

Syntax

Execution

Instruction Words

Fields

Description

Machine States

Status Bits

Examples �~�

JAUC HERE
JAP HERE
JALS HERE
JAHI HERE
JALT HERE
JAGE HERE
JALE HERE
JAGT HERE
JAc HERE
JANC HERE
JAZ HERE

JAcondition Address

If condition true, then Address ---7 PC
If condition false, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
11 1 1 0 1 0 1 code 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

16 LSBs of Address

16 MSBs of Address

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes table below.)

The JAcondition instruction conditionally jumps to an absolute address. The
condition is part of a mnemonic that represents the condition for the jump; for
example, if condition is UC, then the instruction is JAUC. (See the condition
mnemonics and codes listed below.) If the specified condition is true, the
TMS34020 jumps to the address and continues execution from that point. If the
specified condition is false, the TMS34020 skips the jump and continues exe­
cution at the next sequential instruction. Note that the 4 LSBs of the program
counter are hardwired to o.
The Address operand in the syntax represents the 32-bit absolute address.
Note that the second and third instruction words contain the address for the
jump.

The JAcondition instructions are usually used in conjunction with the CMP and
CMPI instructions. The JAV and JAN V instructions can also be used to detect
window violations or CPW status.

3 if no jump, else 4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Flags for Branch
NCZV NCZV
xxxx
OxOx
X X 1 x x 1 x X

xOOx
Oxx1 1 x x 0
OxxO 1 x x 1
Oxx1 1 x x 0
OxOO 1 x 0 1
x 1 x X

xOxx
X x 1 x

NCZV

x x 1 X

Code Flags for Branch
NCZV NCZV NCZV

JAV HERE xxx1
JANZ HERE xx Ox
JANN HERE Ox xx
JANV HERE xxxO
JAN HERE 1xxx
JAB HERE X 1 x X

JANB HERE xOxx
JALO HERE X 1 x X

JAHS HERE xOOx X x 1 X

JANE HERE xxOx
JAEQ HERE x x 1 x

13-135

J==A==_~_o_n_<!""i ... ti ... o""n"""",_.",_J!!",,mdt;_A=b~""f=~=.!;=;,_C_o""n=dJ=·ti;;,=n_",~='========"","",,,,,,, ""'"""""'"=w.=.===_= ___ =."""""""""".,_

Note that the TMS34020 jumps when anyone or more of the Flags for Branch
listed above are set as indicated.

Condition Codes

Mnemonic

Non XV XV Result of Compare Status Bits Code

Unconditional JAUC - Unconditional Don't care 0000
Compares

Unsigned JALO - Dst lower than Src C 1000
Compares (JAC) (JAB) JAYN

JALS JAYLE Dst lower or same as Src C+Z 0010
JAHI JAYGT Dst higher than Src C·Z 0011
JAHS JAYNN Dst higher or same as Src C 1001
(JAN C) (JAN B) Dst = Src
JAEQ - Z 1010
(JAZ) JAYZ Dst* Src
JANE - Z 1011
(JANZ) JAYNZ

Signed JALT JAXLE Dst < Src (N· V) + (N V) 0100
Compares JALE - Dst:s; Src (N· V) + (N". V) +Z 0110

JAGT - Dst> Src (N . V . Z) + (N" . V . Z) 0111
JAGE JAXGT Dst ~ Src (N.V)+(N V) 0101
JAEQ - Dst = Src Z 1010
(JAZ) JAYZ
JANE - Dst* Src Z 1011
(JANZ) JAYNZ

Compare to JAZ (JAEQ) JAYZ Result = 0 Z 1010
Zero JANZ (JANE) JAYNZ Result * 0 Z 1011

JAP - Result is positive N·Z 0001
JAN JAXZ ,Result is negative N 1110
JANN JAXNZ Result is nonnegative N 1111

General JAZ (JAEQ) JAYZ Result is 0 Z 1010
Arithmetic JANZ(JANE) JAYNZ Result*O Z 1011

JAC (JALO) (JAB) JAYN Carry set on result C 1000

JANC JAYNN No carryon result C 1001
(JAHS) (JAN B)
JAB (JALO) (JAC) JAYN Borrow set on result C 1000

JANB JAYNN No borrow on result C 1001
(JAHS) (JAN C)

JAVt JAXN Overflow on result V 1100

Note: A mnemonic code in parentheses is an alternate code for the preceding code.
Key: t Also used for window clipping + Logical OR

Logical AND Logical NOT

13-136 TMS34020 Assembly Language Instruction Set

Jump Relative Conditional, Short JRcondition
~:;:-;~:::::;~::::::::~::::~::-;::~::~::::~~:~~~~~:~~:::::::::~::::::~~::::~~::::::~~:~:::~~::~::::~~~::::::~::::::~::::::~::::~~::::~:::::;~::::::~::--..::>::::::~~::::~::::::::::::::::-;::::::::::::::~:::: ::::::::::::::::::>:::::::::::::::::::::::::::::::::::::.":;:::.-:;:-';:::::::::::::::::~::~.::~::::::::::::~:::;:.:.:.:::.:::.:.:.:.:.:.::.:::::::::::;::.;:::::::;.:.:.:.:.:.:.:.:::::::::::::::.;;:::::.:.;::.:.:.:.:.:.;.:.:~;:::::: :':':':':':':':':':':':'W;:::::;:':';';':':':~':':':":':·:·:·:·:.:.:·:::·;·;·:::·;.;.z·:·;·;.:·;·:<·;.z·;·;.:

Syntax

Execution

JRcondition Address

If condition true, then offset + PC' -7 PC
If condition false, then go to next instruction

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Fields

Description

Machine States

Status Bits

Examples Code

I 1 I 1 I 0 I 0 I code offset

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes table below.)

JRconditionconditionally jumps to an address that is relative to the current PC.
Condition is part of a mnemonic; it represents the condition for the jump. For
example, if condition is UC, the instruction is JRUC. (See the conditions and
codes listed below.) Ifthe condition is true, the TMS34020 jumps to a new loca­
tion. The assembler calculates the new address by adding the address of the
next instruction (PC') to the signed word offset. The TMS34020 then continues
execution from this point. If the condition is false, the TMS34020 skips the
jump and continues execution at the next sequential instruction.

The Address operand is a 32-bit relative address. The assembler calculates
the offset as (Address - PC')/16 (where PC' is the address of the instruction
word immediately following the jump instruction) and inserts the resulting 8-bit
offset into the opcode. The range for this form of the JRcondition instruction
is ±128 words (excluding 0).

If the offset is outside the range of ±128 words, the assembler automatically
substitutes the longer form of the JRcondition instruction. If the offset is 0, the
assembler substitutes a NOP. The assembler does not accept an address that
is externally defined or an address that is relative to a different section than the
PC. Note that the 4 LSBs of the PC are always 0 (word aligned).

The JRcondition instructions are often used with the CMP and CMPI instruc­
tions. The JRV and JRNV instructions can also be used to detect window viola­
tions or CPW status.

1 if no jump, else 2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Flags for Branch Code Flags for Branch
NCZV NCZV NCZV NCZV NCZV NCZV

JRUC HERE xxxx JRC HERE X 1 x X

JRP HERE OxOx JRNC HERE xOxx
JRLS HERE xx1x x 1 x X JRZ HERE X x 1 X

JRHI HERE xOOx JRNZ HERE xxOx
JRLT HERE Oxx1 1 x x 0 JRV HERE xxx1
JRGE HERE OxxO 1 x x 1 JRNV HERE xxxO
JRLE HERE Oxx1 1 x x 0 x x 1 X JRN HERE lxxx
JRGT HERE OxOO 1 x 0 1 JRNN HERE Oxxx

13-137

Jump Relative Conditional, Long JRcondition
~~;~::~::~:::~:~;:O;~~~~~::~::~~:t.::::~:~:;:~::~;~::::::::::::::::~:::;:::::::::;::-M:::::~;:::::;:;:;:::::~:::::::::::::::::::::::::-;:~;::::X:::::;:::::::::::~::t.::::::::~;:::::::::::::::::::::::::::::::::;x:::::~::::::~::::::::::::~::::::::::::::::::::::::::::::::::;::::::: ::::::::::::::::::::::::~~~::::::;:::::::~::::::::::::::::::::;:::::%::;:::;:::::;:::::~::::::;:::~::::::::::::;:::::::::::::::;:::::::::::::::::::::::;::::::::::::::.~::.;.::::::::: ::;:::::;:;:::;:;:;:::::;:::;:::::::::::::;:::::::;:::::~::::::::::::::::::

Syntax

Execution

Instruction Words

Fields

Description

Machine States

Status Bits

JRcondition Address

If condition true, then offset + PC' -7 PC
If condition false, then go to next instruction

15 14 13 12 11 10 9 8 7 6 5 432 0

code 1010101010101010
offset

code is a 4-bit digit that identifies the condition for the jump within the
opcode. (See the condition codes on page 13-138.)

The JRcondition instruction conditionally jumps to an address that is relative
to the current PC. The condition is part of a mnemonic that represents the con­
dition forthe jump; for example, if condition is UC, then the instruction is JRUC.
(See the condition mnemonics and codes listed in on page 13-138.) If the
specified condition is true, the TMS34020 jumps to a new location. The assem­
bler calculates the address of this location by adding the address of the next
instruction (PC') to the signed word offset. The TMS34020 then continues exe­
cution from this point. If the specified condition is false, the TMS34020 skips
the jump and continues execution at the next sequential instruction.

The Address operand in the syntax represents the 32-bit relative address. The
assembler calculates the offset as (Address - PC')/16 (where PC' is the
address of the instruction word immediately following the jump instruction) and
inserts the resulting offset into the second instruction word of the opcode. The
range for this form of the JRcondition instruction is -32,768 to +32,767 words
(excluding 0).

If the offset is 0, the assembler substitutes a NOP instruction. If the address
is out of range, the assembler uses the JAcondition instruction instead. The
assembler does not accept an address that is externally defined or an address
that is relative to a different section than the PC. Note that the 4 LSBs of the
program counter are always 0 (word aligned).

The JRcondition instructions are commonly used in conjunction with the CMP
and CMPI instructions. The JRV and JRNV instructions can also be used to
detect window violations or CPW status.

2 if no jump, else 3

N Unaffected

C Unaffected

Z Unaffected
V Unaffected

13-139

Examples Code Flag§ for Brf!nch Code F1f!g§ fQr Branch
NCZV NCZV NCZV NCZV NCZV NCZV

JRUC HERE xxx x JRV HERE xxx1
JRP HERE OxOx JRNZ HERE xxOx
JRLS HERE X X 1 x x 1 x X JRNN HERE Ox xx
JRHI HERE xOOx JRNV HERE xxxO
JRLT HERE Oxx1 x x 0 JRN HERE 1xxx
JRGE HERE OxxO X x 1 JRB HERE x 1 x X
JRLE HERE Oxx1 x x 0 x x 1 x JRNB HERE xOxx
JRGT HERE OxOO x 0 1 JRLO HERE X 1 x X
JRC HERE X 1 x X JRHS HERE xOOx X x 1 X
JRNC HERE xOxx JRNE HERE, }(xOX
JRZ HERE x x 1 x JREQ HERE x x 1 x

Note that the TMS34020 jumps when anyone or more of the Flags for Branch
listed above are set as indicated.

13-140 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Indirect JUMP

JUMP Rs

Rs -7 PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I R I Rd

JUMP jumps to the address contained in the source register. The TMS34020
sets the 4 LSBs of the program counter to 0 (word aligned). This instruction can
be used in conjunction with the GETPC and/or EXGPC instructions.

2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

JUMP Al
JUMP Al
JUMP Al

Before
A1
00001EEOh
00001EE5h
FFFFFFFFh

PC
00555550h
00555550h
00555550h

After
PC
00001 EEOh
00001 EEOh
FFFFFFFOh

13-141

Algorithm 0 (Z=O):

While COUNT> 0

1;;1 Place the signed XV increment for a movement in the diagonal (or minor)
direction (d~ 0 for Z=O, d> 0 for Z=1) in the INC1 register.

1;;1 Place the signed XV increment for a movement in the dominant (or major)
direction (d< 0 for Z=O, d~ 0 for Z=1) in the INC2 register.

1;;1 Set the initial value of the decision variable in register 80 to 2b - a.

1;;1 Set the initial count value in the COl!NT register to a + 1.

1;;1 Set the COLOR1 and COLORO registers.

1;;1 Set the PATTERN register to the required pattern.

LINE handles the contents of PATTERN in the same way as FLiNE (unlike
PFILL XV). With LINE, the first pixel drawn is controlled by bit 0 of the
PATTERN register.

The PATTERN register contains a 32-bit repeating line-style pattern. If bit 0
of PATTERN is 0, then the first pixel drawn by LINE is a COLORO pixel. If bit
o of PATTERN is 1, then the first pixel drawn by LINE is a COLOR1 pixel.
The second pixel drawn by LINE is controlled by bit 1 of 813, and so on. If
the line is longer than 32 pixels, the PATTERN is reused cyclically; there­
fore, the 33rd pixel on the line is once again controlled by bit 0 of PATTERN.
As each pixel is drawn, the contents of PATTERN are rotated right (circular
shifted) by 1 bit. The LS8 of the rotated pattern controls the next pixel the
instruction puts out.

If PATTERN contains all 1 s, the line is drawn in a solid color using the repli­
cated pixel value contained in COLOR1 ; if PATTERN contains all Os, the
line is drawn in a solid color using COLORO.

The LINE instruction may use one of two algorithms, depending on the value
of Z.

Algorithm 1 (Z=1):

While COUNT> 0
COUNT = COUNT - 1
Draw the next pixel

COUNT = COUNT - 1
Draw the next pixel

If d~O
d= d+2b-2a
POINTER = POINTER + INC1

Else d= d+ 2b;
POINTER = POINTER + INC2

If d> 0
d= d+2b-2a
POINTER = POINTER + INC1

Else d= d+ 2b;
POINTER = POINTER + INC2

13-143

LINE Line Draw with XY Addressinfl.

Implied Operands

Pixel Processing

Window Checking

13-144

Register Name Format Description

BO t SADDR Integer Decision variable (d)

B2 t DADDR XV Starting point (Yi' Xi), usually (Yo, xo)

B3 :j: DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XV Window starting corner

B WEND XV Window ending corner

B7 DVDX XV (b: a) = Minor: major dimension

B8 COLORO Pixel COLORO

B9 COLOR1 Pixel COLOR1

B10 t COUNT Integer Loop count

B11 INC1 XV Minor axis (diagonal) increment

B12 INC2 XV Major axis (dominant) increment

B13 PATTERN Pattern Pattern register
f These registers are changed by instruction execution.
:j: Required only when pitch is an arbitrary, non power of 2.

Address

COOOOOBOh

C0000140h

C0000150h

C0000160h

Name

CONTROL

CONVDP

PSIZE

PMASK
(32 bits)

Description and Elements (Bits)

PPOP Pixel-processing operations (22 options)
W Window-clipping operation
T Transparency operation
TM Sets transparency mode

XV-to-linear conversion (destination pitch)

Pixel size (1,2,4,8,16,32)

Plane mask - pixel format

Due to the pipelining of memory writes, the last 1/0 register that you write to
may not, in some cases, contain the desired value when you execute the LINE
instruction. To ensure thatthis register contains the correct value for execution,
you may want to follow the write to that location with an MWAIT (13-177). Refer
to Section 4.5.6 on page 4-13 for a description of the potential latency of writes
to 1/0 registers.

PPOP[CONTROL] specifies the operation to be applied to the pixel as it is
written. There are 22 operations; the default case at reset is the pixel-proces­
sing replace (S ~ D) operation. For more information, refer to Section 12.8,
Pixel Processing, on page 12-27.

Window clipping or picking is selected by setting W[CONTROL] to the appro­
priate value. The WSTART and WEND registers define the window in XV -coor­
dinate space. For more information, refer to Section 12.7, Window Checking,
on page 12-19.

TMS34020 Assembly Language Instruction Set

Transparency

Plane Masking

Interrupts

Machine States

Status Bits

Example

You can enable transparency for this instruction by setting T[CONTROL] to
1. Select 1 of 3 transparency options by setting TM[CONTROL]. For more
information, refer to Section 12.9, Transparency, on page 12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

LINE may be interrupted after every pixel in the line draw except for the last
pixel. Note that a LINE instruction that is aborted because of window checking
options 1 or 2 does not decrement the PC before pushing it on the stack. In this
case, the LINE is not resumed after returning from the interrupt service routine.
For more information, refer to Section 6.6, Interrupting Graphics Instructions,
on page 6-13.

Refer to Section 15.1 on page 15-2.

N Undefined
C Undefined
Z Undefined
V Set depending upon window operation

Refer to example for FLiNE on page 13-124.

13-145

LlNIT Line Initialization

Syntax

Execution

Instruction Words

Description

Implied Operands

UNIT

2b-a -7 BO
(b:a) -7 B7
a+1 -7 B10
minor axis (diagonal) XY increment -7 B11
major axis (dominant) XY increment -7 B12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
101010101111101010111011101111 1

This line initialization instruction uses the start and end points for the line to set
up the implied B-file registers as required by the LINE and FLiNE instructions.
The startpoint is assumed to be in B2 and the endpoint in B7. Note that FLiNE
expects a linear DADDR, so when LlNIT is used in conjunction with FLlNE,
CVXYL should be executed on DADDR before executing FLiNE.

The V bit in status is set to indicate if both start and end points lie within the
window. The i-J and Z bits are set on the X and Y zero detects on the difference
between the two points. This allows for detection of the special cases of hori­
zontal and vertical lines as well as single pixel lines. The C bit is set to indicate
that the line may be trivially rejected.

For additional information, refer to Section 12.4, Line Instructions, on page
12-7; FLiNE on page 13-121, LINE on page 13-142, subsection 12.7.5,
Window Checking for Line Instructions, on page 12-23, and subsection
12.7.5.2, Using LlNITand FLiNE for Preclipping Line Drawing, on page 12-26.

"

Register Name Format Description

80 SADDR Linear Decision variable (output)

82 DADDR XY Starting point (Yo. xo) (input)

87 DYDX XY Ending point (Y1, xi) (input)

87 DYDX XY b:a minor:major line dimensions (output)

810 COUNT Integer Count (output)

811 XY Minor axis (diagonal increment) (output)

812 XY Major axis (dominant increment) (output)

Machine States 9

Status Bits

Examples

13-146

if xO = x1 (vertical line)
if (CPW(Yo, xo) & CPW(Y1 ,Xi)) is nonzero

if Yo = Y1 (horizontal line)
if (Yo,xo) or (Y1 ,Xi) lie outside the window

Refer to Section 15.1 on page 15-2.

(line lies entirely
outside window)

(line lies partially
outside window)

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Find Leftmost LMO

LMO Rs, Rd

31 - (bit number of leftmost 1 in Rs) -7 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 1 I 1 I 0 I 1 I 0 I 1 I Rs I R Rd

LMO locates the leftmost (most significant) 1 in the source register. It then
loads the 1 s complement of the bit number of the leftmost-1 bit into the 5 LSBs
of the destination register. The 27 MSBs of the destination register are loaded
with Os. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the LSB. If the source
register contains all Os, then the destination register is loaded with all Os and
status bit Z is set.

You can normalize the contents of the source register by following the LMO
instruction with an RL RS,Rd instruction, where Rs is the destination register
of the LMO instruction and Rd is the source register.

Rs and Rd must be in the same register file.

1

N Unaffected
Unaffected C

Z
V

1 if the source register contents are 0, 0 otherwise
Unaffected

Code Before Aftm:
AO NCZV A1

LMO AO,Al OOOOOOOOh x x 1 x OOOOOOOOh
LMO AO,Al 0OOOOOO1h x x 0 x 0OOOOO1Fh
LMO AO,Al 0OOOOO10h x x a x 0OOOOO1Bh
LMO AO,Al 08000000h x x a x 0OOOOOO4h
LMO AO,Al 80000000h x x a x OOOOOOOOh

13-147

MMFM Move Multiple Registers from Memory
wm'f'.''Ifflfm :If:I:~:::;:1 r~mRril!ll'

Syntax MMFM Rp, register list

Execution

Instruction Words

Description

13-148

For each register Rn in the register list,
32 bits of data at the address specified in Rp -+ Rn
Rp + 32 -+ Rp

3 2 o
Rp

MMFM loads the contents of a specified list of either A- or B-file registers (not
both) from a block of memory.

Q Rp is a register that points to the first location in the block of memory.

Q The register list is a list of registers separated by commas (such as AD, A 1,
A9). These are the registers that MMFM loads new values into.

MMFM and MMTM are complementary instructions. MMFM reads a list of A­
or B-file registers from memory, and MMTM writes a list of A- or B-file registers
to memory. These instructions can be used to save and restore the contents
of registers during, for example, subroutine calls and interrupts. All 32 bits of
each register in the list are saved and then restored.

MMFM and MMTM use Rp as a pOinter register. Rp acts as a stack pointer;
MMTM pushes a list of registers onto a stack, and MMFM pops a list of registers
from a stack. The stack grows toward lower addresses, similar to the way the
SP register pOints to the system stack. The Rp can be any register that is not
included in the register list and that is in the same file as the registers in the
list. (SP can be treated as belonging to either register file.)

MMFM and MMTM always leave the Rp register adjusted to point to the new
top of the stack following a push or pop operation. M MTM predecrements Rp
by 32 prior to pushing each register in the list onto the stack. The last register
pushed on the stack by MMTM is the highest numbered register in the list.
MMFM postincrements Rp by 32 after popping each register in the listfrom the
stack. The first register popped off the stack by MMFM is the highest numbered
register in the list.

If SP is used as the Rp register, MMTM and MMFM push and pop register val­
ues to and from the system stack and leave SP correctly adjusted to point to
the new top of the system stack.

Rp and the registers in the list must all be in the same register file. The assem­
bler allows the registers in the list to be specified in any order; the highest num­
bered register is always restored first (that is, the value at the top ofthe stack­
the lowest address in the stack-is loaded into the highest numbered register).
Don't include Rp as one of the registers in the register list, because this
produces unpredictable results. For the best performance, the original

TMS34020 Assembly Language Instruction Set

Machine States

Status Bits

Examples

contents of Rp should be aligned on a long-word boundary; the alignment of
Rp affects the instruction timing as indicated in Machine States, below.

The second word of the MMFM instruction is a binary-mask representation of
the registers in the list. The R bit (bit 4) in the first instruction word indicates
which register file is affected; the bits that are set to 1 in the mask indicate which
registers are restored. The bit assignments in the mask are

(MSB) 15

Refer to Section 15.1 on page 15-2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This example restores several 8-file registers:

MMFM BO,Bl,B2,B3,B7,B12,B13,B14,SP

This instruction uses register 80 as the stack pointer. Assume that 80 =
0001 OOOOh; this is the address of the top of the stack. MMFM moves the data
at this location into the LSW of the SP (which is the highest order register listed
in this example). Assume that memory contains the following values before
instruction execution:

Address Data Address Data
0OO100FOh 1111h 00010070h CCCCh
000100EOh B1B1h 00010060h BCBCh
000100DOh 2222h 00010050h DDDDh
000100COh OB2B2h 00010040h BDBDh
000100BOh 3333h 00010030h EEEEh
000100AOh B3B3h 00010020h BEBEh
00010090h 7777h 0OO10010h FFFFh
00010080h B7B7h 0OO10000h BFBFh

After the MMFM instruction is executed, the registers in the list have the follow­
ing values:

BO = 00010100h B12 = CCCCBCBCh
B1 = 1111B1B1h
B2 = 2222B2B2h
B4 = 3333B3B3h
B8 = 7777B7B7h

B13 = DDDDBDBDh
B14 = EEEEBEBEh
SP = FFFFBFBFh

The other 8-file registers (which weren't specified in the register list) are not
affected by this instruction. Note that 80 now contains the value 101 OOh; the
last part of the data that was restored was for 81, and 80 pOints to the word
past that data.

13-149

MMTM Move Multiple Registers to Memory
f:'"==',:,:,:::<:~<';{~~<,:rn_~:::,<~~m-,_-=::;:::::;'$.'{.;",_~,<~;<-m~~':'$:'»:,~~<':':~",,, __ m~;:;:.~==~~~%:'<.I:':~=~~_"=':\."m.::;<.<:~~ ___ ~~~

Syntax

Execution

Instruction Words

Description

13-150

MMTM Rp, register list

For each register Rn in the register list,
Rp -32 ->- Rp
32 bits of data at the address specified in Rn ->- Rp

3 2 1 0

Rp

MMTM stores the contents of a specified list of either A- or B-file registers (not
both) in memory.

Q Rp is a register that points to the first location in a block of memory.

Q The register list is a list of registers that are separated by commas (such
as AO, A1, A9). These are the registers that MMTM stores in memory.

MMTM and MMFM are complementary instructions. MMFM reads a list of A­
or B-file registers from memory, and MMTM writes a list of A- or B-file registers
to memory. These instructions can be used to save and restore the contents
of registers during, for example, subroutine calls and interrupts. All 32 bits of
each register in the list are saved and then restored.

MMTM and MMFM use Rp as a pointer register. Rp acts as a stack painter;
M MTM pushes a list of registers onto a stack, and M MFM pops a list of registers
from a stack. The stack grows toward lower addresses, similar to the way the
SP register paints to the system stack. The Rp can be any register that is not
included in the register list and that is in the same file as the registers in the
list. (SP can be treated as belonging to either register file.)

MMTM and MMFM always leave the Rp register adjusted to point to the new
top of the stack following a push or pop operation. MMTM predecrements Rp
by 32 prior to pushing each register in the list onto the stack. The last register
pushed on the stack by MMTM is the highest numbered register in the list.
MMFM postincrements Rp by 32 after popping each register in the listfrom the
stack. The first register popped off the stack by MMFM is the highest numbered
register in the list.

If SP is used as the Rp register, MMTM and MMFM push and pop register val­
ues to and from the system stack and leave SP correctly adjusted to point to
the new top of the system stack.

When MMTM execution is complete, the contents of the lowest order register
in the list reside at the highest address in the memory stack, and Rp paints to
the address of the highest order register in the list.

Rp and the registers in the list must all be in the same register file. The assem­
bler allows the registers in the list to be specified in any order; the lowest order
register is always saved first. Don't include Rp as one of the registers in the
register list, because this produces unpredictable results. For the best per­
formance, the original contents of Rp should be aligned on a long-word

TMS34020 Assembly Language Instruction Set

Machine States

Status Bits

Examples

boundary; the alignment of Rp affects the instruction timing as shown in
Machine States, below.

The second word of the MMTM instruction is a binary-mask representation of
the registers in the list. The R bit (bit 4) in the first instruction word indicates
which register file is affected; the bits that are setto 1 in the mask indicate which
registers are restored. The bit assignments in the mask are

(MSB) 15 o {LSE

Refer to Section 15.1 on page 15-2.

N. Set to the sign of the result of 0 - Rp. (This value is typically 1 if the original
contents of Rp are positive; otherwise, it is O. The only exceptions to this
are when Rp=80000000h and N is set to 0, and when Rp=O and N is set
to 1.)

C Unaffected
Z Unaffected
V Unaffected

This example saves the values of several A-file registers in memory:

MMTM Al,AO,A2,A4,A8,A12,A13,A14,SP

This instruction uses register A 1 as the stack pointer. Assume that A 1 =
00100000h before instruction execution; this value is decremented by 32 to
pOint to the address where the contents of AO (the lowest order register in the
list) are stored. Assume that the registers in the list contain the following values
before instruction execution:

AO = OOOOAOAOh
A2 = 2222A2A2h
A4 = 4444A4A4h
A8 = 8888A8A8h

A 12 = CCCCACACh
A 13 = DDDDADADh
A 14 = EEEEAEAEh
SP = FFFFAFAFh

MMTM saves these register values in memory as shown below:

Address Data Address Data
OOOFFFOOh AFAFh OOOFFF80h ABA8h
OOOFFF10h FFFFh OOOFFF90h 8888h
OOOFFF20h AEAEh OOOFFFAOh A4A4h
OOOFFF30h EEEEh OOOFFFBOh 4444h
OOOFFF40h ADADh OOOFFFCOh A2A2h
OOOFFF50h DDDDh OOOFFFDOh 2222h
OOOFFF60h ACACh OOOFFFEOh AOAOh
OOOFFF70h CCCCh OOOFFFFOh OOOOh

After instruction execution, register A 1 = OOOFFFOOh; this is the address ofthe
last portion of register data that is saved. i

13-151

Syntax MODS Rs, Rd

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-152

Rd mod Rs - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 0 I 1 I 1 I 0 I Rs R Rd

MODS performs a 32-bit signed divide of the 32-bit dividend in the destination
register by the 32-bit divisor in the source register, and returns a 32-bit remain­
der in the destination register. Regardless of whether the result is positive or
negative, the magnitude of the remainder is always the same as it would be
for a positive dividend and divisor. The remainder is the same sign as the divi­
dend. The original contents of the destination register are always overwritten.

Rs and Rd must be in the same register file.

40
41 if result = 80000000
3 if Rs = 0

N 0 if Rs is 0
1 if Rs is not 0 and the result in Rd is -ve
o if Rs is not 0 and the result in Rd is + ve

C Unaffected
Z 0 if Rs is 0

1 if Rs is not 0 and the result in Rd is 0
o if Rs is not 0 and the result in Rd is not 0

V If Rs is 0, then V = 1, otherwise V = 0

Code Before
AO A1

MODS AO,AI OOOOOOOOh OOOOOOOOh
MODS AD,AI OOOOOOOOh 0OOOOOO7h
MODS AD,AI OOOOOOOOh FFFFFFF9h
MODS AD,AI 0OOOOOO4h 0OOOOOO8h
MODS AD,AI 0OOOOOO4h 0OOOOOO7h
MODS AD,AI 0OOOOOO4h OOOOOOOOh
MODS AD,AI 0OOOOOO4h FFFFFFF9h
MODS AD,AI 0OOOOOO4h FFFFFFF8h
MODS AD,AI FFFFFFFCh 0OOOOOO8h
MODS AD,AI FFFFFFFCh 0OOOOOO7h
MODS AD,AI FFFFFFFCh OOOOOOOOh
MODS AD,AI FFFFFFFCh FFFFFFF9h
MODS AD,AI FFFFFFFCh FFFFFFF8h

After
NCZV A1
Ox01 OOOOOOOOh
Ox01 0OOOOOO7h
Ox01 FFFFFFF9h
Ox10 OOOOOOOOh
OxOO 0OOOOOO3h
Ox10 OOOOOOOOh
1xOO FFFFFFFDh
Ox10 OOOOOOOOh
Ox10 OOOOOOOOh
OxOO 0OOOOOO3h
Ox10 OOOOOOOOh
1xOO FFFFFFFDh
Ox10 OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MODU Rs,Rd

Rd mod Rs -00 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ° I ° I 1 I 1 I ° I 1 I 1 I 1 I Rs R Rd

MODU performs a 32-bit unsigned divide of the 32-bit dividend in the destina­
tion register by the 32-bit divisor in the source register, and returns a 32-bit
remainder in the destination register. The original contents of the destination
register are always overwritten.

Rs and Rd must be in the same register file.

35
3 if Rs = 0

N Unaffected
C Unaffected
Z 0 if Rs=O, 1 if quotient is 0, 0 otherwise
V 1 if divisor Rs equals 0, 0 otherwise

Code Before
AO A1

MODU AO,A! OOOOOOOOh OOOOOOOOh
MODU AO,A! OOOOOOOOh 0OOOOOO7h
MODU AD,A! OOOOOOOOh FFFFFFF9h
MODU AO,A! 0OOOOOO4h 0OOOOOO8h
MODU AO,A! 0OOOOOO4h 0OOOOOO7h
MODU AD,A! 0OOOOOO4h OOOOOOOOh
MODU AO,A! 0OOOOOO4h FFFFFFF9h

After
NCZV A1
xx01 OOOOOOOOh
xx01 0OOOOOO7h
xx01 FFFFFFF9h
xx10 OOOOOOOOh
xxOO 0OOOOOO3h
xx10 OOOOOOOOh
xxOO 0OOOOOO1h

13-153

MOVS Instructions The MOVS instruction is a special form of the MOVE instruction that restricts
the field size of the move to 8 bits. MOVS moves a single byte from its source
to a specified destination.The following list describes characteristics common
to all MOVS instructions.

Q MOVS instructions move data from a register to memory, from memory to
a register, and between memory locations, but they do not move data be­
tween registers.

Q A byte can begin on any bit boundary in memory, although sequential byte
moves are more efficient if the byte addresses are aligned on even 8-bit
boundaries.

Q All addresses are bit addresses.

Q When a byte is moved into a register, the byte's LSS coincides with the reg­
ister's LSS; the byte is sign-extended into the 24 MSSs of the register.

Q If the source data is in a register, only the LSbyte is used.

Q Rs and Rd must be in the same register file.

Q The status bits are unaffected unless otherwise noted in the individual de­
scriptions.

Q For machine states information, refer to Section 15.2 on page 15-10.

Table 13-4. Summary of Operand Formats for the MOVB Instruction

Destination

Rd *Rd *Rd(DOffset) @DAddress

Rs v' v' v' .(1)'
.. (J.' *Rs v' v'
. ::1 ..
o·

'en ' *Rs(SOffset) v'
@SAddress v' v'

The MOVS instruction has nine operand combinations, which are listed below
with their corresponding instruction words and descriptions.

MOVBR~*Rd--

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 0 I 1 I 1 I 0 I Rs R Rd

Moves the LSbyte of Rs to the memory address contained in the Rd.

13-154 TMS34020 Assembly Language Instruction Set

MOVB Rs, *Rd(offset)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11
I 0 I 1 I 0 I 1 I 1 I 0 I Rs R Rd

offset

Moves the LSbyte of Rs to the destination memory address. The destination
address is formed by adding the signed 16-bit offset to the contents of Rd.

MOVB Rs, @DAddress ----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 1 I R I Rs

16 LSBs of destination address

16 MSBs of destination address

Moves the LSbyte of Rs to the destination address.

MOVB*R~Rd--

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 0 I 1 I 1 I 1 I Rs R Rd

Moves a byte from the source address contained in Rs into Rd. This instruction
also compares the source data to O. t See Status Bits for more information.

MOVB*R~*Rd---

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 1 I 1 I 1 I 0 I Rs R Rd

Moves a byte from the source address contained in Rs to the destination
address contained in Rd.

MOVB *Rs(offset), Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

11
I 0 I 1 I 0 I 1 I 1 I 1 I Rs R I Rd

offset

Moves a byte from the source address to the destination register. The source
data's memory address ~ a bit address and is formed by adding the signed
16-bit offset to the content~ of Rs. This instruction also compares the source
data to O. t See Status Bits for more information.

13-155

MOVB *Rs(SOffset), *Rd(DOffset) ------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 0 I 1 I 1 I 1 I 1 1 0 1 Rs
I R I

Rd

source offset

destination offset

Moves a byte from the source address to the destination address. Both ad­
dresses are formed by adding the source or destination signed 16-bit offset to
the contents of Rs or Rd, respectively.

MOVB @SAddress, *Rd----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I 1 I 1 I R I Rd

16 LSBs of source address

16 MSBs of source address

Moves a byte from the source address to Rd. This instruction also compares
the source data to O. t See Status Bits for more information.

MOVB @SAddress, @DAddress ------------------

Status Bits

13-156

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 I 1 I 0 I 0 I 0 I 0 I 0 I 0

16 LSBs of source address

16 MSBs of source address

16 LSBs of destination address

16 MSBs of destination address

Moves a byte from the source address to the destination address.

tThe following status bits information applies only to MOVB instructions with
these addressing modes:

