 pseudo-op), 14-95, 14-96
SQRTD ('34082 pseudo-op), 14-97
SQRTF (34082 pseudo-op), 14-98, 14-99
SRA instruction, 13-237, 13-238
SRE bit, 4-40, 9-6
effect on local-memory cyles, 8-31, 8-32
SRINC bits, 9-7, 9-52, 9-53, 9-54, 9-55
SRINC value, 4-32, 4-33
SRL instruction, 13-239, 13-240
SRNX bits, 9-7, 9-52, 9-53, 9-54, 9-55
SRNX value, 4-42, 4-43
SRST bits, 9-52, 9-53, 9-54, 9-55
SRST value, 4-46
SS (single-step) status bit, 4-2, 6-3, 6-6, 6-17
clearing, 6-29
setting, 6-28
SSA registers, 5-2
illustration, 5-3
initial state following reset, 6-23
SSV bit, 4-38, 9-6
effect on local-memory cyles, 8-31, 8-58
ST, 4-2—4-3
and the stack, 3-29
BF bit, 6-3
definitions of status bits, 4-2—4-4
IE bit, 6-3, 6-6
illustration showing bit positions, 3-5, 4-2
initial state following reset, 6-23
instructions that change it, 6-2
IX bit, 6-3 ‘

SS bit, 6-3, 6-6, 6-17
value at reset, 4-2
stack pointer. See SP
stacks, 3-26—3-32
auxiliary stacks, 3-29—3-32
growing toward higher addresses, 3-31
growing toward lower addresses, 3-30
system stack, 3-26—3-29
instructions that pop values, 3-27
instructions that push values, 3-27
saving information during a subroutine call,
3-29
saving information during an interrupt, 3-29
saving register values, 3-27—3-29
standards, video
NSTC, 9-27
PAL, 9-27
RS-170, 9-27
SECAM, 9-27
starting corner, selecting, 4-30, 4-79
status bits, 4-2
status codes
bus cycle completion, 2-12
local-memory cycles
block write, 8-11
bus-locked operation, 8-11
cache fill, 8-11
color-latch register load, 8-11
coprocessor cycle, 8-10
data access, 8-11
DRAM refresh, 8-10
emulator operation, 8-10
host cycle, 8-10
instruction fetch, 8-11
interrupt-vector fetch, 8-11
pixel operation, 8-11
serial-register transfer, 8-11
write-mask load, 8-11
status register. See ST
strobes
byte-select strobes, 7-7
chip-select, 7-7
read strobe, 7-7
write strobe, 7-7
SUB instruction, 13-241
SUB ('34082 pseudo-op), 14-100—14-103
SUBB instruction, 13-242
SUBD ('34082 pseudo-op), 14-104—14-105
SUBF ('34082 pseudo-op), 14-106—14-109

Index-23

Index

SUBI instruction, 13-243, 13-244
SUBK instruction, 13-245

subroutines
effects on PC, 4-4
effects on SP, 4-5
saving information on the stack, 3-29

subsegment miss, 5-5

SUBXY instruction, 13-246

SWAPF instruction, 13-247—13-248
symbolic debugger, A-1

sync signals
composite sync, CSYNC, 2-15, 4-37
ending
horizontal sync, 4-52
vertical sync, 4-87
horizontal sync
ending (HESYNC), 4-55
HSYNC, 2-15, 4-36
vertical sync, VSYNC, 2-16, 4-37

system
configuration
with a coprocessor, 10-18
with multiple processors, 11-3
configuration (CONFIG register), 4-20—4-24
considerations, bus faults, 6-20
control, signals, 2-16
CLKIN, 2-16, 8-2
LCLK1, LCLK2, 2-16, 8-2
LINT1, LINT2, 2-16, 8-2
RESET, 2-16
control (CONTROL register), 4-24—4-28
design
connecting an emulator to a target system,
A-2, A-3
emulation considerations, A-1—A-10
multiple processors, 11-1
with multiple TMS34020s, 7-40—7-41

system memory, 8-56

T bit, 4-25

tap point, 4-44

target cable, mechanical dimensions, A-9
target system, setup with XDS emulator, A-2
test and emulation, A-1—A-10