MOVB*Rs, Rd
MOVB *Rs(offset), Rd
MOVB @SAddress, Rd

N 1 if the sign-extended data moved is negative, 0 otherwise
C Unaffected
Z
V

1 if the sign-extended data moved is 0, 0 otherwise
o

TMS34020 Assembly Language Instruction ,C::ot

Move Byte Instructions MOVB
~~~~~~~m~":wrI':'l';~~r~T~:;:<;:;:~1!'IiR':~_~l':':'~l':m::t::~:::::':'l'l'C"c:::li: OOW:~:;:;C,=~~~~,«~:'g~T:;l''Il~_~I':'l';_~

MOVB Examples ------------------------

Example 1

Example 2

Example 3

Assume that memory contains the following values:

Address Data
1000h OOOOh
1010h OOOOh

Code Before After
AO A1 @1000h

MOVB AO, *A1 89ABCDEFh 00001000h OOEFh
MOVB AO, *A1 89ABCDEFh 00001009h DEOOh
MOVB AO, *A1 (1) 89ABCDEFh 00001000h 01DEh
MOVB AO, *A1 (-1) 89ABCDEFh 00001001h OOEFh
MOVB AO,@1000h 89ABCDEFh xxxxxxxxx OOEFh
MOVB AO , @ 10 OCh 89ABCDEFh xxxxxxxxx FOOOh

@1010h
OOOOh
0001h
OOOOh
OOOOh
OOOOh
OOOEh

Assume that memory contains the following values:

Address Data
1000h OOEFh
1010h 89ABh
Code Before After

AO A1
MOVB *AO ,A1 00001000h FFFFFFEFh
MOVB *AO,A1 00001001h 00000077h
MOVB *AO ,A1 00001008h OOOOOOOOh
MOVB * AO , A1 0000100Ch FFFFFFBOh
MOVB * AO (0) , A1 00001000h FFFFFFEFh
MOVB * AO (8) , A1 00001000h OOOOOOOOh
MOVB *AO (-1) ,A10000100Dh FFFFFFBOh
MOVB @1000h,A1 xxxxxxxxx FFFFFFEFh
MOVB @100Ch,A1 xxxxxxxxx FFFFFFBOh

N C Z V
1 x 0 0
o x 0 0
o x 1 0
1 x 0 0
1 x 0 0
o x 1 0
1 x 0 0
1 x 0 0
1 x 0 0

Assume that memory contains the following values:

Address Data
1000h CDEFh
1010h 89ABh
2000h OOOOh
2010h OOOOh

Code Before After
AO A1 @2000h @2010h

MOVB *AO,*A1 0OOO1000h 0OOO2000h OOEFh OOOOh
MOVB *AO,*A1 0OOO1000h 0OOO2001h 01DEh OOOOh
MOVB *AO,*A1 0OOO1000h 0OOO2009h DEOOh 0OO1h
MOVB *AO,*A1 00OO1001h 0OO02000h 00F7h OOOOh
MOVB *AO,*A1 0OOO1001h 0OOO2001h 01EEh OOOOh
MOVB *AO,*A1 0OOO100Ch 0OOO2009h 7800h 0OO1h
MOVB *AO(O) ,*A1(O) 0OOO1000h 0OOO2000h OOEFh OOOOh
MOVB *AO(12),*A1(9) 0OOO1000h 0OOO2000h 7800h 0OO1h
MOVB @1000h,@2000h xxxxxxxxx xxxxxxxxx OOEFh OOOOh
MOVB @lOOCh,@2009h xxxxxxxxx xxxxxxxxx 7800h 0OO1h

13-157

MOVE Move Register to Register

Syntax

Execution

Instruction Words

Description

Fields

Machine States

Status Bits

Examples

13-158

MOVERs, Rd

Rs-Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 1 I 0 I 0 I 1 I 1 I M I Rs I R Rd

MOVE moves the 32 bits of data from the source registerto the destination reg­
ister. Note that this is not a field move; therefore, the field size has no effect.
The source and destination registers can be any of the 31 locations in the on­
chip register file. Note that this is the only MOVE instruction that allows the
source and destination registers to be in different files. This instruction also
performs an implicit compare to 0 of the register data.

The assembler sets bit 9 (the M bit) in the instruction word to specify whether
the move is within a register file or whether it crosses the register files. The as­
sembler sets M to 0 if the source and destination registers are in the same file;
it sets M to 1 if the registers are in different files.

The assembler sets bit 4 (the R bit) in the instruction word to specify the file
the registers are in. The assembler sets R to 0 if the registers are in file A; it
sets R to 1 if the registers are in file B.

Note that when M=O, R specifies the register file for both registers; if M=1, R
specifies the register file for the source register.

1

N 1 if the 32-bit data moved is negative, 0 otherwise
C Unaffected
Z 1 if the 32-bit data moved is 0, 0 otherwise
V 0

Code Before Afm!:
AO A1

MOVE AO, A! OOOOFFFFh OOOOFFFFh
MOVE AO, A! OOOOOOOOh OOOOOOOOh
MOVE AO, A! FFFFFFFFh FFFFFFFFh
MOVE AO, B! OOOOFFFFh xxxxxxxxh
MOVE AO, B! OOOOOOOOh xxxxxxxxh
MOVE AO, B! FFFFFFFFh xxxxxxxxh

B1
xxxxxxxxh
xxxxxxxxh
xxxxxxxxh
OOOOFFFFh
OOOOOOOOh
FFFFFFFFh

NCZV
OxOO
Ox10
1xOO
OxOO
Ox10
1xOO

TMS34020 Assembly Language Instruction Set

MOVE Instructions The following list describes characteristics common to all MOVE instructions
(except MOVE Rs, Rd). For information on MOVE Rs, Rd, refer to page
13-158.

[J The MOVE instruction moves a field of 1-32 bits, depending on the se­
lected field size.The optional F parameter determines the field size and ex­
tension for the move.

• F=O selects the field size of a (FSO).
• F=1 selects the field size of 1 (FS1).
• The SETF instruction sets the field size and extension.
• If you do not supply a value for F, MOVE uses the value of field O.

[J The field is right-justified within the source register.

[J Rs and Rd must in the same register file.

[J The status bits are unaffected unless otherwise noted in the individual de­
scriptions.

[J For machine states information, refer to Section 15.2 on page 15-10.

[J The destination address is a bit address.

Table 13-5. Summary of Operand Formats for the MOVE Instruction

Destination
Rd *Rd *Rd+ ~*Rd *Rd(OOffset) @DAddress

Rs V V V V V V
*Rs V V
*Rs+ V
-*Rs V
*Rs(SOffset) V V
@SAddress V V

The MOVE instruction has 18 operand combinations, which are listed below
with their corresponding instruction words and descriptions.

MOVE Rs, *Rd [,F]-----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Rs R I Rd

Moves a field from Rs to the address specified in Rd.

13-159

MOVE Move Field Instructions
~

MOVE Rs, *Rd+ [,F]----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 1 I 0 I 0 I F I Rs R Rd

Moves a field from Rs to the address contained in the destination register. After
the move, the contents of Rd are postincremented by the selected field size.

MOVE Rs, -*Rd [,F]----------------------
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 1 I 0 I 0 I 0 I F I Rs R Rd

Moves a field from the Rs to the address contained in Rd. Before the move,
the destination address is determined by subtracting the field size from the
contents of Rd. (This value is also the final value for the register.)

MOVE Rs, *Rd(offset) [,F] --------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rs Rd

offset

Moves a field from the Rs to the destination address. The destination address
is formed by adding the signed 16-bit offset to the contents of Rd.

MOVE Rs, @DAddress [,F]-------------------
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

01 0 I 0 I 0 I 0 I 1 I F I 1 I 1 I 0 I 0 I R I Rs

16 LSBs of source address

16 MSBs of source address

Moves a field from Rs to the destination address.

MOVE*R~RdLFJ-------------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Rd

Moves a field from the source address contained in Rs to the destination
address contained in Rd. When the field is moved into the destination register,
it is right-justified and sign-extended or zero-extended to 32 bits (depending
on the value of FE). This instruction also compares the source data to O. t See
Status Bits for more information.

MOVE*R~*RdLF]--~

13-160

15 14 13 12 11 10 9 8 76543 2 o
Rs I R I Rd

Moves a field from a source address contained in Rs to the destination address
contained in Rd.

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE

MOVE *Rs+, Rd [,F]-----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 I 0 I 0 I 1 I 0 I 1 I F I Rs I R Rd

Moves a field from a source address into Rd. Rs contains the address of the
field; after the move, the contents of the source register are incremented by
the field size. When the field is moved into Rd, it is right-justified and sign- or
zero-extended to 32 bits (depending on the value of the current FE bit). This
instruction also performs an implicit compare to 0 ofthe field data. t See Status
Bits for more information.

MOVE*Rs+,*Rd+£F]---

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 0 I 1 I 1 I 0 I F I Rs R Rd

Moves a field from one address to another. Rs contains the bit address of the
field; Rd contains the bit address of the field's destination. After the move, the
contents of both registers are incremented by the field size.

If Rs and Rd specify the same register, the data read from the location pointed
to by the original contents of Rs is written to the location pointed to by the
incremented value of Rs(Rd).

MOVE -*Rs, Rd [,F] ----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 0 I 1 I 0 I 0 I 1 I F I Rs R Rd

Moves a field from a source address into Rd. Rs contains a bit address; before
the move, the contents of Rs are decremented by the field size to form the
address of the field. (This value is also the final value for the register.) When
the field is moved into Rd, it is right-justified and sign- or zero-extended to 32
bits (depending on the value of the current FE bit). This instruction also
performs an implicit compare to 0 of the field data.

If Rs and Rd are the same register, the pointer information is overwritten by the
data fetched. t See Status Bits for more information.

MOVE -*Rs, -*Rd [,F]----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 I 0 I 1 I 0 I 1 I 0 I F I Rs R Rd

Moves a field from one memory location to another. Both registers contain bit
addresses; before the move, the contents of both registers are decremented
by the field size.

13-161

MOVE Move Field Instructions

If Rs and Rd are the same register, then the final contents of the register are
its original contents decremented by twice the field size.

MOVE*Rs(offse~RdLFJ---

15 14 13 12 11 10 9 8 7 6 543 2 1 o
1110111110111FI Rs Rd

offset

Moves a field from the source address into Rd. The source address is formed
by adding a signed, 16-bit offset to the contents of Rs. When the field is moved
into Rd, it is right-justified and sign- or zero-extended to 32 bits (depending on
the value of the current FE bit). This instruction also performs an implicit
compare to 0 of the field data. t See Status Bits for more information.

MOVE *Rs(offset), *Rd+ [,F] -----------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
Rs Rd

offset

Moves a field from one memory location to another. The source address is
formed by adding the contents of Rs to the signed 16-bit offset. Rd contains
the address of the field's destination; atter the move, the contents of Rd are
incremented by the selected field size.

MOVE *Rs(SOffset), *Rd(DOffset) LF] -------------------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 0 I 1 I 1 I 1 I 0 I F I Rs I R I Rd

source offset

destination offset

Moves a field from one memory location to another. The source address is
formed by adding a signed 16-bit offset to the contents of Rs. The destination
address is formed by adding a signed 16-bit offset to the contents of Rd.

MOVE @SAddress, Rd LF]------------------

13-162

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Oi010101011JFI 1 1 1 J o l11 R I Rs

16 LSBs of source address

16 MSBs of source address

Moves a field from memory to the destination register. SAddress is a 32-bit
address. When the field is moved into the destination register, it is right-justified

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE

and sign- or zero-extended to 32 bits (depending on the selected value of FE).
This instruction also compares the source data to O. t See Status Bits for more
information.

MOVE @SAddress, *Rd+ [,F] -------------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 1 I 0 I 1 I 0 I 1 I Flo I 0 I 0 I 0 I R I Rs

16 LSBs of source address

16 MSBs of source address

Moves a field from one location in memory to another. The source address is
a 32-bit address; the destination address is specified by the contents of Rd.
After the move, the contents of the destination register are incremented by the
field size.

MOVE @SAddress, @DAddress [,F] -----------------

Status Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010101010111FI11111101010101010

16 LSBs of source address

16 MSBs of source address

16 LSBs of destination address

16 MSBs of destination address

Moves a field from one location in memory to another. Both addresses are
32-bit addresses.

t The following status bits information applies only to these MOVEs:
MOVE *Rs, Rd [,F]
MOVE *Rs+, Rd [,F]
MOVE -*Rs, Rd [,F]
MOVE *Rs(offset), Rd [,F]
MOVE @SAddress, Rd [,F]

N 1 if the field-extended data moved to register is negative, 0 otherwise
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise
V 0

13-163

MOVE Move Field Instructions

MOVE Examples -------------------------

Example 1

Example 2

13-164

This is an example of the following MOVE instructions:

MOVERs, *Rd
MOVE Rs, *Rd+
MOVE Rs, -*Rd
MOVE Rs, *Rd(offset)
MOVE Rs, @DAddress

Assume that memory contains the following value before instruction execution:

Address Data
15500h OOOOh
15510h OOOOh
15520h OOOOh Register AO = FFFFFFFFh

Code Before After
A1 FSO/1 A1 @15500h @15510h @15520h

MOVE AO,*Al,O 00015500h 5/x 00015500h 001Fh OOOOh OOOOh
MOVE AO,*Al,l 00015503h X/8 00015503h 078Fh OOOOh OOOOh
MOVE AO,*Al,O 00015508h 13/x 00015508h FFOOh 001Fh OOOOh
MOVE AO ,*Al, 1 0001550Ch X/24 0001550Ch FOOOh FFFFh OOOFh

MOVE AO,*Al+,l 0001551 Dh x/16 0001552Dh OOOOh EOOOh 1FFFh
MOVE AO,*Al+,O 00015516h 19/x 00015529h OOOOh FFCOh 01FFh
MOVE AO, *Al+, 1 00015500h X/32 00015520h FFFFh FFFFh OOOOh

MOVE AO ,-*Al, 0 0001530h 5/x 000152Bh OOOOh OOOOh F800h
MOVE AO ,-*Al, 1 000152Dh X/8 0001525h OOOOh OOOOh 1FEOh
MOVE AO ,-*Al, 0 0001528h 13/x 000151Bh OOOOh F800h OOFFh

MOVE AO,*Al(00OOh),100015500h X/1 00015500h 0001h OOOOh OOOOh
MOVE AO,*Al(OFFFh),OOOO14501h 19/x 00014501h FFFFh 0007h OOOOh
MOVE AO,*Al(7FFFh),10000D501h X/22 0000D501h FFFFh 003Fh OOOOh
MOVE AO,*Al(BOOOh),OOOO1D500h 27/x 0001D500h FFFFh 07FFh OOOOh

MOVE AO,@1550Bh,1 xxxxxxxx X/16 xxxxxxxx F800h 07FFh OOOOh
MOVE AO,@15512h,O xxxxxxxx 27/x xxxxxxxx OOOOh FFFCh 1FFFh
MOVE AO,@1550Ch,1 xxxxxxxx X/32 xxxxxxxx FOOOh FFFFh OFFFh

This is an example of the following MOVE instructions:

MOVE*Rs, Rd
MOVE *Rs+, Rd
MOVE -*Rs, Rd
MOVE *Rs(offset), Rd
MOVE @SAddress, Rd

Assume that memory contains the following value before instruction execution:

Address
15500h
15510h
15520h

Data
7770h
7777h
OOOOh

Address
15530h
15540h
15550h

Data
3333h
4444h
5555h

TMS34020 Assembly Language Instruction Set

Move Field Instructions MOVE __ ~ ___):If!_l'AA'IW:. m_"""" ___ 'l:'l':':«~RI:;¥:' :'l!m'~; ,mc;~r

l'~R'I""_""'_r"r "~'R um lIWlI ..

Example 3

Code Before After
AO FSO/1 FEO/1 AO A1 NCZV

MOVE *AO,Al,l 00015500h X/1 X/1 00015500h OOOOOOOOh Ox10
MOVE *AO,Al,O 00015500h 5/x O/x 00015500h 0OOOOO10h OxOO
MOVE *AO,Al,l 00015500h X/5 X/1 FFFFFFFOh OOOOOOOOh 1xOO
MOVE *AO,Al,O 00015500h 5/x O/x 00015500h 00000010h OxOO
MOVE *AO,Al,O 00015500h 18/x O/x 00037770h 00000010h OxOO

MOVE *AO+,Al,O 00015500h 12/x O/x 0001550Ch 00000770h OxOO
MOVE *AO+,Al,l 00015500h X/12 X/1 0001550Ch 00000770h OxOO
MOVE *AO+,Al,O 00015500h 27/x O/x 0001551Bh 07777770h OxOO
MOVE *AO+,Al,l 00015500h X/27 X/1 0001551Bh FF777770h 1xOO

MOVE -*AO,Al,O 00015520h 31/x 1/x 00015501h 3BBBBBB8h OxOO
MOVE -*AO,Al,O 00015520h x/31 X/O 00015501h 3BBBBBB8h OxOO
MOVE -*AO,Al,O 00015520h 32/x Xix 00015500h 77777770h OxOO

MOVE *AO(OO20h),Al,1 0001551 Ch X/13 X/O 0001551Ch 00000443h OxOO
MOVE *AO(OOFFh),Al,O 00015435h 16/x 1/x 00015435h 00004333h OxOO
MOVE *AO(7FFFh),Al,1 0000 D531 h X/22 X/1 0000D531h 00000443h OxOO
MOVE *AO(8000h),Al,O 0001 D530h 27/x 1/x 0001D530h FC443333h 1xOO
MOVE *AO(OFFECh),Al,O 0001554Dh 32/x O/x 0001554Dh AAA22219h 1xOO

MOVE @15504h,Al,O xxxxxxxx 1/x 18/x xxxxxxxx FFFF7777h 1xOO
MOVE @15500h,Al,1 xxxxxxxx x/O X/18 xxxxxxxx 00037770h OxOO
MOVE @15501h,Al,O xxxxxxxx O/x 30/x xxxxxxxx 3BBBBBB8h OxOO
MOVE @15501h,Al,1 xxxxxxxx X/1 X/30 xxxxxxxx FBBBBBB8h 1)(00

This is an example of the following MOVE instructions:

MOVE *Rs, *Rd
MOVE *Rs+, *Rd+
MOVE -*Rs, -*Rd
MOVE @SAddress, @DAddress
MOVE @SAddress, *Rd+

Assume that memory contains the following value before instruction execution:

Address
15500h
15510h
15520h

Data
FFFFh
FFFFh
FFFFh

Address
15530h
15540h
15550h

Data
OOOOh
OOOOh
OOOOh

13-165

MOVE Move Field Instructions

MOVE *AO, *AI, I
MOVE *AO, *AI, 0
MOVE *AO, *AI, I
MOVE *AO, *AI, 0

Before
AO

00015500h
00015500h
00015500h
00015500h

MOVE *AO+, *AH, I 00015510h
MOVE *AO+,*AH,O 00015511h
MOVE *AO+, *AH, I 00015513h
MOVE *AO+,*AH,O 00015510h

After
A1 FSO!1 AO

00015530h xl1 00015500h
00015534h 5/x 00015500h
0001553Ah xl10 00015500h
0001553Fh 19/x 00015500h

00015532h xl7
0001553Ah 13/x
0001553Fh xl8
0001553Ah 28/x

00015517h
0001551Fh
0001551Bh
0001552Ch

MOVE *-AO, *-AI, 000015527h 00015555h 31/x 00015508h
MOVE *-AO, *-AI, 100015527h 00015550h xl31 00015508h
MOVE *-AO, *-AI , 00001552Ah 00015550h 32/x 0001550Ah
MOVE *-AO, *-AI, 100015520h 0001555Ah xl32 00015500h

MOVE @ 15500 h , * A 1+ , 1 0001553Ah xxxxxxxx xl1 0 00015544h
MOVE @15500h,*A1+,00001553Ah xxxxxxxx 19/x 00015552h
MOVE @1550Dh,*A1+,10001553Ah xxxxxxxx 28/x 0001554Ch
MOVE @15505h,*Al+,00001553Ah xxxxxxxx xl32 00015540h

A1 @15530h @15540h

00015530h 0001h OOOOh
00015534h 01FOh OOOOh
0001553Ah FCOOh OOOFh
0001553Fh 8000h FFFFh

00015539h
00015547h
00015547h
00015556h

00015536h
00015531h
00015530h
0001553Ah

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

01FCh OOOOh
FCOOh 007Fh
8000h 007Fh
FCOOh FFFFh

FFCOh FFFFh
FFFEh FFFFh
FFFFh FFFFh
FCOOh FFFFh

FCOOh OOOFh
8000h FFFFh
FFFFh OFFFh
FFEOh OFFFh

@1550h

OOOOh
OOOOh
OOOOh
0003h

OOOOh
OOOOh
OOOOh
003Fh

001Fh
OOOOh
OOOOh
03FFh

OOOOh
0003h
OOOOh
OOOOh

MOVE @15500h, @15530h, I XXXXXXXX xxxxxxxx
MOVE @15500h,@15534h,O XXXXXXXX XXXXXXXX
MOVE @15500h, @15530h, I xxxxxxxx xxxxxxxx
MOVE @15500h,@15530h,O XXXXXXXX XXXXXXXX

xl1 XXXXXXXX XXXXXXXX
5/x XXXXXXXX XXXXXXXX
xl7 XXXXXXXX XXXXXXXX
13/x XXXXXXXX XXXXXXXX

0001h OOOOh OOOOh
01FOh OOOOh OOOOh
007Fh OOOOh OOOOh
1 FFFh OOOOh OOOOh

Example 4 This is an example of the following MOVE instructions:

MOVE *Rs(offset), *Rd+
MOVE *Rs(offset), *Rd(offset)

Assume that memory contains the following value before instruction execution:

Address
15500h
15510h
15520h

MOVE*AO(OOOOh),*AI+,1
MOVE*AO(OOFFh),*AI+,1
MOVE*AO(OFFFh),*AI+,1
MOVE*AO(OFFEOh),*AI+,1

Data
OOOOh
OOOOh
OOOOh

Before After
AO A1 FSO/1 A1 .

00015530h 0015500h xl1 00015501h
00015535h 001550Ch 16/x 0001551 Ch
00015531h 00015510h 19/x 00015523h
00015558h 00015508h xl31 00015527h

Address
15530h
15540h
15550h

Data
3333h
4444h
5555h

@15530h

0001h
3000h
OOOOh
3300h

@15540h

OOOOh
0433h
3333h
4444h

MOVE*AO(OOOlh),*AI(OOOOh),O 0001552Fh 00015504h 5/x 00015504h 0130h
MOVE * AO (00 OFh) , * Al (00 OFh) ,0 00015520h 000154FOh 8/x 000154FOh 3000h
MOVE*AO(7FFFh),*AI(8000h),1 0000D531h 0001D508hxl22 0001D508h 3300h
MOVE *AO (OFFF2h) , *AI (7FFFh) , 100015540h 00000501 h xl25 00000501 h OCCCh

OOOOh
0004h
0433h
0111 h

@1550h

OOOOh
OOOOh
0004h
0055h

OOOOh
OOOOh
OOOOh
OOOOh

13-166 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

M~:,! Immediate, 16 Bits MOVI

MOVI IW, Rd [, W]

16-bit immediate value - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I R Rd

16-bit value

MOVI stores a 16-bit, sign-extended immediate value in the destination regis­
ter. (IW in the instruction syntax represents the 16-bit value.)

The assembler uses the short form if the immediate value has been previously
defined and is in the range -32,768 through 32,767. You can force the assem­
bler to use the short form by following the register operand with ,W:

MOVI IW,Rd,W

The assembler truncates the upper bits and issues an appropriate warning
message.

2

N 1 if the data being moved is negative, 0 otherwise
C Unaffected
Z Unaffected
V 1 if the data being moved is 0, 0 otherwise

Code After
AO NCZV

MOVI 32767,AO 0OOO7FFFh OxOO
MOVI I,AO 0OOOOOO1h OxOO
MOVI O,AO OOOOOOOOh Ox10
MOVI -I,AO FFFFFFFFh 1xOO
MOVI -32768,AO FFFF8000h 1xOO
MOVI OOOOh,AO OOOOOOOOh Ox10
MOVI 7FFFh,AO 0OOO7FFFh OxOO

13-167

~OVI Move Immediate, 32 Bits

Syntax MOVI IL, Rd [, L]

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-168

32-bit immediate value -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 1 I R I Rd

16 LSBs of IL

16 MSBs of IL

MOVI stores a 32-bit immediate value in the destination register. (IL in the
instruction syntax represents the 32-bit value.)

The assembler uses this opcode if it cannot use the MOVI IW, Rd opcode or if
the long opcode is forced by following the register operand with, L:

MOVI IL,Rd,L

2 if immediate data is long-word aligned
3 if immediate data is not long-word aligned

N 1 if the data being moved is negative, 0 otherwise
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise
V 0

Code After
AO NCZV

MOVI 2147483647,AO 7FFFFFFFh OxOO
MOVI 32768,AO 0OOO8000h OxOO
MOVI -32769,AO FFFF7FFFh 1xOO
MOVI -2147483648,AO 80000000h 1xOO
MOVI 8000h,AO 0OOO8000h OxOO
MOVI OFFFFFFFFh,AO FFFFFFFFh 1xOO
MOVI OFFFFh,AO,L FFFFFFFFh 1xOO

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

MOVK constant, Rd

5-bit constant ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 1 I 1 I 0 I constant R Rd

MOVK stores a 5-bit constant in the destination register. The constant is
treated as an unsigned number in the range 1-32, where constant = 0 in the
opcode corresponds to a value of 32. The resulting constant value is zero­
extended to 32 bits.

Note that you cannot set a register to 0 with this instruction. You can clear a
register by XORing the register with itself; use CLR Rd (an alternate mnemonic
for XOR Rs, Rd) to accomplish this. Both these methods alter the Z bit (set it
to 1).

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code After
AO

MOVK I,AO 0OOOOOO1h
MOVK 8,AO 0OOOOOO8h
MOVK I6,AO 0OOOOO10h
MOVK 32,AO 0OOOOO20h

13-169

MOVX Move X Half of Register
-=-m_~::;<;:: __ ~~~~_W=-M>"",,,"~~~~w;;m,,,,",,",_~~_w. ___ Ji'$"i? .. m?lI,;ni"'II;>;~

Syntax

Execution

Instruction Words

Description

MOVX RS,Rd

X half of Rs -+ X half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 1 1 1 1 1 0 1 1 I· 1 1 0 1 Rs R Rd

MOVX moves the X half of the source register (16 LSBs) to the X half of the
destination register. The Y halves of both registers are unaffected.

You can also use the MOVX and MOVY instructions for handling packed 16-bit
quantities and XY addresses. You can use the RL instruction to swap the con­
tents of X and Y.

Rs and Rd must be in the same register file.

Machine States 1

Status Bits N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code Before After
AD A1 A1

MOVX AO,AI OOOOOOOOh FFFFFFFFh FFFFOOOOh
MOVX AD,AI 12345678h OOOOOOOOh 00005678h
MOVX AD,AI FFFFFFFFh OOOOOOOOh OOOOFFFFh

13-170 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Move Y Half of MOVY

MOVY Rs,Rd

Y half of Rs ->- Y half of Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 0 I 1 I 1 I 1 I Rs R Rd

MOVY moves the Y half of the source register (16 MSBs) to the Y half of the
destination register. The X halves of both registers are unaffected.

You can also use the MOVX and MOVY instructions for handling packed 16-bit
quantities and XY addresses. You can use the RL instruction to swap the con­
tents of X and y.

Rs and Rd must be in the same register file.

N Unaffected
C Unaffected

Z Unaffected

V Unaffected

Code Before After
AD A1 A1

MOVY AD,AI OOOOOOOOh FFFFFFFFh OOOOFFFFh
MOVY AD,AI 12345678h OOOOOOOOh 12340000h
MOVY AD,AI FFFFFFFFh OOOOOOOOh FFFFOOOOh

13-171

M PYS Multiply Registers, Signed
~.;w.~':'!:~~~~m~~wm~~:m:%.";;::;>:~"'_~~=-}~::::::::"~>':l:'::ww.~~~~,,~~:~: __ »!:=~~::;::;m::::_~'l.'~:~=~=~>'~":>.<_W»,~~~~~~}'t.~~~,:,::~~~'l1I'

Syntax

Execution

Instruction Words

Description

13-172

MPYS Rs,Rd

If Rd is an even-numbered register, Rs x Rd ~ Rd:Rd+1
If Rd is an odd-numbered register, Rs x Rd --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 1 I 1 I 0 I Rs R Rd

MPYS performs a signed multiply of a variably sized field in the source register
by the 32 bits in the destination register. This produces a 32-bit to a 64-bit
result, depending on the register and field definitions. Note that Rs and Rd
must be in the same register file.

The value offield size 1 (FS1) defines the size of the multiplier in Rs. FS 1 may
have any even value n from 2 to 32 (that is, n = 2, 4, 6 ... 30,32). The instruction
executes a 32-bit-by-n-bit multiply - multiplying the 32 bits in Rd by the n bits
in Rs. All values are signed. The MSB ofthe source field (bit n -1 in Rs) defines
the sign of the field; the bits to the left of bit n are ignored. The MSB of Rd
defines the sign of the multiplicand.

MPYS has two modes, depending on whether Rd is even or odd:

Q Rd Even:

MPYS multiplies the contents of Rd by the n-bit field in Rs, and stores the
result in 2 consecutive registers, Rd and Rd+ 1. (For example, if Rd=B4, the
result is stored in registers B4 and B5.) The result is Sign-extended and
right-justified; the 32 MSBs are stored in Rd, and the 32 LSBs are stored in
Rd+ 1. Note that all 32 bits of both registers are used, regardless ofthe field
size of the multiply.

Do not use A 14 or B 14 as the destination register, because Rd+ 1 (A 15 or
B 15) is the stack painter register (SP). It is not desirable to write over the
contents of the SP.

TMS34020 Assembly Language Instruction Set

Machine States

Status Bits

Example 1

Q Rd Odd:

MPVS multiplies the contents of Rd by the n-bit field in Rs, and stores the
32 LSBs of the result in Rd; neither Rs nor Rd+ 1 are changed.lfthe result is
greater than 32 bits, the extra MSBs are discarded, regardless of the field
size. The Nand Z status bits, however, are set according to the full result,
including the MSBs that are discarded.

5 + (field size)/2

N 1 if the result is negative, a otherwise
C Unaffected
Z 1 if the result is 0, a otherwise
V Unaffected

MPYS AI, AO

Before After
AD Ai FSi AD Ai NCZV
OOOOOOOOh OOOOOOOOh 32 OOOOOOOOh OOOOOOOOh Ox1x
7FFFFFFFh 7FFFFFFFh 32 3FFFFFFFh 00000001h OxOx
7FFFFFFFh FFFFFFFFh 32 FFFFFFFFh 80000001h 1xOx
FFFFFFFFh 7FFFFFFFh 32 FFFFFFFFh 80000001h 1xOx
FFFFFFFFh FFFFFFFFh 32 OOOOOOOOh 000OOOO1h OxOx
80000000h 7FFFFFFFh 32 COOOOOOOh 80000000h 1xOx
80000000h 80000000h 32 40000000h OOOOOOOOh OxOx
80000001h 80000000h 32 3FFFFFFFh 80000000h Ox Ox
8040156Fh 7FF3B074h 32 C0262CDCh 53E486F8h 1xOx
8040156Fh 7FF3B074h 24 000624B1h 53E486F8h OxOx
8040156Fh 7FF3B074h 20 FFFE28B2h 594486F8h 1xOx
8040156Fh 7FF3B074h 16 000027B2h 17EC86F8h OxOx
8040156Fh 7FF3B074h 14 000007C2h 1C0206F8h OxOx
8040156Fh 7FF3B074h 8 FFFFFFC6h 1 D0766F8h 1xOx
8040156Fh 7FF3B074h 6 00OOOO05h FCFF3BF8h OxOx
8040156Fh 7FF3B074h 4 FFFFFFFEh 01004158h 1xOx
8040156Fh 7FF3B074h 2 OOOOOOOOh OOOOOOOOh Ox 1 x

13-173

MPYS Multiply Registers, Signed
~--""<:~~<:'~~:':"m~)w..~,~,*';~'»~~~~~~~~'*,*~_~~~~~~~~w.~~~~

Example 2 MPYS AO,Al

Before After
AO A1 FS1 AO A1 NCZV
OOOOOOOOh OOOOOOOOh 32 unchanged OOOOOOOOh Ox1x
7FFFFFFFh 7FFFFFFFh 32 unchanged 0OOOOOO1h OxOx
7FFFFFFFh 7FFFFFFFh 32 unchanged 80000001h 1xOx
FFFFFFFFh 7FFFFFFFh 32 unchanged 80000001h 1xOx
FFFFFFFFh FFFFFFFFh 32 unchanged 0OOOOO01h OxOx
80000000h 7FFFFFFFh 32 unchanged 80000000h 1xOx
80000000h 80000000h 32 unchanged OOOOOOOOh OxOx
80000001h 80000000h 32 unchanged 80000000h OxOx
7FF3B074h 80401056h 32 unchanged 53E486F8h 1xOx
7FF3B074h 80401056h 24 unchanged 53E486F8h Ox Ox
7FF3B074h 80401056h 20 unchanged 594486F8h 1xOx
7FF3B074h 80401056h 16 unchanged 17EC86F8h OxOx
7FF3B074h 80401056h 14 unchanged 1C0206F8h OxOx
7FF3B074h 80401056h 8 unchanged 1 D0766F8h 1xOx
7FF3B074h 80401056h 6 unchanged FCFF3BF8h OxOx
7FF3B074h 80401056h 4 unchanged 01004158h 1xOx
7FF3B074h 80401056h 2 unchanged OOOOOOOOh Ox1x

13-174 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

MPYU Rs, Rd

If Rd is an even-numbered register: Rs x Rd - Rd:Rd+1
If Rd is an odd-numbered register: Rs x Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 1 I 1 I 1 I Rs R Rd

M PYU performs an unsigned multiply of a variably-sized field in the source reg­
ister by the 32 bits in the destination register. This produces a 32-bit to a 64-bit
result, depending on the register and field definitions. Note that Rs and Rd
must be in the same register file.

The value offield size 1 (FS1) defines the size of the multiplier in Rs. FS1 may
have any even value n from 2 to 32 (that is, n = 2, 4, 6 ... 30, 32). The instruction
executes a 32-bit-by-n-bit multiply - multiplying the 32 bits in Rd by the n bits
in Rs. All values are unsigned.

..

Cont~~tsofRS (~#FS1}(~~nt~nts ofHel:
:31···~~:L{ '0:3'1

•• r=-I-=-ig-n--'o--'re~dr-'. ."'-'-"--'-n---b-it'--m-u~lt-ip'--lie-r--'----'-"-,11

'::::.:.~.;::::" .::': ::::::~:.:: :.: ". ":")

32-bit multiplicand ·····>°1;

MPYS has two modes, depending on whether Rd is even or odd:

a Rd Even:

MPYU multiplies the contents of Rd by the n-bit field in Rs and stores the
result in 2 consecutive registers, Rd and Rd+ 1. (For example, if Rd=B4, the
result is stored in registers B4 and B5.) The result is zero-extended and
right-justified; the 32 MSBs are stored in Rd, and the 32 LSBs are stored in
Rd+ 1. Note that all 32 bits of both registers are used, regardless ofthe field
size of the multiply.

Do not use A 14 or B14 as the destination register, because Rd+ 1 (A 15 or
B 15) is the stack painter register (SP). It is not desirable to write over the
contents of the SP.

.' ...•• y~nt~nts~fRd(ei'J~nr~9isteir) .•...... . ··.··•·.· .•• ·.C~rii~ritibfRd~l(bclcl.regi~t~a •• ··•··
31· 031 0 ..

1 1 l·

a Rd Odd:

MPYU multiplies the contents of Rd by the n-bit field in Rs and stores the 32
LSBs of the result in Rd; Rs is not changed. If the result is greater than 32
bits, the extra MSBs are discarded, regardless of the field size. The Z sta­
tus bit, however, is set according to the full result, including the MSBs that
are discarded.

13-175

Machine States Rs nonnegative: 5 + (field size)/2
Rs negative: 6 + (field size)/2

Status Bits N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Example 1 MPYU Al,AO

Before After
AO A1 FS1 AO A1 NCZV
FFFFOOOOh 10000000h 32 OFFFFOOOh OOOOOOOOh xxOx
FFFFOOOOh 10001010h 32 1000000Fh EFFOOOOOh xxOx
FFFFOOOOh 10001010h 16 0OOO100Fh EFFOOOOOh xxOx
FFFFOOOOh 10001010h 8 OOOOOOOFh FFFOOOOOh xxOx
FFFFOOOOh i000i010h 4 OOOOOOOOh OOOOOOOOh xxix
08001056h 0OO3B074h 32 0OOO1D83h DC4486F8h xxOx
08001056h 0OO3B074h 16 0OOOO583h AB4286F8h xxOx
08001056h 0OO3B074h 14 0OOOO183h A31786F8h xxOx
08001056h 0OO3B074h 8 0OOOOOO3h AOO766F8h xxOx
08001056h 0OO3B074h 6 0OOOOOO1h AOO35178h xxOx
08001056h 0OO3B074h 4 OOOOOOOOh 20004158h xxOx
08001056h 0OO3B074h 2 OOOOOOOOh OOOOOOOOh xx1x

Example 2 MPYU AO,Al

Before After
AO A1 FS1 AO A1 NCZV
10000000h FFFFOOOOh 32 unchanged OOOOOOOOh xxOx
10001010h FFFFOOOOh 32 unchanged EFFOOOOOh xxOx
10001010h FFFFOOOOh 16 unchanged EFFOOOOOh xxOx
10001010h FFFFOOOOh 8 unchanged FFFOOOOOh xxOx
10001010h FFFFOOOOh 4 unchanged OOOOOOOOh xx1x
0OO3B074h 08001056h 32 unchanged DC4486F8h xxOx
0OO3B074h 08001056h 16 unchanged AB4286F8h xx Ox
0OO3B074h 08001056h 14 unchanged A31786F8h xxOx
0OO3B074h 08001056h 8 unchanged AOO766F8h xxOx
0OO3B074h 08001056h 6 unchanged AOO35178h xx Ox
0OO3B074h 08001056h 4 unchanged 20004158h xx Ox
0OO3B074h 08001056h 2 unchanged OOOOOOOOh xx1x

13-176 TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

III1"mnnnl Wait MWAIT

MWAIT

Wait for current memory cycle to complete

15 14 13 12 11 10 9 8 7 654 320

I 0 I 0 I 0 0 0 I 0 I 0 I 0 1 I 0 I 0 I 0 o I 0 I 0 I 0

MWAIT delays further instruction execution to allow any pending write cycle
to complete. If no write cycle is currently pending, the next instruction begins
execution immediately. If a write cycle is pending, execution of the next instruc­
tion is delayed until the write cycle completes.

MWAIT is typically used to ensure that all pending I/O register updates have
been completed prior to beginning a graphics instruction execution that
depends on the values in the I/O registers. It may also be used to ensure that
a pending write to a register in a memory-mapped peripheral external to the
TMS34020 has completed prior to executing an instruction whose operation
depends on the value in the register. Refer to Section 4.5.6 on page 4-13 for
a description of the potential latency of writes to I/O registers.

minimum of2

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

MOVK 4, BI0
SETF
MOVE

16,0,0
BI0, @C0000150h load PSIZE

MWAIT wait for write to complete
DRAV AO,A2

MOVK
SETF
MOVE

In this case the 16 bit MOVE to PSIZE results
in 1 hidden state at the time MWAIT is
entered. MWAIT will take 2 cycles to execute.

4, BI0
6,0,0
BI0, @C0000150h load PSIZE

MWAIT wait for write to complete
DRAV AO,A2

In this case the 6 bit MOVE to PSIZE results
in 2 hidden states at the time MWAIT is
entered. MWAIT will take 3 cycles to execute.

13-177

NEG Negate Register
1IW_~m'!"Z_=m~~~~~w:w:::~t~·~~~~ __ =-':':-''<:'~'~M''«.:m~=-.'~~~~~~~%-.~~::::m~tI;.- \<'>: AM _,_~~~~-=~m

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-178

NEG Rd

2s complement of Rd -'» Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2 1 D

R Rd

NEG stores the 2s complement ofthe contents of the destination register back
into the destination register.

N 1 if the result is negative, 0 otherwise

C 1 if there is a borrow (Rd ;o! 0), 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow (Rd = 80000000h), 0 otherwise

Code Before After
AO NCZV AO

NEG AD OOOOOOOOh 001 0 OOOOOOOOh
NEG AD 55555555h 1 1 0 0 AAAAAAABh
NEG AD 7FFFFFFFh o 0 80000001h
NEG AD 80000000h o 1 80000000h
NEG AD 80000001h o 1 o 0 7FFFFFFFh
NEG AD FFFFFFFFh o 1 o 0 0OOOOOO1h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

U~'~i~',~rwith Borrow NEGB

NEGB Rd

(2s complement of Rd) - C ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 1 1 I 1 I 1 I 1 I 0 I R Rd

NEGB takes the 2s complement of the destination register's contents and dec­
rements by 1 if the borrow bit (C) is set; the result is stored in the destination
register. This instruction can be used in sequence with itself and with the NEG
instruction for negating multiple-register quantities.

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO C NCZV AO

NEGB AO OOOOOOOOh 0 0010 OOOOOOOOh
NEGB AO OOOOOOOOh 1 1 00 FFFFFFFFh
NEGB AO 55555555h 0 1 1 00 AAAAAAABh
NEGB AO 55555555h 1 1 1 00 AAAAAAAAh
NEGB AO 7FFFFFFFh 0 1 1 00 80000001h
NEGB AO 7FFFFFFFh 1 1 1 00 80000000h
NEGB AO 80000000h 0 1 1 01 80000000h
NEGB AO 80000000h 0100 7FFFFFFFh
NEGB AO 80000001h 0 0100 7FFFFFFFh
NEGB AO 80000001h 1 0100 7FFFFFFEh
NEGB AO FFFFFFFFh 0 0100 00000001h
NEGB AO FFFFFFFFh 01 1 0 OOOOOOOOh

13-179

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Example

13-180

NOP

No operation

15 14 13 12 11 10 9 8 765 4 3 2 0

o I 0 I 0 o I 0 I 0 I 0 I 0

The program counter is incremented to point to the next instruction. The
processor status is otherwise unaffected.

You can use the NOP instruction to pad loops and perform other timing func­
tions.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

~ Before After
PC PC

NOP 00020000h 00020010h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

NOT Rd

NOT Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I 1 R Rd

NOT stores the 1 s complement of the destination register's contents back into
the destination register.

1

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
AD NCZV

NOT AD OOOOOOOOh xxOx
NOT AD 55555555h xxOx
NOT AD FFFFFFFFh xx1x
NOT AD 80000000h xxOx

AD
FFFFFFFFh
AAAAAAAAh
OOOOOOOOh
7FFFFFFFh

13-181

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-182

OR Rs,Rd

Rs OR Rd -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 0 I 1 I 0 I Rs R Rd

This instruction bitwise-ORs the contents of the source register with the con­
tents of the destination register; the result is stored in the destination register.

Rs and Rd must be in the same register file.

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
AD A1 A1 NCZV

OR AO,AI FFFFFFFFh OOOOOOOOh FFFFFFFFh xxOx
OR AO,AI OOOOOOOOh FFFFFFFFh FFFFFFFFh xxOx
OR AO,AI 55555555h AAAAAAAAh FFFFFFFFh xxOx
OR AO,AI OOOOOOOOh OOOOOOOOh OOOOOOOOh xx1x

TMS34020 Assembly Language IfJstruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

ORI IL, Rd

32-bit immediate value OR Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I 1 I R I Rd

16 LSBs of IL

16 MSBs of IL

This instruction bitwise-ORs a 32-bit immediate value with the contents of the
destination register and stores the result in the destination register. (IL in the
syntax represents the 32-bit value.)

2 if immediate data is long-word aligned
3 if immediate data is long-word aligned

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Before
AO

ORr OFFFFFFFFh,AO OOOOOOOOh
ORr OOOOOOOOh,AO FFFFFFFFh
ORr OAAAAAAAAh,AO 55555555h
ORr OOOOOOOOh,AO OOOOOOOOh

After
AO NCZV
FFFFFFFFh xxOx
FFFFFFFFh xxOx
FFFFFFFFh xxOx
OOOOOOOOh xxix

13-183

PFILL Pattern Fill

Syntax

Execution

Instruction Words

Description

PFILL XV

COLORO and COLOR1 pixels ~ pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111011101010111110111111
PFI LL XY fills a pixel array, one row at a time, with a 2-color pattern. The pattern
is defined by the PATTERN register. The 2 colors are defined by the COLORO
and COLOR1 registers. PFILL replaces the 1s in pattern with the pixel value
in COLOR1; it replaces the Os in the pattern with the pixel value in COLORO.

To fill an array with a 2-dimensional pattern, execute PFILL once for each row
of the array. If the width of the specified fill region (defined by OX in DYDX) is
more than 32 pixels, PFILL replicates the same 32-bit pattern as many times
as necessary to fill the row. After each line is drawn, you will typically update
the contents of the PATTERN register to define the next row of the pattern.

If you do not update the PATTERN register between rows, or if the number of
rows in the fill region is .. 1, then the same 1-dimensional pattern is repeated
for each row of the destination array. If the destination array pitch is a power
of 2, and a pattern is drawn to the screen in this manner, then the filled area
appears to contain stripes. If the destination array pitch is not a power of 2, then
the pattern is defined for only the first line of the array.

Aligning a pattern -------------------------

The contents ofthe PATTERN register control the pattern. As an example, con­
sider the pixel addressed by the XY address in DADDR at the start of the PFI LL
instruction. Let that pixel be the nth pixel from the least significant end of a long­
word boundary, where n is in the range:

Bit n in the PATTERN register determines if the first pixel drawn is a COLORO
or COLOR1 pixel. Bitn +1 determines if the second pixel drawn is a COLORO
or COLOR 1 pixel, and so on. The PATTERN register works cyclically to draw
a line. If the OXvalue in DYDX is large, then eventually bit 31 of the PATTERN
register will be used to control an output pixel. If a further pixel is drawn, then
it will be controlled by bit 0 of the pattern and so on.

Prealigning a pattern -------------------------­

The last example demonstrated that PFILLdoes not perform any internal align­
ment of the PATTERN register. This cuts the overhead time required to start
executing and enables you to perform a pattern prealignment to suit your
needs.

13-184 TMS34020 Assembly Language Instruction Set

Consider this case where no prealignment is performed:

PSIZE
DADDR
DPTCH
OFFSET
DYDX
COLORO
COLOR1
PATTERN

(82)
(83)
(84)
(87)
(88)
(89)
(813)

= 04h
= 00000 OOOOh
= 00000 OOOOh
= 00000 OOOOh
= 00020 0060h
= 00000 OOOOh
= OFFFFFFFFh
= OFFFO OOFFh

Pattern Fill PFILL

For this example, PFILL draws a rectangle 96 pixels wide and 32 pixels high.
The rectangle contains vertical stripes, alternating between COLOR1 and
COLOR1. The first pixel drawn, at bit address OOOOOOOOh, is controlled by bit
o of the PATTERN register.

If the screen is clear and the X part of DADDR is incremented by 1 to
00000001 h, PFILL will redraw the rectangle. The first pixel drawn by PFILL,
now at bit address 00000004h, will be controlled by bit 1 of the pattern register.
The drawn pattern now appears as if it were fixed relative to the screen (not
the rectangle edge).

This continues as the X component of DADDR is incremented until DADDR =
000000008h; at this point the first pixel drawn by PFILL, now at bit address
000000020h, will no longer be in the first 32-bit long-word ofthe screen. In this
case, by the argument used above, the first drawn pixel is controlled, once
again, by bit 0 of the PATTERN register and thus changing from DADDR =
000000007h to DADDR = 0000000008h the pattern will appear to jump within
the rectangle. This may not always be a desirable way to manage the pattern.
You may wish to do one of the following:

[J Create a pattern that appears to be fixed relative to the screen background.
[J Create a pattern that appears fixed relative to the edge of the rectangle.

Placing the pattern relative to the screen background ------------

There are three ways to fixing or placing a pattern relative to the screen back­
ground.

1) Let the number of pixels in a long-word be P, where

32
p = PSIZE'

If the pattern in the PATTERN register repeats every p pixels, then it will
appear fixed with respect to the screen background.

If you set 813 = FFOOFFOOFFh in the last example, the pattern will not
jump.

13-185

PFILL Pattern Fill

2) Use a pixel size of 1 bit.

3) Manually rotate the contents of B13 before executing PFILL. The rotation
amount depends on the following two things:

o Pixel size
o X component of DADDR

Let the total number of bits controlled by the entire pattern (that is 32 x
PSIZE bits), be known as a super-word (range 32 to 1024 bits in size).

Let the long-word containing the pixel addressed by DADDR at the start of
the PFILL XY be the nth long-word in a super-word (range a to 32).

Let the number of pixels in a 32-bit long-word be p, where

32
P = PSIZE (range a to 32).

Before starting PFILL XY, the pattern should be rotated right by m x p bits,
before placing it in PATTERN.

This may appear complex, but because pixel size is usually fixed, the
prealignment operation can be reduced to a simple sequence of instruc­
tions. For example, at 4 bits per pixel, ANDing the XY address in DADDR
(available before execution of PFILL) with 018h yields the value m x p
which can be used to rotate the pattern before placing it into the PATTERN
register. At other pixel sizes the following will yield m x p:

PSIZE
1
2
4
8
16
32

mxp
OOOh AND DADDR always a (no rotation required)
010h AND DADDR
018h AND DADDR
01 Ch AND DADDR
01 Eh AND DADDR
01 Fh AND DADDR

Placing the pattern relative to the rectangle ----------------

13-186

Placing or fixing the pattern relative to the rectangle means that the first pixel
drawn by PFILL is always controlled by bit a of the PATTERN register. (This
is how the LINE and FLINE instructions use PATTERN register.)

You can achieve a similar effectfor PFILL by rotating the pattern left by a certain
amount before plaCing it into the PATTERN register. The rotation amount
depends on the following two things: .

o Pixel size
Q X component of DADDR

TMS34020 Assembly Language Instruction Set

Implied Operands

Pixel Processing

Window Checking

The rotation amount is derived by ANDing DADDR with a constant as follows:

PSIZE
1
2
4
8
16
32

Note:

Rotate Amount
01 Fh AND DADDR
OOFh AND DADDR
007h AND DADDR
003h AND DADDR
001 hAND DADDR
OOOh AND DADDR always 0 (no rotation required)

This description describes a striped rectangle, but in practice PFILL is used
to pattern-fill a single line followed by a change of pattern before pattern filling
a second line, and so on. The reference to a rectangle is made for the purpose
of illustration only.

Register Name Format Description

B2 DADDR XY Destination pixel block address

B3 t DPTCH Linear Destination pixel block pitch

B7 DYDX XV Dimensions of drawn rectangle

B13 PATTERN Binary Pattern register

B14 POFFSET Integer Offset into the pattern
f If DY > 1, then DPTCH must be a power of 2, or the pattern will not be well defined.

Address

COOOOOBOh

C0000150h

C0000160h

Name

CONTROL

PSIZE

PMASK
(32 bits)

Description and Elements (Bits)

PPOP Pixel-processing operations (22 options)
T Transparency operation
TM Sets transparency mode

Pixel size (1,2,4,8,16,32)

Plane mask - pixel format

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the PFILL
instruction. To ensure thatthis register contains the correct value for execution,
you may want to follow the write to that location with an MWAIT (page 13-177).
Refer to Section 4.5.6 on page 4-13 for a description of the potential latency
of writes to I/O registers.

Pixel processing can be used with this instruction. For more information, refer
to Section 12.8, Pixel Processing, on page 12-27.

Window checking can be used with this instruction.

13-187

PFILL Pattern Fill

Transparency

Plane Masking

Corner Adjust

Machine States

Status Bits

Examples

STK .set
DADDR .set
DYDX .set
PATTERN • set

.globl
_fillJ>atnrect:

mmtm
mmtm
move
move
move
move
move
move
move
sl1
movy
sl1
movy
clip
jrz
move
move
srl
movi

13-188

You can enable transparency for this instruction by setting T[CONTROL.] to 1.
Select 1 of 3 transparency modes by setting TM[CONTROL]. For more infor­
mation, refer to Section 12.9, Transparency. on page 12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

Corner adjust cannot be used with this instruction.

Complex Instruction

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws a rectan­
gle on the screen; the screen is filled with a 16 x 16 binary pattern. This routine
expects 5 arguments on the C parameter stack: width, height, xl eft, ytop, and
a pOinter to the pattern.

This routine assumes the following registers were previously initialized by the
caller:

A14
B2
B7

B-file registers
I/O registers

B13
_fi11J>atnrect

DPTCH, OFFSET, WSTART, WEND, COLOR1, COLORO
CONTROL, CONVDP, PSIZE and PMASK

ie-parameter stack pointer
iDestination address register
iDelta X/delta Y register
iPattern register
iprovide reference for external calls

SP,AO,A1,A2,A3 isave required registers
SP,BO,B1,B2,B7,B10,B11,B13,B14
STK,B14
*-B14,DYDX,1
*-B14,B10,1
*-B14,DADDR,1
*-B14, B11, 1
B14,STK
*-STK,A3,1
16,B10
B10,DYDX
16,B11
B11,DADDR

exit
DYDX,A1
A1,A2
16,A1
00010000H,AO

iPOP w
iPOP h
iPOP xleft
iPOP ytop

iPOP pointer to pattern

iconcatenate w, h

iconcatenate xleft, ytop
iclip the rectangle to the window
ijump if rectangle outside window
iSet up Y count

TMS34020 Assembly Language Instruction Set

Pattern Fill PFILL

movy AO,A2
move A2,DYDX
move DADDR,A2
getps BO jcalculate pattern adjustment
rmo BO,BO
neg BO
movk 32,Bl
srl BO,Bl jnumber pixels per 32 bit word
subk 1,Bl JSO complement will count pix's wrd
move DADDR,BO
andn Bl,BO jaddress rounded to pix's/word bndry
neg BO jshift count = -(LSBs of xl

loop:
move A3,B1O jpattern start address
movk 15, Bll jload 4-bit mask
sll l6,Bll jalign mask with 4 LSBs of y
and DADDR,Bll jisolate 4 LSBs of y
srl l2,Bll jconvert y to index value
add Bll,B1O jindex into pattern
move *B1O,B1O,O jget l6-bit row of pattern
move B1O,Bll
sll l6,Bll
movy Bll,B1O jreplicate row to 32 bits
rl BO,B1O jalign pattern for x address
move B1O,PATTERN jload aligned pattern
pfill XY
addxy AO,A2
move A2,DADDR
dsj Al,loop

exit:
mmfm SP,BO,Bl,B2,B7,B1O,Bll,B13,B14
mmfm SP ,AO ,Al ,A2 ,A3 jrestore required registers
rets 2 jreturn

13-189

PIXBLT Pixel Block Transfer Instructions

PIXBLT Instructions The PIXBLT instruction moves a 2-dimensional array of pixels from one
memory location to another. Section 12.5, Pixel-Array Instructions, on page
12-8 provides additional information about the PIXBLT instructions. The fol­
lowing list describes characteristics common to all PIXBLT instructions. Note
that PIXBLT L,M,L is discussed independently on page 13-204.

13-190

Q The source and destination addresses of the arrays are designated by the
SADDR and DADDR registers, respectively.

Q B, L, and XV are not actually operands. Instead, they identify the source
or destination array starting addresses as binary, linear, or XY addresses.
B, L, and XY are referred to as qualifiers.

Q Qualifiers are entered exactly as shown in the syntax; for example,
PIXBLT B, L. The first qualifier indicates the format of the starting address
of the source array; the second qualifier indicates the format of the starting
address of the destination array.

Q You can select a pixel-processing option by setting PPOP[CONTROL].
When the PIXBLT has binary source data, the pixel-processing operation
is applied to expanded pixels as they are processed with the destination
array; that is, the data is first expanded and then processed. There are 16
Boolean and 6 arithmetic operations; the default case at reset is the S ~
D operation. Not that the 6 arithmetic operations do not operate with pixel
sizes of 1 bit per pixel. For more information, refer to Section 12.8, Pixel
Processing, on page 12-27.

Q You can enable transparency by setting T[CONTROL] to 1. The
TMS34020 supports 3 transparency modes; TM[CONTROL] selects 1 of
3 transparency options. For more information, refer to Section 12.9,
Transparency, on page 12-36.

Q The plane mask is enabled. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

Q This instruction can be interrupted at a word or row boundary of the desti­
nation array. For more information, refer to Section6.6, Interrupting Graph­
ics Instructions, on page 6-13.

Q If CST[DPYCTL] is set, each memory read orwrite initiated by the PIXBLT
generates a shift register transfer read or write cycle at the selected ad­
dress. This operation can be used for bulk memory clears or transfers. (Not
all VRAMs support this capability.) For more information, refer to subsec­
tion 9.13.4, VRAM Bulk Initialization, on page 9-47.

Q The status bits are undefined unless otherwise noted in the individual
descriptions.

Q The machine states are not presented because the PIXBLT instructions
are complex instructions.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT

Table 13-6. Summary of Array Types for the PIXBLT Instruction

Destination Array

Linear XY

Binary

Linear

XY

Table 13-7. Summary of B-File Registers for PIXBLT Instructions

Format

Reg. Name B,L B,XY L, L L,XY XY, L XY,XY Description

BO SADDR Linear Linear Linear Linear XY XY Source pixel array starting
address

B1 SPTCH Linear Linear Linear Linear Linear Linear Source pixel array pitch

B2 DADDR Linear XY Linear XY Linear XY Destination pixel array
starting address

B3 DPTCH Linear Linear Linear Linear Linear Linear Destination pixel array
pitch

B4 OFFSET Linear Linear Linear Linear Screen origin (0,0)

B5 WSTART XY XY XY Window starting corner

B6 WEND XY XY XY Window ending corner

B7 DYDX XY XY XY XY XY XY Pixel array dimensions
(rows:columns)

B8 COLORO Pixel Pixel Background expansion
color

B9 COLOR1 Pixel Pixel Foreground expansion
color

B14 res res res res res res Reserved register

Note: PIXBLT L,M,L is discussed independently on page 13-204.

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT.
Refer to Section 4.5.6 on page 4-13 for a description of the potential latency
of writes to I/O registers.

13-191

PIXBLT Pixel Block Transfer Instructions

Table 13-8. Summary of I/O Registers for the PIXBLT Instructions

Format

Address Name B,l B,XY l,l l,XY XY,l XY,XY Description and Elements

COOOOOBOh CONTROL V V V V V V PPOP-Pixel-processing
operations (22 options)

v v v W - Window clipping or pick
operation

V V V V V v T - Enables transparency

v v v v v v TM - selects 1 of 3 transpar-
ency options

v v v v PBH - PIXBLT horizontal di-
rection

V V V v PBV - PIXBLT vertical direc-
tion

COOO0130h CONVSP v v v v XY-to-linear conversion
(source pitch) Used for
source preclipping.

COOO0140h CONVDP v v v v XY-to-linear conversion
(destination pitch)

COOO0150h PSIZE v v v v v v Pixel size (1,2,4,8,16,32)

COOO0160h PMASK / v v v v v Plane mask - pixel format
(32 bits)

Note: PIXBLT L,M,L is discussed independently on page 13-204.

PIXBLT B, L
binary to linear

Description

Source Array

13-192

The PIXBLT instruction has 6 combinations, which are listed below with their
corresponding instruction words and descriptions. Note that PIXBLT L,M,L is
discussed independently on page 13-204.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o I 0

This instruction expands, transfers, and processes a binary source pixel array;
it operates on 2-dimensional arrays of pixels using linear starting addresses
for both the source and the destination. The source pixel array is treated as a
1-bit-per-pixel array. As the PIXBLT proceeds, the source pixels are expanded
and then combined with the corresponding destination pixels based on the
selected graphics operations.

The source pixel array for the expand operation is defined by the contents of
the SADDR, SPTCH, and DYDX registers. For more details, refer to Section
12.5, Pixel-Array I nstructions, on page 12-8.

TMS34020 Assembly Language Instruction Set

Source Expansion

Destination Array

Corner Adjust

Window Checking

PIXBLT B,XY
binary to XY

Description

Source Array

Source Expansion

Destination Array

Corner Adjust

Pixel Block Transfer Instructions PIXBLT

The actual values of the source pixels are determined by the interaction of the
source array with contents of the COLOR1 and COLORO registers. In the
expansion operation, a 1 bit in the source array selects a pixel from the
COLOR1 register for operation on the destination array. A 0 bit in the source
array selects a COLORO pixel for this purpose. The pixels selected from the
COLOR1 and COLORO registers are those that align directly with their
intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADDR, DPTCH, and DYDX registers. For more details, refer to Section 12.5,
Pixel-Array Instructions, on page 12-8.

No corner adjust is performed for this instruction.The pixel transfer simply
proceeds in the order of increasing linear addresses.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

15 14 13 12 11 10 9 8 7 6 54320

1 1 0 1010101010

This PIXBLT instruction expands, transfers, and processes a binary source
pixel array with a destinatiori pixel array; it operates on 2-dimensional arrays
of pixels using a linear starting address for the source and an XY address for
the destination. The source pixel array is treated as a 1-bit-per-pixel array. As
the PIXBLT proceeds, the source pixels are expanded and then combined with
the corresponding destination pixels based on the selected graphics opera­
tions.

The source pixel array for the expand operation is defined by the contents of
the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The actual values of the source pixels are determined by the interaction of the
source array with contents of the COLOR1 and COLORO registers. In the
expansion operation, a 1 bit in the source array selects a pixel from the
COLOR1 register for operation on the destination array. A 0 bit in the source
array selects a COLORO pixel for this purpose. The pixels selected from the
COLOR1 and COLORO registers are those that align directly with their
intended position in the destination array word.

The location of the destination pixel block is defined by the contents of the
DADOR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

No corner adjust is performed for this instruction. The transfer executes in the
order of increasing linear addresses.

13-193

Window Checking

Status Bits

PIXBLT L, L
linear to linear

Description

Source Array

Destination Array

Corner Adjust

Window Checking

PIXBLT L, XV
linear to XY

Description

13-194

You can use window checking with this instruction by setting the W bits in the
CONTROL register to the desired value. If you select window checking mode
1,2, or 3, the WSTART and WEND registers define the XY starting and ending
corners of a rectangular window. For more information, refer to Section 12.7,
Window Checking, on page 12-19.

N Undefined
C Undefined
Z Undefined
V 1 if a window violation occurs, 0 otherwise; undefined if window checking is

not enabled 0N=OO)

15 14 13 12 11 10 9 8 76543 2 1 0

o I 0 I 0 I 0 I 0 I 0 o I 0

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using
linear starting addresses for both the source and the destination. As the
PIXBLT proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

The source pixel array for the processing operation is defined by the contents
ofthe SADDR, SPTCH, and DYDX registers. For more details, refer to Section
12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, and DYDX registers. For more details, refer to Section 12.5,
Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL.] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
o I 1 o o o 0 o

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using a
linear starting address for the source array and an XY address for the
destination array. As the PIXBLT proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

TMS34020 Assembly Language Instruction Set

Source Array

Destination Array

Corner Adjust

Window Checking

Status Bits

PIXBLTXY, L
XY to linear

Description

Source Array

Destination Array

Corner Adjust

Window Checking

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, DYDX, and (possibly) CONVSP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DAD DR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. If you select window checking mode 1, 2, or 3, the
WSTART and WEND registers define the XY starting and ending corners of
a rectangular window. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

N Undefined
C Undefined
Z Undefined
V 1 if window violation occurs, 0 otherwise; undefined if window checking is

not enabled (W=002)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o I 1 I 0 o I 0 o I 0 I 0

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using an
XY starting address for the source pixel array and a linear address for the
destination array. As the PIXBLT proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, DYDX, and (potentially) CONVDP registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

13-195

PIXBLT XY, XY Pixel Block Transfer Examples ,

PIXBLT XY, XY -----------------------
XYtoXY

Description

Source Array

Destination Array

Corner Adjust

Window Checking

Status Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101010101111111110111110101010101

The PIXBLT instruction transfers and processes a source pixel array with a
destination pixel array; it operates on 2-dimensional arrays of pixels using XY
starting addresses for both the source and destination pixel arrays. As the
PIXBLT proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

The source pixel array for the processing operation is defined by the contents
of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers. For more
details, refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. For more details,
refer to Section 12.5, Pixel-Array Instructions, on page 12-8.

PBH[CONTROIJ and PBV[CONTROIJ govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

You can use window checking with this instruction by setting W[CONTROIJ
to the desired value. If you select window checking mode 1, 2, or 3, the
WSTART and WEND registers define the XY starting and ending corners of
a rectangular window. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise; unaffected if window clipping

not enabled

Transparency example for PIXBlT B, l ------------------­

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLT examples use the following implied op­
erand setup:

Register File B: 1/0 Registers:
SADDR = 0OOO2030h PSIZE = 0010h
SPTCH = 0OOOO100h
DADDR = 0OO33000h
DPTCH = 0OOO1000h
DYDX = 0OO20010h
COLORO = FEDCFEDCh
COLOR1 = BA98BA98h

13-196 TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples
W~';~~,~~,'!"o';>"""'*'~(~~~:~~~:~:='~~:~*~!Oi~'=~::;:;:'=<::':·~~:>i:~;;'):~='":=~"<:<i~l:.;:t.)I;,~;.A,"'~~~~~~l':"~~,::.:~~~m:~~~_::»~~~~_w.~~«_"W'- q- <:Z1IWT ~"'>;l)ll~~_

Example 1

Example 2

Additional implied operand values are listed with each example. Forthis exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data
Address
02000h xxxxh, xxxxh, xxxxh, 1234h, xxxxh, xxxxh, xxxxh, xxxxh
02080h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, 5678h, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

33000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
33080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh
34080h FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh

This example uses the replace (S ~ 0) pixel-processing operation. Before in­
struction execution, PMASK = OOOOh and CONTROL = OOOOh (T =0,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear Data
Address
33000h FEDCh, FEDCh, BA98h, FEDCh, BA98h, BA98h, FEDCh, FEDCh
33080h FEDCh, BA98h, FEDCh, FEDCh, BA98h, FEDCh, FEDCh, FEDCh

34000h FEDCh, FEDCh, FEDCh, BA98h, BA98h, BA98h, BA98h, FEDCh
34080h FEDCh, BA98h, BA98h, FEDCh, BA98h, FEDCh, BA98h, FEDCh

This example uses transparency with COLORO = OOOOOOOOh. Before instruc­
tion execution, PMASK = OOOOh and CONTROL = 0020h (T =1, W=OO,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear Data
Address
33000h FFFFh, FFFFh, BA98h, FFFFh, BA98h, BA98h, FFFFh, FFFFh
33080h FFFFh, BA98h, FFFFh, FFFFh, BA98h, FFFFh, FFFFh, FFFFh

34000h FFFFh, FFFFh, FFFFh, BA98h, BA98h, BA98h, BA98h, FFFFh
34080h FFFFh, BA98h, BA98h, FFFFh, BA98h, FFFFh, BA98h, FFFFh

13-197

Window-clipping example for PIXBLT B, XV -----------------­

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLTexamples usethefollowing implied op­
erand setup:

Example 1

13-198

Register File B: I/O Registers:
SADDR
SPTCH
DADDR
DPTCH
OFFSET
WSTART
WEND
DYDX
COLORO
COLOR1

00002010h
00000010h
00300022h
00001000h
00010000h
00000026h

= 00400050h
00040010h
OOOOOOOOh
7C7C7C7Ch

PSIZE
CONVSP
CONVDP

0008h
001Bh
0013h

Additional implied operand values are listed with each example. For this exam­
ple, assume that memory contains the following data before instruction execu­
tion.

Linear Data
Address
2000h xxxxh, 0123h 4567h, 89ABh, CDEFh, xxxxh, xxxxh, xxxh
40000h to
43200h FFFFh

This example uses the replace (8 ~ D) pixel-processing operation. Before in­
struction execution, PMA8K = OOOOh and CONTROL = OOOOh (T =0, W=OO,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address
41100h
41180h
42100h
42180h
43100h
43180h

Data

FFFFh, 7C7Ch, 007Ch, 7COOh, 007Ch, 007Ch,
007Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh,
FFFFh, 7C7Ch, 7COOh, 7COOh, 7COOh, 007Ch,
7COOh, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh,
FFFFh, 7C7Ch, 7C7Ch, 7COOh, 7C7Ch, 007Ch,
7C7Ch, FFFFh, FFFFh, FFFFh, FFFFh, FFFFh,

007Ch, OOOOh
FFFFh, FFFFh
7COOh, OOOOh
FFFFh, FFFFh
7C7Ch, OOOOh
FFFFh, FFFFh

xv Addressing

Y

A

X Address
222222222222222233333
0123456789ABCDEF01234

d 30 FF FF 7C 7C 00 00 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
r 31 FF FF 7C 7C 7C 00 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF 7C 7C 00 7C 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF
s 33 FF FF 7C 7C 7C 7C 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

TMS34 020 Assembly Language Instruction Set

Example 2 This example uses window operation 3 (clipped destination). Before instruc­
tion execution, PMASK = OOOOh and CONTROL = OOCOh (T =0, W=11,
PP=OOOOO).

After instruction execution, memory contains the following values:

XV Addressing

y

A

X Address
222222222222222233333
0123456789ABCDEF01234

d 30 FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
r 31 FF FF FF FF FF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF FF FF FF FF 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF
s

33 FF FF FF FF FF FF 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

Pixel-processing example for PIXBLT L, L ------------------­

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLTexamples use the following implied op­
erand setup:

Register File B: I/O Registers:
SADDR = 00002004h PSIZE = 0004h
SPTCH = 00000080h
DADDR = 0OO02228h
DPTCH = 0OOOO080h
OFFSET = OOOOOOOOh
DYDX = 0000200Dh

Additional implied operand values are listed with each example. For this exam-
ple, assume that memory contains the following data before instruction execu-
tion.

Linear Data
Address
02000h OOOxh, 1111 h 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh. xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh. xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02300h xxxxh. xxxxh. xxxxh. xxxxh xxxxh, xxxxh. xxxxh, xxxxh

13-199

Example 1

Example 2

This example uses the replace (S ~ D) pixel-processing operation. Before in­
struction execution, PMASK = OOOOh and CONTROL = OOOOh (T =0, W=OO,
PP=OOOOO).

After instruction execution, memory contains the following values:

Linear Data
Address
02000h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, EEEFh, DDDEh, xCCDh, xxxxh, xxxxh
02280h xxxxh, xxxxh, OOxxh, 1110h, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

This example uses the (D - S) ~ D pixel-processing operation. Before instruc­
tion execution, PMASK = OOOOh and CONTROL = 4800h T =0, W=OO,
PP=10010).

After instruction execution, memory contains the following values:

Linear Data
Address
02000h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, OFFxxh,111Fh, 2221h, x332h, xxxxh, xxxxh
02280h xxxxh, xxxxh, OFFxxh,111Fh, 2221h, x332h, xxxxh, xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh, xxxxh

. Plane mask example for L, XV

13-200

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. This PIXBLT examples uses the following implied op­
erand setup:

Register File B: I/O Registers:
SADDR = 00002004h PSIZE = 0004h
SPTCH 00000080h PMASK OOOOh
DADDR = 00520007h CONVDP = 0017h
DPTCH = 00000100h CONTROL = OOOOh
OFFSET 00001000h (W=OO, T =0, PP=OOOOO)
WSTART = 0030000Ch
WEND = 00530014h
DYDX = 00030016h

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Examples
~:~~~«':':¥.-·*·:-:':>~ffi~=~~~~=~-y;:.~':':'S~~=«$.""-""""'"m'''''~;;:;:''=>;'''-'-*~~~:::W-'WIJIo=~·::»)~~l'»".IAA':'$~~'~~':'I'W~:::::"'.Im';IiIi

Example

Linear Data
Address

I

02000h OOOxh, 1111 h 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02080h OOOxh, 1111 h, 2222h, xx33h, xxxxh, xxxxh, xxxxh, xxxxh
02100h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02180h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh
02200h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02280h xxxxh, xxxxh, FFxxh, FFFFh, FFFFh, xFFFh, xxxxh xxxxh
02300h xxxxh, xxxxh, xxxxh, xxxxh xxxxh, xxxxh, xxxxh, xxxxh

This example uses transparency. Before instruction execution, PMASK =
OOOOh and CONTROL = 0200h (T =1 ,W=OO, PP=OOOOO).

After instruction execution, memory contains the following values:

Linear
Address
02000h
02000h
02100h
02180h
02200h
02280h
02300h

OOOxh,
OOOxh,
xxxxh,
xxxxh,
xxxxh
xxxxh,
xxxxh,

1111 h,
1111 h,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,

2222h, xx33h,
2222h, xx33h,
xxxxh, xxxxh,
xxxxh, xxxxh,
FFxxh, 111Fh
FFxxh, 111 Fh,
xxxxh, xxxxh,

Data

xxxxh, xxxxh,
xxxxh, xxxxh,
xxxxh, xxxxh,
xxxxh, xxxxh,
2221 h, x332h,
2221 h, x332h,
xxxxh, xxxxh,

xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,
xxxxh,

xxxxh
xxxxh
xxxxh
xxxxh
xxxxh
xxxxh
xxxxh

Example for PIXBLT XV, XV ------------------------

13-202

Before executing the PIXBLT instruction, load the implied operand registers
with appropriate values. These PIXBLTexamples use the following implied op­
erand setup:

Register File B: I/O Registers:
SADDR = 00200004h PSIZE = 0004h
SPTCH = 00000200h CONVSP = 0016h
DADDR 00410004h CONVDP = 0016h
DPTCH 00000200h PMASK = OOOOh
OFFSET 0OO10000h CONTROL OOOOh
WSTART = 00300009h 011/=00, T =00, PP=OOOOO)
WEND 00420012h
DYDX 00030016h

For this example, assume that memory contains the following data before in­
struction execution.

TMS34020 Assembly Language Instruction Set

Example

Linear
Address
04000h
04200h
04400h
18200h to
18680h

Data

3210h, 7654h, BA98h, FEDCh, 3210h, 7654h,
3210h, 7654h, BA98h, FEDCh, 3210h, 7654h,
3210h, 7654h, BA98h, FEDCh, 3210h, 7654h,

3333h

BA98h, FEDCh
BA98h, FEDCh
BA98h, FEDCh

This example uses the (0 ADDS S) -'>0 0 pixel-processing operation. Before
instruction execution, PMASK = OOOOh and CONTROL = 4400h (T =0, W=OO,
PP=10001).

After instruction execution, memory contains the following values:
xv Addressing

y

A

X Address
00000000000000001111111111111111
o 1 2 345 6 7 8 9 ABC D E F 0 1 2 345 6 7 8 9 8 C C D E F

d 41 3 3 3 3 7 8 9 ABC D E F F F F 3 4 5 6 7 8 9 ABC 3 3 3 3 3 3
d
r 41 3 3 3 3 7 8 9 ABC D E F F F F 3 4 5 6 7 8 9 ABC 3 3 3 3 3 3
e
s 41 3 3 3 3 7 8 9 ABC D E F F F F 3 4 5 6 7 8 9 ABC 3 3 3 3 3 3
s

13-203

PIXBLT L,L with Mask Pixel Block Transfer Instructions
~:::;:<~'!'>.":;'~';:'i'!*",'m;l?!:;:'f~<:-:.~:.m_::;:::~~'~~=M~~~~~~~~~::;:::_~_:.m>$";:"<:<:<:<~X'{~w.·=~:».-=~~_~~~~~=-:'~~~~"""_~~~~<:IllI<:I5:<"tIi

Syntax

Execution

Instruction Words

Description

Implied Operands

Corner Adjust

Window Checking

13-204

PIXBLT L, M, L

Linear pixel array to linear pixel array using a binary mask array

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

This instruction transfers a pixel array from the source location specified by a
linear address in SADDR to the destination location specified by a linear
address in DADDR, which is under the control of the binary mask pixel array
specified by a linear address in MADDR. The array dimensions are in DYDX.

Each source pixel is combined with the destination pixel according to the
selected pixel-processing option. The resulting pixel can then be written to the
destination pixel only if the corresponding bit in the mask array is a 1.

Register Name Format Description

BO t SADDR Linear Source pixel array address

B1 SPTCH Linear Source pixel array pitch

B2 t DADDR Linear Destination pixel array address

B3 DPTCH Linear Destination pixel array pitch

B7 DYDX b:a Dimensions of drawn rectangle

B10 t MADDR Linear Mask pixel array address

B11 MPTCH Linear Mask array pitch

B12&B14 t Reserved Temporary Registers
t These registers are changed by instruction execution

Address

COOOOOBOh

C0000150h

C0000160h

Name Description and Elements (Bits)

CONTROL PPOP Pixel-processing operations (22 options)
T Transparency operation
TM Sets transparency mode
PBH PIXBLT horizontal direction
PBV PIXBLT vertical direction

PSIZE Pixel size (1,2,4,8,16,32)

PMASK Plane mask - pixel format
(32 bits)

PBH[CONTROL] and PBV[CONTROL] govern the direction of the PIXBLT.
To set up the corner adjust, refer to subsection 12.5.1.2, Selecting the Starting
Corner for a PIXBLT, on page 12-10.

Window operations are not enabled for this instruction. The contents of the
WSTART and WEND registers are ignored.

TMS34020 Assembly Language Instruction Set

Pixel Block Transfer Instructions PIXBLT L,L with Mask
__ ~ ___ 7<~-f;1~"~",,_~ __ ~~<~,,,~ . "':>I':~"'wm ·W? :>$:~~~~~~_;; __ "

Pixel Processing

Transparency

Plane Masking

Machine States

Status Bits

Select a pixel processing option for this instruction by setting PPOP[CON­
TROL]. The pixel processing option is applied to pixels as they are processed
with the destination array. Note that the data is read through the plane mask
and then processed. There are 16 Boolean and 6 arithmetic operations; the
default case at reset is the rep/ace (S -- D) operation. The 6 arithmetic opera­
tions do not operate with pixel sizes of 1 or 2 bits per pixel. For more informa­
tion, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

complex instruction

N Undefined
C Undefined
Z Undefined
V Undefined

13-205

PIXT Pixel Transfer Instructions -
PIXT Instructions The PIXT instruction transfers a pixel from one location to another. The follow­

ing list describes characteristics common to all PIAl instructions.

Q Rs and Rd must be in the same register file.

Q The plane mask is enabled for all PIXT instructions. For more information,
refer to Section 12.10, Plane Masking, on page 12-39.

Q The status bits are undefined unless otherwise noted in the individual
descriptions.

Q For machine states information, refer to Section 15.1 on page 15-2.

Section 12.3, Single-Pixel Instructions, on page 12-6 provides additional
information about the PIXBLT instructions.

Table 13-9. Summary of Operand Formats for the PIXT Instructions

Destination Pixel

Rd *Rd *Rd.X'f

Rs

*Rs

*Rs.XY v

Table 13-10.Summary of B-File Registers for PIXT Instructions

Reg. Name

81 SPTCH

83 DPTCH

84 OFFSET

85 WSTART

86 WEND

13-206

Format

Rs, *Rd.X'f *Rs.XY, Rd *Rs.XY, *Rd.XY Description

Linear Linear Source pixel array pitch

Linear Linear Linear Destination pixel array pitch

Linear Linear Linear Screen origin (0,0)

XY xy Window starting corner

xy Xy Window ending corner

Due to the pipelining of memory writes, the last I/O register that you write to
may not, in some cases, contain the desired value when you execute the
PIXBLT instruction. To ensure that this register contains the correct value for
execution, you may want to follow the write to that location with an MWAIT
(page 13-177). Refer to Section 4.5.6 on page 4-13 for a description of the
potential latency of writes to I/O registers.

TMS34020 Assembly Language Instruction Set

Pixel Transfer Instructions PIXT

Table 13-11. Summary of I/O Registers for the PIXT Instructions

Address

COOOOOBOh

COOO0130h

COOO0140h

COOO0150h

COOO0160h

>-
><:

>.
~

'ti
><:

~
\l=

~ 'ti "0 >." >.: \l= a: ><: ><:
Name ~ tt ~" ~ eti

~ Description and Elements .. g::

CONTROL V V V V PPOP - Pixel processing operations (22
options)

V V W - Window clipping or pick operation

V V V V T - Enables transparency

V V V V TM - Selects transparency options

CONVSP V V XV-to-linear conversion (source pitch)
Used for source preclipping.

CONVDP v v XY-ta-linear conversion (destination
pitch)

PSIZE v v v v v v Pixel size (1,2,4,8,16,32)

PMASK I v v v v V Plane mask - pixel format
(32 bits)

The PIXT instruction has 6 addressing modes, which are listed below with their
corresponding instruction words and descriptions.

PIXT Rs, *Rd
register to memory

15 14 13 12 11 10 9 8 7 6 543 2 1 o
I 1 I 1 I 1 I 1 I 1 I 0 I 0 I Rs Rd

The source pixel is the 1, 2, 4, 8, 16, or 32 LSBs of the source register, depend­
ing on the pixel size specified in the PSIZE register. The destination register
contains a linear address; the source pixel is transferred to this memory loca­
tion.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

Window checking cannot be used with this instruction.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. At reset, the default case for transparency is off. For more information,
refer to Section 12.9, Transparency, on page 12-36.

13-207

PIXT Pixel Transfer Instructions

PIXT Rs, *Rd.XY
register to memory

Status Bits

PIXT*Rs, Rd
memory to register

Status Bits

13-208

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 1 I 1 I 1 I 1 I 0 I 0 I 0 I Rs I R I Rd

The source pixel is the 1, 2, 4, 8, 16, or 32 LSBs of the source register, depend­
ing on the pixel size specified in the PSIZE register. The destination register
contains an XY address; the X value occupies the 16 LSBs of the register, and
the Y value occupies the 16 MSBs. The source pixel is moved to the XY
address specified in Rd.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

N Unaffected
C Unaffected
Z Unaffected
V 1 if pixel is outside the window and W = 1,2,3; 0 otherwise. Unaffected ifW

= O.

15 14 13 12 11 10 9 8 7654321 o
Rs I R I Rd

The source register contains a linear address; the pixel at this address is trans­
ferred into the destination register. When the pixel is moved into Rd, it is
right-justified and zero-extended to 32 bits, according to the pixel size specified
in the PSIZE register.

Window checking cannot be used with this instruction. The W bits are
ignored.

Pixel processing cannot be used with this instruction.

Transparency cannot be used with this instruction.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

TMS34020 Assembly Language Instruction Set

PIXT *Rs, *Rd
memory to memory

PIXT *Rs.XY, Rd
memory to register

Status Bits

Pixel Transfer Instructions PIXT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 1 I 1 I 1 I 1 I 1 I 1 I 0 I Rs R I Rd

The source and destination registers both contain linear addresses. The
address in Rs is the address of the source pixel; the pixel is moved into the
address in Rd.

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

Window checking cannot be used with this instruction.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM[CONTROL] selects 1 of 3 transparency
options. For more information, refer to Section 12.9, Transparency, on page
12-36.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 1 I 0 I 0 I 1 I Rs R Rd

The source register contains an XY address; the X value occupies the 16 LSBs
of the register, and the Y value occupies the 16 MSBs. The address in Rs is
the address of the source pixel; this pixel is moved into the destination register.
When the pixel is moved into Rd, it is right-justified and zero-extended to 32
bits according to the pixel size specified in the PSIZE register.

Pixel processing cannot be used with this instruction.

Transparency cannot be used with this instruction.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

PIXT *Rs.XY, *Rd.XY -----------------------­
memory to memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 1 I 0 I 1 I 0 I Rs R Rd

The source and destination registers both contain XY addresses; the X value
occupies the 16 LSBs of the register, and the Yvalue occupies the 16 MSBs.
Rs contains the address of the source pixel; Rd contains the address where
the pixel is moved.

You can use window checking with this instruction by setting W[CONTROL]
to the desired value. For more information, refer to Section 12.7, Window
Checking, on page 12-19.

13-209

PIXT Pixel Transfer Instructions

Status Bits

You can select a pixel processing option to use with this instruction. For more
information, refer to Section 12.8, Pixel Processing, on page 12-27.

You can enable transparency by setting T[CONTROL] to 1. The TMS34020
supports 3 transparency modes; TM [CONTROL.] selects 1 of 3 transparency
options. At reset, the default case for transparency is off. For more information,
refer to Section 12.9, Transparency, on page 12-36.

N Unaffected
C Unaffected
Z Unaffected
V 1 if the pixel lies outside the window and W=1, W=2, or W=3; 0 otherwise.

Unaffected if W=O.

Section 12.3, Single-Pixel Instructions, on page 12-6 provides additional
information about the PIXT instructions.

PIXT examples ----------------------------

Example 1

Example 2

13-210

PIXT AO, *Al

Before After
AO A1 @20500H PSIZE PP T PMASK @20500h

1) OOOOFFFFh 00020500h OOOOh 0001h 00000 0 OOOOh 0001h
1) OOOOFFFFh 00020500h OOOOh 0002h 00000 0 OOOOh 0003h
1) OOOOFFFFh 00020500h OOOOh 0004h 00000 0 OOOOh OOOFh
1) OOOOFFFFh 00020500h OOOOh 0008h 00000 0 OOOOh OOFFh
1) OOOOFFFFh 00020500h OOOOh 0010h 00000 0 OOOOh FFFFh
1) 000OOO06h 00020508h OOOOh 0004h 00000 0 OOOOh 0600h
2) 00000006h 00020508h 0300h 0004h 01010 0 OOOOh 0500h
3) 00000006h 00020508h 0100h 0004h 00001 0 OOOOh OOOOh
4) 00000006h 00020508h 0100h 0004h 00001 0 OOOOh 0100h
5) 00000006h 00020508h OOOOh 0004h 00000 0 AAAAh 0400h

Notes:
1) S replaces D
2) (S XOR D) = 0, replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D is not replaced
5) S replaces unmasked bit of D

Before executing a PIXT instruction, load the implied operand registers with
appropriate values. These PIXT examples use thefollowing implied operand
setup:

Register File B:
DPTCH
OFFSET
WSTART
WEND

00000800h
= OOOOOOOOh
= 00300020h

00500142h

I/O Registers:
CONVDP 0014h

TMS34020 Assembly Language Instruction Set

Example 3

Pixel Transfer

PIXT AO, *Al.XY

Before After
AO A1 @20500H PSIZE PP W T PMASK @20500h

1) OOOOFFFFh 00400500h OOOOh 0001h 00000 00 0 OOOOh 0001h
1) OOOOFFFFh 00400280h OOOOh 0002h 00000 00 0 OOOOh 0003h
1) OOOOFFFFh 00400140h OOOOh 0004h 00000 00 0 OOOOh OOOFh
1) OOOOFFFFh 004000AOh OOOOh 0008h 00000 00 0 OOOOh OOFFh
1) OOOOFFFFh 00400050h OOOOh 0010h 00000 00 0 OOOOh FFFFh
1) 00000006h 00400142h OOOOh 0004h 00000 00 0 OOOOh 0600h
2) 00000006h 00400142h 0300h 0004h 01010 00 0 OOOOh 0500h
3) 00000006h 00400142h 0100h 0004h 00001 00 0 OOOOh OOOOh
4) 00000006h 00400142h 0100h 0004h 00001 00 0 OOOOh 0100h
5) 00000006h 00400142h OOOOh 0004h 00000 00 0 AAAAh 0400h
6) 00000006h 00400142h OOOOh 0004h 00000 00 0 OOOOh 0600h
7) 00000006h 00400143h OOOOh 0004h 00000 00 0 OOOOh OOOOh
8) 00000006h 00400143h OOOOh 0004h 00000 00 0 OOOOh OOOOh

XY Address in A1 = Linear Address 20500h

Notes:
1) 8 replaces D
2) (8 XOR D) = 0, replaces D
3) (8 AND D) = 0, transparency is off, D is replaced
4) (8 + D) = 0, transparency is on, D is not replaced
5) 8 replaces unmasked bit of D
6) Window Option = 3, D inside window, 8 replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in status

register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

Assume that memory contains the following values:

Address Data
@20500h OFFFFh
@20510h 3333h

PIXT *AO,Al

Before After
AO PSIZE PMASK A1
00020500h 0001h OOOOh 00000001h
00020500h 0001h FFFFh OOOOOOOOh
00020500h 0002h OOOOh 00000003h
00020500h 0002h 5555h 00000002h
00020500h 0004h OOOOh OOOOOOOFh
00020510h 0004h 9999h 00000002h
00020500h 0008h OOOOh OOOOOOFFh
00020510h 0008h 5454h 00000023h
00020500h 0010h OOOOh OOOOFFFFh
00020500h 0010h BA98h 00004567h
00020510h 0010h BA98h 00000123h

13-211

• .fixel !!!nsfer Examples

Example 4

13-212

PIXT *AO,*Al

Before After

1)
1)
1)
1)
1)
2)
3)
4)
5)

AO A1 @20500H PSIZE PP T PMASK @20500h 20510h
00020500h 00020508h OOOFh 0001h 00000 o OOOOh 010Fh XXX)(

00020500h 00020508h OOOFh 002h 00000 o OOOOh 030Fh XXX)(

00020500h 00020508h OOOFh 0004h 00000 o OOOOh OFOFh XXX)(

00020500h 00020508h OOEFh 0008h 00000 o OOOOh EFEFh XXX)(

00020500h 00020508h 1234h 0010h 00000 o OOOOh 3434h xx12h
00020500h 00020508h 030Fh 0004h 01010 o OOOOh OCOFh XXX)(

00020500h 00020508h 010Eh 0004h 00001 o OOOOh OOOEh XXX)(

00020500h 00020508h 020Eh 0004h 00001 o OOOOh 020Eh XXX)(

000020500hOO020508h OOOFh 0004h 00000 o AAAAh 050Fh XXX)(

Notes:
1) 8 replaces D
2) (8 XOR D) replaces D
3) (8 AND D) = 0, transparency is off, D is replaced
4) (8 + D) = 0, transparency in on, D not replaced
5) 8 replaces unmasked bits of D

These PIXT examples use the following implied operand setup.

Register File B: I/O Registers:
DPTCH =800h CONVSP = 0014h
OFFSET =OOOOOOOOh

Assume that memory address @20500h contains CF3Fh before instruction
execution.

PIXT *AO.XY,Al

~ Arm
AO PSIZE PMASK A1
00400500h 0001h OOpOh 00000001h
00400500h 0001h FFFFh OOOOOOOOh
00400280h 0002h OOOOh 0OOOOO03h
0400280h 0002h AAAAh 0000OO01h
00400140h 0004h OOOOh OOOOOOOFh
00400140h 0OO4h 9999h 000OOO06h
004000AOh 0008h OOOOh 0OOOO03Fh
004000AOh 0008h 8989h 0OOOO036h
00400050h 0010h OOOOh OOOOCFCFh
00400050h 0010h 7310h 00008C2F

Note:

The XV addresses stored in register A 1 in these examples translate to the lin­
ear memory address 20500h. The pitch of the line source was not changed
for any of these examples

TMS34020 Assembly Language Instruction Set

Pixel Transfer Examples
_.#~:;'<-"J;,<.~·W;tlt~l'¥~~ ~ll':'~~=~~~~~~~~~w,.m'~m~ .. ~~~~_m~~

ExampleS These PIXT examples use the following implied operand setup.

Register File B: I/O Registers:
SPTCH = 800h CONVSP 0014h
DPTCH 800h CONVDP 0014h
OFFSET OOOOOOOOh
WSTART = 00300020h
WEND 00500142h

PIXT *AO.XY,*Al.XY

Before After

1)
1)
1)
1)
1)
2)
3)
4)
5)
6)
7)
8)

AO A1 @20500H PSIZE PP W T PMASK @20500h @20510h
00400500h 00400508h OOOFh 0001h 00000 00 0 OOOOh 010Fh xxxx
00400280h 00400284h OOOFh 0002h 00000 00 0 OOOOh 030Fh xxxx
00400140h 0400142h OOOFh 0004h 00000 00 0 OOOOh OFOFh xxxx
004000AOh 004000A1h OOOFh 0008h 00000 00 0 OOOOh EFEFh xxxx
0040005Fh 00400051h OOEFh 0010h 00000 00 0 OOOOh CDEFh CDEFh
00400050h 00400142h 0306h 0004h 01010 00 0 OOOOh 0506h xxxx
00400140h 00400142h 0106h 0004h 00001 00 0 OOOOh 0006h xxxx
00400140h 00400142h 0106h 0004h 10001 00 0 OOOOh 0106h xxxx
00400140h 00400142h 0006h 0004h 00001 00 0 OOOOh 0406h xxxx
00400140h 00400142h 0006h 0004h 00000 11 0 AAAAh 0606h xxxx
00400140h 00400142h 0006h 0004h 00000 11 0 OOOOh 0006h xxxx
00400140h 00400143h 0006h 0004h 00000 10 0 OOOOh 0006h xxxxy

XY Address in A 1 = Linear Address 20500h

Notes:
1) 8 replaces D
2) (8 XOR D) replaces D
3) (8 AND D) = 0, transparency is off, D is replaced
4) (8 + D) = 0, transparency in on, D not replaced
5) 8 replaces unmasked bits of D
6) Window Option = 3, D inside window, 8 replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in status

register
8) Window Option = 2, D outside window, D not replaced, WV interrupt gener­

ated, V bit set in status register

13-213

POPST !:2P Status Register from Stack

Syntax

Execution

Instruction Words

Description

POPST

*SP+ --+ ST

15 14 13 12 11 10 9 8 7 6 5 432 o
I 0 I 0 I 0 I 0 I 0 I 0 I 0 o 0 000 o

POPST pops the status register from the stack and increments the SP by 32
after the status register is removed from the stack.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

Examples

13-214

For more information, refer to Section 4.1, The Status Register, on page 4-2.

6 if the SP is aligned
7 if the SP is not aligned

All bits are restored.

Assume that memory contains the following values before instruction execu­
tion:

Address Data
OFFOOOOOh 0010h
OFFOOO10h COOOh

~ Before After
SP ST SP

POPST OFFOOOOOh COOOOO10h OFFOOO20h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

PUSHST

ST - -*SP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 0 o 0 o o o o o o o o

PUSHST writes the status register contents to the address contained in the
SP-32.

Note: Shaded portions are reserved.

Machine States

Status Bits

Example

For more information, refer to Section 4.1, The Status Register, on page 4-2.

2 (1) if the SP is aligned
2 (2) if the SP is not aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before
SP

PUSHST OFF00020h
ST
C0000010h

After
SP
OFFOOOOOh

Memory contains the following values after instruction execution:

Address
OFF00010h
OFF00020h

Data
0010h
COOOh

13-215

Syntax PUTST Rs

Execution Rs ->0 ST

Instruction Words 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
001010101010 o R Rd

Description PUTST copies the contents of the specified register into the status register.

Note: Shaded portions are reserved.

Machine States

Status Bits

Example

13-216

For more information, refer to Section 4.1, The Status Register, on page 4-2.

3

N Set from bit 31 of Rs
C Set from bit 30 of Rs
Z Set from bit 29 of Rs
V Set from bit 28 of Rs

Code Before
AO

PUTST AO C0000010h

After
ST ST
xxxxxxxxh C0000010h

TMS34 020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Interrupts

Return from Interrupt RETI

RETI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111010111011101010101010
RETI returns to an interrupted routine from an interrupt service routine. The
instruction restores the ST and PC to their original values that were stored on
the system stack.

The stack is located in external memory and the top is indicated by the stack
pOinter (SP). The stack grows in the direction of decreasing linear address. The
ST and PC are popped from the stack and the SP is incremented by 32 after
each register is removed from the stack.

Note:

RETI checks the IX (instruction execution) and SF (bus fault) bits in the
restored ST register. If IX or SF is set, the RETI expects to find the internal
register values that define the state of the TMS34020 on the stack along with
the ST and PC.

If this is the case, the RETI restores the additional register values that were
pushed on the stack and clears the IX and SF bits in the restored ST value.

The CONTROL register and any S-file registers modified by an interrupt
routine should be restored before RETI is executed. Otherwise, interrupted
instructions may not resume execution correctly.

52 if SF status bit = 1
38 if IX status bit = 1
else 7

N Copy of corresponding ,bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

If the IE bit in the restored STisa 1, interrupts are enabled bythetimethe RETI
instruction finishes executing. If an interrupt request is active during the last
state ofthe RETI instruction, and the interrupt is enabled in the INTENS regis­
ter, the interrupt will be taken immediately following the RETI. If the source of
the interrupt is not cleared automatically, the interrupt service routine should
take steps to clear the source of the interrupt. If this is not done, the interrupt
will be serviced repeatedly. Sections 6.7, External Interrupts, on page 6-15,

13-217

fl ETI Return from Interrupt

Examples

13-218

6.8, Internal Interrupts, on page 6-16, and 6.9, The Bus Fault Interrupt, on page
6-19 discuss each interrupt and the details for clearing the source of the inter­
rupt.

Assume that memory contains the following values before instruction execu­
tion:

Address
CCCOOOOh
CCCOO10h
CCCOO20h
CCCOO30h

~~
SP

Data
0010h
COOOh
FFFOh
0044h

RETI CCCOOOOh

An.!t!:
ST
C0000010h

PC
0044FFFOh

SP
CCC0040h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Return From Monitor R ETM

RETM

15 14 13 12 11 10 9 8 7 6 543 2 0

o I 1 1 0 I 0 o I 0 I 0

RETM is used at the end of a single step trap routine. RETM acts similar to
RETI, but RETM forces the next instruction from the interrupted program to be
read directly from memory, that is, it is not read from the cache. The fetched
instruction is executed and the single step trap is then taken again; this
sequence repeats.

Note:

RETM uses the cache read mechanism to access the next instruction in the
interrupted code. When the single-step bit (bit 22 in ST) is set the cache fills
are blocked, so if the next instruction in the interrupted code is not already in
cache when RETM is executed, then the single step trap will be taken repeat­
edly without executing any of the main program opcodes. This makes RETM
unsuitable for terminating single-step traps.

52 if SF status bit = 1
38 if IX status bit = 1
else 10

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location
Z Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

Assume that memory contains the following values before instruction execu­
tion:

Address
CCCOOOOh

CCC0010h
CCC0020h

CCC0030h

Code Before
SP

Data
0010h

COOOh
FFFOh

0044h

RETM CCCOOOOh

After
ST
C0000010h

PC
0044FFFOh

SP
CCC0040h

13-219

Syntax

Execution

Instruction Words

Description

RETS [N]

*SP --+ PC (N defaults to 0)
SP + 32 + 16N --+ SP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

RETS returns from a subroutine by popping the program counter from the
stack and incrementing the stack pOinter.

The parameter N is a value in the range of 0 to 31; it specifies the number of
words by which the stack pointer SP is incremented after the return address
is popped from the system stack. N is optional; if the value of N is not specified
explicitly, the assembler sets it to the default value of O.

Following completion of the RETS instruction, execution continues at the
address pointed to by the PC popped from the stack.

Machine States 5

Status Bits

Examples

13-220

6 if the stack isn't aligned

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains the following values before instruction execu­
tion:

Address Data
OFFOOOOOh OFFFOh
OFFOO010h 0001h

~ Before After
SP PC SP

RETS OFFOOOOOh 0001FFFOh OFFOO020h
RETS 1 OFFOOOOOh 0001FFFOh OFFOOO30h
RETS 2 OFFOOOOOh 0OO1FFFOh OFFOOO40h
RETS 16 OFFOOOOOh 0001FFFOh OFF00120h
RETS 31 OFFOOOOOh 0001FFFOh OFF00210h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Store Revision Number in Register REV

REV Rd

revision number - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 R Rd

REV stores the number which uniquely identifies the revision of silicon in the
destination register. The format of the REV number is:

bits 0-2 silicon revision number

bit 3 = 1 if TMS34010 (if bit 3 = 0, then TMS34020; bits 3 and 4
cannot both be 1)

bit 4 = 1 if TMS34020 (if bit 4 = 0, then TMS3401 0; bits 3 and 4
cannot both be 1))

bits 5-15 reserved for future generation parts

bits 16--23 spin-ofts

bits 24-31 reserved

1

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

REV AD

Before

After

After

AO = FFFFFFFF

AO = 00000010 (TMS34020 revision 1.0)

AO = 00000011 (TMS34020 revision 2.0)

13-221

RL Rotate Left, Constant

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-222

RL constant, Rd

left-rotate Rd by constant - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 1 I 0 I 0 I constant R Rd

RL rotates the contents of the destination register left by the specifed number
of bits. RL performs a circular left shift that moves each bit shifted out the MSB
of the register into the register's LSB. The rotate count is specified as a value
in the range 0 to 31 and is stored in the 5-bit constant field of the RL instruction
word.

The assembler only accepts absolute expressions for the rotate count. If the
specified rotation value is greater than 31, the assembler issues a warning and
sets the constant to its 5 LSBs.

The carry bit is set to the value of the last bit that is shifted out of the MSB (this
value is the same as the final value of the LSB). You can use a rotate count of
o to clear the carry and test a register for 0 simultaneously.

1

N Unaffected
C Set to value of bit [32 - constant], 0 for rotate count of constant = 0
Z 1 if result is 0, 0 otherwise
V Unaffected

Code Before After
A1 NCZV A1

RL O,Al OOOOOOOFh x 00 x OOOOOOOFh
RL 1,Al FOOOOOOOh x 1 0 x EOOOOOO1h
RL 4,Al FOOOOOOOh x 1 0 x OOOOOOOFh
RL 5,Al FOOOOOOOh x 00 x 0OOOOO1Eh
RL 30,Al FOOOOOOOh x 1 0 x 3COOOOOOh
RL 5,Al OOOOOOOOh x 0 1 x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

RL Rs, Rd

left-rotate Rd by 5 LSBs of Rs ->0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 0 I 1 I 0 I 0 I Rs R Rd

RL rotates the contents of the destination register left by the number of bits
specified in the source register. RL performs a circular left shift that moves
each bit shifted out of the MSB of the register into the register's LSB. The rotate
count is specified as a value in the range 0 to 31 and is taken from the 5 LSBs
of the source register; the 27 MSBs of the source register are ignored.

The carry bit is set to the value of the last bit that is shifted out of the MSB (this
value is the same as the final value of the LSB). You can use a rotate count to
o to clear the carry and text Rd for 0 simultaneously.

Rs and Rd must be in the same register file.

N Unaffected
C Set to value of bit [32 - Rs], 0 for rotate count of 0
Z 1 if result is 0, 0 otherwise
V Unaffected

Code Before After
5 LSBs AO A1 NCZV A1

RL AD,AI 00000 OOOOOOOFh x a Ox OOOOOOOFh
RL AD,AI 00100 FOOOOOOOh x 1 a x OOOOOOOFh
RL AD,AI a a 1 01 FOOOOOOOh x a a x 0000001Eh
RL AD,AI 1 1 111 FOOOOOOOh x 0 Ox 78000000h
RL AD,AI xxxxx OOOOOOOOh x a 1 x OOOOOOOOh

13-223

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-224

RMO Rs, Rd

bit number of rightmost 1 in Rs - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 1 I 1 I 0 I 1 I Rs R Rd

The RMO instruction locates the rightmost (least significant) 1 in the source
register. It then loads the bit number of the rightmost 1 bit into the destination
register. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the LSB (rightmost). If
there are no 1 bits in the source register, then the destination result is 0 and
status bit Z is set.

The rightmost 1 in the source register can be right-justified by following the
RMO instruction with RL Rs, Rd instruction, where Rs is the destination regis­
ter of the RMO instruction and Rd is the source register.

The source and destination registers must be in the same register.

N Unaffected
C Unaffected
Z 1 if the source register contents are 0, 0 otherwise.
V Unaffected

~ Before After
AO NCZV A1

RMO AO,Al OOOOOOOOh xx1x OOOOOOOOh
RMO AO,Al 0OOOOOO1h xxOx OOOOOOOOh
RMO AO,Al 0OOOOO10h xxOx 0OOOOOO4h
RMO AO,Al 08000000h xxOx 0OOOOO1Bh
RMO AO,Al 80000000h xxOx 0OOOOO1Fh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

RPIX Rd

Rdnew = Rdold

LS pixel replicated (32) 5 times
PSIZE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 0 I R Rd

RPIX replicates the pixel value in the specified destination register. Prior to
executing the instruction, you should right-justifiy the value in Rd. The pixel
size is specified by PSIZE and must be 1, 2, 4, 8, 16, or 32 bits. Immediately
following completion of the instruction, the pixel value will have been replicated
throughout the 32 bits of the register.

Given a pixel size of n bits, the replication operation replaces the original pixel
value with 32/n copies of the pixel. The replication process overwrites the 32-n
bits to the left of the original pixel. For more information, refer to Section 12.6,
Auxiliary Graphics Instructions, on page 12-17.

Address Name Description and Elements (Bits)

C0000150h PSIZE Pixel size (1,2,4,8,16,32)

2
4
5
6
7
8

if PSIZE = 32
if if PSIZE = 16
if PSIZE = 8
if PSIZE = 4
if PSIZE = 2
if PSIZE = 1

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

RPXL AO
PSIZE = 8 Before AO = XXXXXX34

After AO = 3434343434

RPXL B8

PSIZE = 4 Before 88 = XXXXXXXA
After 88 = AAAAAAAA

Cycles = 5

Cycles = 6

13-225

Syntax

Execution

Instruction Words

Description

SETC

1-C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 0 001 1 0 1 0 0 o 0 o

SETC sets the carry bit (C) in the status register to 1. The rest of the status reg­
ister is unaffected.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

13-226

This instruction is useful for returning a true/false value (in the carry bit) from
a subroutine without using a general-purpose register.

1

N Unaffected
C 1
Z Unaffected
V Unaffected

Code Before After
ST NCZV ST NCZV

SETC OOOOOOOOh 0000 40000000h 0100
SETC BOOOO010h 1 01 1 FOOOO010h 1 111
SETC 4000001Fh 0100 4000001Fh 0100

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

Set CONVDP SETCDP

SETCDP

Destination pitch conversion factor -- CONVDP

15 14 13 12 11 10 9 8 7 6 5 4 320

SETCDP loads the CONVDP register with the appropriate value used in XY
to linear conversion based on the DPTCH register.

Remember to execute MWAIT after SETCDP to ensure that the CONVDP reg­
ister has been set before using its value in a CVXYL or similar instruction. For
more information, refer to Section 12.11, Setting up the Implied Operands for
Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)

83 DPTCH (linear) Destination array pitch

C0000140h CONVDP Destination pitch conversion register

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before:
After:

Before:
After:

Before:
After:

Before:
After:

B3 = 00001 OOOh (512 x 8)
C0000140 = 0013h

B3 = 00000400h (128 x 8)
C0000140 = 0015h