Index-24

TFILL instruction, 13-249—13-252
implied operands
COLOR1, 4-19
CONTROL, 4-27
CONVDP, 4-29
DADDR, 4-31
DPTCH, 4-34
OFFSET, 4-73
PMASK, 4-76
PSIZE, 4-77
SADDR, 4-79
WEND, 4-90
WSTART, 4-91
TIGA, 1-13
TM bits (TM0O—TM2), 4-24
TMS34010, registers not used by TMS34020
DPYADR, 4-35
DPYSTRT, 4-48
DPYTAP, 4-49
HSTADRH, 4-56
HSTDATA, 4-65
TMS34020
applications, 1-3
architecture, 1-4—1-9
block diagram, 7-5
compatibility with the TMS34010, 1-16—1-18
development tools, 1-10
in a graphics system, 1-14
instruction set, 13-1—13-31
addressing modes, 13-2—13-9
arithmetic instructions, 13-24
compare instructions, 13-24
condition codes for jumps, 13-26
context-switching instructions, 13-25—13-27
jump instructions, 13-25—13-31
logical instructions, 13-24
move instructions, 13-19—13-23
operand formats, 13-2—13-9
program-control instructions, 13-25—13-27
shift instructions, 13-28
summay, 13-9—13-18
XY instructions, 13-29
internal functions, 1-5
key features, 1-2—1-3
major interfaces, 1-8
overview, 1-1—1-18
TMS34020 Emulator, A-1
TMS34082, 14-1—14-7
key features, 14-2—14-7
overview, 14-2—14-7

Index

pseudo-ops, 10-3
See also Chapter 14
format, 14-3—14-5
register operands, 14-6—14-7
sample graphics system, 1-14
TMS44C251 (1M VRAM), 1-15
TR/QE signal, 2-9, 2-12, 8-3
transceivers, used in host interface, 7-6
transparency
enabling, 4-25
modes
on destination=COLORO, 4-24
on result=0, 4-24
on source=COLORO, 4-24
selecting a mode, setting the TM bits, 4-24
T bit, 4-25
TRAP L instruction, 13-256—13-258
TRAP N instruction, 13-253—13-255
traps, 6-21
how many supported?, 6-1
vector locations, 6-8 2

V (overflow) status bit, 4-3
VBLT instruction, 13-259—13-261
enabling the VRAM block-write feature, 4-22
implied operands
DADDR, 4-31
DPTCH, 4-34
DYDX, 4-51
PMASK, 4-76
PSIZE, 4-77
SADDR, 4-79
use of VRAM block-write feature, 8-39, 8-40,
8-41
Vee, 2-10
VCE bit, 4-39, 9-6
effect on local-memory cyles, 8-30, 8-31, 8-32
VCLK signal, 2-10, 2-15, 9-3
VCOUNT register, 4-84—4-86, 6-17, 9-5
external synchronization, 9-29
loading with the SETVCNT value, 4-82
VEBLNK register, 4-86—4-87, 9-5
interlaced video, 9-26
vector addresses, 6-8
VEN bit, 4-22, 8-4
effect on local-memory cyles, 8-34, 8-36