B3 = 00001400h (640 x 8)
C0000140 = 1513h

B3 = 00000019h (25 x 1)
C0000140 = OOOOh

13-227

SETCMP Set CONVMP
~,,<!~_'K ~ ~~R_",_~:::'?II'f

Syntax SETCMP

Execution Mask pitch conversion factor - CONVMP

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

13-228

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
1 I 1 o I 1

SETCMP loads the CONVMP register with the appropriate value used in XV
to linear conversion based on the M PTCH register.

Remember to execute MWAIT after SETCMP to ensure that the CONVMP reg­
ister has been set before using its value in a CVMXVL or similar instruction.
For more information, refer to Section 12.11, Setting up the Implied Operands
for Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)

811 MPTCH (linear) Mask array pitch

C0000180h CONVMP Mask pitch conversion register

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before: B3 = 00001000 (512 x 8)
After: C0000180 = 0013

Before: B3 = 00000400 (128 x 8)
After: C0000180 = 0015

Before: 83 = 00001400 (640 x 8)
After: C0000180 = 1513

Before: B3 = 00000019 (25 x 1)
After: C0000180 = 0000

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Examples

SETCSP

Source pitch conversion factor - CONVSP

15 14 13 12 11 10 9 8 7 6 5 4 320

SETCSP loads the CONVSP register with the appropriate value used in XY
to linear conversion based on the SPTCH register.

Remember to execute MWAIT after SETCSP to ensure that the CONVSP
register has been set before using its value in a CVSXYL or similar instruction.
For more information, refer to Section 12.11, Setting up the Implied Operands
for Graphics Instructions, on page 12-43.

Address Name Description and Elements (Bits)

B1 SPTCH (linear) Source array pitch

C0000130h CONVSP Source pitch conversion register

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary 3(1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Before: B3 = 00001000 (512 x 8)
After: C0000130 = 0013

Before: B3 = 00000400 (128 x 8)
After: C0000130 = 0015

Before: B3 = 00001400 (640 x 8)
After: C0000130 = 1513

Before: B3 = 00000019 (25 x 1)
After: C0000130 = 0000

13-229

SETF Set Field Parameters
r:::::l mO$M_~r ~~l':'I

Syntax SETF FS, FE [, F]

Execution

Instruction Words

Description

FS, FE - ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
I 0 I 0 I 0 I 0 I 0 I 1 I F I 1 I 0 I 1 I FE I FS

SETF loads specified field size (FS) and field extension (FE) values into the
status register; depending on the value of the F parameter, this information
sets the field size and extension for either field 0 or field 1. (The remainder of
the status register is not affected.)

Note: Shaded portions are reserved.

Machine States

Status Bits

For more information, refer to Section 4.1, The Status Register, on page 4-2.

!J The FS parameter is a value between 1 and 32; it selects the field size.
(Note that an FS value of 0 in the opcode corresponds to an actual selected
field size of 32.)

!J The FE parameter is a value of 0 or 1 :

FE=O selects zero-extension for a field.
FE=1 selects sign-extension for a field.

!J The F parameter is optional; the default value for F is O. The Fvalue deter­
mines whether the SETF instruction sets the field size and extension for
field 0 or for field 1.

F=O selects FSO, FEO to be altered.
F=1 selects FS1, FE1 to be altered.

Each MOVE instruction also has an F parameter that selects the field size and
extension of either field 0 or field 1 for the individual move. You can use the
SETF instruction to prepare for MOVE instructions.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

13-230 TMS34020 Assembly Language Instruction Set

Set Field Parameters SETF .
Examples Code Before After

ST ST
SETF 32,0,0 xxxxxOOOh xxxxxOOOh
SETF 32,1,0 xxxxxOOOh xxxxx020h
SETF 31,1,0 xxxxxOOOh xxxxxQ3Fh
SETF 16,0,0 xxxxxOOOh xxxxx010h
SETF 32,0,1 xxxxxOOOh xxxxxOOOh
SETF 32,1,1 xxxxxOOOh xxxxx800h
SETF 31,1,1 xxxxxOOOh xxxxxFCOh
SETF 16,0,1 xxxxxOOOh xxxxx400h

13-231

SEXT Sign-Extend to Lonfl.

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-232

SEXT Rd [, F]

field in Rd -+ sign-extended field Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 1 I F I 1 I 0 I 0 I 0 I R Rd

SEXT sign-extends the right-justified field contained in the destination register
by copying the MSB of the field data into all the nonfield bits of the destination
register. The size of the field is determined by the current field size. The
optional F parameter, which must be specified as a 0 or a 1, selects the field
size:

F=O selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is O.

2

N 1 if the result is negative, 0 otherwise
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before
FSO/1 AO

SEXT AO,O 17/x 0OOO8000h
SEXT AO,O 16/x 0OOO8000h
SEXT AO,O 15/x 0OOO8000h
SEXT AO,l x/17 0OOO8000h
SEXT AO,l x/16 0OOO8000h
SEXT AO,l x/15 0OOO8000h

After
NCZV
OxOx
1xOx
Ox1x
OxOx
1xOx
Ox1x

AO
0OOO8000h
FFFF8000h
OOOOOOOOh
0OOO8000h
FFFF8000h
OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Shift Left Arithmetic, Constant SLA
~~;#"""wA0:-~;::.~~m:~=,~'>:·~~~;.<:'::mV"««:;:;::'~=~:.>"R;~=~<""=":::'<:""':«~:;'-@~~::;.:;l';I':"'''<:<(.;"~~~_'X-""'~"'«'~"'~"X».';:;l;m>:i:'~<,:«'=:~:«,=Mo:<::~wm'»<~~ml;<:;;;:<:'~,~~O:<:{-:':""<:~~~=~..;>l>M:~~~~~~~j:;W;;R@=<@~;~W=~,>:~~

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SLA constant, Rd

left-shift Rd by constant ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 0 I 0 I 0 I constant R Rd

SLA left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant; this is a value between
o and 31.

As shown in the diagram, Os are shifted into the LSBs. The last bit shifted out
of the destination register (the original value of bit [32 - constant]) is shifted into
the carry bit. If either the new sign bit (N) or any of the bits shifted out of the
register differ from the original sign bit, the overflow bit (V) is set.

The assembler accepts only absolute expressions forthe shift count. Ifthe shift
count is greater than 31, the assembler issues a warning and sets the constant
to its 5 LSBs.

Note that SLA executes slower than SLL because it provides overflow detec­
tion.

3

N 1 if the result is negative, a otherwise
C Set to the value of bit [32 - constant], a for shift count of 0
Z 1 if a 0 result generated, a otherwise
V 1 if the MSB changes during shift operation, a otherwise

Code Before After
A1 A1 NCZV

SLA o ,AI 33333333h 33333333h 0000
SLA o ,AI CCCCCCCCh CCCCCCCh 1000
SLA 1,Al CCCCCCCCh 99999998h 1 1 00
SLA 2,Al 33333333h CCCCCCCCh 1 001
SLA 2,Al CCCCCCCCh 33333330h 01 01
SLA 3,Al CCCCCCCCh 66666660h 0001
SLA S,AI CCCCCCCCh 99999980h 1 1 01
SLA 30,AI CCCCCCCCh o OOOOOOOh 01 1 1
SLA 3l,AI CCCCCCCCh o OOOOOOOh 001 1
SLA 3l,Al OOOOOOOOh o OOOOOOOh 0010

13-233

Syntax

Execution

Instruction Words

Description

SLA Rs, Rd

left-shift Rd by 5 LSBs of Rs ~ Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2 1 D

I D I 1 I 1 I D I D I D I D I Rs R Rd

SLA left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count from 0 to 31.

The last bit shifted out of the destination register (the original value of bit
[32-Rs]) is shifted into the carry bit. If either the new sign bit (N) or any of the
bits shifted out of the register differ from the original sign bit, the overflow bit
01) is set.

Note: Shaded portions are reserved.

Machine States

Status Bits

Examples

13-234

Note that SLA executes slower than SLL because it provides overflow detec­
tion.

3

N 1 if the result is negative, 0 otherwise
C Set to the value of [32 - Rs], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V 1 if the MSB changes during shift operation, 0 otherwise

Code Before After
5 LSBs AO A1 A1 NCZV

SLA AD,AI 00000 33333333h 33333333h 0000
SLA AD,AI 00000 CCCCCCCCh CCCCCCC Ch 1000
SLA AD,AI 00001 CCCCCCCCh 99999998h 1100
SLA AD,AI 00010 33333333h CCCCCCCCh 1 001
SLA AD,AI 00010 CCCCCCCCh 33333330h 0101
SLA AD,AI 00011 CCCCCCCCh 66666660h 0001
SLA AD,AI 00101 CCCCCCCCh 99999980h 1 1 01
SLA AD,AI 11110 CCCCCCCCh o OOOOOOOh 011 1
SLA AD,AI 11111 CCCCCCCCh o OOOOOOOh 001 1
SLA AD,AI 11111 o OOOOOOOh o OOOOOOOh 0010

TMS34020 Assembly Language Instruction Set

Shift Left Logical, Constant SLL
,o/.Y»:.;.-mm>,~,,,,<~:~,,~.~.;i~~,,,,':':"'~«$:'>r>.4=~·»!OM>m,>~:@:<»>~~,~~·>~m""·~MW;:':.l-=·r.;'~'':::;;:I';w.;v-.w"m~,)'':''>!~~","':'»>'''>'2'~<!':'»~:~~''::::;;~~)':<'»Wi''»>>>S""">?i>*>"~~;::»l<'=~.wl==-w.-~~=~~~=~=~~)~,r~~m

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SLL constant, Rd

left-shift Rd by constant ~ Rd

15 14 13 12 11 1a 9 8 7 6 5 4 3 2 1 a

I a I a I 1 I a I a I 1 I constant R Rd

SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by a 5-bit constant, which is a value between
o and 31.

The last bit shifted out of the destination register (the original value of bit [32
- constant]) is shifted into the carry bit. Os are shifted into the LSBs. This
instruction differs from the SLA instruction only in its effect on the overflow 01)
bit.

The assembler only accepts absolute expressions for the shift count. If the
specified shift count is greater than 31, the assembler issues a warning and
sets the constants to its 5 LSBs.

N Unaffected
C set to the value of bit [32 - constant], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
A1 A1 NCZV

SLL o ,AI OOOOOOOOh OOOOOOOOh x 01 X

SLL a,AI 88888888h 88888888h xOOx
SLL I,AI 88888888h 11111110h x10x
SLL 4,AI 88888888h 88888880h xOOx
SLL 30,AI FFFFFFFCh OOOOOOOOh x 1 1 x
SLL 31,AI FFFFFFFCh OOOOOOOOh x01x

13-235

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-236

SLL Rs, Rd

left-shift Rd by 5 LSBs of Rs -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 1 I 0 I 0 I 0 I 1 I Rs R Rd

SLL left-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by the 5 LSBs of Rs (the 27 MSBs are
ignored); this produces a shift count between 0 and 31.

The last bit shifted out of the destination register (the original value of bit [32
- Rs]) is shifted into the carry bit. Os are shifted into the LSBs. This instruction
differs from the SLA instruction only in its effect on the overflow M bit.

C 31 D----~-- _.,.::..:.--;-, ----"----'---~4 ~~
...• MSB .. ' ". ·.··.i\{SB:.'.;·.>

Rs and Rd must be in the same register file.

1

N Unaffected
C set to the value of bit [32 - Rs], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ ~ After
5 LSBs AO A1 A1

SLL AO,AI 00000 OOOOOOOOh OOOOOOOOh
SLL AO,AI ·00000 88888888h 88888888h
SLL AO,AI 00001 88888888h 11111110h
SLL AO,AI 00100 88888888h 88888880h
SLL AO,AI 11110 FFFFFFFCh OOOOOOOOh
SLL AO,AI 11111 FFFFFFFCh OOOOOOOOh

NCZV
x01x
xOOx
x10x
xOOx
x 11 x
x01x

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SRA constant, Rd

right-shift Rd by constant -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 1 I 0 I 1 I 0 I 25 complement of constant R Rd

SRA right-shifts the contents of the destination register by a specified number
of bits. The shift count is specified by constant which is a 5-bit immediate value;
this produces a shift count of 0 to 31.

The last bit shifted out of the destination register (the original value of
[constant-1]) is shifted into the carry bit. The sign bit (MSB) is extended into
the MSBs.

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning,
takes the 2s complement of the constant and places it in the opcode.

1

N 1 if the result is negative, 0 otherwise
C Set to the value of [constant - 1], 0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ Before After
A1 A1 NCZV

SRA D,AI OOOOOOOOh OOOOOOOOh 001x
SRA D,AI FFFFOOOOh FFFFOOOOh 100x
SRA B ,AI 7FFFOOOOh 007FFFOOh OOOx
SRA B,AI FFFFOOOOh FFFFFFOOh 100x
SRA 3D,AI 7FFFOOOOh 0OOOOOO1h 010x
SRA 31,AI 7FFFOOOOh OOOOOOOOh 01 1 X

SRA 31,AI FFFFOOOOh FFFFFFFFh 1 1 0 x

13-237

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-238

SRA Rs,Rd

right-shift Rd by 2s complement of 5 LSBs in Rs ->- Rd

15 14 13 12 11 1D 9 8 7 6 5 4 3 2 D

Rs I R I Rd

SRA right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the 2s complement-of the 5 LSBs of
Rs (the 27 MSBs of Rs are ignored); this produces a shift count between a and
31.

The last bit shifted out of the destination register (the original value of bit
[shift amount - 1]) is shifted into the carry bit. The sign bit (MSB) is extended
into the MSBs.

N 1 if the result is negative, 0 otherwise
C Set to the value of bit [shift amount - 1], 0 for shift count of a
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
5 LSBs AO A1 A1 NCZV

SRA AO,A! 00000 OOOOOOOOh OOOOOOOOh 001x
SRA AD,A! 00000 FFFFOOOOh FFFFOOOOh 100x
SRA AO,A! 11111 7FFFOOOOh 3FFF8000h OOOx
SRA AD,A! 11111 FFFFOOOOh FFFF8000h 100x
SRA AD,A! 11000 7FFFOOOOh 007FFFOOh OOOx
SRA AO,A! 11000 FFFFOOOOh FFFFFFOOh 100x
SRA AD,A! 00010 7FFFOOOOh 00000001h 010x
SRA AO,A! 00001 7FFFOOOOh OOOOOOOOh 01 1 X

SRA AO,A! 00001 FFFFOOOOh FFFFFFFFh 1 1 0 x

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SRL constant, Rd

right-shift Rd by constant - Rd

15 14 13 12 11 10 9 8 7 6 5· 4 3 2 o
I 0 I 0 I 1 I 0 I 1 I 1 I 2s complement of constant R Rd

SRL right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the constant which is a 5-bit immediate
value; this produces a shift count between 0 and 31.

The last bit shifted out of the destination register (the original value of
[constant-1]) is shifted into the carry bit. Os are shifted into the MSBs.

The assembler accepts only absolute expressions for the shift count. If the
specified shift amount is greater than 31, the assembler issues a warning,
takes the 2s complement of the constant and places it in the opcode.

1

N Unaffected
C Set to the value of [constant -1],0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

~ Before After
Ai Ai NCZV

SRL o ,AI OOOOOOOOh OOOOOOOOh xOix
SRL O,Al 7FFFFFFFh 7FFFFFFFh xOOx
SRL 1,Al 7FFFFFFFh 3FFFFFFFh x10x
SRL 8,Al 7FFFOOOOh 007FFFOOh xOOx
SRL 30,Al 7FFFOOOOh 0OOOOOO1h x10x
SRL 3l,Al 7FFFOOOOh OOOOOOOOh xi 1 X

SRL 3l,Al 3FFFOOOOh OOOOOOOOh x01x

13-239

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-240

SRL Rs, Rd

right-shift Rd by 2s complement of 5 LSBs in Rs -+ Rd

15 14 13 12 11 1D 9 8 76543 2 D

Rs I R I Rd

SRL right-shifts the contents of the destination register by a specified number
of bits. The shift amount is specified by the 2s complement of the 5 LSBs of
Rs (the 27 MSBs of Rs are ignored); this produces a shift value of 0 to 31.

The last bit shifted out of the destination register (the original value of bit
[shift amount - 1]) is shifted into the carry bit. Os are shifted into the MSBs.

N Unaffected
C Set to the value of bit [shift amount -1],0 for shift count of 0
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before After
5 LSBs AO A1 A1 NCZV

SRL AD,AI 00000 OOOOOOOOh OOOOOOOOh x01x
SRL AO,AI 00000 7FFFFFFFh 7FFFFFFFh xOOx
SRL AD,AI 11111 7FFFFFFFh 3FFFFFFFh x10x
SRL AD,AI 11000 7FFFOOOOh 007FFFOOh xOOx
SRL AD,AI 00010 7FFFOOOOh 00000001h x10x
SRL AD,AI 00001 7FFFOOOOh OOOOOOOOh x 1 1 X

SRL AD,AI 00001 3FFFOOOOh OOOOOOOOh x01x

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SUB Rs, Rd

Rd - Rs -'" Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I 1 I 0 I Rs R Rd

SUB subtracts the contents of the source register from the contents of the
destination register and stores the result in the destination register.

You can accomplish multiple-precision arithmetic by using SUB in conjunction
with the SUBB instruction.

Rs and Rd must be in the same register file.

1

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO A1 NCZV AO

SUB Al,AO 7FFFFFF2h 7FFFFFF1h 0000 00000001h
SUB Al,AO 7FFFFFF2h 7FFFFFF2h 0010 OOOOOOOOh
SUB Al,AO 7FFFFFF1h 7FFFFFF2h 1 1 a a FFFFFFFFh
SUB Al,AO 7FFFFFF1h FFFFFFFFh 0100 7FFFFFF2h
SUB Al,AO 7FFFFFFFh FFFFFFFFh 1 1 01 80000000h

I

SUB Al,AO FFFFFFFDh FFFFFFFFh 1 1 a a FFFFFFFEh
SUB Al,AO FFFFFFFDh FFFFFFFDh 0010 OOOOOOOOh
SUB Al,AO FFFFFFFEh FFFFFFFDh 0000 00000001h
SUB Al,AO FFFFFFFFh 0000OO01h 1000 FFFFFFFEh
SUB Al,AO 80000000h 00000001h 0001 7FFFFFFFh

13-241

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-242

SUBB Rs, Rd

Rd - Rs - C ~ Rd (the carry bit acts as a borrow)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I 1 I 1 I Rs R Rd

SUBB subtracts both the contents of the source register and the carry bit from
the contents of the destination register, and stores the result in the destination
register.

You can use this instruction with the SUB, SUBK, and SUBI instructions for
extended-precision arithmetic.

Rs and Rd must be in the same register file.

N 1 if the result is negative, a otherwise
C 1 if there is a borrow, a otherwise
Z 1 if the result is 0, a otherwise
V 1 if there is an overflow, a otherwise

Code Before After
C AD A1 NCZV AD

SUBB AI,AO a 00000002h 00000001h 0000 00000001h
SUBB AI,AO 1 00000002h 00000001h 0010 OOOOOOOOh
SUBB AI,AO a 00000002h 00000002h 0010 OOOOOOOOh
SUBB AI,AO 00000002h 00000002h 1 1 0 a FFFFFFFFh
SUBB AI,AO a 00000002h 00000003h 1 1 a a FFFFFFFFh
SUBB AI,AO a 7FFFFFFEh FFFFFFFFh 0100 7FFFFFFFh
SUBB AI,AO a 7FFFFFFEh FFFFFFFEh 1 1 01 80000000h
SUBB AI,AO 7FFFFFFEh FFFFFFFEh 0100 7FFFFFFFh
SUBB AI,AO a FFFFFFFEh FFFFFFFFh 1 100 FFFFFFFFh
SUBB AI,AO a FFFFFFFEh FFFFFFFEh 0010 OOOOOOOOh
SUBB AI,AO 1 FFFFFFFEh FFFFFFFEh 1 1 a a FFFFFFFFh
SUBB AI,AO 0 FFFFFFFEh FFFFFFFDh 0000 00000001h
SUBB AI,AO 1 FFFFFFFEh FFFFFFFDh 0010 OOOOOOOOh
SUBB AI,AO a 80000001h 00000001h 1000 80000000h
SUBB AI,AO 80000001h 00000001h 0001 7FFFFFFFh
SUBB AI,AO 0 80000001h 00000002h 0001 7FFFFFFFh

TMS34020 Assembly Language Instruction Set

Subtract Immediate, 16 Bits SUBI
"~~'l$;:<!l;'>~<:~;:;;;'~""lo>:<·~,!;:"""~",;:~w-,::«<~,,<,m<~:,;,,<,:No:@"'''-:;:~~~""~<=':;"'<!<"":l"';'~>=:.r...,«~~~:>~~~~~!{~~~,,":::,~=~;:«,,;:;=,":i:'~~~:~_=~::::;~~~="'~_~_~_~ __ ~

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

SUBI IW, Rd [, W]

Rd -IW --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 1 I 1 I R I Rd

1 s complement of IW

SUBI subtracts a sign-extended, 16-bit immediate value from the contents of
the destination register, and stores the result in the destination register. (The
IL in the syntax represents a sign-extended, 16-bit immediate value.)

The assembler uses this form of the SUBI instruction if the immediate value
was previously defined and is in the range -32,768 to 32,767. You can force
the assembler to use the short form by following the register operand with ,W:

SUBI IW, Rd, w

The assembler truncates any upper bits and issues an appropriate warning
message. You can accomplish multiple-precision arithmetic by using SUBI in
conjunction with the SUBB instruction.

2

N 1 if the result is negative, 0 otherwise

C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO AO NCZV

SUBI 32765,AO 0OO07FFEh 0OOOOO01h 0000
SUBI 32766,AO 00007FFEh OOOOOOOOh 0010
SUBI 32767,AO 0OO07FFEh FFFFFFFFh 1 1 00
SUBI 32766,AO 80007FFEh 80000000h 1000
SUBI 32767,AO 80007FFEh 7FFFFFFFh 0001
SUBI -32766,AO FFFF8001h FFFFFFFFh 1 1 00
SUBI -32767,AO FFFF8001h OOOOOOOOh 0010
SUBI -3276B,AO FFFF8001h 0OOOOO01h 0000
SUBI -32767,AO FFFF8000h 7FFFFFFFh 0100
SUBI -3276B,AO 7FFF8000h 80000000h 1 1 01

13-243

SUBI Subtact Immediate, 32 Bits
.,.)~,~~r':"~~,*~''I«l~:;:;:::«:~'I>."«':<i~~=~_..,_'';(~~:'\-.'t'l<'~~';::. __ ~=-==:'~ __ X::::I:':l'_R»>:>;»:~~~~~-=''''''''''''.,..,......,.,.'''''''''''==_

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-244

SUBI IL, Rd [, L]

Rd -IL -+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 I 0 I 1 I 1 I 0 I 1 I 0 I 0 I 0 I R I

1 s complement of 16 LSBs of IL

1 s complement of 16 MSBs of IL

o
Rd

SUBI subtracts a signed 32-bit immediate value from the contents ofthe desti­
nation register, and stores the result in the destination register. (The IL in the
syntax represents a signed 32-bit immediate value.)

The assembler uses this version of the SUBI instruction if it cannot use the
SUBIIW,Rd opcode, orifyou request the long opcode by following the register
operand with ,L:

SUBI IL, Rd, L

You can accomplish multiple-precision arithmetic by using SUBI in conjunction
with the SUBB instruction.

2 if immediate data is long-word aligned
3 if immediate data is not long-word aligned

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO AO NCZV

SUBI 2147483647,AO 7FFFFFFFh OOOOOOOOh 0001
SUBI 3276B,AO 00008001h 00000001h 0000
SUBI 32769,AO 00008001h OOOOOOOOh 0010
SUBI 32770,AO 00008001h FFFFFFFFh 1 1 a a
SUBI 3276B,AO 80008000h 80000000h 1000
SUBI 32769,AO 80008000h 7FFFFFFFh 0001
SUBI -2147483648,AO 80000000h OOOOOOOOh 0010
SUBI -32769,AO FFFF7FFEh FFFFFFFFh 1 1 a a
SUBI -32770,AO FFFF7FFEh OOOOOOOOh 0010
SUBI -32771,AO FFFF7FFEh 00000001h 0000
SUBI -32770,AO 7FFF7FFDh 7FFFFFFFh 0100
SUBI -32771,AO 7FFF7FFDh 80000000h 1 1 01

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Subtract Constant SUBK

SUBK constant, Rd

Rd - constant ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
I 0 I 0 I 0 I 1 I 0 I 1 I constant R Rd

SUBKsubtracts the 5-bit constant from the contents ofthe destination register;
the result is stored in the destination register. The constant is an unsigned num­
ber in the range 1-32. Note that constant=O in the opcode corresponds to the
value 32; the assembler converts the value 32 to O. Using this instruction, the
assembler issues an error if you try to subtract a from a register.

You can accomplish multiple-precision arithmetic by using SUBK in conjunc­
tion with the SUBB instruction.

N 1 if the result is negative, 0 otherwise
C 1 if there is a borrow, 0 otherwise
Z 1 if the result is 0, 0 otherwise
V 1 if there is an overflow, 0 otherwise

Code Before After
AO AO NCZV

SUBK 5,AO 00000009h 00000004h 0000
SUBK 9,AO 00000009h OOOOOOOOh 0010
SUBK 32,AO 00000009h FFFFFFE9h 1 1 00
SUBK I,AO 80000000h 7FFFFFFFh 0001

13-245

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-246

SUBXY Rs, Rd

Rd.X - Rs.X - Rd.X
Rd.Y - Rs.Y - Rd.Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 0 I 0 I 0 I 1 I Rs R Rd

SUBXY subtracts the source X and Y values individually from the destination
X and Y values; the result is stored in the destination register.

You can use this instruction for manipulating XY addresses; it is particularly
useful for incremental figure drawing. These addresses are stored as XY pairs
in the register file.

Rs and Rd must be in the same register file.

N 1 if source X field = destination X field, 0 otherwise
C 1 if source Y field> destination Y field, 0 otherwise
Z 1 if source Y field = destination Y field, 0 otherwise
V 1 if source X field> destination X field, 0 otherwise

Code Before After
AD A1 AD NCZV

SUBXY Al,AO 00090009h 00010001h 00080008h 0000
SUBXY Al,AO 00090009h 00090001h 00000008h 0010
SUBXY Al,AO 00090009h 00010009h 00080000h 1000
SUBXY Al,AO 00090009h 00090009h OOOOOOOOh 1 01 0
SUBXY Al,AO 00090009h 00000010h 0009FFF9h 0001
SUBXY Al,AO 00090009h 00090010h 0000FFF9h a 01 1
SUBXY Al,AO 00090009h 00100000h FFF90009h 0100
SUBXY Al,AO 00090009h 00100009h FFF90000h 1 1 00
SUBXY Al,AO 00090009h 00100010h FFF9FFF9h a 10 1

TMS34 020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

SWAPF *Rs, Rd,O

Field specified by *Rs and FSO -+ Rd
Rd -+ field specified by *Rs and FSO

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 0 I 1 I 1 I 1 I 1 I 1 I 1 I Rs R Rd

o

This instruction performs a read (modify) write operation on a field in the
memory space. It exchanges the field specified by the contents of Rs and FSO
with Rd. The new contents of Rd are right-justified and either sign- or zero­
extended, depending on the value of FEO.

The main reason for the inclusion of this instruction is to allow the implementa­
tion ofthe test and set and test and clear operations needed for the lowest level
of interprocess and interprocessor synchronization.

Note that this instruction does not complete until the write is complete (implicit
MWAIT). This makes the instruction useful in some I/O register operations.
Once the instruction starts, host access requests will not be granted until all
the memory SWAPF accesses required are complete. Ifthe read (modify) write
is interrupted after the read by a screen refresh or a loss of of bus grant (GI
high), or if a retry or bus fault occurs at any time during the cycle, the operation
is restarted from the beginning of the read. This makes the operation indivis­
ible. The bus lock status code is output during all SWAPF cycles.

Note:

The following restrictions apply to SWAPF:

1) The field must not span a 32-bit word boundary. The field is ignored if any
part of it is not contained in the same 32-bit word specified by the bit
address contained in Rs.

2) If SWAPF is used to access 16-bit memories, any part ofthe field not con­
tained in the first 16-bit word is ignored.

Refer to Section 15.1 on page 15-2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.

C Unaffected

Z 1 if the field-extended data moved to register 0, 0 otherwise.
V 0

13-247

Examples

13-248

SETF 1,0,0
MOVI SEMA,A1

WAS SET: MOVK 1,AO
SWAPF *A1,AO
JRNE WAS SET

SETF
MOVI

WAS CLR: CLR

1,0,0
SEMA,A1

AD
SWAPF *A1,AO

JREQ WAS CLR

;Test and Set-wait for resource
;Single bit
;Bit to test and set
iSet is not already set
;Test and set
;Already set-did not get resource
;Test and Clear-wait for resource
;Single bit
iBit to test and clear
iClear if not already clear
;Test and clear
;Already clear-did not get resource
iGraphics mode save

MOVI CONTROL+5,A1 iPoint at CONTROL register
SETF

MOVI
10,0,0
NEWMODE,AO

SWAPF *A1,AO
CALL GRAPHOP

MOVE AO, *A1, 0

;Ten bits
;New value
;Read oldmode, set new mode
;Perform some operation

;Restore old mode

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

TFILLXY

COLOR1 pixels fill the horizontal line from (X1' Y) to (X2' Y) then

X1 : = X1 + DX1
X2 : = X2 + DX2
Y := Y+1

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o I 1

o
o

TFI LL draws a horizontal line and then adjusts its implied operands. The oper­
ands are set so that each subsequent call to TFILL will draw one more horizon­
tal line, creating lines that build up to form a trapezoid.

The trapezoid is defined as shown in the diagram:

Figure 13-11. A Trapezoidal Fill

Note that the coordinate parameters for this instruction are specified in the
fixed-point format; that is, the 16 MS Bs define the signed part of the coordinate
and the 16 LSBs define the fractional part of the coordinate. This is the case
for both X and Y coordinates, although the Y coordinate will never have a
fractional part.

The DX1 and DX2 values can have fractional components. This allows for
non integral slopes at the trapezoid sides. The fractional components are used
to determine the new endpoints for the next line. However, only the 16 MSBs
are used to determine the XY address of the endpoints.

Note that if X2:S X1 no pixels are drawn, but the contents of X1 and X2 are still
incremented by DX1 and DX2 respectively.

13-249

TFILL Trapezoidal Fill w_ ;mxm;WnNm l~n~~~lr~u~' ~f~r:;,:;: 'III '101

Implied Operands

Pixel Processing

Window Checking

13-250

Register Name Format Description

80 SADDR

81 SPTCH

82 DADDR

83 DPTCH

84

85

86

87

89

810

811

Address

COOOO080h

C0000140h

C0000150h

C0000160h

OFFSET

WSTART

WEND

DYDX

COLOR1

MADDR

MPTCH

Name

CONTROL

CONVDP

PSIZE

PMASK (32
bits)

Fixed X coordinate of X1

Fixed DX1 (adjustment for X1)

XY Used as temp (not user determined)

Linear Destination pixel array pitch (usually
screen pitch)

Linear Screen offset

XY Window start

XY Window end

Fixed X coordinate of of X2

Pixel Foreground color

Fixed DX2 (adjustment for X2)

Fixed Y coordinate of X1 and X2

Description and Elements (Bits)

PP - Pixel-processing operations (22 options)
W - Window checking operation
T - Transparency operation
TMODE - Selects 1 of 3 transparency options

XY-to-Iinear conversion (destination pitch)

Pixel size (1,2,4,8,16,32)

Plane mask - pixel format

To set up the initial values for X1, X2, and Y from 2 starting addresses (X1' Y)
and (X2' y), complete the following steps:

1) Use MOVY to copy the Y address into MPTCH.

2) Use SLL to shift the 2 XY addresses left by 16 bits. This results in 2 fixed­
point X coordinates.

3) Use MOVY to copy the 2 X addresses into SADDR and DYDX, respec-
tively.

Pixel processing can be used with this instruction. PPOP[CONTROL] speci­
fies the pixel-processing operation that is applied to pixels as they are
processed with the destination array. There are 16 Boolean and 6 arithmetic
operations; the default case at reset is the rep/ace (5 - 0) operation. Note that
the destination data is read through the plane mask and then processed. The
6 arithmetic operations do not operate with a pixel size of 1 bit per pixel. For
more information, refer to Section 12.8, Pixel Processing, on page 12-27.

The window operations can be used with this instruction. For more information,
refer to Section 12.7, Window Checking, on page 12-19.

TMS34020 Assembly Language Instruction Set

Transparency

Interrupts

Plane Masking

Status Bits

Example

STK .set
SADDR .set
SPTCH .set
DYDX .set
MADDR .set
MPTCH .set
tfill: -

mmtm
move
move
sl1
move
sl1
move
move
sl1
move
sl1
move
move
sub
sub
sub
divs

You can enable transparency for this instruction by setting T[CONTROL.] to 1 .
Select 1 of 3 transparency modes by setting TM[CONTROL.]. For more infor­
mation, refer to Section 12.9, Transparency, on page 12-36.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Opera­
tions, on page 6-13.

The plane mask is enabled for this instruction. For more information, refer to
Section 12.10, Plane Masking, on page 12-39.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which draws trape­
ziums on the screen, using the TFILL instruction. This function has 6 argu­
ments:

(x1 a, x2a, ya) - coordinates of top of trapezoid
(x1 b, x2b, yb) - coordinates of bottom of trapezoid

This routine assumes the following registers have been initialized by the caller:

Al4
BD
Bl
B7
BlD
Bll

B-file registers
I/O registers

DPTCH, OFFSET, WSTART, WEND, and COLOR1
CONTROL, CONVDP, PSIZE and PMASK

C-parameter stack pointer
Source address register
Source pitch re"gister
Delta X/delta Y register
Mask address register
Mask pitch register .globl _tfill

SP,BD,Bl,B2,B7,BlD,Bll,Bl2,Bl3,Bl4
STK,Bl4
*-Bl4,SADDR,l
l6,SADDR
*-Bl4,DYDX,l
l6,DYDX
*-Bl4,MPTCH,l
*-Bl4,SPTCH,l
l6,SPTCH
*-B14,B13,1
16,B13
*-Bl4,Bl2,l
Bl4,STK
SADDR,SPTCH
DYDX,Bl3
MPTCH,B12
Bl2,SPTCH

iget C-parameter stack into B-file
iPOP xla
iconvert to fixed point
iPOP x2a
iconvert to fixed point
iPOP ya
iPOP xlb
iconvert to fixed point
;pop x2b
;convert to fixed point
;pop yb
;update C-parameter stack
idelta xl
idelta x2
;delta y
idxl

13-251

loop:

13-252

divs

move
sll

tfill
dsjs
mfm
rets

B12,B13

B13 ,MADDR
16,MPTCH

;dxl (cant use MADDR since divs
;requires odd numbered register)
;copy into MADDR
;convert y to fixed point

B12,loop
SP,BO,Bl,B2,B7,B10,Bll,B12,B13,B14
2

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

TRAP N

PC ~ -*SP

ST - -*SP
trap vector N ~ PC

Software

15 14 13 12 11 10 9 B 7 6 5 4 3 2

TRAP

o

TRAP executes a software interrupt. The N parameter is a trap number from
o to 31 that selects the trap to be executed. During a software interrupt:

Q The 32-bit return address, PC (the address of the next instruction), is
pushed on the stack.

Q The 32-bit status register, ST, is pushed on the stack.

Q The stack pointer, SP, is decremented by 64.

Q The IE (interrupt enable) bit in ST is setto 0, disabling maskable interrupts,
and ST is set to 0000001 Oh.

Q Finally, the trap vector is loaded into the PC.

The TMS34020 generates the trap vector addresses as shown on the following
page:

13-253

Status Bits

Examples

N 0
C 0
Z 0
V 0

Assume that memory contains the following values before instruction
execution:

Address Data
FFFFFCOO 0000
FFFFFC10 FFEO
FFFFFC20 0000
FFFFFC30 FFDO

FFFFFFCO 0000
FFFFFFDO FFBO
FFFFFFEO 0000
FFFFFFFO FFAO

Code Before After
PC SP PC SP ST

TRAP 0 xxxxxxxxh 80000000 FFAOOOOO 80000000h 00000010h
TRAP 1 xxxxxxxxh 80000000 FFBOOOOO 7FFFFFCOh 00000010h
TRAP 30 xxxxxxxxh 80000000 FFDOOOOO 7FFFFFCOh 00000010h
TRAP 31 xxxxxxxxh 80000000 FFEOOOOO 7FFFFFCOh 00000010h

13-255

Syntax

Execution

Instruction Words

Description

13-256

TRAPL

PC ---+ -*SP
ST ---+ -*SP
trap vector N ---+ PC

15 14 13 12 11 10 9 8 7 6 5
1010101011101010101010

16-bit trap number N

4 3 2 o
o 1 1 1 1

TRAPL executes a software interrupt. The N parameter is a signed number
from -32,768 to 32,767. The trap address is formed by taking the 16-bit signed
immediate operand N, shifting it left by 5 bits and then sign-extending it. TRAPL
can cover a significantly larger address range than the TRAP instruction.
During a software interrupt:

Q The 32-bit return address, PC (the address of the next instruction), is
pushed on the stack.

Q The 32-bit status register, ST, is pushed on the stack.

Q The stack pOinter, SP, is decremented by 64.

Q The IE (interrupt enable) bit in ST is set to 0, disabling maskable interrupts,
and ST is set to 0000001 Oh.

Q Finally, the trap vector is loaded into the PC.

Note that unlike TRAP 0, the TRAPL 0 is not treated as an exception. That is,
TRAPL 0 saves the PC and ST on the stack, whereas TRAP 0 does not.

The TMS34020 generates the trap vector addresses as shown on the following
page:

TMS34020 Assembly Language Instruction Set

Software TRAPL

Figure 13-13. Vector Address Map

Machine States

Trap Number Address Name Description

-32768 OOOF FFEOh

0000 OOOOh
J.-"---':'''-''----l

FFFF FFEOh ~-----l
FFFF FFCOh I---...!!..!...!....:...----l

FFFF FFAOh h:T70'7"~~0'7";;:1
FFFF FF80h
FFFF FF60h li.···\·.i·..;:::.:L:;. ••• ··.ii·
FFFF FF40h

FFFF FF20h

FFFF FFOOh
I--====~

Application defined

Reset

External interrupt 1

External interrupt 2

Reserved for future
hardware or on-chip
interrupts

FFFF FEEOh I--_-.:...:.:..:.!!..._~ Nonmaskable interrupt

FFFF FECOh Host interrupt

FFFF FEAOh Display interrupt

-1

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

FFFF FE80h Window violation interrupt

FFFF FE60h

FFFF FE40h

FFFF FE20h

15 FFFF FEOOh I--=;..;..;:;:Jr;;.;;.;..;~~
16 FFFF FDEOh

29 FFFF FC40h I--~='="..;;..;..;...;~

Reserved for future
hardware or on-chip
interrupts

Application defined

30

31

32

33

FFFF FC20h Illegal opcode interrupt
I------~

FFFF FCOOh Application defined

FFFF FBEOh Single-step/Emulator

FFFF FBCOh Bus fault

34 FFFF FBAOh

32767 FFFO OOOOh L-:.;......:..:..:::=:::.:...::~....J

~32 bitS---1

Application defined

Notes: 1) Traps (-1)- (-32,768) use the memory at the bottom ofthe address space
for vector addresses. Traps 0-32,767 use the memory at the top ofthe ad­
dress space.

2) Traps 0-31 may be accessed by either TRAP or TRAPL instructions.

3) Traps (-1)- (-32,768) and 32-32,767 are only accessed by TRAPL.

4) Traps 3-7 and 12-15 are reserved for future interrupts.

10 if ST is aligned
else 12

13-257

TRAPL." Software Interrupt, Signed

Status Bits

Examples

13-258

N 0
C 0
Z 0
V 0

Assume that memory contains the following values before instruction execu­
tion:

Address Data
FFFFFBCO 0000
FFFFFBDO FFOE

FFFFFCOO 0000
FFFFFC10 FFEO

FFFFFFEO 0000
FFFFFFFO FFAO
00000000 0000
00000010 FFOF

Code Before After
PC SP PC SP ST

TRAPL -1 xxxxxxxxh 80000000 FFOFOOOO 7FFFFFCOh 00000010h
TRAPL 0 xxxxxxxxh 80000000 FFAOOOOO 7FFFFFCOh 00000010h
TRAPL. 31 xxxxxxxxh 80000000 FFEOOOOO 7FFFFFCOh 00000010h
TRAPL 33 xxxxxxxxh 80000000 FFOEOOOO 7FFFFFCOh 00000010h

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Implied Operands

Pixel Processing

Linear VRAM Block Transfer V~IB,.~

VBLT B, L

Binary pixel array -+ linear pixel array using VRAM block write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101010]110101010111011101111

VBLT moves a binary array of pixels defined by SADDR and DYDX to a
corresponding block defined by DADDR and DYDX using VRAM block mode
expansion. Both SADDR and DADDR contain linear starting addresses.There
is an expansion implicit in the transfer, such that a bit value of 1 in the source
data is written to the destination array as a COLOR1 pixel (from the VRAM
color register). Source bits of the value a leave the corresponding destination
pixel unchanged. Note this instruction assumes that the VRAM color register
has been loaded by the VLCOL instruction. For more information, refer to
subsection 12.5.4, VRAM Block Mode, page 12-14.

Note:

1) DPTCH must be an integral multiple of 80h, and

2) this instruction works only if the PSIZE is 4,8,16, and 32.

Register Name Format Description

80 SADDR Linear Source pixel array address

81 SPTCH Linear Source pixel array pitch

82 DADDR Linear Destination pixel array address

83 DPTCH Linear Destination pixel array pitch

87 DYDX XY Pixel array dimensions

814 TEMP Temp Intermediate value

Address Name Description and Elements (Bits)

C0000150h PSIZE Pixel size (4,8,16,32)

C0000160h PMASK (32 bits) Plane mask - pixel format

C00001 AOh CONFIG 8it 8 (YEN) enables VRAM write mask

Address Name Description

VRAM Pixel Must have COLOR1 pixels loaded using VLCOL
Color Register

VRAM Pixel Loaded automatically when PMASK is written and
Write Mask VEN = 1

Pixel processing is not possible with this instruction, because the pixel data is
written from the VRAM color register into the VRAM memory array.

13-259

VBLT 8, L Linear VRAM Block Transfer

Window Checking

Transparency

Plane Masking

Interrupts

Corner Adjust

Machine States

Status Bits

Example

13-260

Window checking cannot be used with this instruction.

Transparency bits are ignored. This instruction has a form of implicit transpar­
ency in that source pixels which are 0 correspond to destination pixels which
are not changed.

The plane mask is implemented in the VRAM using the write mask function,
enabled by VEN[CONFIG]. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Instruc­
tions, on page 6-13.

Corner adjust cannot be used with this instruction.

complex instruction

N Undefined
C Undefined
Z Undefined
V Undefined

This is an example of a C-compatible assembly routine which draws a charac­
ter on the screen using the VBLT instruction. It expects the following arguments

.. on the C parameter stack: width, height, xleft, ytop, and a pointer to the start
of the character data. The character data should be a binary representation of
the character.

This routine makes the following assumptions:

[J These B registers and I/O registers have been initialized by the calling
program:

B-file registers DPTCH, OFFSET, WSTART, WEND, COLORO, COLOR1

I/O registers CONTROL, CONVDP, PSIZE, PMASK and CON FIG

[J The system contains a global flag _ vblt_ ok which is cleared if the VBLT is
not possible. Reasons for this. may be:

• DPTCH is not an integral multiple of 80 hex

• PSIZE is 1 or 2
• Pixel processing is not set to replace
• Transparency is not set to source equals 0
• The system does not contain VRAMs that support this feature

TMS34020 Assembly Language Instruction Set

STK
SAD DR
SPTCH
DADDR
DPTCH
DYDX

vblt:

vblt:

no vblt:

exit:

rets

.set

.set

.set

.set

.set

.set

.globl

.ref

mmtm
move
move
move
move
s11
movy
move
move
move
move
sll
movy
move
jrz

clip
jrz
cvdxyl
vlcol
vblt
jruc

A14
BO
B1
B2
B3

C-parameter stack pointer
Source address register
Source pitch register
Destination address register
Dest. pitch register

B7
_vblt

i Delta X/delta Y register
provide reference for external calls

vblt ok i flag to enable VBLTs

SP,BO,B1,B2,B7,B10,B11,B12 isave required registers
STK,B10 imove c-stack pointer into B-file
*-B10,DYDX,1 iget width
DYDX,SPTCH isave the width as source pitch
*-B10,B12,1 iget height
16,B12
B12,DYDX
*-B10,DADDR,1
*-B10,B12,1
*-B10,SADDR,1
B10,STK
16,B12
B12,DADDR
@_vblt_ok,AS,1
no_vblt

exit
DAD DR

B,L
exit

iconcatenate width & height
iget xleft
iget ytop
iget source address
irestore c-stack pointer

iconcatenate xleft & ytop
iget state of vblt flag

iclip to the window
iif outside the window, exit
iconvert to linear dest address
iload VRAM color latches
iperform linear vblt

pixblt B,XY

mmfm
2

SP,BO,B1,B2,B7,B10,B11,B12 irestore required registers

13-261

VFILL L Linear VRAM Fast Fill

Syntax

Execution

Instruction Words

Description

Implied Operands

Pixel Processing

Window Checking

Transparency

Plane Masking

Interrupts

Corner Adjust

13-262

VFILL L

Contents of VRAM color latch -.. array of pixels

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
10101010111011101011101110111111
VFILL fills an array of pixels defined by DADDR and DYDX using the VRAM
block mode writes. Note this instruction assumes that the VRAM color register
has been loaded by the VLCOL instruction. For more information, refer to
subsection 12.5.7, VRAM Block Mode Fill, on page 12-16.

,

Note:

1) DPTCH must be an integral multiple of 80h, and

2) this instruction works only for PSIZE's 4,8,16, and 32.

Register Name Format Description

B2 DADDR Linear Destination pixel block address

B3 DPTCH Linear Destination pixel block pitch

B7 DYDX XY Pixel block dimensions

Address Name Description and Elements (Bits)

C0000150h PSIZE Pixel size (4,8,16,32)

C0000160h PMASK (32 bits) Plane mask - pixel format

C00001 AOh CON FIG Bit 8 (YEN) enables VRAM write mask

Address

VRAM
Color Register

VRAM
Write Mask

Name Description

Pixel Must have COLOR1 pixels loaded using VLCOL

Pixel Loaded automatically when PMASK is written and
VEN = 1

Pixel processing is not possible with this instruction, because the pixel data is
written from the VRAM color register into the VRAM memory array.

Window checking cannot be used with this instruction.

Transparency cannot be used with this instruction.

The plane mask is implemented in the VRAM using the write mask function,
enabled by VEN[CONFIG]. For more information, refer to Section 12.10,
Plane Masking, on page 12-39.

This instruction can be interrupted at a word or row boundary of the destination
array. For more information, refer to Section 6.6, Interrupting Graphics Instruc­
tions, on page 6-13.

There is no corner adjust for this instruction.

TMS34020 Assembly Language Instruction Set

Linear VRAM Fast Fill VFILL L

Machine States complex instruction

N Unaffected Status Bits

Example

DADDR
DYDX
CONTROL

fi11_rect:

no_vfill:
exit:

C Unaffected
Z Unaffected
V Unaffected

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLIP instruction is used to clip the rectangle to the screen.

This routine makes the following assumptions:

[J The calling program sets up these registers:

B-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1

I/O registers CONTROL, CONVDP, PSIZE, PMASK and CON FIG

[J The system contains a global flag _vfilLok which is cleared if the VFILL
is not possible. Reasons for this may be:

• DPTCH is not an integral multiple of 80 hex

• PSIZE is 1 or 2
• Pixel processing is not set to replace
• Transparency is not set
• The system does not contain VRAMs that support this feature

· set B2
.set B7
.set oCOOOOOBOh
· globl _fi11_rect
· ref _vfi11_ok
mmtm SP,B2,B7,BI0,Bll,BI2
move AI4,BI0
move *-BI0,DYDX,1
move *-BI0,BI2,1
sl1 16,B12
movy BI2,DYDX
move *-BI0,DADDR,1
move *-BI0,BI2,1
move BIO,AI4
sll 16,B12
movy BI2,DADDR
move @_vfill_ok,A8,1
jrz no vfill
clip
jrz exit
cvdxyl DADDR
vlcol
vfi11 L
jruc exit

iDestination address register
iDelta X/delta Y register
iControl IO register
iprovide reference for external calls
i flag to enable VFILLs
isave required registers
imove c-stack pointer into B-file
iget width
iget height

iconcate~ate width & height
iget xleft
iget ytop
irestore c-stack pointer

iconcatenate xleft & ytop
iget state of vfil1 flag

iclip to the window
iif outside the window, exit
iconvert to linear dest address
iload VRAM color latches
iperform linear fill

fill XY ifill the rectangle using standard fill
mmfm SP,B2,B7,BI0,Bll,BI2 irestore required registers
rets 2

13-263

VLCOL Latch the COLOR1 Register (89) in the VRAM C%r Latches

Syntax

Execution

Instruction Words

Description

Implied Operands

Machine States

Status Bits

Example

13-264

VLCOL

COLOR1 - Color Registers in all VRAMS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101010111011101010000000

VLCOL writes the value in the COLOR1 register to the color registers in all
external VRAMS. The field size is ignored and the flood write outputs to nomi­
nal address O. This instruction should be executed before attempting to use
VFILL or VBLT. This instruction performs color expansion in the VRAM as pix­
els are written. The VRAM color registers are used for this purpose.

Register Name Format Description

89 COLOR1

2 (1)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Pixel COLOR1

This is an example of a C-compatible assembly routine which fills a rectangle
on the screen. The routine takes these 4 arguments: width, height, xleft, and
ytop. Note that the CLI P instruction is used to clip the rectangle to the screen.

This routine makes the following assumptions:

Q These B-registers and 1/0 registers have been set up by the calling pro­
gram:

B-file registers DPTCH, OFFSET, WSTART, WEND and COLOR1

1/0 registers CONTROL, CONVDP, PSIZE, PMASK and CONFIG

Q The system contains a global flag _vfilLok which is cleared if the VFILL
is not possible. Reasons for this may be:

• DPTCH is not an integral multiple of 80 hex

• PSIZE is 1 or 2
• Pixel processing is not set to replace

• Transparency is not set
• The system does not contain VRAMs that support this feature

TMS34020 Assembly Language Instruction Set

DADDR .set
DYDX .set
CONTROL .set

.globl

.ref

_fill_rect:
mmtm
move
move
move
s11
movy
move
move
move
s11
movy
move
jrz
clip
jrz
cvdxyl
vlcol
vfi11
jruc

no_vfill:
fill

exit:
mmfm
rets

Latch the COLOR1 Register (89) in the VRAM C%r Latches VLCOL

82 ;Destination address register
87 ;Delta X/delta Y register
OCOOOO080h ;Control IO register

_fi11_rect provide reference for external calls
vfill ok - -

SP,82,87,810,811,812
A14,810 ;move
*-810,DYDX,1
*-810,812,1
16,812
812,DYDX
*-810,DADDR,1
*-810,812,1
810,A14
16,812
812,DADDR
@ vfi11 ok,A8,1
no_vfill

exit
DADDR

L
exit

; flag to enable VFILLs

;save required registers
c-stack pointer into B-file

;get width
;get height

;concatenate width & height
;get xleft
;get ytop
;restore c-stack pointer

;concatenate xleft & ytop
;get state of vfill flag

;clip to the window
;if outside the window, exit
;convert to linear dest address
; load VRAM color latches
;perform linear fill

XY ;fill the rectangle using standard fill

SP,82,87,810,811,812
2

;restore required registers

13-265

XOR Ex:'usive-OR Registers

Syntax XOR Rs, Rd

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-266

RsXOR Rd --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 1 I 0 I 1 I 1 I Rs R Rd

XOR bitwise-exciusive-ORs the contents of the source register with the con­
tents ofthe destination register, and stores the result in the destination register.

You can use this instruction to clear registers (for example, XOR BO I BO); the
CLR instruction also supports this function.

Rs and Rd must be in the same register file.

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before
AO A1

XOR AO,AI FFFFFFFFh OOOOOOOOh
XOR AO,AI FFFFFFFFh AAAAAAAAh
XOR AO,AI FFFFFFFFh FFFFFFFFh

After
NCZV A1
xx Ox FFFFFFFFh
xxOx 55555555h
xx1x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

Exclusive-OR Immediate XORI

XORI IL, Rd

ILXOR Rd - Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 1'0 1 0 1 1 1011111111 1 0 I R I
16 LSBs of IL

16 MSBs of IL

o
Rd

XORI bit-wise exclusive-ORs a 32-bit immediate data with the contents of the
destination register and stores the result in the destination register. (The IL
parameter in the syntax above represents a 32-bit immediate value.)

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

Code Before
AO

XORIOFFFFFFFFh,AO OOOOOOOOh
XORIOFFFFFFFFh,AO AAAAAAAAh
XORIOFFFFFFFFh,AO FFFFFFFFh
XORIOOOOOOOOh,AO OOOOOOOOh
XORIOOOOOOOOh,AO FFFFFFFFh

After
NCZV
xxOx
xxOx
xx1x
xx1x
xx Ox

AO
FFFFFFFFh
55555555h
OOOOOOOOh
OOOOOOOOh
FFFFFFFFh

13-267

ZEXT Zero-..Exte.,.nd to Long

Syntax

Execution

Instruction Words

Description

Machine States

Status Bits

Examples

13-268

ZEXT Rd [, F]

field in Rd -+ zero-extended field Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I 1 I F I 1 I 0 I 0 I 1 R Rd

ZEXT zero-extends a right-justified field in the destination register by zeroing
all the nonfield bits in Rd. The size of the field is determined by the current field
size. The optional F parameter, which must be specified as a 0 or a 1, selects
the field size:

F=O selects FSO for the field size.
F=1 selects FS1 for the field size.

The default value for F is o.

1

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise
V Unaffected

.c.rum Before After
FSO FS1 AO

ZEXT AO,O 32 x FFFFFFFFh
ZEXT AO,O 31 x FFFFFFFFh
ZEXT AO,O 1 x FFFFFFFFh
ZEXT AO,O 16 x FFFFOOOOh
ZEXT AO,l x 16 FFFFOOOOh

N CZV AO
x x 0 x FFFFFFFFh
x x 0 x 7FFFFFFFh
x x 0 x 00000001 h
x x 1 x OOOOOOOOh
x x 1 x OOOOOOOOh

TMS34020 Assembly Language Instruction Set

Chapter 14

TMS34082 Pseudo-ops
~: ::: ~ ~r . ~~mm~~~0<mw~Wt::r~W$::::::::::::r~m:~~m~U~~1:"M:::mm::;!:"ilW,am
~~~t;:::;::='r?;q ·7'~r·1~··::n·$;~7 ;:;-;;:w.·~f"~?mw.::X»,:Z7;i:·Z X'" 'W'"«';;~Z,;;;:""{7'7' "'m·~';:::;:.~;:m-;:;:;:::;:;':;'illK«=:wY.::::::w;:-w:wm;:~~::~:)~ .... ..a~{~ s; . w;<.~·~::a~ 

Many TMS34020 applications require floating-point operations. The 
TMS34082 Floating-Point Processor is designed specifically to serve as a 
coprocessor in a TMS34020 system. To extend the TMS34020's direct inter­
face to the TMS34082, the TMS34020 supports a subset of the TMS34082 
assembly-language instruction set by supplying a group of TMS34082 
pseudo-ops. These pseudo-ops are special versions of the TMS34020's gen­
eral-purpose coprocessor instructions. Instead of designing a protocol for 
sending instructions and data back and forth between the TMS34020 and 
TMS34082, you can use these pseudo-ops, which are hard-coded versions of 
instructions such as the CMOVCG instruction. 

This chapter provides a general description of the pseudo-op protocol and 
provides an alphabetical reference to the TMS34082 pseudo-ops. 

Basic information includes a 
review of related TMS34020 

signals and an overview of the 
coprocessor interface. 

Section Page 

14.1 Overview and Key Features 
of the TMS34082 ..................... 14-2 

14.2 Pseudo-op Format . . . . . . . . . . . . . . . . . . .. 14-3 

14.3 Register Operands . . . . . . . . . . . . . . . . . . .. 14-6 

Alphabetical reference of begins on page ............................... . 
pseudo-ops 

14-1 



Overview and Key Features of the TMS34082 
~"-;~"-"".::x:m~ . ;;;;;::;;::::::::::::;<t::::::::::::: -r";·:::wx.v;..~!;s(~::::::-..~~;;~::::::::::::::::x::::::::::::x~~~~~~~~;~~ 

14.1 Overview and Key Features of the TMS34082 

14-2 

The TMS34082 is a high-speed floating-point processor, implemented in TI's 
advanced 1-micron CMOS technology. On a single chip, the TMS34082 com­
bines a 16-bit sequencer, a 3-operand FPU, and 22 64-bit data registers. An 
instruction register controls FPU execution, and a status register retains the 
most recent FPU status outputs. The TMS34082 also contains 8 control regis­
ters and a 2-deep stack. 

The TMS34082 is fully compatible with IEEE Standard 754-1985 for binary 
floating-point arithmetic. Floating-point operands can be in either single- or 
double-precision IEEE format. 

Key features and benefits include 

o Closely coupled with the TMS34020 
- Direct TMS34020 instruction extension 
- Multiple-TMS34082 capability 

Q Internal programs for vector, matrix, and graphics operation 

Q Fast multiply/accumulate cycle time 
- 40 MHz (TMS34082-40) ... 50 ns 
- 32 MHz (TMS34082-32) ... 60 ns 

Q External memory addressing capability 
- External program storage (up to 64K words) 
- External data storage (up to 64K words) 

Q Full IEEE standard 754-1985 compatibility 
- Addition - Subtraction 
- Multiplication - Division 
- Square root - Comparison 

Q Selectable data formats 
- 32-bit integer 
- 32-bit, single-precision floating-point value 
- 64-bit, double-precision floating-point value 

Q Supported by TMS34020 code-generation tools 

Q More than 30 complex instructions targeted at graphics math 

Q Use as a floating-point coprocessor eliminates the need for external logic 
interface 

Q Standardized approach to floating-point for full system compatibility 

Q Eliminates multiple-cycle software implementation 

Q Superior performance for 2-D and 3-D graphics applications 

TMS34082 Psuedo-ops 



Pseudo-op Format 
:xm::::~~:::.:x-r_ ............ _w",w_·W:"= __ """",·~.~~x:::::::::::::::~·w~~'( ~ ........ :::'~ ........ :iX'n .... *'*W'W .... "" .......... "~".:xw:Nw.:::::;.:;,::::.~~~ .... ~~ 

14.2 Pseudo-op Format 

Section 10.2, Overview of the Coprocessor Interface (page 10-3), lists the 
TMS34020's general-purpose coprocessor instructions. Section 10.3, Format 
of Commands Passed to a Coprocessor (page 10-5), describes the general 
format of these instructions; specific implementations of this format depend 
entirely on the coprocessor that you choose to include in your system. 

The TMS34020 provides a set of TMS34082 pseudo-ops. These pseudo-ops 
extend the general-purpose format by hard-coding TMS34082 opcodes into 
certain fields of the general-pl!rpose coprocessor instructions. 

Figure 10-1 (which appears in Section1 0.3, page 10-5) is repeated below as 
Figure 14--1 (a). This figure shows the general format of coprocessor informa­
tion that is placed on the LAD bus. Figure 10-1 (b) shows the TMS34082 im­
plementation of this format. 

Figure 14-1. Coprocessor Instruction Information on the LAD bus 
(a) General Format 

~~ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
S 11111111111 

10 coprocessor command i 11111111111 
I S BeST 

Z 1111111I111 
e 1111111 

Ku: 10 3-bit coprocessor 10 field size Parameter size field 
I Coprocessor parameter index bit S 16-bit word select (always output as 0) 
BCST 4-bit bus status (always 0 for coprocessor cycles) 
Coprocessor command 21-bit instruction for the coprocessor 
fZI Reserved (always output as 0) 

Note: Section 10.3 (page 10-5) describes these bit fields in detail. 

(b) TMS34082-Specific Format 

LAO # 
31-29 28 

I 10 I CRs1 

25 24 21 20 16 15 14 13 987654 0 

I CRs2 I CRd fpuop 

I:l As Figure 10-1 (b) shows, the bus cycle status code portion is 00002' 
This indicates that the local-memory cycle generated by this type of 
instruction is a coprocessor cycle. 

I:l Bit 4, the S (16-bit word select) bit, is also 0; this indicates that only 32-bit 
accesses will occur. 

I:l The I bit serves the same purpose for the TMS34082 as it does for other 
processors (refer to subsection 10.3.4, Coprocessor Parameter Index, on 
page 10-7). 

14-3 



14-4 

Q Bit 7 still serves as the size (parameter size) bit. The TMS34082 uses the 
LSB of the coprocessor command as T (bit 8) that works with the size bit 
to identify the type and size of the parameter(s) that are passed to the 
TMS34082: 

T size Operand Type 

o 0 32-bit integer 

o reserved 

1 0 single-precision (32-bit) floating-point number 

double-precision (64-bit) floating-point number 

Q The coprocessor command is divided into 5 fields: 

• The 5-bit fpuop field contains the opcode of a TMS34082 assembly­
language instruction. 

• The 2-bit md field conveys the coprocessor command's addressing 
mode: 

Mode Operation 

002 FPU internal operation, no jumps or external moves 

012 Transfer to/from TMS34020 registers 

102 Transfer to/from TMS34020 local memory 

112 External microcode 

• CRd is the TMS34082 destination register. 

• CRS2 is the second TMS34082 source register for instructions that 
use two source operands. CRS2 also serves as the count operand for 
instructions that use a count operand. CRS2 must be a member of the 
TMS34082 B register file. 

• CRS1 is the TMS34082 source register for instructions that have one 
source operand; it is the first source register for instructions that use 
two source operands. CRS1 must be a member of the TMS34082 A 
register file. 

Q The ID field serves the same purpose in the TMS34082 protocol as it 
serves in the general-purpose protocol. For more details, refer to subsec­
tion 10.3.1, Coprocessor 10, on page 10-5. The pseudo-ops default to an 
10 of 0002; to define another 10 as the current 10, use the .coproc assem­
bler directive. 

For the TMS34082, these bits are hard-coded into special versions of the 
TMS34020's general-purpose coprocessor instructions. As an example, 
Figure :14-2 compares the general syntax of the CMOVGC instruction (a gen­
eral-purpose coprocessor instruction) to the LOAD-and-ADD (ADD) pseudo­
op. 

TMS34082 Psuedo-ops 





Register Operands 

14.3 Register Operands 

The TMS34082 pseudo-ops use register operands only. Table 14-1 lists the 
register-operand symbols used in the psuedo-op syntaxes in this chapter. 

Table 14-1. Symbols Used in Pseudo-op Syntax Listings 

Symbol Description Symbol Description 

CRs TMS34082 source register CRd TMS34082 destination register 

CRst For pseudo-ops that use 2 TMS34082 
source registers, this register supplies 
the first operand 

CR5;! For pseudo-ops that use 2 TMS34082 
source registers, this register supplies the 
second operand 

This operand must be a TMS34082 A-file 
register 

This operand must be a TMS34082 B-file 
register 

Rs TMS34020 source register Rd TMS34020 destination register 

Note that some pseudo-ops use information from a TMS34020 register or 
place information into a TMS34020 register. In this case, Rs or Rdshould be 
a TMS34020 general-purpose register (AO-A 14 or Bo-B14), just as it would 
be for a TMS34020 instruction. Most of the pseudo-ops, however, use 
TMS34082 registers as operands. As Figure 14-3 shows, the TMS34082 con­
tains 2 register bariks of 10 64-bit registers, plus 2 feedback registers. 

Figure 14-3. TMS34082 Registers That Can Be Used as Pseudo-op Operands 

Note: These register files contain TMS34082 registers. 