\

vertical
back porch, 9-10
front porch, 9-10
video timing (internal), 9-13—9-14
vertical blanking, 9-9 '
interlaced video, 9-23
NTSC and PAL standards, 9-27
vertical sync, 9-9
direction, 4-37
vertical timing
SETVCNT register, 4-82
VCOUNT, 4-84
VESYNC register, 4-87
VOTAL register, 4-89
VSBLNK register, 4-88
VESYNC register, 4-87—4-88, 9-5
interlaced video, 9-25
VFILL instruction, 13-262—13-263
enabling the VRAM block-write feature, 4-22
implied operands
DADDR, 4-31
DPTCH, 4-34
DYDX, 4-51
PMASK, 4-76
PSIZE, 4-77
use of VRAM block-write feature, 8-39, 8-40,
8-41
video
American vs. European, 9-21, 9-27
capture enable, 4-39
capture feature, 9-48
composite video, 9-15—9-17
enabling/disabling, 4-38
control
CSYNC direction (CSD bit), 4-37
HSYNC direction (HSD bit), 4-36
selecting CBLNK or VBLNK, 4-38
selecting CSYNC or HBLNK, 4-38
VSYNC direction (VSD bit), 4-37
display interrupt, 9-37
display mask, 4-44—4-46
display next address, 4-42
enabling the display, 4-40
equalization region, 9-15—9-17
external synchronization, 9-29—9-35
horizontal timing, 9-11—9-12
interlaced video, 9-21—9-28
interlaced video (selecting), 4-40
midline reload, 9-55 ‘
midlines reload, 9-43—9-46

index-25

Index

noninterlaced video, 9-18—9-20
noninterlaced video (selecting), 4-40
registers, 9-4—9-8

DINC, 9-7

DPYCTL, 9-5

DPYMSK, 9-8

DPYNX, 9-7

DPYST, 9-7

HCOUNT, 9-4

HEBLNK, 9-4

HESERR, 9-4

HESYNC, 9-4

HSBLNK; 9-4

HTOTAL, 9-4

SETHCNT, 9-4

SETVCNT, 9-5

VCOUNT, 9-5

VEBLNK, 9-5

VESYNC, 9-5

VSBLNK, 9-5

VTOTAL, 9-5
screen refreshes, 9-55

disabling, 9-49

generating addresses, 9-51

scheduling, 9-50—9-51
serration region, 9-15—9-17
signals, 2-15, 9-2

CBLNK/VBLNK, 2-15, 9-2

CSYNC/HBLNK, 9-2

HSYNC, 2-15, 9-3

SCLK, 2-15, 9-3

VCLK, 2-15, 9-3

VSYNC, 2-16, 9-3
standards

NTSC, 9-27

PAL, 9-27

RS-170, 9-27

SECAM, 9-27
start address for display, 4-46—4-48
timing examples, 9-38—9-42
timing registers

DPYCTL, 4-36

HCOUNT, 4-52

HEBLNK, 4-53

HESERR, 4-54

HESYNC, 4-55

HSBLNK, 4-66

HTOTAL, 4-67

SCOUNT, 4-80

SETHCNT, 4-81—4-82

Index-26

SETVCNT, 4-82—4-83
VCOUNT, 4-84
VEBLNK, 4-86
VESYNC, 4-87
VSBLNK, 4-88
VTOTAL, 4-89

vertical timing, 9-13—9-14

VRAM control, 9-42

video control logic

horizontal blanking
HEBLNK, 4-53
HSBLNK, 4-66
horizontal timing, HCOUNT, 4-52
scan line duration, 4-67
serration, HESERR, 4-54
sync signals
HESYNC, 4-55
VESYNC, 4-87
vertical blanking
VEBLNK, 4-86
VSBLNK, 4-88

video timing, 9-1—9-58
VLCOL instruction, 13-264—13-265

implied operands, COLOR1, 4-19

VRAMSs, 9-42

1M VRAMSs, 1-15, 2-12, 9-55
alternate write transfers, 8-33
automatic screen refreshes, 4-40
big-endian addressing, 3-25
block-write cycles, 8-37
data mapping, 8-41
with mask, 8-37, 8-40
without mask, 8-37, 8-39
block-write modes, 4-22
bulk initialization, 9-47
control, 9-42
data expansion, 8-37
display mask, 4-45
fast fills, 8-37
load-color-register cycles, 8-37, 8-38
load-write-mask cycles, 8-34
memory-to-register cycles, 4-40
memory-to-serial register cycle, 8-30
memory-to-split-serial register cycle, 8-31
midline reload, 4-38
pseudo-write transfer, 8-32
screen refreshes, 4-38, 4-39, 4-40
during horizontal blanking, 9-42
serial registers, 4-38