14-6 

Most pseudo-ops operate on one value from TMS34082 register file A or B, 
and return the result to file A, file B, or one of the feedback registers. Valid oper­
and/register use includes: 

TMS34082 Psuedo-ops 



Register Operands 
~~~~~"="'<==""""'~f'~~~~~mm= ___ """""~mm~~;;;~%~~,.:.~~~mmm~~~m:::;»~m:r4~~~~::»~~~~~~~,~,'Y;~~~":.~:::.~-::::~m;-;-;-.::.~~ 

CRs or CRst: RAQ-RA9 CRS2: RBO-RB9

CRd: RAO-RA9, RBO-RB9, C, and CT

When more than one value is requested from/sent to the TMS34082, the regis­
ters are read from/written to in the sequence shown in Figure 14-4. Note that
the control, status, and stack registers are in the middle of the list. The
sequence bypasses C and CT because they can't be accessed externally.

Figure 14-4. TMS34082 Register Sequence List

14-7

ABORT Abort Coprocessor Operation
~x-;;:*::~;:::;;;:;:;::~~:::::~:::::::::~::~::;::*::;:;:~:*::::::::::::~:::::*:::~::::::~::::~:::~;::-;~~::~0:;:;*:~~*;::~:::;:::::::::~;:::::::::~:~~x~:;.-..:;:;~:::::~:::·:::::::::~::*:*::~:*::;::::~::~:::::::;::::~:::;:;*"~:~:~~:::~:;::~~~~:::;::.:;:~:*:::~:::::;:;::~:,.;::::~::::::~::~::~~~:~:~ ::::::~~:~:::~~::::~~::::::::::~x::::::::::~~::::::~~::x::~::-;~r...:::;:=:;o;:::~:::~:::::::::~:~~:~:~~:m:::~:~:~:::~:~~..»~~:::;x~;:o;::::::~:::::::::~~:::~~::::::~~::~:::.

Syntax

Execution

Instruction Words

Description

Machine States

Instruction Type

Example

14-8

ABORT

Halts coprocessor

ABORT halts the operation of the TMS34082 coprocessor and places the
coprocessor in a wait-tor-next-instruction state. Register values are indetermi­
nate.

2

CEXEC, short

ABORT

This example halts the TMS34082 coprocessor.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ABS CRs, CRd

ICRsl ~ CRd

Absolute Value, ABS

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

ASS takes the absolute value of the contents (integer) of CRs and stores the
result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

ABS RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RS?

14-9

ABS Load and Absolute Value,

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-10

ABS Rs, CRs, CRd

Rs ~ CRs
iCRsi ~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o J 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

01 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 I 0 I 0 I 0
Default ID CRs 0 0 1 0 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

ASS loads the contents (integer) of Rs into CRs, takes the absolute value of
the contents of CRs, and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long-word aligned
2 if the first instruction word is not long-word aligned

CMOVGC, one register

ABS AS, RA6, RB7

This example loads the contents of TMS34020 register AS into coprocessor
register RA6, takes the absolute value of the contents of RA6, and stores the
result in RS7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ABSD CRs, CRd

ICRsl ~CRd

Absolute Value, Double Precision ABSD

CRs Coprocessor source register containing a 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

ABSD takes the absolute value of the contents of CRs and stores the result in
CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

ABSD RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB7.

14-11

ABSF Absolute Value, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-12

-
ABSF CRs, CRd

ICRsl ~ CRd

CRs Coprocessor source register containing a 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

ABSF takes the absolute value of the contents (single-precision value) of CRs
and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

ABSF RA6, RB7

This example takes the absolute value of the contents of RA6 and stores the
result in RB?

TMS34082 Pseudo-ops

Load and Absolute Value, Single Precision ABSF
~""""'''''''''-'*,:::;:-rm~ ~::=::«:::::xm'r·r··'''''''''*,::f('''''''''~M~~~;~~~~ .. z:::::::''m::::x:::.:~~$'..~~r~*,*,~~~

Syntax

Execution

InstriJction Words

Operands

Description

Machine States

Instruction Type

Example

ABSF Rs, CRs, CRd

Rs~CRs

ICRsl ~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0

Default 10 CRs 0 0 1 0 CRd

Rs TMS34020 source register for the 32-bit single-precision
floating-point value to coprocessor

CRs Coprocessor register containing a 32-bit single-precision floating­
point operand

CRd Coprocessor destination register

ABSF loads the contents (single-precision value) of Rs into CRs, takes the
absolute value of the contents of CRs, and stores the result in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

ABSF AS, RA6, RB7

This example loads TMS34020 register A5 into coprocessor register RA6,
takes the absolute value of the contents of RA6, and stores the result in RB7.

14-13

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ADD RS1, RS2, CRS1, CRS2, CRd

RS1 ~ CRS1
RS2~CRs2
CRS1 + CRS2 ~ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01010 o 1 0 1 1 1 1 01 0 1 1 1 0 R 1

01110 0101010 0101010 R 1

Default 10 CRs1 CRs2

o
RS1

RS2

CRd

TMS34020 source register for the first 32-bit integer value to
coprocessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRS1 Coprocessor register to contain the first 32-bit integer operand

CRS2 Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

ADD loads the contents (integer) of RS1 and RS2 into CRs1 and CRS2
respectively, adds the contents of C~S1 and CRS2, and stores the result in
CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

ADD AS, A6, RAS, RB6, RB7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RS6 respectively, adds the contents of RA5 and RS6, and stores the
result in RS?

14-15

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-16

AD DO CRSt, CRS2, CRd

CRS1 + CRS2 ~ CRd

CRS1 Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRS2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

ADDD adds the contents (double-precision value) of CRS1 and CRS2 and
stores the result in CRd.

2

CEXEC, short

ADDD RA5, RB6, RA7

This example adds the contents of RA5 and RB6 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

ADDF CRSt, CRS2, CRd

CRS1 + CRS2 ~ CRd

Add, Precision 'ADDF

CRS1 Coprocessor register containing the first 32-bit single-precision
floating-point operand

CRs2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

ADDF adds the contents (single-precision value) of CRS1 and CRS2 and stores
the result in CRd.

2

CEXEC, short

ADDF RAS, RB6, RB7

This example adds the contents of RA5 and RB6 and stores the result in RB7.

14-17

ADDF Load and Add, Precision

Execution RS1 -7 CRS1
RS2 -7 CRS2

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-18

CRS1 + CRs2 -7 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 01 0 I 0 I 0 1 I 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

TMS34020 source register for the first 32-bit single-precision
floating-point value to coprocessor

RS2 TMS34020 source register for the second 32-bit single-precision
floating-point value to coprocessor

CRS1 Coprocessor register to contain the first 32-bit single-precision
floating-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

ADDF loads the contents (single-precision value) of RS1 and RS2 into CRS1
and CRS2 respectively, adds CRS1 and CRS2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

ADDF AS, A6, RAS, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, adds the contents of RA5 and RB6, and stores the
result in RA7.

TMS34082 Pseudo-ops

Check Coprocessor Status CHECK
::;;;~~:::;::X~::;:X:;$~~~~0X~~=.;:;:;:;~-::~~;.-::;:::::::~~;:;:~z.:;::::~~:::::;;;:.-::~:;:;::::.::w~:::~:::::;x::::xz:;:;:;::::m~:::~iliX:.x::~::~:~:::~::;;~~::;;Y"...x:::;:~:~~:::::~::::;::~:::~;::::::::~~:::;::::~~:.'*::::;X::::':::::::;:~;:;:;~;;::~~~X»-:::'X::::::~~;;:::::::::.-:;~~~:~:~:~~::::M~~:~:~~~~:::;x~xz::.::x::-;x:::::::~~::::::::;::::::;;::::r.:::~~~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CHECK Rd

If coprocessor is busy
FFFF FFFFh ~ Rd

If coprocessor is idle
0000 OOOOh ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 0 1 1 R RS1

o I 1 I 0 1 1 1 1 0 0 0 0 0 01 0 I 0 I 0

Default ID 0 0 0 0 1 1 0 1 0 010 I 0 I 0

Rd Destination register for status information

CHECK checks the status of the coprocessor. If the TMS34082 c.oprocessor
is busy, CHECK sets all the bits in Rd to 1. If the TMS34082 coprocessor is idle,
CHECK sets all the bits in Rd to o.
5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVGC, one register

CHECK A4

If the TMS34082 coprocessor is busy, this example sets all the bits in register
A4 to 1. If the TMS34082 coprocessor is idle, this example resets all the bits
in register A4 to o.

14-19

CMP Compare, Integer
:;::~:;:~;:;:~::::;~:::::;:::;:::;::~~:::::~:*«q/.<,.:~:~~:~::~::::::;;:::::~'::::'-:;~:;:;:;::::::::::::~::~X!~:::::X~9.::;~~:;:::::::::::::::::::::::;::~~~::::::~::::~%~W/"",h::::~::-;~~:::::;~-:;:;~::::::::::::~~X!::;X~~X'7/,::-;~~~:;~?';::$:~/.49";:;:;:;r..:;-»"..:""·,,»";xx·;-m.:::~.$'';:'«.:l'»y.«@y.f.'.l:l:"(f.«f..:%'';-/."m;-Y'<<<J:'"<<(q//.('7/'<</"l:l:".:w.~~f.~f..::::0$~.$$:;,/.q...:'.xX"«.X:;W//hf.:;~::$W'::W~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-20

CMP CRSt, CRS2

Flags (CRS1 - CRS2) ~ Coprocessor Status Registers

CRS1 Coprocessor register containing the first 32-bit integer operand

CRS2 Coprocessor register containing the second 32-bit integer operand

CMP subtracts the contents (integer) of CRS2 from CRS1 and sets the appro­
priate status bits in the coprocessor status register.

2

CEXEC, short

CMP RA5, RB6

This example subtracts the contents of RA5 from RS6 and sets the status bits
in the coprocessor status register.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CMP RS1, RS2, CRS1, CRS2

RS1 ~ CRS1
RS2~ CRs2
Flags (CRS1 - CRS2) ~ Coprocessor Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 01 0 I 1 I 1 o I 0 I 1 I 0 R

o I 1 I 0 o I 0 I 1 I 0 01 0 I 0 I 0 R

o
RS1

RS2

Default 10 CRs1 CRs2 0 010 I 0 I 0

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRs1 Coprocessor register to contain the first 32-bit integer operand

CRS2 Coprocessor register to contain the second 32-bit integer operand

CMP loads the contents (integer) of RS1 and RS2 into CRS1 and CRS2 respec­
tively, subtracts CRS2 from CRS1, and sets the appropriate status bits in the
coprocessor status register.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

eMF AS, A6, RAS, RB6

This example loads TMS34020 registers AS and A6 into coprocessor registers
RAS and RB6, subtracts the contents of RB6 from RAS, and sets the status bits
in the coprocessor status register

14-21

CMPD ~ompare, Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

E~ample

14-22

CMPD CRS1, CRS2

Flags (CRS1 - CRS2) ~ Coprocessor Status Registers

CRS1 Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRS2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CMPD subtracts the contents (double-precision value) of CRS2 from CRS1 and
sets the appropriate status bits in the coprocessor status register.

2

CEXEC, short

CMPD RAS, RBG

This example subtracts the contents of RB6 from RA5 and sets the status bits
in the coprocessor status register.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Compare, Single Precision CMPF
~~%:::,:w:::m::'-::W:~~"m ::x ~~~::::::.:::.o;::.~~(<<.::~(<<::"~

CMPF CRS1, CRS2

Flags (CRS1 - CRS2) ~ Coprocessor Status Register

CRS1 Coprocessor register containing the first 32-bit single-precision
floating-point operand

CRS2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CMPF subtracts the contents (single-precision value) of CRS2 from CRS1 and
sets the appropriate status bits in the coprocessor status register.

2

CEXEC, short

CMPF RAS, RB6

This example subtracts the contents of RB6 from RA5 and sets the status bits
in the coprocessor status register.

14-23

CMPF Load and Compare, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-24

CMPF RS1, RS2, CRS1, CRS2

RS1 ~ CRS1
RS2 ~ CRS2
Flags (CRS1 - CRS2) ~ Coprocessor Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R RS1

o I 1 I 0 o I 0 I 1 I 0 1 I 0 I 0 I 0 R RS2

Default 10 CRs1 CRs2 0 010 I 0 I 0

RS1 TMS34020 source register for first the 32-bit single-precision float­
ing-point value to coprocessor

RS2 TMS34020 source registerforthe second 32-bit single-precision float­
ing-point value to coprocessor

CRS1 Coprocessor register to contain the first 32-bit single-precision
floating-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CMPF loads the contents (single-precision value) of RS1 and RS2 into CRS1
and CRS2 respectively, subtracts CRS2 from CRS1, and sets the appropriate
status bits in the coprocessor status register.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

CMPF AS, AG, RAS, RBG

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, subtracts the contents of RB6 from the contents of
RA5, and sets the status bits in the coprocessor status register.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Convert, Double Precision to Single Precision CVDF
m:;::w~~~uwww:,w:,:,·~":r';:'$«:""""'«m":,:,:r:r:,~~.w..x::~~;~w m::::X~':r:,:r:r:r:r :::o::x:::::::'~

CVDF CRs, CRd

(CRs)~CRd

CRs Coprocessor source register containing a 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

CVDF converts a 64-bit IEEE double-precision floating-point number to a
32-bit IEEE single-precision floating-point number. The double-precision num­
ber resides in CRs, and the converted single-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVDr RA5, RA 7

This example converts the contents of RA5 to a single-precision floating-point
number and stores the result in RA7.

14-25

CVDI Convert, Double Precision to Integer
mi~~~ ~

Syntax CVDI CRs, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-26

(CRs)-7 CRd

CRs Coprocessor source register containing a 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

CVDI converts a 64-bit IEEE double-precision floating-point numberto a 32-bit
integer number. The double-precision number resides in CRs, and the con­
verted integer number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVDr RA5, RB7

This example converts the contents of RA5 to an integer and stores the result
in RB7.

TMS34082 Pseudo-ops

Convert, Single Precision to Double Precision CVFD
..... :::::~:mm;~:m~.::;::x~ms~'wr''SM~~;;:;$~mm:-::m:;:;~~~~~~, ~.:::::::~~~~~,;:;v.«::::;:w.;xz.~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVFD CRs, CRd

(CRs)~CRd

CRs Coprocessor source register containing a 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

CVFD converts a 32-bit IEEE single-precision floating-point value to a 64-bit
IEEE double-precision floating-point value. The single-precision number
resides in CRs, and the converted double-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVFD RA5, RB7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

14-27

CVFD Load and Convert, Single Precision to Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-28

:lSfSU:' $:' ~::sz $:'

CVFD Rs, CRs, CRd

Rs~CRs

(CRs)~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

01 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0
Default ID CRs 0 1 0 0 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision floating­
point operand

CRd Coprocessor destination register

CVFD loads the contents (single-precision) of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 64-bit IEEE double-preci­
sion floating-point value. The single-precision number resides in CRs, and the
converted double-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

CVFD B5, RA5, RA7

This example loads TMS34020 register 85 into coprocessor register RA5, con­
verts the contents of RA5 to a double-precision number, and stores the result
in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVFI CRs, CRd

(CRs)~ CRd

Convert, CVFI

CRs Coprocessor source register containing a 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

CVFI converts a 32-bit IEEE single-precision floating-point value to a 32-bit
integer value. The single-precision number resides in CRs, and the converted
integer number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVFI RA5, RA 7

This example converts the contents of RA5 to an integer and stores the result
in RA7.

14-29

CVFI Load and Convert, Single Precision to Integer
m~~g~~::X~0»Y~$.«;:;.x~~~,:.;x~::.::xx:;.;:;::.:::wax*7":::::::::Y..x:x¥...xx::w~:»r"::::$x,;xw .. .x:":».:x::::*"WH.::r..::x~W"':::;'X::::X-'::;W~~~~~$Wh-X'.:::::::~~.,m::.x:;xr~::.::x:::;..:::::::0;~:::::~7..::::~~~~.:::::x-.:x::::::9'M:l';~W"::W~::':~r.~~~,:,;::::::X',::r.::~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-30

CVFI Rs, CRs, CRd

Rs -1 CRs
(CRs) -1 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 01 0 I 1 I 1 0 0 0 1 R I
o

Rs

01 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0
Default ID CRs 0 1 0 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision floating-
point operand

CRd Coprocessor destination register

CVFI loads the contents (single-precision) of Rs into CRs and converts the
32-bit IEEE single-precision floating-point value to a 32-bit integer value. The
single-precision number resides in CRs, and the converted integer number
resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

CVFI B5, RA5, RB7

This example loads TMS34020 register B5 into coprocessor register RA5, con­
verts the contents of RA5 to an integer, and stores the result in RB7.

TMS34082 Pseudo-ops

Convert, Integer to Double Precision CVID
==«=. nm~~~'=' ='_~~*,.f'f.::::"~m::'_::7;; __ ='_::::W...m0~.Mfim::~&&,--;::::~ff::::ffffffffffm.~·~f::7;f~f~'»~;,;~;m::::::::~.:rMY'~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVID CRs, CRd

(CRs)~ CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

CVID converts a32-bit integer value to a 64-bit IEEE double-precision floating­
point value. The integer resides in CRs, and the converted double-precision
number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVID RA5, RB 7

This example converts the contents of RA5 to a double-precision number and
stores the result in RB7.

14-31

CVID Load and Convert, Integer to Double Precision
'"

Syntax CVID Rs, CRs, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-32

Rs~CRs

(CRs)~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 1 0 R I Rs

o I 1 I 0 1 I 1 I 1 I 1 1 1 0 0 R I Rs

Default ID CRs 0 1 1 0 CRd

o

Rs TMS34020 source registerforthe 32-bit integer values to coprocessor

CRs Coprocessor source register to contain the 32-bit integer operand

CRd Coprocessor destination register

CVID loads the contents (integer) of Rs into CRs and converts a 32-bit integer
value to a 64-bit IEEE double-precision floating-point value. The integer
resides in CRs, and the converted double-precision number resides in CRd.
(Constraints of the TMS34082 require that the integer in Rs be sent as both
words of the 64-bit transfer.)

The coprocessor source register, CRs, must be in the A coprocessor file.

4 if first instruction word is long word-aligned
3 if first instruction word is not long word-aligned

CMOVGC, two registers

cvrn BS, RAS, RA7

This example loads TMS3420 register 85 into coprocessor register RA5, con­
verts the contents of RA5 to a double-precision number, and stores the result
in RA7.

TMS34082 Pseudo-ops

Convert. Integer to Single Precision CVIF
~;smS$ ~m-mtm~~sm~~mmAAo~sms::m~fi~s~s~~~~~mm;s*"-nx~:=-»m7;:ms~n»,~)fir.m».

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CVIF CRs, CRd

(CRs)~CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

CVIF converts a 32-bit integer value to a 32-bit IEEE single-precision floating­
point value. The integer resides in CRs, and the converted single-precision
number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

2

CEXEC, short

CVIF RA5, RA 7

This example converts the contents of RA5 to a single-precision number and
stores the result in RA7.

14-33

CVIF Load and Convert, Integer to Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-34

.

CVIF Rs, CRs, CRd

Rs~CRs

(CRs)~CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 RI
o

Rs
o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0

Default ID CRs 0 1 1 0 CRd
Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor source register to contain the 32-bit integer operand

CRd Coprocessor destination register

CVIF loads the contents (integer) of Rs into CRs and converts a 32-bit integer
value to a 32-bit IEEE single-precision floating-point value. The integer resides
in CRs, and the converted single-precision number resides in CRd.

The coprocessor source register, CRs, must be in the A coprocessor file.

3 if first instruction word is long word-aligned
2 if first instruction word is not long word-aligned

CMOVGC, one register

CVIF RAS, RA7

This example converts the contents of RA5 to a single-precision number and
stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

DIVD CRSt, CRS2, CRd

(CRS1) _ CRd
CRs2

Divide, Double Precision DIVD ,

CRS1 Coprocessor register containing the first 64-bit double-precision
floating-point operand

CRS2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

DIVD divides the contents (double-precision value) of CRS1 by CRS2 and
stores the result CRd.

2

CEXEC, short

OIVO RA5, RB6, RA7

This example divides the contents of RA5 by RB6 and stores the result in RA7.

14-35

OIVF Divide, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-36

DIVF CRS1, CRs2, CRd

(CRS1) -+ CRd
CRs2

CRS1 Coprocessor register containing the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

DIVF divides the contents (single-precision value) of CRs1 by CRs2 and stores
the result in CRd.

2

CEXEC, short

OIVF RA5, RB6, RA7

This example divides the contents of RA5 by RB6 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Divide, Single Precision DIVF

(CRS1) _ CRd
CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 010 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 1 I 0 I 0 I 1 1 I 0 I 0 I 0 R I RS2

Default 10 CRs1 CRs2 CRd

o

TMS34020 source register for the first 32-bit floating-point single-pre­
cision value to coprocessor

RS2 TMS34020 source register for the second 32-bit floating-point single­
precision value to coprocessor

CRS1 Coprocessor register to contain the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

DIVF loads the contents (single precision, floating point) of RS1 and RS2 into
CRs1 and CRs2 respectively, divides the contents of CRs1 by CRs2, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

OIVF AS, A6, RAS, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, divides the contents of RA5 by RB6, and stores the
result in RA7.

14-37

DIVS Divide, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-38

DIVS CRSt. CRS2, CRd

(CRS1) -+ CRd
CRs2

CRS1 Coprocessor register containing the first 32-bit integer operand

CRs2 Coprocessor register containing the second 32-bit integer operand

CRd Coprocessor destination register

DIVS divides the contents (integer) of CRS1 by CRS2 and stores the result in
CRd.

2

CEXEC, short

OIVS RA5, RB6, RB7

This example divides the contents of RA5 by RB6 and stores the result in RB7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Divide, Integer DIVS

(CRS1) _ CRd
CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 1 I 0 I 0 I 1 010 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRs1 Coprocessor register to contain the first 32-bit integer operand

CRs2 Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

DIVS loads the contents (integer) of RS1 and RS2 into CRs1 and CRs2 respec­
tively, divides the contents of CRS1 by CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

DIVS AS, A6, RAS, RB6, RB7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RS6 respectively, divides the contents of RA5 by RS6, and stores the
result in RS?

14-39

GET~ST Get Coprocessor Status.Register

Syntax

Execution

Instruction Words

Description

Machine States

Instruction Type

Example

14-40

GETCST

Coprocessor Status Register - ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 0 1 1 0 0 0 0 0

o I 1 I 0 0 1 1 1 0 0 0 0 0 0 0 0 1

Default ID 0 0 0 0 0 0 0 0 0 1 1 0 0

GETCST loads 4 MSBs of the coprocessor status register (STATUS) into the
TMS34020 status register (ST).

·5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVCS

GETCST

This example sends the coprocessor status register to the TMS34020. The
TMS34020 takes the value and masks off the 4 MSBs; it then stuffs the values
in the TMS34020 status register corresponding to the N, C, Z, V bits.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Invert, Double Precision INVD

INVD CRS2, CRd

(_1)-CRd
CRs2

CRS2 Coprocessor register-B file containing the 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

INVD divides 1.0 by the contents (double precision) of CRs2 and stores the
result in CRd.

2

CEXEC, short

INVD R83, RAl

This example divides 1.0 by RB3 and stores the result in RA 1 .

14-41

INVF Invert, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-42

(_1) -CRd
CRs2

CRS2 Coprocessor register-B file containing the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

I NVF divides 1.0 by the contents (single precision, floating point) of CRs2 and
stores the result in CRd.

2

CEXEC, short

INVF RB3, RAI

This example divides 1.0 by RB3 and stores the result in RA 1.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Invert, Single Precision INVF

INVF Rs, CRs2, CRd

Rs - CRs2

(_1)-CRd
CRs2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 0 0 1 1 o I 0 I 0 I 1 R I Rs

o I 1 I 0 1 0 1 0 1 I 0 I 0 I 0 010 I 0 I 0 I 0

Default ID 0 0 0 0 CRs2 CRd

Rs TMS34020 source register for the 32-bit floating-point single-preci­
sion value to coprocessor

CRs2 Coprocessor register-B file to contain the 32-bit single-precision floa­
ting-point operand

CRd Coprocessor destination register

INVF loads the contents (single precision, floating point) of Rs into CRs2,
divides 1.0 by CRs2, and stores the result in CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

INVF A7, RB3, RAI

This example loads TMS34020 register A7 into coprocessor register RB3,
divides 1.0 by RB3, and stores the result in RA 1.

14-43

JUMPC Execute Coprocessor External Instructions

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-44

JUMPCn

Execute external coprocessor instructions found at address 2 x n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 I 0 I 0 I 1 I 1 0 0 0 0 0 0 0 0 0

1 I 1 I n '0 0 0 0 0 0 0 0 0

Default ID I 0 I 0 I 0 I 0 0 0 0 0 0 0 0 0 0

n Specifies the address to which the TMS34082 instruction execution
is sent

JUMPC begins execution of TMS34082 external instructions stored in
TMS34082 local memory. The starting address is specified as TMS34082 local
memory address 2 x n. Usually, ajump table is stored in these locations to per­
mit complex operations.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CEXEC, long

JUMPC 4

This example executes TMS34082 instructions stored in the default
TMS34082's local memory. The executed instructions are stored beginning in
address 8.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Double Precision, Two Registers to Coprocessor MOVD

MOVO RS1, RS2, CRd

RS1, RS2 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 0 1 1 0 0 1 0 R I RS1

o I 1 I 0 0 1 1 0 1 1 0 0 R I RS2

Default ID 0 0 0 0 0 0 0 0 CRd

o

TMS34020 source register for the 32 MSBs (sign, exponent, and 20
MSBs of mantissa) of the 64-bit double-precision floating-paint value
to coprocessor .

RS2 TMS34020 source register for the 32 LSBs of the 64-bit
double-precision floating-point value to coprocessor

CRd Coprocessor destination register that holds the 64-bit double-preci­
sion floating-point vaiue

MOVD moves the double-precision value in RS1 and RS2 into CRd. RS1 holds
the 32 MSBs, and RS2 holds the 32 LSBs ofthe double. You must setthe LOAD
bit of the TMS34082 configuration register to 0 to indicate that the MSBs are
transferred before the LSBs.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

This example uses the MOVD instruction to load a 64-bit double-precision val­
ue into register RB5. Note that the 32 MSBs of the value are loaded into a1 and
then the 32 LSBs are loaded into AO. Assume that the LOAD bit of the configu­
ration register is set to 0, indicating transfers of MSBs before LSBs .

00000000 • ieeefl
00000000 0540 setf 32,0,0
00000010 05aO move @dval,aO,O
00000020 00000000"
00000040 05a1 move @dval+32,a1,0
00000050 00000020"
00000070 0641 movd a1,aO,rb5
00000080 5f80
00000090 1£95
00000000 .data
00000000 8a6a51ad dval: .double 347.6942238
00000020 4075bb1b

14-45

~E.!'P _.¥ove, Doub/~recision, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

14-46

MOVD *Rs+, CRd, Rd

If TMS34082 LOAD bit = 0
and Rd = 0

Repeat 16 times
*Rs - CRd (32 MSBs)
Rs + 32 - Rs

*Rs - CRd (32 LSBs)
Rs + 32 - Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
and Rd = 0

Repeat 16 times
*Rs - CRd (32 LSBs)
Rs + 32 - Rs

*Rs - CRd (32 MSBs)
Rs + 32 - Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
and Rd = 1 - 31

Repeat Rd/2 times
*Rs - CRd (32 MSBs)
Rs + 32 - Rs

*Rs - CRd (32 LSBs)
Rs + 32 - Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
and Rd = 1 - 31

Repeat Rd/2 times
*Rs - CRd (32 LSBs)
Rs + 32 - Rs

*Rs - CRd (32 MSBs)
Rs + 32 - Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o .1 0 .1 0 0 0 1 1 0 1 1 1 R 1 Rd

1 1 0 1 0 0 1 1 0 1 1 0 0 R 1 Rs

Default 10 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bits of the first double-precision value to move
to the coprocessor

CRd Coprocessor destination register to hold the first 64-bit double-preci­
sion floating-point value

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31.

Q IfRd= 0,

Q If Rd = 1 - 31

then 32 32-bit transfers are made

then Rd 32-bit transfers are made

Note that because 64-bit doubles require two 32-bit moves, an odd
number in Rd will give unpredictable results.

MOVD moves 64-bit double-precision values from memory beginning at the
address in Rs into coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented; after every two 32-bit transfers, the copro­
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 32-bit transfers made is determined by the con­
tents of Rd. The results will be unpredictable if Rd is an odd number.

TMS34082 Pseudo-ops

Machine States

Instruction Type

Example

Move, Double Precision, Indirect to Coprocessor (Postincrement), Register Count MOVD

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

If Rd = 0 and
If Rd = 0 and
If Rd = 1 - 31 and
If Rd = 1 - 31 and

Rs is aligned
Rs is nonaligned
Rs is aligned
Rs is nonaligned

CMOVMC, postincrement, register count

MOVD *A5+, RB7, B7

35
37
5 + (Rd -1)
5 + (Rd -1)

This example moves 54-bit double-precision values from the TMS34020
memory location pOinted to by A5 to coprocessor registers beginning with RB7.
After each 32-bit transfer, register A5 is incremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. B7 holds the number of 32-bit transfers to
be made.

14-47

MOVD Move, Double PreCision, Indirect to Coprocessor (Postincrement), Constant Count
'H«W':W"',>!'i:w.,'~il".>.>~_m»~:::n~='W?':~AA-'l0::w.Q~~sm.:~<':i:~~~=~~~~=m~=~~=~,*",:~:~:':;;::;:~:~;:':~~~~..w::m~=!:i:::;~m:m:::;::$::(~,:'mw.~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

14-48

MOVD *Rs+, CRd, [, count]

If TMS34082 LOAD bit = 0
Repeat count times

*Rs -'>0 CRd (32 MSBs)
Rs + 32 -'>0 Rs

*Rs -'>0 CRd (32 LSBs)
Rs + 32 -'>0 Rs

advance to next coprocessor
register

If TMS34082 LOAD bit = 1
Repeat count times

Repeat count times
*Rs -'>0 CRd (32 LSBs)
Rs + 32 -'>0 Rs

*Rs -'>0 CRd (32 MSBs)
Rs + 32 -'>0 Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 I 0 0 1 1 0 1 1 0 0 R I Rs

Default 10 {} 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bits of the first double-precision value to move
to the coprocessor

CRd Coprocessor destination register that holds the first 64-bit double-pre­
cision floating-point value

count Contains the number of 64-bit transfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 -'>0 15, then transfers = 2 x count

MOVD moves 64-bit double-precision values from memory beginning at the
address in Rs into coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented; after every two 32-bit transfers, the copro­
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 64-bit transfers made is determined by the con­
tents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

Rs Aligned
Rs Nonaligned

5 + ((countx 2) - 1)
6 + ((count x 2) - 1)

TMS34082 Pseudo-ops

Move, Double Precision, Indirect to Coprocessor (Postincrement), Constant Count MOVe
_~l'l'?,lIWll _~~l':I':lI_~m:;:o:::.un__ tmerl' r"l 'I" ';Itt::tT tt'S; ..

Instruction Type

Example

CMOVMC, postincrement, constant count

MOVD *A5+, RB7, 4

This example moves four 64-bit double-precision values from the TMS34020
memory location pOinted to by AS to coprocessor registers beginning with RB7.
After each 32-bit transfer, register AS is incremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. Count specifies that four 64-bit transfers
are made (eight 32-bit transfers).

14-49

MOVD !!ove, Doub/~ Precision, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

14-50

MOVD -*Rs, CRd [, count]

If TMS34082 LOAD bit = 0
Repeat count times

Rs-32 - Rs
*Rs - CRd (32 MSBs)
Rs-32 - Rs

*Rs - CRd (32 LSBs)
advance to next coprocessor

register

If TMS34082 LOAD bit = 1
Repeat count times

Rs-32 - Rs
*Rs - CRd (32 LSBs)
Rs-32 - Rs

*Rs - CRd (32 MSBs)
advance to next coprocessor

register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 I 0 0 1 1 0 1 1 0 0 R I Rs

Default 10 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect predecrement) containing the
address of the bit immediately following the 64-bits used to store the
first 64-bit double-precision floating-point value that is transferred

CRd Coprocessor destination register that holds the first 64-bit double­
precision floating-point value

count Contains the number of 64-bit transfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 - 15, then transfers = 2 x count

MOVD moves 64-bit double-precision values from memory beginning at the
address (Rs -32) into coprocessor registers beginning at CRd. Before each
32-bit transfer, the contents of Rs are decremented; after every two 32-bit
transfers, the coprocessor destination is advanced to the next register in the
coprocessor register sequence list. The number of 64-bit transfers made is
determined by the contents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

RsAligned
Rs Nonaligned

5 + ((count x 2) -1)
6 + ((count x 2) -1)

TMS34082 Pseudo-ops

Instruction Type

Example

Move, Double Precision, Indirect to Coprocessor (Predecrement), Constant Count MOVD

CMOVMC, predecrement, constant count

MOVD -*AS, RB7, 4

This example moves four 64-bit double-precision values from the TMS34020
memory location pOinted to by (AS - 32) to coprocessor registers beginning
with RB7. Before each 32-bit transfer, register AS is decremented; after every
two 32-bit transfers, the coprocessor destination is advanced to the next regis­
ter in the coprocessor register sequence list. Count specifies that four 64-bit
transfers are made (eight 32-bit transfers).

14-51

MOVD Move, Double Precision, Coprocessor to Indirect (Postincrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

14-52

MOVD CRd, *Rd+ [, count]

If TMS34082 LOAD bit = 0
Repeat count times

CRd (32 MSBs) -+*Rd
Rd + 32 -+ Rd
CRd (32 LSBs) -+ *Rd
Rd + 32 -+ Rd
advance to next coprocessor

register

If TMS34082 LOAD bit = 1
Repeat count times

CRd (32 LSBs) -+ *Rd
Rd + 32 -+ Rd
CRd (32 MSBs) -+ *Rd
Rd + 32 -+ Rd
advance to next coprocessor

register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 1 R I Rd

1 I 0 Jo 0 1 1 1 1 1 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 64-bit double-precision
floating-point value to the TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address of
the first double-precision value transferred

count Contains the number of 64-bittransfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 -+ 15, then transfers = 2 x count

MOVD moves the 64-bit double-precision values from coprocessor registers
beginning at CRd to memory beginning at the address in Rd. After each 32-bit
transfer, Rd is incremented, and after every two transfers, the coprocessor reg­
ister is advanced to the next register in the coprocessor register sequence. The
number of 64-bit transfers made is determined by the contents of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

Rd aligned
Rd nonaligned

5 + (count*2 - 1)
6 + (count*2 - 1)

CMOVCM, postincrement, constant count

TMS34082 Pseudo-ops

Example

Move, Double Precision, Coprocessor to Indirect (Postincrement), Constant Count MOVD

MOVD RB7, *A5+, 2

This example moves four 64-bit double-precision values from coprocessor
registers beginning at RB7 to TMS34020 memory pointed to by A5. After each
32-bit transfer, register A5 is incremented, and after every two transfers, the
coprocessor destination is advanced to the next register in the coprocessor
register sequence list. Count specifies that two 64-bit transfers are made (four
32-bit transfers).

14-53

~OVD M~ouble Precision, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

14-54

MOVD CRd, -*Rd [, count]

If TMS34082 LOAD bit = 0
Repeat count times

Rd-32 ~ Rd
CRd (32 MSBs) ~*Rd
Rd-32 ~ Rd
CRd (32 LSBs) ~ *Rd
advance to next coprocessor

register

If TMS34082 LOAD bit = 1
Repeatcount times

Rd-32 -+ Rd
CRd (32 LSBs) ~ *Rd
Rd-32 ~ Rd
CRd (32 MSBs) ~ *Rd
advance to next coprocessor

register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 0 1 1 0 1 1 0 R I Rd

1 I 0 I 0 0 1 1 1 1 1 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first double-precision value to
TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 64-bits used to store the first 64-bit
double-precision floating-point value that is transferred

count Contains the number of 64-bit transfers to make.This value must in the
range 1 to 16; the default value is 1. Count determines the value of
transfers:

Q If count = 16, then transfers = 0

Q If count = 1 ~ 15, then transfers = 2 x count

MOVD moves the 64-bit double-precision values from coprocessor registers
beginning at CRd to memory beginning at the address (Rd - 32). Before each
32-bit transfer, Rd is decremented; after every two 32-bit transfers, the copro­
cessor register is advanced to the next register in the coprocessor register
sequence. The number of 64-bit transfers made is determined by the contents
of count.

The TMS34082 configuration register LOAD bit determines whether the LSBs
or the MSBs will be moved first:

Q If the LOAD bit = 1, then the LSBs are moved first
(32 LSBs of the fraction)

Q If the LOAD bit = 0, then the MSBs are moved first
(sign, exponent, and 20 MSBs of the fraction)

The LOAD bit default is O.

Rd aligned
Rd nonaligned

5 + (count*2 - 1)
6 + (count*2 -1)

CMOVCM, predecrement, constant count

TMS34082 Pseudo-ops

Move, Double Precision, Coprocessor to Indirect (Predecrement), Constant Count MOVO
;"'U::I:~~'m:o:mRl'lt 'IImm:r YM«"" 'w 111

Example MOVD C RB7, -*A5, 2

This example moves two 64-bit double-precision values from coprocessor reg­
isters beginning at RB7 to TMS34020 memory painted to by (AS - 32). Before
each 32-bit transfer, register AS is decremented; after every two 32-bit trans­
fers, the coprocessor destination is advanced to the next register in the copro­
cessor register sequence list. Count specifies that two 64-bit transfers are
made (four 32-bit transfers).

14-55

MOVD Move, Double Precision, Coprocessor to Coprocessor

Syntax MOVD CRSt, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-56

CRS1- CRd

CRS1 Coprocessor source register A that holds the 64-bit double-precision
floating-point value

CRd Coprocessor destination register

MOVD moves a 64-bit double-precision value from CRs1 (register A) to CRd.

2

CEXEC, short

MOVD RA7, RB4

This example moves the 64-bit double-precision value from coprocessor regis­
ter RA7 to coprocessor register RB4.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Double Precision, Coprocessor to Coprocessor MOVD

MOVD CRS2, CRd

CRs2- CRd

r r~~#IM>I~~n:r ,

CRS2 Coprocessor source register B that holds the 64-bit double-precision
floating-point value

CRd Coprocessor destination register

MOVD moves a 64-bit double-precision floating-point value from CRs2 (regis­
ter B) to CRd.

2

CEXEC, short

MOVD RB3, RB4

This example moves the 640bit double-precision value from coprocessor regis­
ter RB3 to coprocessor register RB4.

14-57

MOVE_.,,~ove, Integer, One Register to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-58

MOVE Rs, CRd

Rs-CRd

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
01 0 I 0 0 0 1 1 0 0 0 1 R I Rs

o I 1 I 0 0 1 1 0 0 0 0 0 010 I 0 I 0 I 0

Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register for 32-bit integer value to coprocessor

CRd Coprocessor destination register to hold the 32-bit integer

MOVE moves the contents (integer) of Rs into CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

MOVE AS, RA7

This example moves the contents of TMS34020 register AS into coprocessor
register RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Two Registers to Coprocessor MOVE

RS1 -00 CRd
RS2 -00 CRd+1

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 0 1 0 R I RS1

o I 1 I 0 0 1 1 0 0 0 0 0 R I RS2

Default ID 0 0 0 0 0 0 0 0 CRd

o

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRd Coprocessor destination register that holds the first 32-bit integer val­
ue. The second integer will be placed in the next register in the copro­
cessor register sequence list.

MOVE moves the contents (integer) of RS1 and RS2 into CRd and CRd + 1.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MOVE AS, A6, RA7

This instruction moves the contents ofTMS34020 registers A5 and A6 into co­
processor register RA7 and RA8, respectively.

14-59

• .JIOVE Move, Integer, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-60

MOVE *Rs +, CRd, Rd

If RD = 0
Repeat 32 times

*Rs -+ CRd
Rs + 32 -+ Rs

advance to next coprocessor
register

If Rd = 1 -+ 31
Repeat Rd times

*Rs -+ CRd
Rs +32 -+ Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 1 R I Rd

1 I 0 I 0 0 1 1 0 0 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dress of the first 32-bit integer to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31

Q If Rd = 0, then 32 32-bit transfers are made

Q If Rd = 1 -+ 31, then Rd 32-bit transfers are made

MOVE moves integer values from memory beginning at the address in Rs into
coprocessor registers beginning at CRd. After each transfer, Rs is increm­
ented, and CRd is advanced to the next register in the coprocessor register se­
quence list. The number of 32-bit transfers made is determined by the contents
of Rd.

If Rd = 0 and
If Rd = 0 and
If Rd = 1 -+ 31 and
If Rd = 1 -+ 31 and

Rs is aligned
Rs is nonaligned
Rs is aligned
Rs is nonaligned

CMOVMC, postincrement, register count

MOVE *A5+, RA7, B7

36
37
5 + (Rd -1)
6 + (Rd -1)

This instruction moves integer values from TMS34020 memory location
pointed to by A5 to coprocessor registers beginning at RA7. After each 32-bit
transfer, register A5 is incremented, and the coprocessor destination is ad­
vanced to the next register in the coprocessor register sequence list. B7 holds
the number of 32-bit transfers to be made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Indirect to Coprocessor (Postincrement), Register Count MOVE

MOVE *Rs+, CRd, [, count]

Repeat count times
*Rs ->0 CRd
Rs + 32 ->0 Rs

advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 I 0 0 1 1 0 0 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dress of the first 32-bit integer to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

count Contains the number of 32-bit transfers to make. This value must be
in the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 ->0 31, then transfers = count

MOVE moves 32-bit integer values from memory beginning at the address in
Rs into coprocessor registers beginning at CRd. After each transfer, Rs is in­
cremented, and the coprocessor destination is advanced to the next register
in the coprocessor register sequence list. The number of 32-bit transfers made
is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count-1)
6 + (count -1)

CMOVMC, postincrement, constant count

MOVE *A5+, RB7, 4

This example moves four 32-bit integer values from TMS34020 memory loca­
tion pOinted to by A5 to coprocessor registers beginning at RB7. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. Count
specifies that four 32-bit transfers are made.

14-61

~9.,Y.'~M-11~ye, Int::.ger~!ndirect to Copro.,cessor (Predec:!!ment), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-62

MOVE -*Rs, CRd [, count]

Repeat count times
Rs-32 --+ Rs

*Rs --+ CRd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 I 0 0 1 1 0 0 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dress of the bit immediately after first 32-bit integer to move to the co­
processor

CRd Coprocessor destination register to hold the first 32-bit integer
operand

count Contains the number of 32-bittransfers to make.This value must in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

Q If count = 32, then transfers = 0

Q If count = 1 - 31, then transfers = count

MOVE moves 32-bit integer values from memory beginning at the address in
(Rs - 32) into coprocessor registers beginning at CRd. Before each transfer,
the contents of Rs are decremented; after each transfer, the coprocessor desti­
nation is advanced to the next register in the coprocessor register sequence
list. The number of 32-bit transfers made is determined by the contents of
count.

Rs Aligned
Rs Nonaligned

S + (count-1)
6 + (count-1)

CMOVMC, predecrement, constant count

MOVE -*A5, RB7, 4

This example moves four 32-bit integer values from TMS34020 memory loca­
tion pointed to by (AS - 32) to coprocessor registers beginning at RB7. Before
each 32-bittransfer, register AS is decremented; after each transfer, coproces­
sor destination is advanced to the next register in the coprocessor register se­
quence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Coprocessor to Indirect (Postincrement), Constant Count MOVE

MOVE CRd, *Rd+ [, count]

Repeat count times
CRs ->- *Rd
Rd + 32 ->- Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 B 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 1 R I Rd

1 I 0 I 0 0 1 1 1 0 0 0 0 transfers

Default 10 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit integer value to
TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address
for the first integer transferred

count Contains the number of 32-bit transfers to make. This value must in
the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 ->- 31, then transfers = count

MOVE moves the 32-bit integer values from coprocessor registers beginning
at CRd to memory beginning at the address in Rd. After each 32-bit transfer,
Rd is incremented, and the coprocessor register is advanced to the next regis­
ter in the coprocessor register sequence. The number of 32-bittransfers made
is determined by the contents of count.

RsAligned
Rs Nonaligned

5 + (count - 1)
6 + (count - 1)

CMOVCM, postincrement, constant count

MOVE RB7, *A5+, 4

This example moves four 32-bit integer values from coprocessor registers be­
ginning at RB7 to TMS34020 memory pOinted to by A5. After each 32-bit trans­
fer, register A5 is incremented, and the coprocessor destination is advanced
to the next register in the coprocessor register sequence list. Count specifies
that four 32-bit transfers are made.

14-63

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-64

MOVE CRd, -*Rd [, count]

Repeat count times
Rd-32 -+ Rd
CRd -+ *Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o I 0 J 0 0 0 1 1 0 1 1 1 RJ Rd

1 I 0 I 0 0 1 1 1 0 0 0 0 transfers

Default 10 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit integer value to
TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 32-bits used to store the first 32-bit
integer value transferred

count Contains the number of 32-bit transfers to make. This value must in
the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 -+ 31, then transfers = count

MOVE moves the 32-bit integer values from coprocessor registers beginning
at CRd to memory beginning atthe address (Rd -32). Before each 32-bit trans­
fer, Rd is decremented; after each32-bit transfer, the coprocessor register is
advanced to the next register in the coprocessor register sequence. The num­
ber of 32-bit transfers made is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count - 1)
6 + (count - 1)

CMOVCM, predecrement, constant count

MOVE RB7, -*A5, 4

This example moves four 32-bit integer values from coprocessor registers be­
ginning at RB7 to TMS34020 memory pointed to by (A5 - 32). Before each
32-bit transfer, register A5 is decremented; after each 32-bit transfer, the co­
processor destination is advanced to the next register in the coprocessor regis­
ter sequence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Coprocessor to One Register MOVE
............... ~ W' n".... 'I'r=~ m;~ ::ft'ml~r4f~:<l'~~

MOVE CRd, Rd

CRd ~ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 0 1 1 R I
o

Rd

o I 1 I 0 0 1 1 1 0 0 0 0 010 I 0 I 0 I 0

Default ID 0 0 0 0 0 0 0 0 CRd

CRd Coprocessor source register holding the 32-bit integer value

Rd TMS34020 destination register

MOVE moves 32-bit integer from coprocessor register CRd to TMS34020 reg­
ister Rd.

S if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVCG, one register

MOVE RA7, AS

This example moves the contents of coprocessor register RA7 to TMS34020
register AS.

14-65

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-66

MOVE CRSt, CRd

CRS1 CRd

CRS1 Coprocessor source register A that holds the 32-bit integer value

CRd Coprocessor destination register

MOVE moves 32-bit integer value from CRS1 (register A) to CRd.

2

CEXEC, short

MOVE RA7, RB4

This example moves the 32-bit integer value from coprocessor register RA7
to coprocessor register RB4.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Integer, Coprocessor to Coprocessor MOVE
'AA' m~m~~m'Ai:il~ W';;<-~

MOVE CRs2, CRd

CRS2 - CRd

CRS2 Coprocessor source register B that holds the 32-bit integer value

CRd Coprocessor destination register

MOVE moves a 32-bit integer value from CRs2 (register B) to CRd.

2

CEXEC, short

MOVE RB3, RB4

This example moves the 32-bit integer value from coprocessor register RB3
to coprocessor register RB4.

14-67

MOVF Move, Single Precision, One Register to Coprocessor .
Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-68

MOVF Rs, CRd

Rs-CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 101 0 0 0 1 1 0 0 0 1 R I Rs

o I 1 I 0 0 1 1 0 1 0 0 0 010 I 0 I 0 I 0
Default ID 0 0 0 0 0 0 0 0 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRd Coprocessor destination register to hold the 32-bit single-precision
floating-point value

MOVF moves the contents (single-precision value) of Rs into CRd.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

MOVF AS, RA7

This example moves the contents of TMS34020 register A5 into coprocessor
register RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Double Precision, Two Registers to Coprocessor MOVF

MOVF RS1, RS2, CRd

RS1 -)0 CRd
RS2 -)0 CRd+1

'M'R"_'fm"Wr~~ ::sEm:m;:'~I':iIJI'~IIiJP<I'~:II'~~l r t

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o J 0 I 0 0 0 1 1 0 0 1 0 R I RS1

o J 1 I 0 0 1 1 0 1 0 0 0 R I RS2

Default ID 0 0 0 0 0 0 0 0 CRd

o

RS1 TMS34020 source register for the first 32-bit single-precision float­
ing-point value to coprocessor

RS2 TMS34020 source registerforthe second 32-bitsingle-precision float­
ing-point value to coprocessor

CRd Coprocessor destination register to hold the first single~precision val­
ue. The second single-precision value will be placed in the next regis­
ter in the coprocessor register sequence list.

MOVF moves the contents (single-precision value) of RS1 and RS2 into CRd
and CRd+1.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MOVD AS, A6, RB7

This example moves the contents of TMS34020 registers AS and A6 into co­
processor registers RB? and RBS.

14-69

MOVF Move, Single Precision, Indirect to Coprocessor (Postincrement), Register Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-70

MOVF *Rs+, CRd, Rd

If Rd = 0
Repeat 32 times

*Rs - CRd
Rs + 32 - Rs

advance to next coprocessor
register

If Rd = 1 - 31
Repeat Rd times

*Rs-CRd
Rs +32- Rs

advance to next coprocessor
register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 1 R I Rd

1 I 0 I 0 0 1 1 0 1 0 0 0 R I Rs

Default 10 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the ad­
dr~ss of the first 32-bit single-precision floating-point value to move to
the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci­
sion floating-point value

Rd TMS34020 register containing the number of 32-bit transfers to make.
This value must in the range 0 to 31

a If Rd = 0, then 32 32-bit transfers are made

a If Rd = 1 - 31, then Rd 32-bit transfers are made

MOVF moves 32-bit single-precision values from memory beginning at the ad­
dress in Rs into coprocessor registers beginning at CRd. After each transfer,
Rs is incremented, and CRd is advanced to the next register in the coprocessor
register sequence list. The number of 32-bit transfers made is determined by
the contents of Rd.

If Rd = 0 and
If Rd = o and
If Rd = 1 - 31 and
If Rd = 1 - 31 and

Rs is aligned
Rs is nonaligned
Rs is aligned
Rs is nonaligned

CMOVMC, postincrement, register count

MOVF *A5+, RB7, B7

36
37
S + (Rd-1)
6 + (Rd-1)

This instruction moves 32-bit single-precision values from TMS34020 memory
location pOinted to by AS to coprocessor registers beginning at RA7. After each
32-bit transfer, register AS is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. 87
holds the number of 32-bit transfers to be made.

TMS34082 Pseudo-ops

Move, Single Precision, Indirect to Coprocessor (Postincrement), Constant Count MOVF
~«=;~~'i<=~~~ ~Jrl'll~_mm IZr~I'I'!l"::m= I I'II:'I'$(~'«W_

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF *Rs+, CRd [, count]

Repeat count times
*Rs -00 CRd
Rs + 32 -00 Rs

advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 0 0 transfers

1 I 0 I 0 0 1 1 0 1 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the first 32-bit single-precision floating-point value to move
to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci­
sion floating-point value

count Contains the number of 32-bit transfers to make.This value must in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

Q .If count = 32, then transfers = 0

Q If count = 1 -00 31, then transfers = count

MOVF moves 32-bit single-precision values from memory beginning at the
address in Rs into coprocessor registers beginning at CRd. After each transfer,
the contents of Rs are incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. The
number of 32-bit transfers made is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count - 1)
6 + (count-1)

CMOVMC, postincrement, constant count

MOVF *A5+, RB7, 4

This example moves four 32-bit single-precision values from TMS34020
memory location pointed to by A5 to coprocessor registers beginning at RB7.
After each 32-bittransfer, register A5 is incremented, and the coprocessor des­
tination is advanced to the next register in the coprocessor register sequence
list. Count specifies that four 32-bit transfers are made.

14-71

MOVF Move, Sing!!E.recision, Indirect to Coprocessor (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-72

MOVF -*Rs, CRd [, count]

Repeat count times
Rs-32 - Rs
*Rs - CRd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 0 1 0 0 0 0 0 1 transfers

1 I 0 I 0 0 1 1 0 1 0 0 0 R I Rs

Default ID 0 0 0 0 0 0 0 0 CRd

o

Rs TMS34020 source register (indirect postincrement) containing the
address of the bit immediately after first 32-bit single-precision float­
ing-point value to move to the coprocessor

CRd Coprocessor destination register to hold the first 32-bit single-preci­
sion floating-point value

count Contains the number of 32-bit transfers to make. This value must be
in the range 1 to 32; the default value is 1. Count determines the value
of transfers:

Q If count = 32, then transfers = 0

Q If count = 1 - 31, then transfers = count

MOVF moves 32-bit single-precision values from memory beginning at the
address (Rs - 32) into coprocessor registers beginning at CRd. Before each
transfer, the contents of Rs are decremented; after each transfer, the copro­
cessor destination is advanced to the next register in the coprocessor register
sequence list. The number of 32-bit transfers made is determined by the con­
tents of count.

Rs Aligned
Rs Nonaligned

5 + (count-1)
6 + (count-1)

CMOVMC, predecrement, constant count

MOVF -*A5, RB7, 4

This example moves four 32-bit single-precision values from TMS34020
memory location pOinted to by (A5 - 32) to coprocessor registers beginning at
RB7. Before each 32-bit transfer, register A5 is decremented; after each trans­
fer, the coprocessor destination is advanced to the next register in the copro­
cessorregister sequence list. Count specifies that four 32-bit transfers are
made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Single Precision, Coprocessor to Indirect (Postincrement), Constant Count MOVF

MOVF CRd, *Rd+ [, count]

Repeat count times
CRd -*Rd
Rd + 32 - Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

o J 0 .1 0 0 0 1 1 0 1 0 1 R 1 Rd

1 1 0 1 0 0 1 1 1 1 0 0 0 transfers

Default 10 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit single-precision float­
ing-point value to TMS34020 memory

Rd TMS34020 register (indirect postincrement) containing the address
for the first 32-bit single-precision floating-point value transferred

count Contains the number of 32-bit transfers to make. This value must be
in the range 1 to 32; the default value is 1. Count determines the value
of transfers:

[J If count = 32, then transfers = 0

[J If count = 1 - 31, then transfers = count

MOVF moves the 32-bit single-precision values from coprocessor registers
beginning at CRd to memory beginning atthe address in Rd. After each 32-bit
transfers, Rd is incremented, and the coprocessor register is advanced to the
next register in the coprocessor register sequence. The number of32-bit trans­
fers made is determined by the contents of count.

Rs Aligned
Rs Nonaligned

5 + (count-1)
6 + (count-1)

CMOVCM, postincrement, constant count

MOVF RB7, *A5+, 4

This example moves four 32-bit Single-precision values from coprocessor reg­
isters beginning at RB7 to TMS34020 memory pointed to by A5. After each
32-bit transfer, register A5 is incremented, and the coprocessor destination is
advanced to the next register in the coprocessor register sequence list. Count
specifies that four 32-bit transfers are made.

14-73

MOVF Move, Single Precision, Coprocessor to Indirect (Predecrement), Constant Count

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-74

MOVF CRd, -*Rd [, count]

Repeat count times
Rd-32 - Rd
CRd -*Rd
advance to the next coprocessor register

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 0 0 1 1 0 1 1 0 R I Rd

1 I 0 I 0 0 1 1 1 1 0 0 0 transfers

Default ID 0 0 0 0 0 0 0 0 CRd

o

CRd Coprocessor source register for the first 32-bit single-precision float­
ing-point value to TMS34020 memory

Rd TMS34020 register (indirect predecrement) containing the address of
the bit immediately following the 32-bits used to store the first 32-bit
single-precision floating-point value transferred

count Contains the number of 32-bit transfers to make.This value must in the
range 1 to 32; the default value is 1. Count determines the value of
transfers:

!J If count = 32, then transfers = 0

!J If count = 1 - 31, then transfers = count

MOVF moves the 32-bit single-precision values from coprocessor registers
beginning at CRd to memory beginning at the address (Rd - 32). Before each
32-bit transfer, Rd is decremented; after each transfer, the coprocessor regis­
ter is advanced to the next register in the coprocessor register sequence. The
number of 32-bit transfers made is determined by the contents of count.

RsAligned
Rs Nonaligned

5 + (count-1)
6 + (count-1)

CMOVCM, predecrement, constant count

MOVF RB7, -*A5, 4

This example moves four 32-bit single-precision values from coprocessor reg­
isters beginning at RB7 to TMS34020 memory pointed to by (A5-32). Before
each 32-bit transfer, register A5 is decremented; after each 32-bit transfer, the
coprocessor destination is advanced to the next register in the coprocessor
register sequence list. Count specifies that four 32-bit transfers are made.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Move, Single Precision, Coprocessor to One Register MOVF

MOVF CRd, Rd

CRd- Rd

15 14 13 12 11 10 9 a 7 6 5 4 3 2 .

0101 0 0 0 1 1 0 0 1 1 R 1 Rd

o

o 1 1 1 0 0 1 1 1 1 0 0 0 o 1 0 1 0 1 0 10

Default 10 0 0 0 0 0 0 0 0 CRd

CRd Coprocessor source register for the 32-bit single-precision float-
ing-point value

Rd TMS34020 destination register

MOVF moves the contents (single-precision value) of CRd to Rd.

5 if the first instruction word is long word-aligned
4 if the first instruction word is not long word-aligned

CMOVGC, one register

MOVF RA7, AS

This example moves the 32-bit single-precision value from coprocessor regis­
ter RA7 to TMS34020 register A5.

14-75

MOVF Move, Single Precision, Coprocessor to Coprocessor

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-76

MOVF CRS1, CRd

CRS1- CRd

CRS1 Coprocessor source register A that holds the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MOVF moves the contents (single-precision value) of CRS1 (register A) to
CRd.

2

CEXEC, short

MOVF RA7, RB4

This example moves the 32-bit single-precision value from coprocessor regis­
ter RA7 to coprocessor register RB4.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MOVF CRS2, CRd

CRs2- CRd

Move, Single Precision, Coprocessor to Coprocessor MOVF

CRS2 Coprocessor source register B that holds the 32-bit single-precision
floating-point value

CRd Coprocessor destination register

MOVF moves 32-bit single-precision value from CRs2 (register B) to CRd.

2

CEXEC, short

MOVF RB3, RB4

This example moves the 32-bit single-precision value from coprocessor regis­
ter RB3 to coprocessor register RB4.

14-77

MPYD Multiply, Dou,ble Precision

Syntax

Execution

Instruction Words

Operands

Description

Mac/.Jine States

Instruction Type

Example

14-78

MPYD CRSt, CRs2, CRd

CRs1 x CRS2 - CRd

CRS1 Coprocessor register containing the first 64-bit double-precision floa­
ting-point operand

CRs2 Coprocessor register containing the second 64-bit double-precision
floating-point operand

CRd Coprocessor destination register

M PYS multiplies the contents (double-precision value) of CRS1 by the contents
of CRS2 and stores the result in CRd.

2

CEXEC, short

MPYD RA5, RB6, RA7

This example multiplies the contents of RA5 by RB6 and stores the result in
RA7. .

TMS34082 Pseu(io-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Multiply, Single Precision MPYF

MPYF CRSt, CRS2, CRd

CRS1 Coprocessor register containing the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register containing the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MPYF multiplies the contents (single-precision value) of CRs1 by the contents
of CRs2 and stores the result in CRd.

2

CEXEC, short

MPYF RA5, RB6, RA7

This example multiplies the contents of RA5 by RB6 and stores the result in
RA7.

14-79

MPYF Load and Multiply, Single Precision
*~~~:"'>m:>~=:>:'>:::«_""''W''''=s::;::<m;~~~~~-=~> __ ~;g.,<;I>_~ __ ffi>},:,:~~~~~ __ ''''~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

. 14-80

RS1 - CRs1
RS2 - CRs2
CRs1 x CRs2 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

01 1 I 0 1 I 0 I 0 I 0 1 I 0 I 0 I 0 R I RS2

Default 10 CRs1 CRs2 CRd

TMS34020 source register for the first 32-bit single-precision float­
ing-point value to coprocessor

TMS34020 source registerforthe second 32-bitsingle-precision float­
ing-point value to coprocessor

CRs1 Coprocessor register to contain the first 32-bit single-precision floa­
ting-point operand

CRS2 Coprocessor register to contain the second 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

MPYS loads the contents (single-precision value) of RS1 and RS2 into CRs1
and CRs2 respectively, multiplies CRs1 x CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MPYF A5, A6, RA5, RB6, RA7

This example loads TMS34020 registers A5 and A6 into coprocessor registers
RA5 and RB6 respectively, multiplies the contents of RA5 by RB6, and stores
the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

MPYS CRs1, CRs2, CRd

CRs1 x CRs2 ---;> CRd

Multiply, Integer MPYS

CRS1 Coprocessor register containing the first 32-bit integer operand

CRs2 Coprocessor register containing the second 32-bit integer operand

CRd Coprocessor destination register

MPYS multiplies the contents (integer) of CRs1 by the contents of CRs2 and
stores the result in CRd.

2

CEXEC, short

MPYS RA5, RB6, RB7

This example multiplies the contents of RA5 by RB6 and stores the result in
RB7.

14-81

MPYS Load and Multiply, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-82

RS1 -+ CRS1
RS2 -+ CRs2
CRs1 x CRS2 -+ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o L 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 1 I 0 I 0 I 0 010 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

TMS34020 source register for the first 32-bit integer value to copro­
cessor

RS2 TMS34020 source register for the second 32-bit integer value to
coprocessor

CRS1 Coprocessor register to contain the first 32-bit integer operand

CRs2 Coprocessor register to contain the second 32-bit integer operand

CRd Coprocessor destination register

MPYS loads the contents (integer) of RS1 and RS2 into CRS1 and CRS2 respec­
tively, multiplies CRs1 x CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

MPYS A5, A6, RA5, RB6, RB7

This example loads TMS34020 registers AS and A6 into coprocessor registers
RAS and RB6, multiplies the contents of RAS by RB6, and stores the result in
RB7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Negate, Integer, 25 Complement NEG

NEG CRs, CRd

-CRs- CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

NEG takes the 2s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NEG RAS, RB7

This example takes the 2s complement of the contents of RA5 and stores the
result in RS?

14-83

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-84

NEG Rs, CRs, CRd

Rs --+ CRs
-CRs --+ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 o I 0 J 0 101 0

Default 10 CRs 0 0 1 1 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

NEG loads the contents (integer) of Rs into CRs, takes the 2s complement of
the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, one register

NEG AS, RAS, RB7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the 2s complement of the contents of RA5, and stores the result in RB7:

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

NEGD CRs, CRd

-CRs- CRd

Negate, Double Precision NEGD

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

NEGD negates the contents (double-precision value) of register CRs and
stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NEGD RAS, RB7

This example negates the contents of RA5 and stores the result in RB7.

14-85

NEGF Negate, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-86

NEGF CRs, CRd

-CRs-CRd

CRs Coprocessor register containing the 32-bit single-precision floa-
ting-point operand

CRd Coprocessor destination register

NEGF negates the contents (single-precision value) of CRs and stores the re­
sult in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NEGF RAS, RA 7

This example negates the contents of RA5 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Negate, Single Precision NEGF

NEGF Rs, CRs, CRd

Rs -00 CRs
-CRs -00 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 01 0 I 0 I 0 I 0

Default ID CRs 0 0 1 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

NEGF loads the contents (single-precision value) of Rs into CRs, negates the
contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

NEGF AS, RAS, RB7

This example loads TMS34020 register AS into coprocessor register RAS ne-
gates the contents of RAS, and stores the result in RB7. '

14-87

NOT Not, Integer, 15 Complement

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-88

NOT CRs, CRd

NOTCRs-CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

NOT takes the 1 s complement of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

NOT RAS, RA7

This example takes the 1 s complement of the contents of RA5 and stores the
result in RA7.

TMS34082 P5eudo-op5

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Not, Integer, 1s Complement NOT

NOT Rs, CRs, CRd

Rs - CRs
NOTCRs - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 010 I 1 I 1 0 0 0 1 R I Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 1 0 1
Default ID CRs 0 0 0 1 CRd

o

01 0

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

NOT loads the contents (integer) of Rs into the CRs, takes the 1 s complement
of the contents of register CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

NOT AS, RAS, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the 1 s complement of the contents of RA5, and stores the result in RA7:

14-89

SQR Square, Integer

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-90

SQR CRs, CRd

CRs x CRs -+ CRd

CRs Coprocessor source register containing the 32-bit integer operand

CRd Coprocessor destination register

SQR squares the contents (integer) of CRs and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQR RAS, RA7

This example squares the contents of RA5 and stores the result in register
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Square, Integer SQR

SQR Rs, CRs, CRd

Rs- CRs
CRs xCRs - CRd

15 14 13 12 11 10 9 B 7 6 5 4 3 2 o
01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 I 0 I 0 I 0

Default 10 CRs 1 0 0 0 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

SQR loads the contents (integer) of RS into CRs, squares the contents of CRs,
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQR AS, RAS, RB7

This example loads TMS34020 register A5 into coprocessor register RA5
squares the contents of RA5, and stores the result in RB7. '

14-91

SQRD Square, Double Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-92

SQRD CRs, CRd

CRs x CRs - CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

SQRD squares the contents (double-precision value) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRD RA5, RA7

This example squares the contents of RA5 and stores the result in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Square, Single Precision SQRF

SQRF CRs, CRd

CRs x CRs -')0 CRd

CRs Coprocessor source register containing the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRF squares the contents (single-precision value) of CRs and stores the re­
sult in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRF RA5, RB7

This example squares the contents of RA5 and stores the result in RB7.

14-93

SQRF Load and Square, Single Pr~~~n

Syntax SQRF Rs, CRs, CRd

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-94

Rs ->0 CRs
CRs x CRs ->0 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
010 I 0 o I 0 I 1 I 1 0 0 0 1 R I Rs

01 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0

Default ID CRs 1 0 0 0 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision float­
ing-point operand

CRd Coprocessor destination register

SQRF loads the contents of Rs into CRs, squares the contents
(single-precision value) of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRF A5, RA5, RB7

This example loads TMS34020 register A5 into coprocessor register RA5
squares the contents of RA5, and stores the result in RS7. '

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Square Root, Integer SQRT
~r ~='lI:;~~

SQRT CRs, CRd

ICRs -+ CRd

CRs Coprocessor register containing the 32-bit integer operand

CRd Coprocessor destination register

SORT takes the square root of the contents (integer) of CRs and stores the
result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRT RAS, RB7

This example takes the square root of the contents of RA5 and stores the result
in RB?

14-95

SORT Load and Square Root, Integer
~==~~=~~~M:::::::~;:"~~~~~>m:o:~~~~~~~~~~=~~

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-96

SQRT Rs, CRs, CRd

Rs ~ CRs

/CRs ~ CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 0 0 0 0 01 0 I 0 I 0 I 0

Default ID CRs 1 0 0 1 CRd

Rs TMS34020 source register for the 32-bit integer value to coprocessor

CRs Coprocessor register to contain the 32-bit integer operand

CRd Coprocessor destination register

SQRT loads the contents (integer) of Rs into CRs, takes the square root of the
contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRT AS, RAS, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the square root of the contents of RA5, and stores the result in RA7. '

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Square Root, Double Precision SQRTO

SQRTO CRs, CRd

./CRs - CRd

CRs Coprocessor register containing the 64-bit double-precision floa-
ting-point operand

CRd Coprocessor destination register

SQRTO takes the square root of the contents (double-precision value) of CRs
and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRTD RAS, RA7

This example takes the square root ofthe contents of RA5 and stores the result
in RA7.

14-97

SQRTF Square Root, Single Precision

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-98

SQRTF CRs, CRd

JCRs- CRd

CRs Coprocessor register containing the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRTF takes the square root of the contents (single-precision value) of CRs
and stores the result in CRd.

The source register, eRs, must be in the A coprocessor register file.

2

CEXEC, short

SQRTF RAS, RA 7

This example takes the square root of the contents of RA5 and stores the result
in RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

SQRTF Rs, CRs, CRd

Rs -00 CRs

JCRs -00 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 0 0 0 1 R I
o

Rs

o I 1 I 0 1 I 1 I 1 I 1 1 0 0 0 010 I 0 I 0 I 0

Default ID CRs 1 0 0 1 CRd

Rs TMS34020 source register for the 32-bit single-precision float­
ing-point value to coprocessor

CRs Coprocessor register to contain the 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SQRTF loads the contents (single-precision value) of Rs into CRs, takes the
square root of the contents of CRs, and stores the result in CRd.

The source register, CRs, must be in the A coprocessor register file.

3 if the first instruction word is long word-aligned
2 if the first instruction word is not long word-aligned

CMOVGC, one register

SQRTF AS, RAS, RA7

This example loads TMS34020 register A5 into coprocessor register RA5
takes the square root of the contents of RA5, and stores the result in RA7. '

14-99

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-100

SUB CRS1, CRS2, CRd

CRs1 - CRS2 ->0 CRd

CRs1 Coprocessor A register containing the 32-bit minuend integer operand

CRs2 Coprocessor B register containing the 32-bit subtrahend integer oper-
and

CRd Coprocessor destination register

SUB subtracts the contents (integer) of CRS2 from CRs1 and stores the result
in CRd.

2

CEXEC, short

SUB RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Subtract, Integer, (A Register - B Register) SU B

RS1 ->0 CRs1
RS2 ->0 CRs2
CRs1 - CRS2 ->0 CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 o I 0 I 0 I 1 o I 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

TMS34020 source register for the first (minuend) 32-bit integer value
to coprocessor

RS2 TMS34020 source register for the second (subtrahend) 32-bit integer
value to coprocessor

CRs1 Coprocessor A register to contain the 32-bit minuend integer operand

CRS2 Coprocessor B register to contain the 32-bit subtrahend integer
operand

CRd Coprocessor destination register

SUB loads the contents (integer) of RS1 and RS2 into CRs1 and CRs2 respec­
tively, subtracts the contents of CRS2 from CRs1, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUB AO, B6, RA5, RB3, RA7

This example loads TMS34020 registers AO and B6 into coprocessor registers
RA5 and RB3, subtracts the contents of RB3 from RA5, and stores the result
in RA7.

14-101

SUB Subtract, Integer, (8 Register-A Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-102

SUB CRs2, CRs1, CRd

CRS2 - CRS1 - CRd

CRS1 Coprocessor A register containing the 32-bit subtrahend integer oper-
and

CRs2 Coprocessor B register containing the 32-bit minuend integer operand

CRd Coprocessor destination register

SUB subtracts the contents (integer) of CRS1 from CRS2 and stores the result
inCRd.

2

CEXEC, short

SUB RB5, RA3, RA7

This example subtracts the contents of RA3 from RBS and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Subtract, Integer, (8 Register -A Register) SUB

RS1 - CRs1
RS2 - CRS2
CRs2 - CRs1 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2

01 0 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o I 1 I 0 o I 0 I 1 I 1 01 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

TMS34020 source register for the first (subtrahend) 32-bit integer val­
ue to coprocessor

RS2 TMS34020 source register for the second (minuend) 32-bit integer
value to coprocessor

CRS1 Coprocessor A register to contain the 32-bit subtrahend integer
operand

CRS2 Coprocessor B register to contain the 32-bit minuend integer operand

CRd Coprocessor destination register

SUB loads the contents (integer) of RS1 and RS2 into CRs1 and CRs2 respec­
tively, subtracts the contents of CRs1 from CRs2, and stores the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUB B6, AO, RB5, RA3, RA7

This example loads TMS34020 registers B6 and AO into coprocessor registers
RB5 and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

14-103

~ ~ B ~'" ~ub!!:.~ct, Double Precision, (A Register - B Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-104

SUBD CRSt, CRs2, CRd

CRS1 Coprocessor A register containing the minuend 64-bit double-preci­
sion floating-point operand

CRs2 Coprocessor B register containing the subtrahend 64-bit double-
precision floating-point operand

CRd Coprocessor destination register

SUBD subtracts the contents (double-precision value) of CRS2 from CRs1 and
stores the result in CRd.

2

CEXEC, short

SUBD RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Subtract, Double Precision, (8 Register-A Register) SUBD

SUBD CRS2, CRSt, CRd

CRs2 - CRs1 --;> CRd

CRS1 Coprocessor A register containing the subtrahend 54-bit double-pre­
cision floating-point operand

CRs2 Coprocessor B register containing the minuend 54-bit double-preci-
sion floating-point operand

CRd Coprocessor destination register

SUBD subtracts the contents (double-precision value) of CRs1 from CRS2 and
stores the result in CRd.

2

CEXEC, short

SUBD RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the result in
RA7.

14-105

~UBF Subtract, Single Precision, (A Register - B Register)

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-106

SUBF CRSt, CRS2, CRd

CRs1 - CRs2 -+ CRd

CRS1 Coprocessor A register containing the minuend 32-bitsingle-precision
floating-point operand

CRs2 Coprocessor B register containing the subtrahend 32-bit single-preci-
sion floating-point operand

CRd Coprocessor destination register

SUBF subtracts the contents (single-precision value) of CRs2 from CRs1 and
stores the result in CRd.

2

CEXEC, short

SUBF RA5, RB3, RA7

This example subtracts the contents of RB3 from RA5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Load and Subtract, Single Precision, (A Register - B Register) SUBF
~~=~~~~_=m_=-= __ "=*~~~~w __ =m~~~=--= __ -= ____ ~ ________ . ____________ ~ ____ ___

Execution RS1 - CRs1
RS2 - CRs2

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

CRS1 - CRS2 - CRd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o J o[0 o 1 0 1 1 1 1 o 1 0 1 1 1 0 R 1 RS1

o I 1 1 0 0[OJ O I1 1 I 0 1 0 1 0 R 1 RS2

Default ID CRs1 CRs2 CRd

TMS34020 source register for the first (minuend) 32-bit single-preci­
sion floating-point value to coprocessor

TMS34020 source register for the second (subtrahend) 32-bit
single-precision floating-point value to coprocessor

CRs1 Coprocessor A register to contain the minuend 32-bit single-precision
floating-point operand

CRS2 Coprocessor 8 register to contain the subtrahend 32-bit single-preci-
sion floating-point operand

CRd Coprocessor destination register

SU8F loads the contents (single-precision value) of RS1 and RS2 into CRs1
and CRs2 respectively, subtracts the contents of CRS2 from CRS1, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUBF AO, B6, RA5, RB3, RA7

This example loads TMS34020 registers AO and 86 into coprocessor registers
RA5 and R83, subtracts the contents of R83 from RA5, and stores the result
in RA7.

14-107

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

14-108

SUBF CRS2, CRSt, CRd

CRS2 - CRs1 - CRd

CRS1 Coprocessor A register containing the subtrahend 32-bit single-preci­
sion floating-point operand

CRs2 Coprocessor B register containing the minuend 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SUBF subtracts the contents (single-precision value) of CRs1 from CRs2 and
stores the result in CRd.

2

CEXEC, short

SUBF RB5, RA3, RA7

This example subtracts the contents of RA3 from RB5 and stores the result in
RA7.

TMS34082 Pseudo-ops

Syntax

Execution

Instruction Words

Operands

Description

Machine States

Instruction Type

Example

Load and Subtract, Single Precision, (B Register-A Register) SUBF

RS1 -+ CRs1
RS2 -+ CRS2
CRS2 - CRS1 -+ CRd

<:;'"l'I' ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2

010 I 0 o I 0 I 1 I 1 o I 0 I 1 I 0 R I RS1

o 1 1 1 0 010J 1 1 1 1 I 0 I 0 I 0 R I RS2

Default ID CRs1 CRs2 CRd

o

RS1 TMS34020 source register for the first (subtrahend) 32-bit single-pre­
cision floating-point value to coprocessor

RS2 TMS34020 source register forthe second (minuend) 32-bit single-pre­
cision floating-point value to coprocessor

CRs1 Coprocessor A register to contain the subtrahend 32-bit single-preci­
sion floating-point operand

CRs2 Coprocessor B register to contain the minuend 32-bit single-precision
floating-point operand

CRd Coprocessor destination register

SUBF loads the contents (single-precision value) of RS1 and RS2 into CRS1
and CRS2 respectively, subtracts the contents of CRs1 from CRS2, and stores
the result in CRd.

4 if the first instruction word is long word-aligned
3 if the first instruction word is not long word-aligned

CMOVGC, two registers

SUBF B6, AO, RB5, RA3, RA7

This example loads TMS34020 registers B6 and AO into coprocessor registers
RB5 and RA3, subtracts the contents of RA3 from RB5, and stores the result
in RA7.

14-109

14-110 TMS34082 Pseudo-ops

Chapter 15

Instruction Timin

This chapter summarizes the timings of the TMS34020 assembly-language
instruction set. It contains two sections:

Section Page

These sections are divided 15.1 Timing for All Instructions
between MOVE and MOVB Except MOVEs and MOVBs 15-2

instructions and the remainder of 15.2 Timing for MOVE and
the instructions. MOVB Instructions 15-10

Please note these characteristics about the timings listed in this book:

o Numbers identify TMS34020 machine states.

o All timings assume that the cache is enabled and that the instruction is in
the cache.

o Numbers in parentheses identify hidden cycles.

The TMS34020 may execute some instructions in parallel, "hiding" some
instruction states. Hidden cycles are memory-write cycles that occur at the
end of an instruction. The machine states consumed by the instruction that
the CPU is executing hide the machine states consumed by the write
cycles. These hidden cycles are not counted against he instruction that in­
curs them, but are counted against subsequent instructions. If an instruc­
tion uses the local bus before all of the hidden cycles have been over­
lapped by subsequent instructions, that instruction must wait for the hid­
den cycles to complete.

o These timings assume that

• All memory requests are granted when requested; no higher priority
memory requests are pending.

• When the CPU requests page-mode access, the memory grants it.

• No wait states occur.

• No retries occur.

15-1

Timing for AI/Instructions Except MOVEs and MOVBs
1~ :::;!1'<':"W <:" m ll'SllC M!m

15.1 Timing for All Instructions Except MOVEs and MOVBs

This section lists the instructions for all instructions except the MOVE and
MOVB instructions. Please note that

Q If the timing for an instruction states that this is a complex instruction,
than no simple formula is available for providing the timing for the instruc­
tion. The number of machine states consumed by this instruction's execu­
tion will vary depending on the circumstances of its execution.

Q Instruction timing for graphics instructions varies, depending on the pixel­
processing option you've selected. The timing formulas for graphics in­
structions (such as DRAV and LINE) ask you to add the values shown in
Table 15-1 into your timing calculations.

Table 15-1. Effects of Pixel-Processing Options on Graphics Instructions

Instruction

ASS

ADD

ADDC

ADDI (short)

ADDI (long)

ADDK

ADDXY

ADDXYI

AND

15-2

Number of Cycles Required for the Following
Pixel Sizes

Pixel-Processing Option 1

Replace 0(2)

ADD -

ADDS -
SUB -

SUBS -
MAX -
MIN -

PPCODE 2 (2)

Number of machine cycles
consumed by instruction execution

1

1

2

2 if the immediate data is long-word aligned
3 if the immediate data is not long~word aligned

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

20r4

0(2)

2 (2)

3 (2)

2 (2)

3 (2)

3 (2)

3 (2)

2 (2)

8,16,or32

0(1)

2 (1)

3 (1)

2 (1)

3 (1)

3 (1)

3 (1)

2 (1)

Instruction Timing

Instruction

ANDI

ANON

ANDNI

BLMOVE

BT8T (constant)

BT8T (register)

CALL

CALLA

CALLR

CEXEC (long)

CEXEC (short)

CLIP

CLR

CLRC

CMOVCG

CMOVCM (count*+)

CMOVCM (count-*)

CMOVCS

CMOVGC (one register)

CMOVGC (two registers)

for AI/Instructions

Number of machine cycles
consumed by instruction execution

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

2 if the immediate data is long-word aligned
3 if the immediate data is not long-word aligned

complex instruction

3 + (1) if the 8P is aligned
3 + (4) if the 8P is not aligned

MOVEs and MOVBs

3 if immediate data is long-word aligned, 4 if 8P is also long-word aligned
3+(3) if immediate data is not long-word aligned, 4+(3) if SP is also not long­

word aligned

3 + (1) if the SP is long-word aligned
3 + (4) if the 8P is long-word not aligned

2 (1) if the immediate data is long-word aligned
3 (1) if the immediate data is not long-word aligned

2 (1)

complex instruction

Single: 4 if the immediate data is long-word aligned
5 if the immediate data is not long-word aligned

Double: 5 if the immediate data is long-word aligned
6 if the immediate data is not long-word aligned

5 + [count-1] if the immediate data is long-word aligned
6 + [count-1] if it is not
(count is the number of 32-bit transfers)

5 + [count-1] if the immediate data is long-word aligned
6 + [count-1] if it is not
(count is the number of 32-bit transfers)

4 if the immediate data is long-word aligned
5 if it is not

2 (1) if the immediate data is long-word aligned
3 (1) if it is not

3 (1) if the immediate data is long-word aligned
4 (1) if it is not

15-3

Timing for AI/Instructions Except MOVEs and MOVBs
W"':<,:':";;VM:::'».,<;<~~,'~~r<~~:::;,:::~~==<~=~~<:':::;:::'::::m.<._:~_:.:::~-...~"""~--=:*:l':~"",~~~~'&'~~~=~"""-==~_M<~=~~~"''''''''''''~=~:;:=_=1mm'

instruction

CMOVMC (constant*+)

CMOVMC (constant*-)

CMOVMC (register*+)

CMP

CMPI (long)

CMPI (short)

CMPK

CMPXY

CPW

CVDXYL

CVMXYL

CVSXYL

CVXYL

DEC

DINT

DIVS

DIVU

15-4

Number of machine cycles
consumed by instruction execution

5 + [constant-1] if the immediate data is long-word aligned
6 + [constant-1] if it is not
(constant is the number of 32-bit transfers)

5 + [constant-1] if the immediate data is long-word aligned
6 + [constant-1] if it is not
(constant is the number of 32-bit transfers)

5 + [register value-1] if the immediate data is long-word aligned
6 + [register value-1] if it is not
(the register value is the number of 32-bit transfers)

2 if the immediate data is long-word aligned
3 if it is not

2

pitch is a power of 2: 2
2 powers of 2: 3
arbitrary: 14

pitch is a power of 2: 2
2 powers of 2: 3
arbitrary: 14

pitch is a power of2: 2
2 powers of 2: 3
arbitrary: 14

pitch is a power of2: 3
2 powers of 2: 4
arbitrary: 15

3

Rd Odd: 39 (normal case)
41 (if result = 80000000h)
7 (if Rs = 0)

Rd Even: 40 (normal case)
41 (if result = 80000000h)

7 (if Rs = 0 or Rs s Rd)

Rd Odd: 37 (normal case)
7 (if Rs = 0)

Rd Even: 37 (normal case)

5 (if Rs = 0 or Rs s Rd)

Instruction Timing

Instruction

DRAV

Key: P
CD

DSJ

DSJEQ

DSJNE

DSJS

EINT

EMU

EXGF

EXGPC

EXGPS

FILLL

FILLXY

FLiNE

FPIXEQ

FPIXNE

GETPC

GETPS

GETST

IDLE

INC

Timing for AI/Instructions Except MOVEs and MOVBs

Number of machine cycles
consumed by instruction execution

Window option
inside

outside

o 1
4+P+CD 5
4+P+CD 3

Selected pixel-processing option; see Table 15-1.

..

2 3
4+P+CD 4+P+CD
5 3

Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con­
tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.

2 if no jump
~

3 if jump

2 if no jump
3 if jump

2 if no jump
3 if jump

2 if no jump
3 if jump

3

8 (more if the TMS34020 enters emulation mode)

1 if Fa
2 if F1

2

2 (1)

complex Instruction

complex instruction

12 + 3CD + [2 + P]E + 3

Key: P Selected pixel-processing option; see Table 15-1. If the number of
hidden cycles is greater than 1, then P = P + (hidden cycles -1).

E Total number of pixels drawn.
CD Complexity of destination pitch. CD = a ifCONVDP contains a pow­

er of 2; CD = 1 if CONVDP contains a sum of powers of 2; CD =
12 if CONVDP contains an arbitrary pitch.

complex instruction

complex instruction

2

1

minimum execution time of 1 cycle before taking interrupt
EMU: 5 cycles min before responds to halt
NMI mode1: 8
NMI modea, HINT, DPYINT, WINT, INT1, or INT2: 11 if SP aligned, else 13

15-5

Timing for AI/Instructions Except MOVEs and MOVBs

instruction

JAcc

JRcc (short)

JRcc (long)

JUMP

LINE

Key: P
WV
Q
E
CD

LlNIT

LMO

MMFM

MMTM

MODS

MODU

Number of machine cycles
consumed by instruction execution

3 if no jump, else 4

1 if no jump, else 2

2 if no jump, else 3

2

Window option 0:

Window option 1:

13 + 3CD + [3 +P]E + 2

13 + 3CD + [3 +P]Q + 2

Window option 2: 13 + 3CD + [3 +P]E + WV + 2

Window option 3: 13 + 3CD + [3 +P]E + 3Q + 2

Selected pixel-processing option; see Table 15-1, but ignore the hidden cycles.
=3 if there is a window violation, = a otherwise.
Total number of pixels calculated but not drawn.
Total number of pixels drawn.
Complexity of destination pitch. CD = a ifCONVDP contains a powerof2; CD = 1 ifCONVDP con­
tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.

9

registers moved 1 2 3 4 n
cycles 6 7 8 9 n+5

registers moved 1 2 3 4 n
long-word aligned 4(1) 6(1) 7(1) 8(1) [4+n](1)

byte aligned 4(1) 8(1) 9(1) 10(1) [6+n](1)
bit aligned 4(2) 9(2) 10(2) 11 (2) [7 + n](1)

Note: Add 1 to all timings if the MMTM instruction is not long-word aligned.

40
41 if result = 8000 aOaOh
3 if Rs = a
35
3 if Rs = a

MOVERs, Rd

MOVI (long)

MOVI (short)

MOVK

MOVX

MOVY

MPYS

MPYU

15-6

2 if immediate data is long-word aligned
3 if it isn't

2

Rs negative: 5 + (field size 1)/2
Rs positive: 6 + (field size 1)/2

5 + (field size 1)/2

Instruction Timing

Timing for All Instructions Except MOVEs and MOVBs,_'_"WI_~l"l'_"'''''' .. ______ I~m_~_.~;~ ""''$l'~_g_J:'~ __ =:rr~_Wl~,.._t u_c._m'''''''_:::l'IJ:_ •• =mm:' ____ fZ_Wl}'I_1I' m::w J:' A'I-'"

Instruction

MWAIT

NEG

NEGB

NOP

NOT

OR

ORI

PFILL

PIXBLT B, L

PIXBLT B, XV

PIXBLT L, L

PIXBLT L, M, L

PIXBLT L, XV

PIXBLTXV, L

PIXBLT XV, XV

PIXT Rs, *Rd

PIXT Rs, *Rd.xV

PIXT*Rs, Rd

PIXT *Rs, *Rd

PIXT *Rs.XV, Rd

PIXT *Rs.XV, *Rd.XY

Number of machine cycles
consumed by instruction execution

minimum of2

2 if immediate data is long-word aligned
3 if it isn't

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

complex instruction

2+P

Window option

3

inside
outside

4+P

6+CS

o
4+CD+P
4+CD+P

1
5
3

Window option o 1 2

2 3
4+CD+P 3+CD+P
5+CD 3+CD

3
inside

outside
7+CS+CD+P 5
7+CS+CD+P 3

7+CS+CD+P 7+CS+CD+P
5+CD 3+CD

Key: P Selected pixel-processing option; see Table 15-1 (page 15-2).
CD Complexity of destination pitch. CD = 0 if CONVDP contains a power of 2; CD = 1 if CONVDP con­

tains a sum of powers of 2; CD = 12 if CONVDP contains an arbitrary pitch.
CS

POPST

PUSHST

PUTST

Complexity of source pitch. CS = 0 if CONVSP contains a power of 2; CS = 1 if CONVSP contains
a sum of powers of 2; CS = 12 if CONVSP contains an arbitrary pitch.

6 if the SP is aligned
7 if it isn't

2 (1) if the SP is aligned
2 (2) if it isn't

3

15-7

Timing for All Instructions Except MOVEs and MOVBs

Instruction

RETI

RETM

RETS

REV

RL (constant)

RL (register)

RMO

RPIX

SETC

SETCDP

SETCMP

SETCSP

SETF

SEXT

SLA (constant)

SLA (register)

SLL (constant)

SLL (register)

SRA (constant)

SRA (register)

SRL (constant)

SRL (register)

15-8

':N':~':t::~~ __ .."..,= ,....._,...."."""""..,.",_",","", __

Number of machine cycles
consumed by instruction execution

52 if SF status bit = 1
38 if IX status bit = 1
else 7

52 if SF status bit = 1
38 if IX status bit = 1
else 10

5
6 if the stack isn't aligned

2 if PSIZE = 32
4 if PSIZE = 16
5 if PSIZE = 8
6 if PSIZE = 4
7 if PSIZE = 2
8 if PSIZE = 1

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3 (1)

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3(1)

pitch is a power of 2: 4(1)
2 powers of 2: 6(1)
arbitrary: 3(1)

2

3

3

Instruction Timing

Instruction

SUB

SUBB

SUBI (long)

SUBI (short)

SUBK

SUBXY

SWAPF

TFILL

TRAP

TRAPL

VBLT

VFILL

VLCOL

XOR

XORI

ZEXT

Timing for All Instructions Except MOVEs and MOVBs

Number of machine cycles
consumed by instruction execution

2 if the immediate data is long-word aligned
3 if it isn't

2

5

complex instruction

7 if TRAP 0, else 10 if ST aligned
else 12

10 if ST aligned
else 12

complex instruction

complex instruction

2 (1)

2 if the immediate data is long-word aligned
3 if it isn't

15-9

Timing for MOVE and MOVB Instructions
W« ~l ~~'?"'WiI'''W':'AA''P'l'lWl'

15.2 Timing for MOVE and MOVe Instructions

This section contains the timing for MOVE and MOVB instructions. These
timings are divided into three categories:

Q Timings for memory-to-register moves (reads)
Q Timings for register-memory moves (writes)
Q Timings for memory-to-memory moves

General assumptions ------------------------

The timing of the move instructions depends on how the accessed field is
aligned in memory. The following cases of field alignment characterize the
move instruction timing.

1) The field is aligned on the boundaries of a long word or on any byte bound­
aries.

2) At least one end of the field is not aligned to a byte boundary.

3) The field crosses a long-word boundary, but both ends are aligned on byte
boundaries.

4) The field crosses a long-word boundary, and only one end is aligned on
a byte boundary.

5) The field crosses a long-word boundary, and neither end is aligned on a
byte boundary.

Table 15-2. Cases Table for MOVE and MOVB Timings

Number of Read Cycles Number of Write Cycles
Case Number Required Required

2 2

2 2 3

3 3 3

4 3 4

5 3 5

The timing tables refer to these cases.

15-10 Instruction Timing

Timing for MOVE and MOVB Instructions
_>@'m=:..I:'~l*':':lm, _:t':w:~w.=m:l:' It=::l'1_~~_~~ '11:: ~lY

Memory-to-register moves

Case

Instruction 1 2 3 4 5

MOVS*Rs, Rd 4 4 5

MOVS *Rs(SOffset), Rd 6 6 7

MOVS @SAddress, Rd 5/6 5/6 6/7

MOVE*Rs, Rd 3 3 4 4 4
sign extended: 4 4 5 5 5

MOVE *Rs+, Rd 3 3 4 4 4
sign extended: 4 4 5 5 5

MOVE -*Rs, Rd 4 4 5 5 5
sign extended: 5 5 6 6 6

MOVE *Rs(SOffset), Rd 4 4 5 5 5
sign extended: 6 6 7 7 7

MOVE@Rs, Rd 4/5 4/5 5/6 5/6 5/6
sign extended: 5/6 5/6 6/7 6/7 6/7

Register-to-memory moves

Case

Instruction 1 2 3 4 5

MOVS Rs, *Rd 1 (1) 1 (2) 1 (4)
big endian 2 2(1) 2(3)

MOVSRs, *Rd 3(1) 3(2) 3(4)

MOVSRs,@Rd 2(1)/3(1) 2(2)/3(2) 2(4)/3(4)
big end ian 3(1)/3(1) 3(2)/3(2) 3(4)/3(4)

MOVERs, *Rd 1 (1) 1 (2) 1 (2) 1 (3) 1 (4)
big endian 2(1) 2(2) 2(2) 2(3) 2(4)

MOVE Rs, *Rd+ 1 (1) 1 (2) 1 (2) 1 (3) 1 (4)
2(1) 2(2) 2(2) 2(3) 2(4)

MOVE Rs, -*Rd 2(1) 2(2) 2(2) 2(3) 2(4)

MOVE Rs, -*Rd 3(1) 3(2) 3(2) 3(3) . 3(4)

MOVERs,@Rd 2(1)/3(1) 2(2)/3(2) 2(2)/3(2) 2(3)/3(3) 2(4)/3(4)
big endian 3(1)/3(1) 3(2)/3(2) 3(2)/3(2) 3(3)/3(3) 3(4)/3(4)

15-11

Timing for MOVE and MOVB Instructions

Memory-to-memory moves ---------------------­

First, look in Table 1S-2 (page 15-10) to find the source alignment (case 1-S)
and the destination alignment (case1-S). Then, useTable 15-3 to find which
column to use in the timing table below.

Table 15-3. Source/Destination Alignment for MOVE and MOVB Timings

Destination

Source 1 2 3 4 5

1 A C C H E

2 A C C H E

3 S D D G F

4 S D D G F

5 S D D G F

R/W Cycles 2/2 3/2 2/3 3/3 2/5 3/5 3/4 2/4

A B C D E F G H

MOVS *Rs, *Rd 3(1) 4(1) 3(2) 4(2) 3(4) 4(4)

MOVS *Rs(SOffset), *Rd(DOffset) 5(1) 6(1) 5(2) 6(2) 5(2) 6(4)

MOVS @SAddress,@DAddress
even 5(1) 6(1) 5(2) 6(2) 5(4) 6(4)
odd 7(1) 8(1) 7(2) 8(2) 7(4) 8(4)

MOVE *Rs, *Rd 3(1) 4(1) 3(2) 4(2) 3(4) 4(4) 4(3) 3(3)

MOVE *Rs+, *Rd+ 3(1) 4(1) 3(2) 4(2) 3(4) 4(4) 4(3) 3(3)

MOVE -*Rs, -*Rd 4(1) 5(1) 4(2) 5(2) 4(4) 5(4) 5(3) 4(3)

MOVE *Rs(SOffsetJ. *Rd+ 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)

MOVE *Rs(SOffset). *Rd(DOffset) 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)

MOVE @Rs. *Rd+
even 4(1) 5(1) 4(2) 5(2) 4(4) 5(4) 5(3) 4(3)
odd 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)

MOVE @Rs, @Rd
even 5(1) 6(1) 5(2) 6(2) 5(4) 6(4) 6(3) 5(3)
odd 7(1) 8(1) 7(2) 8(2) 7(4) 8(4) 8(3) 7(3)

15-12 Instruction Timing

Appendix A

Test and Emulation Considerations

This appendix provides information that you'll need if you're building a
TMS34020 target system and you plan to use the TMS34020 Emulator. The
TMS34020 Emulator supports realtime in-circuit emulation; key features
include

Q Serial scan-path technology. The emulator uses TI's revolutionary serial
scan-path technology, eliminating the need for the typical emulator target
cable, which uses a full device pinout. Instead, the target system needs
only a 12-pin header to connect between the TMS34020 and the
TMS34020 emulator board through the emulation target cable.

Q PC-compatible emulator board. The emulator board is a PC/XT-com­
patible emulator board. It provides a high-speed communication path be­
tween a PC and the TMS34020.

Q SymboliC debugger with windowed interface. The emulator's symbolic
debugger provides the following features through its windowed interface:

• Ability to upload/download application code and emulation setup
• Software breakpoints on selected instructions
• Single-step execution
• Access to registers and memory
• TMS34020 patch assembler/disassembler
!:! Benchmark timing

Section Page

The remainder of this appendix A.1 Overview of an Emulation System A-2
contains information about setting A.2 Emulation Connector (12-Pin Header) A-3

up your target system. A.3 Signal Buffering A-4

A.4 Buffer Delays A-5

A.5 Design Considerations A-7
A.6 Mechanical Dimensions A-9

A-1

Overview of an Emulation System _____ '''''~:st_. _'"""'_~~_"""",,,",,,,""' ___ M;:;_::;::;===_~::r_~;s.'_~~f_~~~~~~s:;:;:-;"""""' ... ~~~::r...,..~~~~~:;:;:::;~

A.1 Overview of an Emulation System

Figure A-1 shows a typical setup using the emulator, target cable, and your tar­
get system.

Figure A-t. Typical Setup Using the TMS34020 Emulator and Your Target System

target system

12-pin connector

active buffer pod

target cable

TMS34020

Figure A-2 shows how you connect the emulator and target cable to your tar­
get system.

Figure A-2. Connecting the TMS34020 Emulator to Your Target System

TMS34020 Emulator board

active buffer pod
12-pin header

TMS34020

A-2 Test and Emulation Considerations

Emulation Connecter

A.2 Emulation Connector (12-Pin Header)

To use the target cable, your target system must have a 12-pin header (2 rows
of 6 pins) with the connections that are shown in Figure A-3. The header pins
connect directly to the TMS34020 except when the header is farther than 2
inches from the TMS34020 (see Section A.3 on page A-4).

Figure A-3. 12-Pin Header Signals

Header Dimensions:
Pin-to-pin spacing: 0.100 inches (X, Y)
Pin width: 0.025 inches

Pin length:

Signal

EMUO

EMU1

EMU2

EMU3

LCLK1

square post
0.235 inches
nominal

Description

Emulation pin 0

Emulation pin 1

Emulation pin 2

Emulation pin 3

TMS34020 local clock 1

EMU1

EMUO

EMU2

PO (+5V)

EMU3

LCLK1

2 GNO

3 4 GNO

5 6 GNO

7 no pin
(key)

9 10 GNO

11 12 GNO

TMS34020
Pin Number

J1

J3

K1

H2

H1

PO Presence detect. Indicates that the cable is connected and target sys­
tem is powered up. Tie PO to +5 volts in the target system.

Although you can use other headers, recommended parts include

straight header, unshrouded

right-angle header, unshrouded

right-angle header, 4-wall shrouded

DuPont Connector Systems
part number 67996-112

DuPont Connector Systems
part· nu mbe r 68405-112

AMP, Incorporated
part number 103167-3

A-3

A.3 Signal Buffering

A-4

It is extrem~ly important to provide high-quality signals between the emulator
and the TMS34020 on the target system. In many cases, the signal must be
buffered to produce a high-quality signal. The need for signal buffering and
placement of the emulation header can be divided into 3 categories:

o No signal buffering. In this situation, the distance between the header
and the TMS34020 should be no more than 2 inches.

I---a to 2 inches--l
3

EMUO, EMU1, EMU2

LCLK1, EMU3

o Buffered transmission signals. In this situation, the distance between
the emulation header and the TMS34020 is greater than 2 inches but less
than 6 inches. The transmission signals-LCLK1 and EMU3-are buff­
ered through the same package.

I--- 2 to 6 inches ·1
3 EMU1 EMU2

LCLK1, EMU3

o All signals buffered. The distance between the emulation header and the
TMS34020 is greater than 6 inches but less than 12 inches. All TMS34020
emulation signals-EMUO, EMU1, EMU2, and EMU3-are buffered
through the same package.

~-----66 to 12 inches-------..·I

LCLK1, EMU3

Test and Emulation Considerations

A.4 Buffer Delays

Buffer

The absolute maximum propagation delay for both -32 and -40 TMS34020
devices is 10 ns. The buffer is noninverting, and all emulation signals that are
buffered should be buffered through the same package.

The distance between the TMS34020 and the buffers depends on the PWB
layout and loading on LCLK1. However, Texas Instruments suggests that the
distance be as short as possible and less than 4 inches.

When you buffer LCLK1, don't place another device between the buffer output
and header. Connecting another device to this signal could cause false trigger­
ing of the device due to cable reflections (see Figure A-4).

Figure A-4. LCLK1 Buffer Restrictions

LCLK1

Don't connect any devices be­
tween the buffered LCLK1
output and the header!

Figure A-5 shows a portion of logic in the emulator pod. Note that 33-0. resis­
tors are added to EMUO, EMU1, and EMU2; this minimizes cable reflections.

A-5

Buffer Delays ___ == ____ ::s::s_"""""=Wtt=*'"""" ~~~~~

Figure A-5. Emulator Pod Interface

EMU3 (pin 9)

LCLK1 (pin 11)

PD (+ 5 V, pin 7)

GND (pins 2,4,6,10,12)

no pin (key, pin 8)

A-6

EMU1 (pin 1)

EMUO (pin 3)

EMU2 (pin 5)

Test and Emulation Considerations

Design Considerations

A.5 Design Considerations

When designing a TMS34020 target system, please observe these hardware
and software emulation constraints. Portions of these design considerations
are advanced information and may not apply to all Texas Instruments emula­
tors.

a Reset and interrupts. When an emulator is active, the TMS34020 will ser­
vice reset and interrupts only if the emulator is in an execution mode. The
target system must provide a reset to the TMS34020 before the emulator
is activated.

a Host/emulation coordination. If the emulator has stopped execution of
the TMS34020 (program execution is halted), the TMS34020 will continue
to respond to host port accesses. If TMS34020 program execution is re­
quired to provide a response to a host access, the host could hang or time­
out. Also, functions such as reset, interrupts, NMI, and HLT will not take
effect until the emulator is placed back in an execution mode; this could
also hang the host application if a response is required. Emulators and
host applications typically use timeouts to keep from hanging if a
TMS34020 function is not performed properly. If both the emulator and
host are accessing the TMS34020 memory space at the same time, false
timeouts could occur in both the emulator and the host.

Note:

Both the host and emulator can access the same memory space at effectively
the same time. Thus, the emulator'S memory display could be inaccurate if
the host is modifying a memory location within the display range.

To minimize these conflicts, the host can use 3 bits within HSTCTLL to
grant access of the TMS34020 to the emulator. These bits are:

• EMR (emulator request),
• EMG (emulator grant), and
• EMIEN (emulator interrupt enable).

The emulator sets EMR when the emulator requires access to the device.
If EMIEN is set, a host interrupt is generated via the HINT pin. When the
host sets EMG, the interrupt is cleared and the emulator performs its pend­
ing function.

TMS34020 execution will be stopped immediately if an emulation halt con­
dition (such as a breakpoint) is encountered, although emulation access of
the TMS34020 will not start until EMG is set. The host processor can use
either the host interrupt or the EMR bit to indicate that an emulator halted
the TMS34020.

A-7

Design Considerations .

A-8

When the emulator no longer requires access to the device, the emulator
clears EMR. Once again, this causes a host interrupt if EMIEN is set. The
host interrupt is deactivated when the host clears EMG.

Using this handshake protocol is optional and should be used in applica­
tions that are sensitive to emulation access of the TMS34020. Before at­
tempting to integrate this protocol into your system, consult the TMS34020
XDS Emulator User's Guide for additional information.

Test and Emulation Considerations

Mechanical Dimensions

A.6 Mechanical Dimensions

Figure A-6 shows the TMS34020 emulator target cable, which consists of

Q an emulator connector,
Q a 3-foot section of jacketed cable,
Q an active cable pod,
Q a short section of jacketed cable that connects to the target system, and
Q a 12-pin connector that connects to the target system's 12-pin header.

Figure A-6. Target Cable

3-foot jacketed cable \

active cable pod

emulator connector

short jacketed cable,
connects to target system

\

The overall cable length is approximately 3'10". Figure A-7 shows the
mechanical dimensions for the target cable pod. The cable pod box is noncon­
ductive plastic with 4 recessed metal screws.

Figure A-7. Pod Dimensions

Note: All dimensions are in inches and are nominal dimensions unless otherwise spe­
cified.

A-9

Mechanical Dimensions

Figure A-B. 12-Pin Connector Dimensions

A-10

(a) Side view

(b) Top view

0.100

I--- 0.20

I
0.38

~
-1r- key, pin 8

---,.,L---..,.--

DO
DO D.
DO
DO
DO

0.70

pins 1,3,5,7,9,1 ~ L pins 2,4,6,8,10,"

Notes: 1) All dimensions are in inches and are nominal dimensions unless otherwise
specified.

2) Pin-to-pin spacing on the connector is 0.100 inches in both the X and Y
planes.

Test and Emulation Considerations

8-2

bit plane: Hardware used as a storage medium for a bitmap.

black level: Amplitude of the composite signal at which the beam of the pic­
ture tube is extinguished (becomes black) to blank retrace of the beam.
This level is established at 75% of the signal amplitude.

blanking signals: Pulses that extinguish the scanning beam during horizon­
tal or vertical retrace periods.

breakpoint: Point within a routine at which the routine may be interrupted
by external intervention.

BSFLTD: Bus-fault data registers (32-bit I/O register, address CODa 0320h).
The TMS34020's memory controller saves the LAD data into BSFLTD
when a bus fault occurs on a CPU-initiated memory access.

BSFLTDL: 16 LSBs of BSFLTD, accessed at address CODa 320h.

BSFLTDH: 16 MSBs of BSFLTD, accessed at address CODa 330h.

BSFLTST: Bus-fault status register (16-bit 110 register, address
CODa 02DOh). The TMS34020's memory controller saves its state in
BSFLTST before it signals that a bus fault occurred.

BUSFLT: Bus fault signal. External logic asserts BUSFLT to indicate that a
fault occurred on the current bus cycle.

cache memory: A fast, on-chip memory.

cache hit: The cache contains the requested instruction word.

cache miss: The cache does not contain the requested instruction word.

CAD: Computer-aided design.

CAMD: Column-address mode. Shifts the column address on the RCA bus
to allow mixing of DRAM and VRAM address matrices.

CAS: Column-address strobes (CASO-CAS3). Drive the CAS inputs of
DRAMs and VRAMs.

CBP: Configuration byte protect (bit 4 of CON FIG register). CBP=O is the
default; CBP= 1 write-protects the LSbyte of CON FIG until a reset occurs.

CD: Cache disable (bit 15 of CONTROL register). CD=O (default) enables
cache operation; CD=1 forces the TMS34020 to ignore the contents of
the cache and to fetch instructions from memory.

CF: Cache flush (bit 14 of HSTCTLH register). Setting CF to 1 flushes and
disables the cache. Normal cache operation resumes when CF is cleared
to O.

Appendix B

clipping: Removing parts of display elements that lie outside a defined
boundary (the boundary is usually a window or a viewport).

COLORO: Background color register (BS). Identifies the replacement color
for a-value pixels in a source array.

COLOR1: Foreground color register (B9). Identifies the replacement color
for pixels that will be altered in the destination array.

column-address time: See data subcyc/e.

composite video: Color-picture signal plus all blanking and sync signals.
The signals include luminance and chrominance signals, vertical- and
horizontal-sync pulses, vertical- and horizontal-blanking pulses, and the
color-burst signal.

CONFIG: Configuration register (16-bit I/O register, address COOO 01 AOh).
Contains fields that selectively enable/disable various aspects of system
configuration.

CONTROL: Memory control register (16-bit I/O register, addresses
COOO OOBOh and COOO 0190h). Controls various aspects of CPU activity.

CONVOP: Destination pitch conversion factor register (16-bit 110 register,
address COCO 0140h). Contains a control parameter used for converting
an XY destination address to a linear address.

CONVMP: Mask pitch conversion factor register (16-bit I/O register, address
COCO 01S0h). Contains a control parameter used for converting an XY
mask address to a linear address.

CONVSP: Source pitch conversion factor register (16-bit I/O register,
address COOO 0130h). Contains a control parameter used for converting
an XY source address to a linear address.

coprocessor: An additional processor in a system; extends the functionality
of the main processor. For example, the TMS340S2 is a coprocessor for
the TMS34020; in a TMS34020 system, the TMS340S2 adds floating­
point capabilities to the TMS34020's functions.

CSO: Composite-sync direction (bit 2 of DPYCTL register). When the
CSYNC/HBLNK pin is configured as CSYNC (CVD=O), CSD determines
if CSYNC is configured as in input (CSD=O) or an output (CSD=1).

CST: CPU shift-register transfer enable (bit 11 of DPYCTL register). When
CST =1, the TMS34020 converts pixel accesses into VRAM shift-register
transfer cycles.

CVO: Composite video disable (bit 3 of DPYCTL register). Controls the func­
tions of the CSYNC/HBLNK and CBLNKlVBLNK pins. CVD=O selects
CSYNC and CBLNK; CVD=1 selects HBLNK and VBLNK.

8-3

II

8-4

DAC: Digital-to-analog converter.

DADDR: Destination address register (B2). Contains the destination array
address for graphics instructions.

data subcycle: Second part of a local-memory cycle, sometimes referred
to as column-address time.

ODIN: Data bus direction input-enable signal. Drives the active-high input
enables on bidirectional transceivers.

DDOUT: Data bus direction output-enable signal. Drives the active-low out­
put enables on bidirectional transceivers.

DGIS: Direct graphics interface standard.

DIE: Display interrupt enable (bit 10 of INTENB register). Setting DIE to 1
enables the display interrupt.

DIP: Display interrupt pending (bit 10 of INTPEND register). DIP is set to 1
when a display interrupt is requested.

DINC: Display increment registers (32-bit I/O register, address
CODa 0240h). Contains the increment value for the DPYNX register.

DINCL: 16 LSBs of DINC, accessed at address COOO 0240h.

DINCH: 16 MSBs of DINC, accessed at address COOO 0250h.

display area: Rectangular portion of the physical display screen in which in­
formation is visibly displayed; does not include the border area.

display element: Basic graphic element that can be used to construct a dis­
play image.

display memory: Area of memory used to hold the graphics image output
to the video monitor.

display pitch: Difference in memory addresses between two vertically adja­
cent positions on the screen.

dotclock: Clock that cycles the rate at which video data is output to a CRT.

DPTCH: Destination pitch register (B3). Defines the linear difference
between starting addresses of adjacent rows in a destination array.

DPYADR: Display address register. Provides compatibility with the
TMS34010.

DPYCTL: Display control register (16-bit 110 register, address COOO 0080h).
Controls video timing and VRAM serial-register transfers.

Appendix B

Glossary
:::w..::m:;:;:::;~,.:;:::;;;::m~m:;mm:;:·~:::;~~~m:::::::::::,m~~m~s::::::~~~:::;m::::::::::::::::::-,..:;w..,;;;:;m:;:;%mwwww~~x~~:::;~sx:;-~~~::::~~Wfi~~::::mx::x::::::~:::::;m::::m~/.,:;~::::w;sx::::~~~s~:::~*,~w~~;:::;w.x~~~

DPYINT: Display interrupt register (16-bit I/O register, address
COOO OOAOh). Identifies the next scan line (in some circumstances, the
next half scan line) at which a display interrupt can be requested.

DPYNX: Display next address registers (32-bit I/O register, address
COOO 0220h). Contains a 32-bit address that is output during a screen-re­
fresh cycle.

DPYNXL: 16 LSBs of DPYNX, accessed at address COOO 0220h.

DPYNXH: 16 MSBs of DPYNX, accessed at address COOO 0230h.

DPYMSK: Display mask register (16-bit I/O register, address COOO 02EOh).
When midline reload screen refreshes are enabled, DPYMSK deter­
mines which bits of DPYNX & DPYST correspond to the tap-point portion
of the address output during screen-refresh cycles.

DPYST: Display start address registers (32-bit I/O register, address
COOO 0200h). Contains a 32-bit address that points to the pixel at the left
of the 1 st line displayed on the screen.

DPYSTL: 16 LSBs of DPYST, accessed at address COOO 0200h.

DPYSTH: 16 MSBs of DPYST, accessed at address COOO 021 Oh.

DPYSTRT: Display start address register. Provides compatibility with the
TMS34010.

DPYTAP: Display tap-point address register. Provides compatibility with the
TMS34010.

DQ: Data in/data out pin for a VRAM.

DRAM: Dynamic RAM.

DRAM refresh: Maintenance of data stored in dynamic RAMs. Data are
stored in DRAMs as electrical charges across a grid of capacitive cells.
The charge stored in a cell will leak off over time unless the data is
refreshed.

DYDX: Delta Y/delta X register (B7). Defines the X and Y dimensions of a
rectangular destination array.

EMIEN: Emulator host-interrupt enable (bit 12 of HSTCTLL register). The
value of EMIEN determines if EMG XOR EMR asserts HINT active low
(EMIEN=1) or not (EMIEN=O).

EMG: Emulator handshake (bit 11 of HSTCTLL register). In an emulation
system, the host sets EMG to 1 to gran the emulator access to TMS34020
memory.

B-5

Glossary
S~~S~" r-nrm~'"W">WC ;~m~:::::::m~~=m::::""""" ___ :::,:::, ___ ~~m*,~ :::'~·;"""" :xm.,;$;:: ;::::::s:'~ ~m ... "",_;;_;; =-____ ::r;""~;;w::::: ___ :~

II

m
8-6

EMR: Emulator handshake (bit 10 of HSTCTLL register). In an emulation
system, the emulator sets EMR to 1 to request access to TMS34020
memory.

ENV: Enable video (bit 15 of DPYCTL register). ENV enables (ENV=1) or
disables (ENV=O) the video screen.

field: 1. Group of contiguous bits in a register or memory location, dedicated
to a particular function or representing a single entity. 2. Software-confi­
gurable data type supported by the TMS3401 0 and TMS34020; the field
length can be programmed to be any value in the range of 1 to 32 bits.

fill: Solid coloring or shading of a display surface, often achieved as a pattern
of horizontal segments.

frame: 1. Time required to refresh an entire screen. 2. Screen image output
during a single vertical sweep.

frame buffer: Portion of memory used to buffer raster data to be output to
a CRT. Frame buffer contents are often referred to as the bitmap of the
display and contain the logical pixels corresponding to the points on the
monitor screen.

front porch: Portion of a vertical- or horizontal-blanking pulse that precedes
the leading edge of the vertical- or horizontal-sync pulse.

GI: Bus grant input. External bus arbitration logic pulls Gllow to enable the
TMS34020 to gain access to the local-memory bus.

GKS: Graphics kernel system. Application programmer's standard interface
to a graphics display.

gray scale: Scale of light intensities from black to white.

GSP: Graphics system processor. A single-chip device embodying all the
processing power and control capabilities necessary to manage a high­
performance bitmapped graphics system. The TMS34010 and
TMS34020 are GSPs.

HA: Host address input bus (HA5-HA31). A host processor requests an
address over these lines.

Appendix B

Glossary
::m;uw:::; ~:::;:':::;:::;~~:::;:l:'~~~~'X!~~:::;:'.~ww'·rm:= :::::::::::w mxrr:x'''::mw...m::'~::::':::::~::.:;x-;:,«"«~::x''*"X*"*''/*,-' " .. «@"~~;::: .•. *'-' .. ""' -'-'-'-'-'-'::::,x:;:::wx:'.m~'*~£«~

HACK: Halt acknowledge (bit 4 of HSTCTLH register). Setting the HLT bit
halts TMS34020 execution at the next interruptible instruction boundary;
the TMS34020 sets HACK when the halt actually takes place.

HBFI: Host-bus-fault interrupt (bit 14 of HSTCTLL register). The TMS34020
sets HBFI to 1 if a bus fault occurs on a host access.

HBREN: Host-bus-faultlretry-interrupt (bit 15 of HSTCTLL register). If
HBREN=1, the TMS34020 interrupts the host when a retry or bus fault
occurs.

HBS: Host byte select-bus (HBSO-HBS3). Identify the bytes to be selected
within a specific word.

HCOUNT: Horizontal count register (16-bit I/O register, address
COOO 01 DOh). HCOUNT counts the number of VCLK periods per
horizontal scan line.

HCS: Host chip-select signal. A host drives HCS low to latch the current
address and byte-select requests.

HOST: Host data strobe signal.

HEBLNK: Horizontal end blank register (16-bit I/O register, address COOO
0030h). HEBLNK identifies the endpoint for the horizontal blanking inter­
val.

HESERR: Horizontal end serration register (16-bit I/O register, address
COOO 0270h). HESERR determines the endpointforthe composite-sync
pulse during the serration region of vertical blanking.

HESVNC: Horizontal end sync register (16-bit I/O register, address
COOO 0010h). HESYNC identifies the endpoint for horizontal sync.

HIE: Host interrupt enable (bit 9 of INTENB register). Setting HIE to 1
enables the host interrupt.

high impedance: The third state of a three-state output driver, in which the
output is driven neither high or low but behaves as an open connection.

HIP: Host interrupt pending (bit 9 of INTPEND register). HIP is set to 1 when
a host interrupt is requested.

HINC: Host increment (bit 12 of HSTCTLH register). Setting HINC to 1
enables the TMS34020 to compare the fetched address to the address
requested by a host processor, to increment the current address, and to
prefetch the contents of the next address.

HINT: Host interrupt signal.

HLBO, HLB1: Host last byte (bits 5&6 of HSTCTLH register). The HLB code
tells the TMS34020 which byte of a 32-bit word that a host processor will
access last. The TMS34020 uses this information to determine the cor­
rect time to prefetch the next word.

8-7

8-8

HLT: Halt TMS34020 program execution (bit 15 of HSTCTLH register). Set­
ting HLT to 1 suspends TMS34020 instruction processing at the next
instruction boundary.

HOE: Host output-enable signal.

hold signal: Signal capable of controlling a processor bus; sentto a bus arbi­
ter to request bus control. Typically, the arbiter grants the request by
sending a hold-acknowledge signal to the requestor.

horizontal back porch: Portion of horizontal blanking that follows the trail­
ing edge of the horizontal-sync pulse.

horizontal-blanking interval: Time during which the display is blanked to
cover the horizontal retracing of the electron beam on a screen.

horizontal front porch: Portion of a horizontal-blanking pulse that precedes
the leading edge of the horizontal-sync pulse.

horizontal sync: Synchronization signal that enables horizontal retrace of
the electron beam on a screen.

host address bus: Lines used by a host processor to identify the address
of a TMS34020 local-memory location.

host processor: Main processor in a system.

HPFW: Host prefetch-after-write enable (bit 10 of HSTCTLH register). When
host prefetches are enabled (HINC=1), the value of HPFW determines
if the TMS34020 performs prefetches after reads (HPFW=O) or after
writes (HPFW=1).

HRDY: Host ready signal. Driven high when the TMS34020 is ready to com­
plete a host-initiated access.

HREAD: Host read strobe. Driven low during a host's read request.

HRYI: Host-retry interrupt (bit 13 of HSTCTLL register). The TMS34020 sets
HRYI to 1 if it retries a host access.

HSBLNK: Horizontal start blank register (16-bit I/O register, address
COOO 0050h). HSBLNK identifies the startpoint for the horizontal blank­
ing interval.

HSD: Horizontal-sync direction (bit 0 of DPYCTL register). Determines if
HSYNC is configured as an input (HSD=O) or an output (HSD=1).

HSTADRL: Host address register. Provides compatibility with the
TMS34010.

HSTADRH: Host address register. Provides compatibility with the
TMS34010.

HSTCTLH: Host control 1/0 register, high word (16-bit I/O register, address
COOO 01 OOh). Controls aspects of host-interface communications.

Appendix B

D

II

HSTCTLL: Host control I/O register, low word (16-bit I/O register, address
COOO OOFOh). Controls aspects of host-interface communications.

HSTDATA: Host data I/O register. Provides compatibility with the
TMS34010.

HTOTAL: Horizontal total register (16-bit 110 register, address COOO 0070h).
Number of VCLK periods per horizontal scan line; defines the startpoint
for the horizontal sync pulse .

.,-;-;-;;== HWRITE: Host write strobe. Driven low during a host's write request.

interlaced video: Video system in which odd-numbered scan lines (odd
field) are interlaced with even-numbered scan lines (even field). The odd
and even fields constitute one frame. In effect, the number of transmitted
pictures is doubled; this reduces flicker.

IHOST: Internal host interface address registers (4 32-bit registers: IHOST1,
address COOO 0308h; IHOST2, address COOO 03AOh; IHOST3, address
COOO 03COh; IHOST4, address COOO 03EOh). The TMS34020 uses
these registers for storing information provided by the host.

implied operand: A register value that must be supplied for an instruction
to execute properly. The 8-file registers and several of the I/O registers
serve as implied operands for the TMS34020's graphics instructions.

INTENB: Interrupt enable register (16-bit I/O register, address COO a 011 Oh).
Selective enables /disables external interrupts 1 and 2, the host interrupt,
the display interrupt, and the window violation interrupt.

INTPEND: Interrupt pending register (16-bit I/O register, address
COOO 0120h). Identifies the pending/not pending status of external inter­
rupts 1 and 2, the host interrupt, the display interrupt, and the window vio­
lation interrupt.

INTIN: Interrupt-in (bit 3 of HSTCTLL register).

INTOUT: Interrupt-out (bit 7 of HSTCTLL register).

K: 1) 1024. 2) Approximately 1000. 3) A 5-bit constant for a TMS34020
instruction.

Kbyte: Approximately 1000 bytes.

LAD bus: 32-bit local address/data multiplexed bus (LADO-LAD31).

8-9

II

m

8-10

little-endian: An addressing mode in which the "little" or least significant end
of an address (bit 0) points to the least significant end (bit 0) of a word
of data.

long word: 32-bit word.

look-up table: Table used during scan conversion of a digital image that
converts color-map addresses into the actual color values displayed.

LRDY: Local ready signal. External circuitry drives LRDY low to stop the
TMS34020 from completing a local-memory cycle.

LRU: Least recently used (cache-replacement algorithm). When a cache
miss occurs, this algorithm selects the cache segment that will be over­
written, based on the likelihood that the data in the discarded segment
will not be needed again for some time. The LRU algorithm selects the
segment that was used least recently.

LSB: Least significant bit.

LSbyte: Least significant byte.

LSW: Least significant word.

mask: Pattern used to control retention or elimination of portions of another
pattern.

Mbyte: Megabyte.

memory map: Map of memory space, partitioned into functional blocks.

MPTCH: Mask pitch register (811). Defines the linear difference between
starting addresses of adjacent rows in a mask array.

MSB: Most significant bit.

MSbyte: Most significant byte.

MSGIN: Message-in (bits 0-2 of HSTCTLL register).

MSGOUT: Message-out (bits 4-6 of HSTCTLL register).

MSW: Most significant word.

NIL: Noninterlaced video enable (bit 14 of DPYCTL register). The value of
NIL selects interlaced video timing (NIL=O) or noninterlaced video timing
(NIL=1).

AppendixB

Glossary
~rs:::'~ ~r-~mm:'~r~~rf~~::::x::::::::::~~~r~ ~@:x:::::,s;:m$*~"(rr$$ffrrm:-~:~::::.-:::S'mrrr~r~.::::::::::::::x::~::x::::::rf~::::~~:ff:::::~r::::::.::~~""

m

NMI: Nonmaskable interrupt (bit 8 of HSTCTLH register). A host processor
sets NMI to send a nonmaskable interrupt to the TMS34020.

NMIM: Nonmaskable interrupt mode (bit 9 of HSTCTLH register). If
NMIM=O, the TMS34020 saves the PC and ST contents on the stack
before executing a nonmaskable interrupt routine. If NMIM=1, the
TMS34020 discards the PC and ST contents before executing the NMI
routine.

nonmaskable interrupt: Interrupt request that cannot be disabled.

NTSC: National television system committee. Group representing a wide
range of interests in the television broadcasting and video industry;
NTSC is instrumental in developing graphics and video standards.

OFFSET: XV-address offset register (B4). OFFSET contains the linear ad­
dress of the 1st pixel in the XV-coordinate address space.

operand: Anyone of the quantities entering into or arising out of an opera­
tion.

origin: Zero intersection of X and Y axes from which all points are calculated.

palette: Digital look-up table used in a graphics display for translating data
from the bitmap into the pixel values to be shown on the screen.

pan: Apparent horizontal or vertical movement of a graphics screen or
window over an image contained in a frame buffer that is too large to be
completely displayed in a single static picture.

PATTERN: Fill-pattern register (B13).

PBH: PIXBLT horizontal direction (bit 8 of CONTROL register). PBH=O
(default) selects left-to-right pixel processing; PBH=1 selects right-to-Ieft
processing.

PBV: PIXBLT vertical direction (bit 9 of CONTROL register). PBV=O (default)
selects top-to-bottom pixel processing; PBV=1 selects bottom-to-top
processing.

pending: Requested but not yet performed. For example, a pending inter­
rupt is an interruptthat has been requested but has not yet been seNiced.

PGA: Pin grid array (type of chip package).

PGMD: Page-mode signal. Memory decode logic asserts PGMD low if the
currently addressed memory supports page-mode accesses.

8-11

8-12

phase: The time interval for each clock period in a system is divided into
phases; one phase corresponds to the time when the clock signal is high,
the other to the time that the signal is low.

PHIGS: Programmer's hierarchical interactive graphics standard.

pipelining: Design technique for reducing the effective propagation delay
per operation by partitioning the operation into a series of stages, each
of which performs a portion of the operation. A series of data is typically
clocked through the pipeline in sequential fashion, advancing one stage
per clock period.

pitch: Difference in starting addresses of two adjacent rows of pixels in a
2-dimensional pixel array.

pixel: Picture element. 1. Smallest controllable point of light on a display
screen. 2. In a bitmapped display, the logical data structure that contains
the attributes to be shown at the corresponding physical pixel position on
a display screen.

pixel-processing option: Boolean or arithmetic operation for combining
two pixel values (source and destination); defined by PPOP[CON­
TROL].

PIXBLT: Pixel-block transfer. Pixel-array operation in which each pixel is rep­
resented by one or more bits. PIXBLTs are a superset of bitblts and
include commonly-used Boolean functions as well as integer arithmetic
and multi-bit operations.

plane: (also bit plane or color plane) Bitmap layer in a multiple-bit-per-pixel
display device. If the pixel size is n bits and the bits in each pixel are num­
bered 0 to n-1, plane 0 is made up of O-numbered bits in all the pixels,
and plane n-1 is made up of n-1-numbered bits in all the pixels. A layered
graphics display allows planes or groups of planes to be manipulated
independently of the other planes.

PMASK: Plane mask registers (32-bit 110 register, address COOO 0160h).
PMASK contains a mask of Os and 1 s; the 1 s represent protected desti­
nation bits, and the Os represent modifiable destination bits.

PMASKL: 16 LSBs of PMASK, accessed at address COOO 0160h.

PMASKH: 16 MSBs of PMASK, accessed at address COOO 0170h.

PPOP: Pixel-processing operation (bits 10-14 of CONTROL register).
Selects a method for combining source and destination pixels. You can
choose from 16 Boolean and 6 arithmetic operations; the default opera­
tion is S~D (source pixels replace destination pixels).

propagation delay: Time required for a change in logic level at an input to
a circuit to be translated into a resulting change at an output.

Appendix B

E1

iii

protocol: Set of rules, formats, and procedures governing the exchange of
information.

pseudo-op: (pseudo-operation) An operation which is not part of the com­
puter's operation repertoire as realized by hardware; hence, an exten­
sion of the set of machine operations.

PSIZE: Pixel size register (16-bit I/O register, address COOO 0150h). Defines
the current pixel size as 1 , 2, 4, 8, 16, or 32 bits.

pulse width: Time interval between specified reference points on the lead­