Index

serial-register transfer cycles, 4-39
adding wait states, 8-48
telling the TMS34020 that the graphics system
contains special-function VRAMS, 4-22
TMS44C251, 1-15
write cycles, with mask, 8-36
write transfers, 8-32
write-mask cycles, 8-34
VSBLNK register, 4-88—4-89, 9-5
interlaced video, 9-26
VSD bit, 4-37, 9-6
Vgs, 2-10
VSYNC signal, 2-16, 9-3
pin number, 2-10
selecting as input or output, 4-37
VTOTAL register, 4-89—4-90, 9-5
interlaced video, 9-26

W bits (WO—W1), 4-25, 6-17
wait states, 8-46—8-48
coprocessor cycles, 10-9
extending a local-memory cycle, 8-12

WE signal, 2-9, 2-12, 8-3, 10-2
WEND register, 4-90—4-91

window checking
defining a window
end address (WEND), 4-90
start address (WSTART), 4-91
effect of DYDX, 4-50
modes, selecting, 4-25
pixel arrays, 3-19
W bits (W0O—W1), 4-25
window-violation interrupt, 6-17
window-violation interrupt, 4-25, 6-17
disabling, 6-6
enabling, 4-69, 6-6
pending indication, 4-70
priority, 6-7
worst-case, delays to host accesses, 7-37
bus-master arbitration, 7-38
CPU cycles, 7-39
DRAM:-refresh cycles, 7-38
host request synchronization, 7-38
previous host cycle, 7-38
screen-refresh cycles, 7-38

write cycles
adding wait states, 8-46
block-write cycles
data mapping, 8-41
with mask, 8-40
without mask, 8-39
general timing, 8-19—8-24
initiated by the host, 8-24
local memory, 8-18
serial-register-to-memory cycles, 8-32, 8-33
timing with page mode, 8-20
VRAM block-write cycles, 8-37
with mask, 8-36
write masks
loads, status code on local-memory cycle, 8-11
local-memory cycles, 8-34
write-enable signal, 2-12
write-per-bit (block write) operation, 4-22
write-with-mask, 4-22
WSTART register, 4-91—4-92
WVE bit, 4-69, 6-3
WVP bit, 4-70, 6-4, 6-17

X1E bit, 4-69, 6-3

X1P bit, 4-70, 6-4, 6-15

X2E bit, 4-69, 6-3

X2P bit, 4-70, 6-4, 6-15

XDS emulator, 1-12, 4-63, A-1

XOR instruction, 13-266

XORl instruction, 13-267

XY addressing, 3-14
array addresses

destination address (DADDR), 4-30
source address (SADDR), 4-79

benefits, 3-14
configurable screen origin, 3-11
coordinate range, 3-14
format illustration, 3-14
general-purpose registers, 3-14
instructions that use it, 3-15
limits, 4-50
mapping to on-screen memory, 3-12
OFFSET register, 4-73
origin, 3-14
pixels, 3-11, 3-14
window checking, 3-14

Index-27

Index

XY instructions, 13-29

ADDXY, 13-38

ADDXY], 13-39

- CMPXY, 13-84

CVXYL, 13-92—13-93
FILL XY, 13-117—13-120

XY-to-linear conversion, 3-15—3-17

automatic conversion, 3-15
calculating the Y component, 3-15
CVXYL instruction, 3-16
formula, 3-15
pitch
actual pitch, 3-15
conversion factors, 3-15, 3-16
destination pitch, 4-28, 4-34
mask pitch, 4-28, 4-72
source pitch, 4-28, 4-83

Index-28

process, 3-17

Y-zoom, 4-32
increment value, 4-33, 4-42
Y-zoom feature, 9-56—9-57
YZCNT bits (YZCNTO—YZCNT4), 4-42, 9-7, 9-56
YZINC bits (YZINCO—YZINC4), 4-32, 4-33, 9-7

Z (zero) status bit, 4-3

zero-extending
field 0, 4-2
field 1, 4-2
ZEXT instruction, 13-268

*

Texas
INSTRUMENTS

Printed in U.S.A., August 1990 SPVUO019
2564006-9761 revision *