ing and trailing edges of a pulse waveform.

QFP: Quad flat package (type of chip package).

quarter phase: One-fourth of a local-memory cycle.

FlO, Fl1: Bus request and control signals. These signals identify the type of
request for use of the bus in a multiprocessor system.

RAM: Random access memory. A memory from which all information can be
obtained with approximately the same time delay by choosing an address
randomly and without first searching through a vast amount of irrelevant
data.

RAS: Row-address strobe. Drives the RAS inputs of DRAMs and VRAMs.

raster: Rectangular grid of picture elements whose intensity levels are
manipulated to represent images. In a bitmapped display, the bits within
the frame buffer are mapped to the raster pattern of a display screen.

raster graphics: Computed graphics in which a display image is composed
of a pixel array arranged in rows and columns.

raster-op: Arithmetic or logical combination that takes place during the
transfer of a pixel array from one location to another.

raster scan: Grid pattern traced by the electron beam on a display screen.

RCA: Multiplexed row-/column-address bus (RCAO-RCA 12). Atthe begin­
ning of a memory-access cycle, identifies the row address for DRAMs;
later in the cycle, the bus identifies the column address.

RCMO, RCM1: RCAO-RCA 12 row address configuration (bits 1 &2 of
CONFIG register). Determines which bits of the logical address are
output on RCAO-RCA 12 at row-address time.

8-13

Glossary

8-14

ready signal: Signal from a memory or memory-mapped peripheral that
informs the processor when a memory cycle is about to complete. Slower
memories and peripherals must extend the length of the memory cycle
by negating the ready signal (in other words, by sending the processor
a "not ready" signal) until the cycle can be completed.

REFADR: Refresh pseudo-address register (16-bit I/O register, address
COOO 01 FOh). Contains the address output during DRAM-refresh cycles.

refresh: Method of restoring the charge capacitance to a memory device
(such as a DRAM or VRAM) or of restoring memory contents.

request strobe: Any control signal that begins or ends a read request or a
write request.

reset: Restore to normal action and initial conditions.

resolution: Number of visible, distinguishable units in the device coordinate
space.

retrace: Line traced by the scanning beam(s} of a display screen as it travels
from the end of one horizontal (or vertical) line or field to the beginning
of the next horizontal (or vertical) line or field.

RGB monitor: Red-green-blue monitor. Type of monitor capable of display­
ing colors; has separate inputs for the three signals that drive the red,
green, and blue guns of a display.

relative coordinates: Location of a point relative to the location of another
point.

ROM: Read-only memory.

rotate: Transform an item or display by revolving it around an axis or center
point.

row-address time: See address/status subcycle.

RRO-RR2: Refresh rate (bits 10-12 of CON FIG register). Determines the
frequency of DRAM refreshes.

RST: Reset (bit 7 of HSTCTLH register). Setting this bit has the same effect
as asserting RESET low; however, only the TMS34020 is reset (other
devices in the system are not affected).

SADDR: Source address register (80). Contains the source array address
for graphics instructions.

SAM: Serial access memory or serial data register.

Appendix B

scale: Size change made by multiplying or dividing coordinate dimensions
by a scale factor (a constant value).

scan line: Horizontal line traced across a display screen by the electron
beam in a monitor or similar raster-scan device.

SCOUNT: Shift clock counter register (16-bit I/O register, address
COOO 02COh). During horizontal blanking, SCOUNT is loaded with the
right-justified tap-point value and is then incremented once on the rising
edge of each SCLK pulse.

screen refresh: Operation of dumping the contents of the frame buffer to a
CRT monitor in synchronization with the movement of the electron beam.

scrolling: Moving a display vertically or horizontally.

serial register transfer: Transfer between the RAM storage and internal
serial register in a VRAM.

SETHCNT: Set horizontal count register (16-bit I/O register, address
COOO 031 Oh). During external horizontal or composite video, SETHCNT
is loaded into HCOUNT when HSYNC or CSYNC is pulsed.

setup time: Minimum amount of time that valid data must be present at an
input before the device is clocked; ensures proper data acceptance.

SETVCNT: Set vertical count register (16-bit I/O register, address
COOO 0300h). During external horizontal or composite video, SETVCNT
is loaded into VCOUNT when VSYNC or CSYNC is pulsed.

SF: Special-function signal that drives a VRAM's DSF pin.

SIZE16: Bus size signal. Memory decode logic may pull SIZE16 low if the
currently addressed memory or port supports only 16-bit transfers.

SPTCH: Source pitch register (B1). Defines the linear difference between
starting addresses of adjacent rows in a source array.

SRAM: Static RAM.

SRE: Screen-refresh enable (bit 12 of DPYCTL register). Setting SRE to 1
when video is enabled (ENV) enables screen-refresh cycles.

SRINC: Screen-refresh address increment value (bits 5-31 of DINC regis­
ters). Defines the amount by which the address in SRNX is incremented
after a screen-refresh cycle.

SRNX: Next screen-refresh address (bits 5-31 of DPYNX registers). Rep­
resents the long-word address that is output during a screen-refresh
cycle.

SRST: Screen-refresh start address (bits 5-31 of DPYST registers). Con­
tains the address of the pixel at the left of the 1 st line displayed on the
screen.

8-15

II

8-16

SSA: Cache segment start address register.

SSV: Split-shift-register midline-reload enable (bit 6 of DPYCTL register).
Determines whether split-shift-register midline reload is disabled
(SSV=O) or enabled (SSV=1 and SRE=1).

stairstepping: Visual effect in bitmapped display devices; produces images
by brightening or dimming individual pixels in a pixel array. Also called
aliasing.

strobe: Any control signal that begins or ends a memory access.

subsegment: Block of 410ng words in a cache segment. Each of the 4 cache
segments contains 8 subsegments, for a total of 32 long words per seg­
ment.

T: Pixel transparency (bit 5 of CONTROL register). T =1 enables transparen­
cy; T =0 (default) disables transparency.

tap point: Column address provided to a VRAM during a memory-to-serial­
register cycle. The column address specifies the point at which the shift
register is to be tapped; in other words, which cell of the serial register
is to be connected to the VRAM's serial output.

TM: Transparency mode (bits 0-2 of CONTROL register). Selects the
transparency mode for pixel operations.

trace: Line of the graphics display.

transformation: Geometric alteration of a graphics display, such as scaling,
translation, or rotation.

transparency: Pixel attribute that renders a source pixel invisible so that
portions of the destination array show through portions of the source
array.

TR/QE: Transfer/output enable signal. Drives the TR/QE input of VRAMs.

VCE: Video capture enable (bit 7 of DPYCTL register). Selects memory-to­
register screen-refresh cycles (VCE=O) or register-to memory screen-re­
fresh cycles (VCE=1).

VCOUNT: Vertical count register (16-bit I/O register, address COOO 01 COh).
VCOUNT counts the horizontal scan lines in the video display.

VEBLNK: Vertical end blanking register (16-bit 110 register, address
COOO 0020h). VEBLNK defines the endpoint for the vertical blanking
interval.

Appendix B

II

VEN: VRAM internal register load enable (bit 8 of CONFIG register). VEN=1
enables the TMS34020 to use VRAMs with internal write-mask and color
registers; VEN=O (default) prohibits this.

vertical back porch: Portion of vertical blanking that follows the trailing
edge of the vertical-sync pulse.

vertical-blanking interval: Time during which the display is blanked to cov­
er the vertical retracing of an electron beam.

vertical-blanking pulse: Positive or negative pulse developed during verti­
cal retrace, appearing atthe end of each field. Used to blank out scanning
lines during the vertical-retrace interval.

vertical front porch: Portion of a vertical-blanking pulse that precedes the
leading edge of the vertical-sync pulse.

vertical sync: Synchronization signal that enables vertical retrace of the
electron beam of a display screen.

VESYNC: Vertical end sync register (16-bit I/O register, address
COOO OOOOh). VESYNC defines the endpoint of the vertical-sync pulse;
in interlaced video, it also defines the endpoint of the 2nd equalization
region.

VRAM: Video RAM. A dual-ported memory device for computer graphics
applications, containing two interfaces: one that allows a processor to
read/write data from an internal memory array, a second that provides a
serial stream of screen-refresh data to a display screen.

VSBLNK: Vertical start blank register (16-bit I/O register, address
COOO 0040h). VSBLNK defines the startpoint for the vertical blanking
interval.

VSD: Vertical sync direction (bit 1 of DPYCTL register). Determines if
VSYNC is configured as in input (VSD=O) or an output (VSD=1).

VTOTAl: Vertical total register (16-bit I/O register, address COOO 0060h).
Number of horizontal scan lines in the display; defines the startpoint for
the vertical-sync pulse.

W: Window checking (bits 6&7 of CONTROL register). Selects the action
that the TMS34020 takes when a pixel operation would write a pixel
inside or outside defined window limits.

wait state: Clock period inserted into a memory cycle in order to permit
accesses of slower memories and slower memory-mapped devices.

WE: Write enable signal. Drives the WE inputs of DRAMs and VRAMs.

8-17

Glossary

13

II

8-18

WEND: Window ending address register (B6). WEND contains the XV
address of the most significant pixel of the clipping window.

WSTART: Window starting address register (B5). WSTART contains the XV
address of the least significant pixel of the clipping window.

window: Defined rectangular area of a virtual space on a display screen.

window checking: Checking a pixel's address to see if it lies inside or out­
side the boundaries of a defined window.

WVE: Window-violation interrupt enable (bit 11 of INTENB register). Setting
WVE to 1 enables the window-violation interrupt.

WVP: Window-violation interrupt pending (bit 11 of INTPEND register). WVP
is set to 1 when a window-violation interrupt is requested.

X1 E: External interrupt 1 enable (bit 1 of INTENB register). Setting X1 E to
1 enables external interrupt 1.

X2E: External interrupt 2 enable (bit 2 of INTENB register). Setting X2E to
1 enables external interrupt 2.

X1 P: . External interrupt 1 pending (bit 1 of INTPEND register). X1 P is set to
1 wRen an external interrupt 1 is requested.

X2P: External interrupt 2 pending (bit 2 of INTPEND register). X2P is set to
1 when an external interrupt 2 is requested.

VZCNT: Y -zoom count (bits 0-4 of DPVNX registers). Determines when the
address in SRNX can be incremented.

VZINC: V-zoom increment value (bits Q-4 of DINC registers). This value
provides the increment value for the Y -zoom feature; valid values include
0, 2, 4, 8, 16, and 32.

V·zoom: TMS34020'feature that aids in display magnification.

zoom: Scaling a display (or display item) so it is magnified or reduced on the
screen.

Appendix B

TEXAS~
INSTRUMENTS

TMS34020
Reference Card

Phone Numbers -------------­

TI Customer Response
Center (CRe) Hotline: (800) 232--3200

Graphics Hotline: (713) 274-2340

General·Purpose Register Files --------­
Register File A Register File B

bit 31 bit 0 bit 31 bit 0
MSB LSB MSB LSB

AO BOSADDR ...•.•.......•.

A1 B1SPTCfi i

A2 B2bAbbR/ ••..••

A3 B3tiPTCH

A4 B40FFSET>'

A5 B5 ,WSTARi'
A6 B6":W~ND"

A7 B7/0vbx'
A8 B8 ·\CdCORO.<

A9 B9C,OLC>Rt .

A10 B10iMp.DI?R"·
A11 B11 :MPTCH> ...

A12 B12 '<TEJvlPJ/"

A13 B13 PAITERNt

A14 ~....:...;.......:...;.......:...;.......:...;......,+""""".,.,.".,""""""""",.B""14 TEMPt <

··~t~ckpoint~F'y' SP

t The line instructions use these registers for a different purpose.
Some graphics instructions use these registers as temporary
registers.

Initial State Following Reset ---------­

Immediately following reset,

\I All I/O registers are cleared to OOOOh. (Possible excep·
tions are HLT[HSTCTLH], REFADR, and SCOUNT).

\I General-purpos9' register files A and Bare uninitialized.

\I The ST is set to 0000 0010h.

\I The PC is uninitialized.

\I The cache SSA registers are uninitialized.

\I The cache LRU stack is set to the sequence 0, 1, 2, 3.

\I All cache P flags are cleared.

\I The DRAM refresh-pending counter is set to 9.

110 Registers -------------

Register Offset HESYNC 0010h

BSFLTDH 0330h HSTADRH OOEOh

BSFLTDL 0320h HSTADRL OOOOh

BSFLTST 0200h HSTCTLH 0100h

CONFIG 01AOh HSTCTLL OOFOh

CONTROL
OOBOh or HSTDATA OOCOh

0190h

CONVDP 0140h
HSBLNK OOSOh

CONVMP 0180h
HTOTAL 0070h

CONVSP 0130h IHOST
0380hto

03FOh
DINCH 0250h

INTENB 0110h
DINCL 0240h

INTPEND 0120h
DPYADR 01EOh

PMASKH 0170h
DPYCTL 0080h

PMASKL 0160h
DPYINT OOAOh

DPYNXH 0230h
PSIZE 0150h

DPYNXL 0220h
REFADR 01FOh

DPYMSK 02EOh
SCOUNT 02COh

DPYSTH 0210h SETHCNT 0310h

DPYSTL 0200h SETVCNT 0300h

DPYSTRT 0090h VCOUNT 01COh

DPYTAP 01BOh VEBLNK 0020h

HCOUNT 0100h VESYNC OOOOh

HEBLNK 0030h VSBLNK 0040h

HESERR 0270h VTOTAL 0060h

Note: Register address = COOO OOOh + offset.

CONTROL Register (COOO OOBOh) -------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 CD 1 PPOP 1 PBH 1 PBvl WiT 1:>'::><:>'::>1 ™ 1

TM 000 transparency on PBV o PIXBLT processes
result=O top to bottom

001 transparency on 1 PIXBLT processes
source=COLORO bottom to top

1 00 transparency on PBH o PIXBLT processes
result=O left to right

101 transparency on 1 PIXBLT processes
des1.=COLORO right to left

T o disables trans. ppop pixel-processing option
1 enables trans. CD o enables cache

W 00 no windowing 1 disables cache
01 window hit
10 window miss
11 window clip

2

CONFIG Register (COOO 01AOh) --------

BEN o selects little-end ian CBP 1 write-protects CON-
addressing (default) FIG's LSbyte

1 selects big-end ian o no write protection
addressing VEN o system has special-

RCM determines which log- feature VRAMs
ical address bits are 1 system has no spe-
output at row-address cial-feature VRAMs
time RR DRAM refresh rate

/.;

HSD o HSYNC is an input VCE screen-refresh mode
1 HSYNC is an output 1 mem-to-reg cycles

VSD o VSYNC is an input o reg-to-mem cycles

1 VSYNC is an output CST o normal pixel-access
cycles

CSD WhenCVD=O, 1 pixel-access cycles o CSYNC is an input become serial-reg is-
1 CSYNC is an output ter-transfer cycles

CVD selects CYSNC/ SRE o disables automatic
HBLNK screen refresh
o selects CSYNC 1 enables screen re-
1 selects HBLNK fresh when ENV=1

SSV o disables midline NIL o interlaced video
reload 1 noninterlaced video
enables midline ENV o blanks screen
reload when SRE=1 1 enables display

INTENB Register (COOO 0110h) --------
15 14 13 12 11 10 9 8 7 6 5 4 3

IE status bit must be enabled before these interrupts are enabled
X1 E 1 enables int. 1 DIE 1 enables display int.
X2E 1 enables int. 2 WVE 1 enables window-vio-
HIE enables host int. lation int.

X1P
X2P
HIP

int. 1 pending
int. 2 pending
host int. pending

3

6 5 4 3

DIP display int. pending

WVP 1 window-violation int.
pending

HSTSTLH Register (COOO 0100h) -------

HA o '34020 is running HP o prefetch after any
CK 1 '34020 is halted FW access

HLB identifies last byte that 1 prefetch after writes

host will access HI o disables prefetch &

o normal operation
NC autoincrement

RST 1 enables prefetch &
1 reset '34020 autoincrement

NMI o no NMI request CF o no effect
1 host requests NMI 1 flush cache

NM o save context when HLT o allow '34020 to run
1M there's an NMI 1 halt '34020 instruc-

1 discard context lion execution

HSTSTLL Register (COOO OOFOh)

MSG message from host to
IN '34020

INT 0 no interrupt to
IN '34020

1 host interrupt re-
quest to '34020

MSG message from '34020
OUT to host

INT 0 no interrupt to host
OUT 1 '34020 interrupt re-

quest to host
EMGI 00 no request, no in-
EMR terrupt

01 host request from
EMU, interrupt (if
enabled)

EMI 0 no interrupt to host
EN 1 interrupt to host
HRY! 0 host access not re-

tried
1 host access retried

HBFI 0 host access not
faulted

1 host access faulted
HB If HRYI or HBFI is set,
REN 0 no interrupt to host

1 interrupt to host
10 host released by

EMU, interrupt (if
enabled)

11 host grant to EMU, '
no interrupt

LAD Bus Status Codes -----------

Code Bus Status Type

0000 Coprocessor cycle misc.
0001 Emulator operation (OOxx)
0010 Host cycle
0011 DRAM refresh

0100 Video-generated VRAM serial-register trans. VRAM
0101 CPU-generated VRAM serial-register trans. (01 xx)
0110 Write-mask load
0111 Color-register load

1000 Data access CPU
1001 Cache fill (1 xxx)
1010 Instruction fetch
1011 Interrupt-vector fetch
1100 Bus-locked operation
1101 Pixel operation
1110 Block write
1111 Reserved

4

MemoryMap -------------- TMS34020 Assembly Language Instruction Set

Address Range Size Use ABSRd CMPllL,Rd

FFFF FFEOh
34 words

Interrupt & trap
FFFFFBCOh vectors

ADD RS,Rd CMPK

ADDCRs,Rd CMPXYRs,Rd

FFFF FBAOh
Reserved for

FFFF EOOOh
222 words interrupt & extended

trap vectors

ADDI/W,Rd CPWRs,Rd

ADDlII.,Rd CVDXYLRd

FFFF DFEOh
32,512 words

General use &
FFFO OOOOh extended trap vectors

FFEFFFEOh 225-33,024 words
General use

COOO 2000h (35,521,408 words)

ADDKK,Rd CVMXYLRd

ADDXYRs,Rd CVSXYL RS,Rd

ADDXYIIL,Rd CVXYLRs,Rd

COOO 1FEOh 224 words
Reserved for 1/0

COOO 0400h registers

AND RS,Rd DEC Rd

ANDIIL,Rd DINT

COOO03EOh
32 words 1/0 registers

COOO OOOOh

BFFF FFEOh 3x225-32K words
General use

00100000h (100,630,528 words)

ANDNRs,Rd DIVSRs,Rd

ANDNIIL,Rd DIVURs,Rd

BLMOVES,D DRAVRs,Rd

OOOF FFEOh
32,768 words

General use &
OOOOOOOOh extended trap vectors

BTSTK,Rd DSJ Rd,Address

BTSTRs,Rd DSJEQ Rd,Address

CALLRs
DSJNE Rd,Address

Interrupt Priorities -------------
CALLA Addr

DSJS Rd,Address

Interrupt Priority Source Description CALLR Addr
EINT

RESET 1 externall Device reset
internal

BF 2 external Bus fault interrupt

NMI 3 internal Nonmaskable interrupt

HI 4 internal Host interrupt.

CEXEC size,instruction[.IDJ
EMU

CEXEC size,instruction[.IDJ
EXGF Rd,F

CLIP
EXGPC Rd

CLRRd
EXGPS Rd

FILLL
01 5 internal Display interrupt CLRC

FILLXY
WV 6 internal Window violation interrupt

INT1 7 external External interrupt 1

INT2 8 external External interrupt 2

CMOVCG Rdj [.Rd2 [sizeJJ,
command[.IDJ FLiNE {O 11}

CMOVCM *Rd+, transfers, FPIXEQ
size,command[. IDJ

FPIXNE
SS 9 internal Single-step interrupt

ILLOP 10 internal lIIegal-opcode interrupt
CMOVCM *Rd,transfers,size,

GETPCRd
command[.IDJ

CMOVCS command[.IDJ
GETPSRd

Vector Address Map

Trap# Address Oesc. Trap# Address Oesc.

-32768 OOOFFFEOh Appllca- 12 FFFFFE60h Re-
ta to tion to to served
-1 OOOOOOOOh specific 15 FFFFFOEOh

CMOVGC RS,command[.IDJ
GETSTRd

CMOVGC RSj,R~,size,com-
IDLE

mand[.IDJ INC

CMOVMC *Rs+,transfers, JAcc Address
size,command[.IDJ JRcc Address

0 FFFFFFEOh RESET 16 FFFF FOEOh Appllca-
to to tlon CMOVMC -*Rs,transfers,size, JRcc Address

1 FFFFFFCOh INn 29 FFFFFC40h specHic command[.IDJ
JUMPRs

2 FFFFFFAOh INT2 30 FFFFFC20h ILLOP CMOVMC *Rs+,Rd,size,com-

3 FFFFFF80h Re-
Appllca-

to to served
31 FFFFFCOOh tlon

7 FFFFFEOOh specific

mand[.IDJ LINE {O 11}

CMPRs,Rd LlNIT

8 FFFFFEEOh NMI 32 FFFFFBEOh SS CMPIIW,Rd LMORs,Rd

9 FFFFFECOh HI 33 FFFFFBCOh BF

10 FFFFFEAOh 01 34 FFFFFBAOh Appllca-
to to tlon

11 FFFFFE80h VW 32767 FFFOOOOOh specific

5 6

TMS34020 Assembly Language Instruction Set ---­
(continued)

MMFM RS,[.Listj NEGBRd

MMTM RS,[.Listj NOP

MODS RS,Rd NOTRd

MODURs,Rd OR RS,Rd

MOVBRs,*Rd ORIIL,Rd

MOVB*Rs,Rd PFILLXV

MOVB *Rs(Offsef),Rd PIXBLTB,L

MOVB *Rs(SOffsef), PIXBLTB,XV
*Rd(DOffset)

MOVB Rs,@DAddress

MOVB @SAddress,Rd

PIXBLTL,L

PIXBLT L,M,L

MOVB @SAddress,
PIXBLTL,XV

@DAddress PIXBLTXV,L

MOVE RS,Rd PIXBLT XV,XV

MOVE Rs, *Rd[.F] PIXTRs,*Rd

MOVE Rs,-*Rd[.F] PIXT Rs, *Rd .XV

MOVE Rs, *Rd+[.F] PIXT*Rs,Rd

MOVE *Rs,Rd[.F] PIXT *Rs, *Rd

MOVE -*Rs,Rd[.F] PIXT *Rs.XV,Rd

MOVE *Rs+,Rd[.F] PIXT *Rs.XV, *Rd.XV

MOVE *Rs,*Rd[.F] POPST

MOVE -*Rs,-*Rd[.F] PUSHST

MOVE *Rs+,*Rd+ PUTSTRs

MOVE Rs,*Rd(Offset)[.F] RETI

MOVE *Rs(Offsef),Rd[.F] RETM

MOVE *Rs(Offsef), *Rd+[.F] RETS [NJ

MOVE *Rs(SOffset), REVRd
*Rd(DOffset)[.F]

RLK,Rd
MOVE RS,@DAddress[.F]

RLRs,Rd
MOVE @SAddress,Rd[.F]

RMO
MOVE @SAddress,*Rd+[.F]

RPIXRd
MOVE @SAddress,

@DAddress[.F] SETC

MOVI/W,Rd SETCDP

MOVIIL,Rd SETCMP

MOVKK,Rd SETCSP

MOVXRs,Rd SETF FS,FE,F

MOVYRs,Rd SEXT Rd,F

MPVSRs,Rd SLAK,Rd

MPVURs,Rd SLARs,Rd

MWAIT SLLK,Rd

NEGRd SLLRs,Rd

7

TMS34020 Assembly Language Instruction Set
(continued)

SRAK,Rd SWAPF RS,Rd,O

SRARs,Rd TFILLXY

SRLK,Rd TRAPN

SRLRs,Rd TRAPL

SUB RS,Rd VBLT

SUBBRs,Rd VFILL

SUBI/W,Rd VLCOL

SUBIIL,Rd XORRs,Rd

SUBKK,Rd XORIIL,Rd

SUBXVRs,Rd ZEXTRd,F

Boolean Pixel-Processing Options

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

Source -+ Destination

Source AND Destination -+ Destination

Source AND -Destination -+ Destination

Os -+ Destination

Source OR -Destination -+ Destination

Source XNOR Destination -+ Destination

-Destination -0> Destination

Source NOR Destination -+ Destination

Source OR Destination -+ Destination

Destination -+ Destination

Source XOR Destination -+ Destination

-Source AND Destination -+ Destination

15 -+ Destination

-Source OR Destination -+ Destination

Source NAND Destination -+ Destination

-Source -+ Destination

Arithmetic Pixel-Processing Options

10000 Source + Destination -+ Destination

10001 ADDS(Source, Destination) -+ Destination

10010 Destination - Source -+ Destination

10011 SUBS(Source, Destination) -+ Destination

10010 MAX (Source, Destination) -+ Destination

10101 MIN (Source, Destination) -+ Destination
10110--11111 Reserved

Status Register -------------

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Note: Shaded portions are reserved.

8

m:: oil!: :::n:;::::i : s:: ::::::::::::w: ::::::: '$$$:: :m:m

12-pin connector, mechanical dimensions, A-10

12-pin header, A-3

3-wire interface, 11-1

A-file registers (AO-A14), 4-6
initial state following reset, 6-23

ABS instruction, 13-32

ABS (,34082 pseudo-op), 14-9, 14-1 0

ABSD (,34082 pseudo-op), 14-11

ABSF (,34082 pseudo-op), 14-12, 14-13

absolute addresses, 13-3

ADD instruction, 13-33

ADD (,34082 pseudo-op), 14-14, 14-15

ADDC instruction, 13-34

ADDD (,34082 pseudo-op), 14-16

ADDF (,34082 pseudo-op), 14-17, 14-18

ADDI
16-bit (short) version, 13-35
32-bit (Iong)version, 13-36

ADDK instruction, 13-37

address/status portion (local-memory cycle), 8-8,
8-12

addressing
address latch, 2-11
autoincrementing (for host accesses), 4-59, 4-60,

7-12-7-15
big-endian, 3-20-3-25, 4-21, 7-44
comparison feature (for host accesses), 4-60,

7-12
display screen, 4-32, 4-40, 4-46
implicit addressing, 7-12
instruction words, in cache, 5-3, 5-5

Index

linear addressing, 3-3, 3-15
litlle-endian, 3-20-3-25, 4-21, 7-44
local memory, 3-3

multiplexed addressing, 8-51-8-53
nonmultiplexed addressing, 8-50

modes, 13-2-13-9
absolute addresses, 13-3
constants, 13-2
immediate values, 13-2
register-direct, 13-4
register-indirect, 13-5

in XV mode, 13-9
with offset, 13-6
with postincrement, 13-7
with predecrement, 13-8

multiplexing, 4-22
pixel arrays, 4-30, 4-79
prefetching (for host accesses), 4-60, 7-10-7-12
range, 3-3
RCA values at row-address time, 4-21
screen-refresh address, 4-41, 4-42, 4~ 78
segments within the cache, 5-2, 5-3
subsegments within a cache segment, 5-2, 5-3
tap point, 4-44, 4-45
two 16-bit registers as a 32-bit register, 4-15,

4-32,4-46,4-75
window

end address, 4-90
start address, 4-91

XV addressing, 3-14, 4-25, 4-28, 4-34, 4-50,
4-73,4-90,4-91

XV-to-linear conversion, 3-15-3-17, 4-28, 4-34,
4-72,4-83

ADDXV instruction, 13-38

ADDXYI instruction, 13-39

Index-1

Index

algorithms
cache

control, 5-3
replacement, 5-4

display pitch, 3-13
least-recently-used (cache replacement), 5-4
XY-to-linear conversion, 3-15

ALTCH signal, 2-9, 2-11, 8-2, 10-2

American video standards
NTSC, 9-27
RS-170, 9-27

AND instruction, 13-40

ANDI instruction, 13-41

ANDN instruction, 13-42

ANDNI instruction, 13-43

ANSI C, 1-11

applications of the TMS34020, 1-3

arbitration logic
examples, 11-15-11-18
multiprocessor systems, 11-13-11-15

archiver, 1-11

arithmetic instructions, 13-24
ABS, 13-32
ADD,13-33
AD DC, 13-34
ADDI (16 bits), 13-35
ADDI (32 bits), 13-36
ADDK,13-37
ADDXY, 13-38
ADDXYI, 13-39
DEC, 13-94
DIVS, 13-96-13-97
DIVU, 13-98-13-99
INC, 13-134
MODS, 13-152
MODU, 13-153-13-157
MPYS, 13-172-13-174
MPYU, 13-175-13-176
SUB,13-241
SUBB, 13-242
SUBI, 13-243, 13-244
SUBK, 13-245
SUBXY, 13-246

arithmetic pixel-processing options, 4-26
array sizes for DRAMs, 8-52

arrays. See pixel arrays
assembler, 1-11

assembly-language, tools, 1-10-1-13,3-24

Index-2

autoincrementing, 7-12-7-15
disabled,7-14
legal HBS combinations, 7-13
reads and writes, 7-14
writes only, 7-14

auxilary graphics instructions
CLIP, 13-55
FPIXEQ,13-126-13-127
FPIXNE,13-128-13-129
PFILL,13-184-13-189
RPIX, 13-225
TFI LL, 13-249-13-252
VBLT, 13-259-13-261
VFI LL, 13-262-13-263
VLCOL, 13-264-13-265

B-file registers (BO-B14), 4-6, 4-7, 4-8
COLORO, 4-18, 4-74
COLOR1, 4-19, 4-74
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
initial state following reset, 6-23
MADDR,4-71
MPTCH,4-72
OFFSET,4-73
PATTERN,4-74
SADDR,4-79
SPTCH,4-83
WEND,4-90
WSTART, 4-91

background color, 4-18, 4-74
bandwidth, host interface, 7-34-7-36
bank selects, 8-57
BEN bit, 3-20, 4-21, 8-4

write protecting the bit, 4-22
BF (bus fault) status bit, 4-3, 6-3, 6-19
big-end ian addressing, 3-20-3-25

assembling code for, 3-24-3-25
default at reset, 3-20, 4-21
effect of BEN bit, 3-20, 4-21
host interface, 7-44
instruction timing, 3-25-3-26
processors that use it, 3-20
selecting, 3-20, 4-21

binary PIXBLTs
use of COLORO, 4-18
use of COLOR1 , 4-19

blanking
composite blanking, CBLNK, 2-15
horizontal blanking, 9-9

ending (HEBLNK), 4-53
HBLNK,2-15
starting (HSBLNK), 4-66

vertical blanking, 9-9
ending (VEBLNK), 4-86
starting (VSBLNK), 4-88
VBLNK,2-15

BLMOVE instruction, 13-44-13-45
implied operands

DADDR,4-30
SADDR,4-79

block of pixels. See arrays

block accesses
reads

of TMS34020 memory (by host), 4-59, 4-60
writes, 4-22

to TMS34020 memory (by host), 4-59, 4-60
with mask, 4-22

block diagram, TMS34020, 1-5
block-write cycles

data expansion, 8-42
data mapping, 8-41
status code on local-memory cycle, 8-11

Boolean pixel-processing options, 4-26

branch instructions, effects on PC, 4-4
breakpoints, 6-28

British video standards
PAL,9-27

BSFLTD registers, 4-15-4-17, 6-19

BSFLTDH, 4-15-4-17, 6-19

BSFLTDL, 4-15-4-17, 6-19

BSFLTST register, 4-17, 6-19

BTST
constant version, 13-46
register version, 13-47

buffer delays for emulator connections, A-5

bulk initialization, 9-47

bus error/bus fault, 2-11, 7-9
bus-fault interrupt, 6-19-6-20, 7-9

service routine, 6-20
coprocessor cycles, 10-9
CPU-initiated access, 8-14
host-initiated access, 8-14
local-memory cycles, 8-14
on a host-initiated access, 4-64

Index

screen-refresh cycle, 8-14
use of BSFLST to save memory controller state,

4-17
use of BSFLTD to store LAD data, 4-15-4-17

bus-fault interrupt, priority, 6-7

bus-locked operation
and dynamic bus sizing, 8-29
status code on local-memory cycle, 8-11

bus-request codes
access termination, 11-5-11-12
high-priority request, 11-5-11-12
low-priority request, 11-5-11-12
no request, 11-5-11-12

bus-requests priorities, 2-13, 8-6

bus size signal (SIZE16), 2-11
BUSFLT signal, 2-9,2-11,6-2,6-19,7-9,8-2,8-12,

8-18,10-2
bus cycle completion codes, 2-12

byte-select strobes, 4-57, 7-2
big-endian addressing, 7-44
little-endian addressing, 7-44

bytes, 3-1

C (carry) status bit, 4-3
C compiler, 1-11, 1-13

cache, 5-1-5-12
accessible words, 5-3
architecture, 5-2
bypassing the cache, 5-8
cache fill, status code on local-memory cycle,

8-11
cache hit, 5-5
cache miss, 5-5

segment miss, 5-6
subsegment miss, 5-5

CD (cache disable) bit, 5-8
CF (cache flush) bit, 5-8
control algorithm, 5-3
disabling the cache, 4-27, 5-8
downloading new code from a host, 5-8
fetching data after a cache miss, 5-6
flushing the cache (CF), 4-61, 5-8
initial state following reset, 6-23
internal parallelism, 5-10
least-recently-used algorithm, 5-4
operation, 5-5-5-8
organization, 5-2

Index-3

Index

P flags, 5-2, 5-4
performance when enabled vs. disabled, 5-9
reason it's provided, 5-1
replacement algorithm, 5-4
segments, 5-2 .
self-modifying code, 5-8
setting the CD bit, 5-8
setting the HLT bit, 5-8
size, 5-3
SSA registers, 5-2
subsegments, 5-2

CALL instruction, 13-48

CALLA instruction, 13-49

CALLR instruction, 13-50

CAMD signal, 2-9, 2-12, 8-2, 8-18

capturing a video image, 9-48

Cartesian coordinates, 3-14, 3-19

CASO-CAS3 signals, 2-9, 2-12, 8-2, 10-2

CBLNKlVBLNK signal, 2-10, 2-15, 9-2
selection, 4-38

CBP bit, 3-20, 4-22, 8-4

CD bit, 4-27, 5-8

CEXEC instruction, 13-51-13-93

CF bit, 4-57, 4-61, 5-8, 7-4

CHECK (,34082 pseudo-op), 14-19
CL30, 1-11

CLIP instruction, 13-55-13-56
implied operands, DADDR, 4-30

CLKIN signal, 2-10, 2-16, 8-2

clocks
CLKIN (clock in), 2-16
LCLK1, LCLK2 (local output clocks), 2-16
SCLK (serial data clock), 2-15
VCLK (video clock), 2-15

CLR instruction, 13-57

CLRC instruction, 13-58

CMOVCG instruction, 13-59-13-60

CMOVCM instruction, 13-61-13-62, 13-63-13-65

CMOVCS instruction, 13-66

CMOVGC instruction, 13-67-13-68, 13-69-13-70

CMOVMC instruction, 13-71-13-73, 13-74-13-77,
13-78-13-79

CMP instruction, 13-80

CMP (,34082 pseudo-op), 14-20, 14-21
CMPD (,34082 pseudo-op), 14-22
CMPF (,34082 pseudo-op), 14-23, 14-24

Index-4

CMPI instruction, 13-81, 13-82

CMPK instruction, 13-83

CMPXY instruction, 13-84

code
debugging, single-step mode, 6-28-6-32
downloading new code from a host, 5-8, 7-32
restrictions for compatibility between TMS34010

and TMS34020, 1-17
self-modifying, effects on instruction cache, 5-8

COFF,1-11

color-latch register loads, status code on local-
memory cycle, 8-11

COLORO register, 4-18, 4-74

COLOR1 register, 4-19, 4-74

column address
bus, 2-12
mode, 2-12
strobes, 2-12

column-address time, 4-21,8-9

compare instructions, 13-24
BTST (constant), 13-46-13-50
BTST (register), 13-47-13-50
CMP, 13-80
CMPI,13-81-13-93
CMPK,13-83-13-93
CMPXY, 13-84
CPW, 13-85-13-86

compatibility
with future GSPs

local-memory read & write cycles, 8-19
status register values, 4-3

with the TMS34010, 1-16-1-18
code restrictions, 1-17-1-18
CONTROL register, 4-24
DPYADR register, 4-35
DPYSTRT register, 4-48
DPYTAP register, 4-49
HSTADRH register, 4-56
HSTDATA register, 4-65
screen-refresh registers, 9-8

completing a successful local-memory cycle, 8-13

composite video, 9-15-9-17
display example, 9-40-9-42
enabling/disabling, 4-38
equalization pulses, 9-15-9-16
serration pulses, 9-15-9-16
sync direction, 4-37

condition codes for jump instructions, 13-26

CON FIG register, 4-20-4-24, 8-4
BEN bit, 3-20, 4-20, 4-21, 8-4
CBP bit, 3-20, 4-20, 4-22, 8-4
RCM bits, 4-20, 4-21, 8-4
RR bits, 4-20, 4-23, 8-4
VEN bit, 8-4
write protecting the register, 4-22

constants, 13-2

context-switching instructions, 13-25-13-27
CALL,13-48
CALLA, 13-49
CALLR, 13-50
RETI,13-217-13-218
RETS, 13-220
TRAP L, 13-256-13-258
TRAP N, 13-253-13-255

CONTROL register, 4-24-4-28
CD bit, 4-24,4-27,5-8
compatibility with TMS3401 0, 4-24
PBH bit, 4-24, 4-25
PBV bit, 4-24, 4-26
PPOP bits, 4-24, 4-26-4-27
T bit, 4-24, 4-25
TM bits, 4-24
VEN bit, 4-22
W bits, 4-24, 4-25, 6-17

CONVDP register, 4-28-4-30
SETCDP instruction, 4-28
XV-to-linear conversion, 3-15, 3-16

converting ...
an XV address to a linear address, 3-15-3-17
composite video signals to separate signals, 9-34
pixel access into register transfers, 9-47
separate video signals to a composite signal,

9-34

CONVMP register, 4-28-4-30
SETCMP instruction, 4-28
XV-to-linearconversion, 3-15, 3-16

CONVSP register, 4-28-4-30
SETCSP instruction, 4-28
XV-to-linear conversion, 3-15, 3-16

coprocessor interface, 10-1-10-18
aborts, 10-17
general coprocessor commands

command field, 10-6-10-7
format, 10-5-10-7
ID field, 10-5-10-7
parameter size, 10-6-10-7

general coprocessor instructions, 10-3-10-4

local-memory cycles, 10-4,10-8-10-16
bus faults, 10-9
ending, 10-9
inserting wait states, 10-9
retrying, 10-9

overview, 10-3
passing commands to a coprocessor, 10-8
signals, 10-2-10-18

ALTCH,10-2
BUSFL T, 10-2
CASO-CAS3, 10-2
LADO-LAD31, 10-2
LCLK1, LCLK2, 10-2
LlNTt, LlNT2, 10-2
LROY, 10-2
SF, 10-2
WE,10-2

status checks, 10-17
status code on local-memory cycle, 8-10
system configuration, 10-18
TMS34082, 14-1-14-7
TMS34082 pseudo-ops, 10-3
transferring data, 10-8

Index

coprocessor to local memory, 10-15
coprocessor to TMS34020 register, 10-12
local memory to coprocessor, 10-14
sequence, 10-9
TMS34020 register to coprocessor, 10-11

CPW instruction, 13-85-13-86
implied operands

WEND,4-90
WSTART, 4-91

CSD bit, 4-37, 9-6

CST bit, 4-39, 9-6
effect on local-memory cyles, 8-30, 8-33, 8-36

CSVNC signal
equalization pulses, 9-17
selecting as input or output, 4-37
serration pulses, 9-16

CSVNC/HBLNK signal, 2-10, 2-15, 9-2
selection, 4-38

CVD bit, 4-38, 9-6

CVDF (,34082 pseudo-op), 14-25

CVDI ('34082 pseudo-op), 14-26

CVDXVL instruction, 13-87-13-88
implied operands

CONVDp, 4-29
DPTCH,4-34
PSIZE,4-77

Index-5

Index

CVFD (,34082 pseudo-op), 14-27, 14-28

CVFI (,34082 pseudo-op), 14-29, 14-30

CVID (,34082 pseudo-op), 14-31

CVIF (,34082 pseudo-op), 14-32, 14-33, 14-34

CVMXYL instruction, 13-89-13-90
implied operands

CONVMp, 4-29
MPTCH,4-72
PSIZE,4-77

CVSXYL instruction, 13-91
implied operands

CONVSp, 4-29
PSIZE,4-77
SPTCH,4-83

CVXYL instruction, 3-16, 13-92-13-93
implied operands

CONVDp, 4-29
DPTCH,4-34
OFFSET, 4-73
PSIZE,4-77

m
DADDR register, 4-30

with DYDX for common rectangle function, 4-30

data
access, status code on local-memory cycle, 8-11
expansion, 8-37
mapping, during block-write cycles, 8-41
structures, 3-1-3-32

bytes, 3-1
fields, 3-1, 3-3, 3-5
pixel arrays, 3-1, 3-18-3-19
pixels, 3-1, 3-10-3-13
stacks, 3-26

subcycle (local-memory cycle), 8-12

data portion (local-memory cycle), 8-8, 8-9

DDIN signal, 2-9, 2-11,8-2
DDOUT signal, 2-9, 2-11, 8-2, 8-18

debugging, A-1

debugging code in single-step mode, 6-28-6-32

DEC instruction, 13-94
delays ...

buffer delays in emulation, A-5
recognizing interrupts, 6-11
to host accesses, 7-37-7-40
to video synchronization, 9-33

design considerations, for emulation, A-7

Index-6

destination pitch
CONVDP register, 4-28-4-30
conversion factor, 4-28-4-30
DPTCH register, 4-34-4-35

development tools overview, 1-10-1-13

DIE bit, 4-69, 6-3

DINC registers, 3-11, 4-32, 9-7
SRINC bits, 4-32, 4-33, 9-7
YZINC bits, 4-32, 4-33, 9-7

DINCH, DINCL. See DINC registers

DINT instruction, 13-95

DIP bit, 4-70, 6-4, 6-17

direct operands, 13-4

display
address output during a screen refresh, 4-42
blanking ration (DBR), 9-36
control, 4-36-4-41
increment value, 4-32
interrupt

DPYINT register, 4-41
enabling, 4-69
pending indication, 4-70

mask, 4-44-4-46
memory, 8-56

coordinates, 3-13
dimensions, 3-12
requirements for hardware, 8-56
requirements for multiplexed addressing, 8-54

panning, 9-57
pitch,3-13
screen origin

alternate, 3-12
default, 3-12

screen sizes, 9-36
start address, 4-46-4-48

display interrupt, 6-17, 9-37
disabling, 6-6
enabling, 6-6
priority, 6-7
trap number, 6-16
vector address, 6-8, 6-16

DIVD (,34082 pseudo-op), 14-35

DIVF (,34082 pseudo-op), 14-36, 14-37

DIVS instruction, 13-96-13-97

D IVS (,34082 pseudo-op), 14-38, 14-39

D IVU instruction, 13-98-13-99

dot clock, 9-36

downloading new code from a host, 5-8

DPTCH register, 4-34--4-35
XY -to-linear conversion, 3-15

DPYADR register, 4-35

DPYCTL register, 4-36-4-41,8-4,9-5
CSD bit, 4-36, 4-37, 9-6
CST bit, 4-36, 4-39, 9-6
CVD bit, 4-36, 4-38, 9-6
ENV bit, 4-36, 4-40, 9-6
HSD bit, 4-36, 9-5
NIL bit, 4-36, 4-40, 9-6
SRE bit, 4-36, 4-40, 9-6
SSV bit, 4-36, 4-38, 9-6
VCE bit, 4-36, 4-39, 9-6
VSD bit, 4-36, 4-37, 9-6

DPYINT register, 4-41-4-42, 6-17

DPYMSK register, 4-44--4-46, 8-58, 9-8
and SRST or SRNX, 9-55

DPYNX registers, 4-42-4-44,9-7
increment value, 4-32
SRNX bits, 4-42, 4-43, 9-7
YZCNT bits, 4-42, 9-7

DPYNXH, DPYNXL. See DPYNXL registers

DPYST registers, 4-46-4-48, 9-7
SRST bits, 4-46

DPYSTH, DPYSTL. See DPYST registers

D PYSTRT register, 3-11, 4-48

DPYTAP register, 4-49

DRAMNRAM interface, 8-1-8-60
block-mask local-memory cycles, 8-37-8-43
DRAM-refresh local-memory cycles, 8-44-8-45
serial-register transfers, 8-29-8-33
signals, 2-12, 8-2-8-3

CAMD,2-12,8-2
CASD-CAS3, 2-12, 8-2
PGMD,8-3
RAS, 2-12, 8-3
RCAD-RCA 12, 2-12, 8-3
SF, 2-12, 8-3
SIZE16,8-3
TR/QE, 2-12, 8-3
WE, 2-12,8-3

write-mask local-memory cycles, 8-34-8-36

DRAMs
array sizes, 8-52
CAS-before-RAS cycles, 4-78
refreshes, 4-78, 8-6, 8-44

status code on local-memory cycle, 8-10
selecting the refresh rate, 4-23

DRAV instruction, 13-100-13-102
implied operands

COLOR1,4-19
CONTROL, 4-27
CONVDp, 4-29
DPTCH,4-34
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
WEND,4-90
WSTART, 4-91

DSJ instruction, 13-103

DSJEQ instruction, 13-104-13-105

DSJNE instruction, 13-106-13-107

DSJS instruction, 13-108

DYDX register, 3-18, 4-50--4-52

Index

with DADDR for common rectangle function,
4-30,4-50

dynamic bus sizing
and bus-locked operation, 8-29
data transfers, 8-26
page mode, 8-28
SIZE16 signals, 2-11

EINT instruction, 13-109

EMG bit, 4-63,7-4, A-7

EM lEN bit, 4-64, 7-4, A-7

EMR bit, 4-63, 7-4, A-7

EMU instruction, 13-110

EMUQ-EMU3 signals, 2-10, A-3, A-4, A-6

emulation
buffer delays, A-5
design considerations, A-1-A-10, A-7
emulator connector, A-3
host communications, 4-63, A-7
inhibiting the host-interface port, 4-63
mechanical dimensions

12-pin connector, A-10
pod, A-9
target cable, A-9

overview of an emulation system, A-2
pod interface, A-6
preventing the host from accessing local memory,

4-63
requesting local memory, 8-7
reset and interrupts, A-7

Index-7

Index

signals
buffering, A-4
EMUD-EMU3, A-3, A-4, A-6

status code on local-memory cycle, 8-10

endian addressing modes. See big-endian address­
ing

ENV bit, 4-40, 9-6
equalization pulses, 9-15-9-16

on CSYNC, 9-17

European video standards
PAL (British), 9-27
SECAM (French), 9-27

even field (interlaced video), 9-21

EXGF instruction, 13-111

EXGPC instruction, 13-112

EXGPS instruction, 13-113

extending a local-memory cycle with wait states,
8-12

external interrupts, 6-15
disabling, 6-6
enabling, 4-69, 6-6
pending indications, 4-70
priority, 6-7
recognition delay, 6-11
source, 6-15
vector addresses, 6-8, 6-15

external synchronization, 9-29-9-35
composite sync, 9-30-9-35
conversion, 9-34
horizontal sync, 9-30-9-35
interlaced. video, 9-30-9-35

odd/even field alignment, 9-31-9-35
noninterlaced video, 9-30-9-35
vertical sync, 9-30-9-35

external syncrhonization
loading the video counters, 9-32
pulse widths, 9-35
syncing to VCLK, 9-32

II
fast fills, 8-37

FEO (field extension 0) status bit, 4-2
FE1 (field extension 1) status bit, 4·2

features, of the TMS34020, 1-2
fields, 3-1, 3-3, 3·5-3·9

alignment in memory, 3-7
aligned to 1-byte boundary, 3-7

Index-8

aligned to 2-byte boundaries, 3-6
straddling a word and aligned on 2 byte

boundaries, 3-7
straddling a word and aligned to 1 byte bound­

ary, 3-8
straddling a word and not byte aligned, 3-8

extraction, 3-6
field 0, 3·5

FEO (field extension) bit, 3-5, 4-2
field size decoding, 3-5
FSO (field size) bits, 3-5, 4-2
sign-extending, 4-2
zero-extending, 4-2

field 1,3·5
FE1 (field extension) bit, 3-5, 4-2
field size decoding, 3-5
FS1 (field size) bits, 3-5
sign-extending, 4-2
zero-extending, 4-2

field extension
sign-extending, 4-2
zero-extending, 4-2

in a general-purpose register, 3~5
insertion, 3-6, 3-8, 3-9
pixels, DPYSTRT register, 3-11
PSIZE register, XY-to-linear conversion, 3-15
reading, 3-5
size, 3-5
starting address, 3-5
storage in external memory, 3-6
writing, 3-5

FILL instructions
FILL L, 13-114-13-116

implied operands
COLOR1,4-19
CONTROL, 4-27
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
PMASK,4-76
PSIZE,4-77

FILL XV, 13-117-13-120
implied operands

COLOR1,4-19
CONTROL, 4-27
CONVDP, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
OFFSET,4-73
PMASK,4-76
PSIZE,4-77

WEND,4-90
WSTART, 4-91

source address, 4-30, 4-79

FLiNE instruction, 13-121-13-125
destination address, 4-30
implied operands

COL ORO, 4-18
COLOR1,4-19
CONTROL, 4-27
CONVDp, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
MPTCH,4-72
PATTERN, 4-74
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEND,4-90
WSTART, 4-91

source address, 4-79

flushing the cache, 4-61, 5-8

foreground color, 4-19, 4-74

FPIXEQ instruction, 13-126--13-127
implied operands

COL ORO, 4-18
MPTCH,4-72
PMASK, 4-76
PSIZE,4-77

FPIXNE instruction, 13-128-13-129
implied operands

COL ORO, 4-18
MPTCH,4-72
PMASK,4-76
PSIZE,4-77

French video standards
SECAM,9-27

general-purpose coprocessor instructions
CEXEC, 13-51-13-93
CMOVCG, 13-59-13-60
CMOVCM, 13-61-,-13-62, 13-63-13-65
CMOVCS, 13-66
CMOVGC, 13-67-13-68,13-69-13-70
CMOVMC, 13-71-13-73, 13-74-13-77,

13-78-13-79

general-purpose register files. See register files

GETCST (,34082 pseudo-op), 14-40

GETPC instruction, 13-130

GETPS instruction, 13-131

GETST instruction, 13-132

GI signal, 2-9, 2-13, 8-18,11-2

graphics instructions
CPW, 13-85-13-86
CVXYL, 13-92-13-93
destination address, 4-30
DRAV, 13-100-13-102
FILL L, 13-114-13-116
FILL XY, 13-117-13-120
FLlNE,13-121-13-125
interrupts, 6-13-6-14
LlNE,13-142-13-145
LlNIT,13-146
LMO, 13-147
PIXBLT instructions, 13-190-13-205
PIXT instructions, 13-206--13-213
source address, 4-79

graphics operations
interrupts, 6-13-6-14
PIXBLT direction, 4-25, 4-26
pixel size, 4-77
pixel-processing operations

arithmetic options, 4-26
Boolean options, 4-26
selecting, 4-26-4-27

plane masking, 4-75
transparency, 4-24, 4-25
window checking, 4-25, 4-90, 4-91

m
HA5-HA31 signals, 2-10, 2-14, 7-2, 7-7

HACK bit, 4-57, 4-57,7-3

halt latency, 7-39

halting TMS34020 execution, 7-32
acknowledging the halt state, 4-57
HLT bit, 4-61

HBFI bit, 4-64, 6-5,6-21, 7-5, 7-9

HBREN bit, 4-64, 6-5, 6-21, 7-5, 7-9

HBSO-HBS3 signals, 2-10, 2-14, 7-2, 7-7

HCOUNT register, 4-52-4-53, 9-4
external synchronization, 9-29
loading with the SETHCNT value, 4-81

HCS signal, 2-10, 2-14, 7-2, 7-7
HOST signal, 7-2

Index

Index-9

Index

HOST signal, 2-10, 2-14

HEBLNK register, 4-53-4-54, 9-4

HESERR register, 4-54-4-55, 9-4

HESYNC register, 4-55-4-57, 9-4

HIE bit, 4-69, 6-3

HINC bit, 4-57, 4-60, 7-4
effects on address comparison, 7-10
effects on autoincrementing, 7-13
effects on prefetching, 7-10
interaction with HPFW, 4-59, 7-10

HINT signal, 2-10, 2-14, 4-64, 6-2, 6-21, 7-2, 7-9

HIP bit, 4-70, 6-4, 6-17

HLB bits (HLBO-HLB1), 4-57, 4-57, 7-3
effects on prefetching, 7-11

HLT bit, 4-57, 4-61, 6-4, 6-22, 7-4
setting for downloading new code, 5-8
software reset, 7-32

HOE signal, 2-10, 2-14,7-2

horizontal
back porch; 9-10
blanking

minimum duration, screen refreshes, 9-51
screen refreshes, 9-42

front porch, 9-10
vide,? timing (internal), 9-11-9-12

horizontal blanking, 9-9
VRAM tap point, 4-80

horizontal sync, 9-9
direction, 4-36

horizontal timing
HCOUNT register, 4-5.2
HEBLNK register, 4-53
HESERR register, 4-54
HESYNC register, 4-55
HSBLNK register, 4-66
HTOTAL register, 4-67
SETHCNT register, 4-81
VEBLNK register, 4-86

host interface, 7-1-7-44
access delays, 7-37-7-40
address identification, 4-57, 7-7
autoincrementing, 7-12-7-15
bandwidth,7-34

optimizing, 7-35
basic communication, 7-7-7-9
big-end ian addressing, 7-44
block diagram, 7-6
buffering messages, 4-62

/lndex-10

bus fault indication, 4-64
byte-select strobes, 2-14, 4-57, 7-7

illustration, 7-8
chip-select, 2-14
completing a host access, 7-16-7-17
data latch

output enable, 2-14
strobe, 2-14

default cycle, 7-15, 8-7
downloading new code from host, 7-32
emulation considerations, A-7
emulator communications, 4-63
features that improve performance, 7-10

address comparison, 4-60-4-61, 7-12
autoincrementing, 4-60-4-61, 7-12
host-default cycle, 7-15
prefetching, 4-59-4-61, 7-10

halt latency, 7-39
implicit addressing, 7-12-7-15
interrupts, 4-58, 4-64, 6-16, 6-21, 7-9

enabling, 4-69
HINT, 2-14
message to host, 4-63
message to TMS34020, 4-62
pending indication, 4-70

little-end ian addressing, 7-44
messages, 4-62
multiple-TMS34020 system, 7-40-7-41
prefetching data, 7-10
read cycles, 7-8

back-to-back with autoincrementing, HREAD
as strobe, 7-23

back-to-back with prefetching, HCS as strobe,
7-22

single read from 110 register, HREAD as
strobe, 7-20

single read, 1 wait state, HCS as strobe, 7-21
single read, HCS as strobe, 7-19
successive reads to same location, HCS and

HREAD as strobes, 7-24
read strobe, 2-14
registers

CONFIG, 4-20
HSTCTLH, 4-57-4-62, 7-3
HSTCTLL, 4-62-4-65, 7-4

retry indication, 4-64, 7-9
signals, 2-13

BUSFLT, 7-9
HA5-HA31, 2-14, 7-2, 7-7
HBSO-HBS3, 2-14,7-2,7-7

HCS, 2-14,7-2
HOST, 7-2
HOST, 2-14 -
HINT, 2-14, 7-2, 7-9
HOE, 2-14, 7-2
HRDY, 2-14,7-2
HREAD, 2-14,7-2
HWRITE, 2-14,7-2
LRDY, 7-9

status code on local-memory cycle, 8-10
synchronizing host requests, 7-35
systems with 16-bit memory devices, 7-42-7-43
timing examples, 7-18-7-31
TMS34020 acknowledges halt, 4-57
use of page mode, 8-24
worst-case delay, 7-37

bus-master arbitration, 7-38
CPU cycles, 7-39
DRAM-refresh cycles, 7-38
host request syncronization, 7-38
previous host cycle, 7-38
screen-refresh cycles, 7-38

write cycles, 7-9
back-to-back writes with autoincrementing,

HWRITE as strobe, 7-29
back-to-back writes with prefetching & autoin­

crementing, HREAD and HWRITE as
strobe, 7-31

back-to-back writes with prefetching, HCS as
strobe, 7-30

back-to-back writes, HCS as strobe, 7-28
single write to 110 register, HWRITE as strobe,

7-26
single write, 1 wait state, HCS as strobe, 7-27
single write, HCS as strobe, 7-25

write strobe, 2-14

host interrupt
disabling, 6-6
enabling, 6-6

host-address bus, 2-14, 7-2, 7-7

host-byte selects, legal combinations for autoincre-
menting, 7-13

host-interface, bus fault indication, 7-9

host-present mode, 6-25

HPFW bit, 4-57, 4-59, 7-3
effects on autoincrementing, 7-13
effects on prefetching, 7-10

interaction with HINC, 4-59, 7-10

HRDY signal, 2-10,2-14,7-2
activating for ...

host reads, 7-16

Index

host reads and writes after prefetches, 7-17
host writes, 7-16

HREAD signal, 2-10, 2-14, 7-2, 7-7

HRYI bit, 4-64, 6-5, 7-5, 7-9

HSBlNK register, 4-66-4-67, 9-4

HSD bit, 4-36, 9-5

HSTADRH, HSTADRl, 4-56, 7-5

HSTCTlH register, 4-57-4-62
CF bit, 4-61,5-8, 7-4
HACK bit, 4-57, 7-3
HBFI bit, 7-9
HBREN bit, 7-9
HINC bit, 4-60, 7-4, 7-10, 7-13
HlB bit, 7-3, 7-11
HlB bits, 4-57
HlT bit, 4-61, 5-8, 6-4, 6-22, 7-4, 7-32
HPFW bit, 4-59, 7-3, 7-10, 7-13
HRYI bit, 7-9
NMI bit, 4-58, 6-4, 6-16,7-3
NMIM bit, 4-59, 6-4, 6-16,7-3
RST bit, 4-58, 6-4, 7-3

HSTCTll register, 4-62-4-65
EMG bit, 4-62, 4-63, 7-4, A-7
EMIEN bit, 4-62, 4-64, 7-4, A-7
EMR bit, 4-62, 4-63, 7-4, A-7
HBFI bit, 4-64, 6-5, 6-21, 7-5
HBREN bit, 4-62, 4-64, 6-5, 6-21, 7-5
HBYI bit, 4-62
HRYI bit, 4-62, 4-64, 6-5, 6-21, 7-5
INTIN bit, 4-62, 6-5, 6-16, 7-4
INTOUT, 4-63
INTOUT bit, 4-62, 6-5, 6-21,7-4
MSGIN, 4-62, 4-63
MSGIN bits, 4-62, 6-5, 6-16, 7-4
MSGOUT, 4-63
MSGOUT bits, 4-62, 6-5, 6-21, 7-4

HSTDATA register, 4-65, 7-5

HSYNC signal, 2-10, 2-15, 9-3
selecting as input or output, 4-36

HTOTAl register, 4-67-4-68, 9-4

HWRITE signal, 2-10, 2-14, 7-2, 7-7

Index-11

Index

D
I/O registers, 4-9-4-13

BSFLTD,4-15
BSFLTST,4-17
CON FIG, 4-20
CONTROL, 4-24
CONVDP, 4-28
CONVMP, 4-28
CONVSP, 4-28
DINC, 4-32
DPYCTL, 4-36
DPYINT,4-41
DPYMSK, 4-44
DPYNX, 4-42
DPYST,4-46
HCOUNT,4-52
HEBLNK,4-53
HESERR, 4-54
HESYNC, 4-55
host accesses, 8-24
HSBLNK, 4-66
HSTCTLH,4-57-4-62
HSTCTLL, 4-62
HTOTAL, 4-67
IHOST,4-68
in the memory map, 3-2, 3-3
initial state following reset, 6-23
INTENB,4-69
INTPEND,4-70
memory map, 4-9
PMASK,4-77
PMASK registers, 4-75
REFADR,4-78
SCOUNT, 4-80
SETHCNT,4-81-4-82
SETVCNT, 4-82-4-83
summary, 4-10
VCOUNT, 4-84
VEBLNK,4-86
VESYNC, 4-87
VSBLNK,4-88
VTOTAL, 4-89

10 assignments, for coprocessors, 10-6

IDLE instruction, 13-133

IE (global interrupt enable) status bit, 4-2, 6-3, 6-6

IHOST registers, 4-68

illegal opcode interrupt, priority, 6-7

immediate values, 13-2

Index-12

implicit addressing, 7-12-7-15
implied operands

B-file registers, 4-7
summary, 4-8

COLORO, 4-18, 4-74
COLOR1, 4-19, 4-74
CON FIG, 4-20
CONTROL, 4-24
CONVDP, 4-28
CONVMP, 4-28
CONVSP, 4-28
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
MADDR,4-71
MPTCH,4-72
OFFSET,4-73
PATTERN,4-74
PMASK,4-75
PSIZE,4-77
SADDR,4-79
SPTCH,4-83
WEND,4-90
WSTART, 4-91

in-circuit emulation, A-1
host communications, 4-64

INC instruction, 13-134
incrementing ...

automatically for host accesses, 4-60
display address, 4-32
DPYNX, 4-32
HCOUNT, 4-52
SCOUNT,4-80
VCOUNT, 4-84

incrementing ... , y-zoom value, 4-32, 4-33, 4-42
indirect operands, 13-5

in XY mode, 13-9
with an offset, 13-6
with postincrement, 13-7
with predecrement, 13-8

instruction cache, 5-1-5-12
accessible words, 5-3
architecture, 5-2
bypassing the cache, 5-8
cache hit, 5-5
cache miss, 5-5

segment miss, 5-6
subsegment miss, 5-5

CD (cache disable) bit, 5-8
CF (cache flush) bit, 5-8

Index
:::::xm~::.:~:;x::;~x~~x~~:::;~~:;:;x~m:;-;~~:::;~~::::::::w..::::::~::::~~~~~::::::::::::.::x::%m~~%:;xw.6:::;X::.x:;:;:::;~~~::::xx:;:::;:;:;:::;:~~;~:;:;:;::-.:::~::::::::::~~z.:;m:;x:;:;.;~~::;.~::;~~~::::~~~:::;~~::::~::~::~::::::::::~~::::::~~~::~X'.:::~::::;:::::::::::::::::~~~~:::::;~~~::::~~::::~~::::~~::~:::::::::;-;::~*:~~~~~~~::~~~~:::::;~::::~::::~~::::::::::::~~~::::::~:;~:::::::::;o;::::::::::::::::~::::::::::~::;:::::;

control algorithm, 5-3
disabling the cache, 5-8
downloading new code from a host, 5-8
fetching data after a cache miss, 5-6
flushing the cache, 4-61, 5-8
initial state following reset, 6-23
internal parallelism, 5-10
least-recently-used algorithm, 5-4
operation, 5-5-5-8
organization, 5-2
P flags, 5-2, 5-4
performance when enabled vs. disabled, 5-9
reason it's provided, 5-1
replacement algorithm, 5-4
segments, 5-2
self-modifying code, 5-8
setting the CD bit, 5-8
setting the HLT bit, 5-8
size, 5-3
SSA registers, 5-2
subsegments, 5-2

instruction set. See TMS34020 instruction set

instructions
fetches, status code on local-memory cycle, 8-11
interrupting execution, 6-13
timings, 15-1-15-12

INTENB register, 4-69-4-70, 6-6
DIE bit, 4-69-4-70, 6-3
HIE bit, 4-69-4-70, 6-3
WVE bit, 4-69-4-70, 6-3
X1 E bit, 4-69-4-70, 6-3
X2E bit, 4-69-4-70, 6-3

interlaced video, 9-21-9-28
composite sync

equalization region, 9-17
serration region, 9-17

display example, 9-40-9-42
electron beam pattern, 9-22
even field, 9-21
external synchronization, 9-31
odd field, 9-21
programming vertical registers, 9-24
selecting, 4-40
signal combinations, 9-22

interlist utility, 1-11

internal interrupts, 6-16-6-18
display interrupt, 6-17
host interrupt, 6-16
iIIegal-opcode interrupt, 6-18

NMI,6-16
single-step interrupt, 6-17
window-violation interrupt, 6-17

internal parallelism, 5-1 °
interrupt, saving information on the stack, 3-29

interrupts, 6-1-6-32
actions taken, 6-9, 6-10
bus-fault interrupt, 6-19-6-20
delays, 6-11

sources, 6-12
disabling, 6-6
display interrupt, 4-41, 4-69, 4-70, 6-17, 9-37
during instruction execution, 4-2, 6-3, 6-9
effects on

PC, 6-9
ST, 6-9

effects on ...
PC, 4-4
Sp, 4-5

emulation considerations, A-7
enabling, 4-2, 4-69, 6-6
external interrupts, 4-69, 4-70, 6-15
graphics instructions, 6-10, 6-13-6-14
host interrupt, 2-14, 4-64, 4-69, 4-70, 6-16, 6-21
host interrupts, 4-64
how many supported?, 6-1
iIIegal-opcode interrupt, 6-18
internal interrupts, 6-16
latency, 6-11
LlNT1, LlNT2 (local interrupts), 2-16
nonmaskable interrupt, 4-58, 6-16
pending interrupts, 4-70
priorities, 6-7
processing, 6-9
registers, 6-2

HSTCTLH, 4-57, 6-4
HSTCTLL, 4-62, 6-5
INTENB, 4-69-4-70, 6-3
INTPEND, 4-70-4-71, 6-4
ST, 4-2,6-3

reset, 6-22-6-27
host-present mode, 6-25
self-bootstrap mode, 6-25

RESET (system reset), 2-16
service routines, 6-1 °

returning, 6-10
single-stepping through, 6-31

signals, 6-2
BUSFLT, 6-2
HINT,6-2

Index-13

Index

LIIVT1, LIIVT2, 6-2
RESET, 6-2

single-step interrupt, 6-17, 6-28
interaction with other interrupts, 6-30

traps, 6-8, 6-21
numbers, 6-16

vector, fetches, status code on local-memory
cycle, 8-11

vector addresses, 6-8, 6-16
window violation, 4-69, 4-70, 6-17

INTIN bit, 4-62, 6-5, 6-16, 7-4

INTOUT bit, 4-62, 4-63,6-5,7-4

INTPEND register, 4-70-4-71
DIP bit, 4-70-4-71, 6-4, 6-17
HIP bit, 4-70-4-71, 6-4, 6-17
WVP bit, 4-70-4-71, 6-4, 6-17
X1 P bit, 4-70-4-71,6-4,6-15
X2P bit, 4-70-4-71, 6-4, 6-15

INVD (,34082 pseudo-op), 14-41

INVF (,34082 pseudo-op), 14-42, 14-43

IX (interruptible instruction executing) status bit, 4-2,
6-3

II
JAcc instruction, 13-135-13-136

JRcc (long) instruction, 13-139-13-140

JRcc (short) instruction, 13-137-13-138

JUMP instruction, 13-141

jump instructions, 13-25-13-31
condition codes, 13-26
DSJ,13-103
DSJEQ,13-104-13-105
DSJNE, 13-106-13-107
DSJS, 13-108
effects on PC, 4-4
JAcc, 13-135-13-136
JRcc (long), 13-139-13-140
JRcc (short), 13-137-13-138
JUMP, 13-141

JUMPC (,34082 pseudo-op), 14-44

Kernighan and Ritchie, 1-11

key features of the TMS34020, 1-2

Index-14

D
LADO-LAD31 signals, 2-9, 2-11, 8-2,10-2

connecting to VRAMs, 8-41,8-43
4-bit VRAMs

4 bits per pixel, 8-41
8 bits per pixel, 8-43

connections to 16-bit host bus, 7-42
data remapping, 8-42, 8-43
LAD4 used as 16-bit word select, 8-25
latching data on the LAD bus, 8-8
saving data during a bus fault, 4-15
status code on LADO-LAD3, 8-9, 8-10-8-11
values for nonmultiplexed addressing, 8-50
when data is valid, 8-13
which half used during 16-bit accesses, 8-26

latency
halt latency, 7-39
host requests, 7-37-7-40
of screen refreshes, 9-50
recognizing interrupts, 6-11

LCLK1, LCLK2 signals, 2-10, 2-16, 8-2, 8-18, 10-2
LCLK1

effect on external interrupts, 6-15
used in emulation, A-3, A-4, A-5, A-6

LCLK2, identifying valid data on LAD bus, 8-12,
8-18

least-recently-used (cache replacement) algorithm,
5-4

LINE instruction, 13-142-13-145
destination address, 4-30
implied operands

COL ORO, 4-18
COLOR1,4-19
COIVVDp, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
MPTCH,4-72
OFFSET, 4-73
PATTERIV, 4-74
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEIVD,4-90
WSTART, 4-91

source address, 4-79

linear addressing, 3-3-3-4, 3-15
advantages, 3-19
array addresses

destination address (DADDR), 4-30
source address (SADDR), 4-79

pixels, 3-11

UNIT instruction, 13-146

linker, 1-12

UNT1, UNT2 signals, 2-10,2-16, 6-2, 6-15, 8-2,
10-2
interrupt pending indication, 4-70
interrupt request, 4-69

little-end ian addressing, 3-20-3-25
assembling code for, 3-24-3-25
default at reset, 3-20, 4-21
effect of BEN bit, 3-20
effect of the BEN bit, 4-21
host interface, 7-44
processors that use it, 3-20
selecting, 3-20, 4-21

LMO instruction, 13-147

load-write-mask cycles, 8-34

local-memory interface, 8-1-8-60
addressing mechanisms, 8-50-8-56
cycles

address/status portion, 8-8-8-9
bus errors/bus faults, 8-14
completing a successful cycle, 8-13
data portion, 8-8-8-9
ending, 8-12-8-14
extending with wait states, 8-12
general form, 8-8-8-9
page mode, 8-15-8-17
read & write cycles, 8-18-8-24
retrying, 8-13
status codes, 8-10-8-11
with wait states, 8-46-8-48

display examples, 8-57-8-60
dynamic bus sizing, 8-25-8-29
host-default cycles, 7-15, 8-7, 8-49-8-50
LADO--LAD31 (LAD bus), 2-11
multiplexed addressing, 8-51-8-53
nonmultiplexed addressing, 8-50
page mode, 8-15-8-17
registers, 8-4-8-5

CONFIG, 4-20, 8-4
DPYCTL, 4-36
PMASK, 4-75, 8-5
PSIZE,4-77

REFADR, 4-78, 8-5
request priorities, 8-6-8-7
signals, 8-2-8-3

ALTCH, 2-11, 8-2, 10-2
BUSFLT, 2-11, 8-2, 8-12, 8-18, 10-2
CAMD,8-18
CASO-CAS3, 10-2
DDIN, 2-11, 8-2
DDOUT, 2-11, 8-2, 8-18
G/,8-18
LADO-LAD31, 2-11, 8-2, 10-2
LCLK1, LCLK2, 8-12, 8-18, 10-2
L1NTt, L1NT2, 10-2
LRDY, 2-11,8-2,8-12,8-18, 10-2
PGMD, 2-11, 8-3, 8-12, 8-18
RO, R1, 8-18
SF, 10-2
SIZE16, 2-11, 8-3, 8-12, 8-18
WE,10-2

logical instructions, 13-24
AND,13-40
ANDI,13-41
ANDN,13-42
ANDNI,13-43
LMO,13-147
NEG,13-178
NEGB,13-179
NOT,13-181
OR,13-182
ORI,13-183
RMO,13-224
XOR,13-266
XORI,13-267

loss of bus grant, 8-6

Index

LRDV signal, 2-9, 2-11, 7-9, 8-2, 8-12, 8-18, 10-2
bus cycle completion codes, 2-12

MADDR register, 4-71-4-72
SETCMP instruction, 4-71

major interfaces, 2-8

masks
display mask (DPVMSK), 4-44-4-46
mask array

address (MADDR), 4-71-4-72
pitch (MPTCH), 4-72
XY-to-Iinear conversion factor (CONVMP),

4-28

Index-15

Index

pitch
conversion factor, 4-28-4-30
CONVMP register, 4-28
MPTCH register, 4-72-4-73

plane mask (PMASK), 4-75
write-mask registers (for VRAMs), 4-20, 4-22

memory
address space, 3-3
display memory, 8-56

coordinates, 3-13
dimensions, 3-12

general use, 3-3
1/0 registers, 3-3
map of local memory, 3-2
organization, 3-1-3-32

addressing, 3-3-3-4
bank selection, 8-55-8-56
bytes, 3-1
fields, 3-1, 3-3, 3-5
memory map, 3-2
pixel arrays, 3-1, 3-18-3-19
pixels, 3-1, 3-10
stacks, 3-26

reserved, 3-3
system memory, 8-56
vectors, 3-3

memory-to-serial-registers cycles, 8-30

memory-to-split-serial-registers cycles, 8-31

micellaneous instructions, CVDXYL, 13-87-13-88

midline reload, 4-38, 8-58, 9-55-9-56
example display memory dimensions, 8-59

midlines reload, 9-43-9-46

miscellaneous instructions
CLR,13-57
CLRC, 13-58
CVMXYL, 13-89-13-90
CVSXYL, 13-91
REV, 13-221
SETCDP, 13-227
SETCMP, 13-228
SETCSP, 13-229

MMFM instruction, 3-27,13-148-13-149

MMTM instruction, 3-27, 13-150-13-151

MODS instruction, 13-152

MQDU instruction, 13-153-13-157

MOVB instructions, 13-154-13-157

MOVD pseudo-ops instructions, 14-45-14-57

Index-16

MOVE instructions, 13-158-13-166
move instructions

BLMOVE,13-44-13-45
byte, 13-20
field,13-20-13-31
MMFM,13-148-13-149
MMTM,13-150-13-151
MOVB instructions, 13-154-13-157
MOVE instructions, 13-158-13-166
MOVI (16 bits), 13-167
MOVI (32 bits), 13-168
MOVK,13-169
MOVX, 13-170
MOVY, 13-171
multiple register, 13-20
register-to-register, 13-19
summary, 13-19-13-23
value-to-register, 13-19
XY,13-19

MOVEpseudo-ops instructions, 14-58-14-67

MOVF pseudo-ops instruction, 14-68-14-110

MOVI instruction
16-bit (short) version, 13-167
32-bit (long) version, 13-168

MOVK instruction, 13-169

MOVX instruction, 13-170
MOVY instruction, 13-171

MPTCH register, 4-72-4-73
SETCMP instruction, 4-72
XY-to-linear conversion, 3-15

MPYD (,34082 pseudo-op), 14-78

MPYF (,34082 pseudo-op), 14-79, 14-80
M PYS (,34082 pseudo-op), 14-81, 14-82

MSGIN bits (MSGINO-MSGIN2), 4-62, 4-62, 4-63,
6-5,6-16,7-4

MSGOUTbits (MSGOUTO-MSGOUT2), 4-62,
4-63,6-5,6-21, 7-4

multiple-TMS34020 system, 7-40-7-41

multiplexed addressing, 8-51-8-53

multiprocessor interface, 11-1-11-20
3-wire interface, 11-1
arbitration logic, 11-13-11-15

2 TMS34020s, 11-15-11-17
examples, 11-15-11-18
with a hold device, 11-17-11-20

bus request codes, 11-5
bus requests, 11-5
initializing multiple TMS34020s, 11-19

local-memory bus
passing control, 11-6
releasing control, 11-5
requesting control, 11-5

overview, 11-2
protocols, 11-5
retries, 11-15
signals, 2-13, 11-2

GI, 2-13, 11-2
RD, R1, 2-13, 11-2

system configuration, 11-3-11-4
system with a host processor, 7-40-7-41
wait states, 11-15
with a host processor, 11-20

MWAIT instruction, 13-177

MVPS instruction, 13-172-13-174

MVPU instruction, 13-175-13-176

m
N (negative) status bit, 4-3

NEG instruction, 13-178

NEG (,34082 pseudo-op), 14-83, 14-84

NEGB instruction, 13-179

NEGD (,34082 pseudo-op), 14-85

NEGF (,34082 pseudo-op), 14-86, 14-87

NIL bit, 4-40, 9-6, 9-18, 9-21

NMI bit, 4-57, 4-58, 6-4, 6-16, 7-3

NMIM bit, 4-57, 4-59, 6-4, 6-16, 7-3

non interlaced video, 9-18-9-20
display example, 9-38-9-39
electron beam pattern, 9-18
programming vertical registers, 9-20
selecting, 4-40
signal combinations, 9-18

nonmaskable interrupt, 6-16
NMI bit, 4-58
NMIM bit, 4-59
priority, 6-7
saving the context, 4-59

nonmultiplexed addressing, 8-50

NOP instruction, 13-180

NOT instruction, 13-181

NOT (,34082 pseudo-op), 14-88, 14-89

object format, 1-11

object format converter, 1-12

odd field (interlaced video), 9-21

OFFSET register, 4-73--4-74
XV -to-linear conversion, 3-15, 3-16

on-chip registers
PC, 4-4
register files, 4-6
status register (ST), 4-2

opcodes, illegal opcodes
interrupt, 6-18
range, 6-18

operand formats, 13-2-13-9

optimization, 1-11

OR instruction, 13-182

ORI instruction, 13-183

P flags, 5-2, 5-4
initial state following reset, 6-23

page mode, 8-15-8-17, 8-18
dynamic bus sizing, 8-28
multiple local-memory cycles, 8-15
read cycle timing, 8-20
read/write cycle timing, 8-22
read-modify-write cycle timing, 8-22
selecting page mode, 8-15
signal,2-11
write cycle timing, 8-20

panning the display, 9-57

parameter size, for coprocessor data, 10-6

PATTERN register, 4-74

PBH bit, 4-25

PBV bit, 4-26

PC, 4-4
and the stack, 3-29
effects of instruction execution, 4-4
effects of interrupts, 6-9
illustration, 4-4
initial state following reset, 6-23

pending ...
interrupts, 4-70, 6-4
local-memory requests, 8-7
refresh cycles, 4-23, 8-7

Index

Index-17

Index

PFILL instruction, 13-184-13-189
implied operands

COL ORO, 4-18
COLOR1,4-19
DADDR,4-30
DPTCH,4-34
DYDX, 4-51
OFFSET, 4-73
PATTERN, 4-74

PGA package pinout, 2-2

PGMD signal, 2-9,2-11,8-3,8-12,8-18

pin descriptions, 2-1-2-16
by category, 2-9-2-16
D~AM!VRAM interface, 2-9, 2-12
emulation interface, 2-10
host interface, 2-9, 2-13
local-memory interface, 2-9, 2-11-2-16
major interfaces, 2-8
multiprocessor interface, 2-9, 2-13

G/,2-13
power, 2-16
summary, 2-9-2-16
system control, 2-10,2-16
video interface, 2-15

pinouts, TMS34020, 2-2-2-7
PGA package, 2-2-2-7
QFP package, 2-5-2-7

pitches (for pixel arrays)
destination array, 4-28-4-30, 4-34-4-35
legal pitch values, 4-29-4-30
mask array, 4-28-4-30, 4-72-4-73
source array, 4-28-4-30, 4-83-4-84
XY-to-linear conversion

destination pitch, 4-34-4-35
factor

CONVDP register, 4-28--4-30
CONVMP register, 4-28--4-30
CONVSP register, 4-28--4-30

mask pitch, 4-72-4-73
source pitch, 4-83-4-84

PIXBLT instructions, 13-190-13-205
alternate starting corners, 3-18
destination address, 4-30
display pitch, 3-13
horizontal direction, 4-25
PIXBLT B,L, implied operands

COL ORO, 4-18
COLOR1,4-19
CONTROL, 4-27

Index-18

DADDR,4-30
DPTCH,4-34
DYDX, 4-50
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT B,XY, implied operands
COL ORO, 4-18
COLOR1, 4-19
CONTROL, 4-27
CONVDp, 4-29
DADDR,4-30
DPTCH,4-34
DYDX, 4-50
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83
WEND,4-90
WSTART, 4-91

PIXBLT L,L, implied operands
CONTROL, 4-27
DADDR,4-31
DPTCH,4-34
DYDX, 4-50, 4-51
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT L,M,L, implied operands
DADDR,4-31
DPTCH,4-34
MADDR,4-71
MPTCH,4-72
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT L,XY, implied operands
CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DADDR,4-31
DPTCH,4-34
DYDX, 4-50, 4-51
OFFSET, 4-73
PMASK,4-76

PSIZE,4-77
SADDR,4-79
SPTCH,4-83
WEND, 4-90
WSTART, 4-91

PIXBLT XY,L, implied operands
CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DADDR,4-31
DPTCH,4-34
DYDX,4-50
OFFSET, 4-73
PMASK, 4-76
PSIZE,4-77
SADDR,4-79
SPTCH,4-83

PIXBLT XY,XY, implied operands
CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DADDR,4-31
DPTCH,4-34
DYDX,4-51
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEND, 4-90
WSTART, 4-91

pixel arrays, 3-18
source address, 4-79
vertical direction, 4-26

pixel
processing

arithmetic options, 4-26
Boolean options, 4-26
selecting, 4-26-4-27

size, 4-77

pixel access, conversion to a VRAM serial-register
transfer, 4-39

pixel arrays, 3-1,3-18-3-19
addresses

destination (DADDR), 4-30
source (SADDR), 4-79

binary arrays, 4-18, 4-19
dimensions, 4-50
height (DY), 3-18
illustration, 3-18
mask address, 4-71

operations, window checking, 4-90, 4-91
pitch,3-18

Index

destination pitch, 4-28-4-30, 4-34-4-35
legal values, 4-29
mask pitch, 4-28-4-30, 4-72-4-73
source pitch, 4-28-4-30, 4-83-4-84

size, 4-50
starting address, 3-18
width (OX), 3-18
window checking, 3-19, 4-50, 4-90, 4-91
XY origin, 3-18

pixel operations
color information, 4-18, 4-19
pattern information, 4-74
status code on local-memory cycle, 8-11

pixels, 3-1,3-10-3-13
DING register, 3-11
display pitch, 3-13
extraction, 3-11
in memory, 3-10
insertion, 3-11
linear addressing, 3-11
on the screen, 3-11

configurable screen origin, 3-12
PSIZE register, 3-10
starting address, 3-10
storage in memory, 3-10
valid sizes, 3-10
within a general-purpose register, 3-10
XY addressing, 3-11

PIXT instructions, 13-206-13-213
implied operands

CONTROL, 4-27
CONVDp, 4-29
CONVSp, 4-29
DPTCH,4-34
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SPTCH,4-83
WEND, 4-90
WSTART, 4-91

plane masking, PMASK register, 4-75--4-77
PMASK registers, 4-75-4-77, 8-5

and VEN, 4-22
block-write cycle (with mask), 8-40
enabling load-write-mask cycles, 8-34
local-memory write cycle (with mask), 8-36
writing 1 s complement of PMASK to VRAM write-

mask registers, 8-34

Index-19

Index -
PMASKH, PMASKL. See PMASK registers

POPST instruction, 13-214

power and ground, pins, 2-16
Vee, 2-16
Vss, 2-16

PPOP bits (PPOPO-PPOP4), 4-26-4-27

prefetching, 7-10-7-12
accessing the correct address, 7-12
after reads, 7-10-7-12
after writes, 7-10-7-12
enabling, 7-10-7-12
size of host data bus, 7-11-7-12

priorities of ... , memory bus requests, 8-6

program counter. See PC

program-control instructions, 13-25-13-27
DINT,13-95
DSJ,13-103
DSJEQ,13-104-13-105
DSJNE,13-106-13-107
DSJS, 13-108
EINT,13-109
EMU, 13-110
EXGF,13-111
EXGPC, 13-112
EXGPS, 13-113
GETPC, 13-130
GETPS, 13-131
GETST,13-132
IDLE,13-133
MWAIT, 13-177
NOP, 13-180
PO PST, 13-214
PUSHST, 13-215
PUTST, 13-216
RETM, 13-219
SETC, 13-226
SETF,13-230-13-231
SEXT, 13-232
ZEXT, 13-268

program-control instuctions, SWAPF,
13-247-13-248

PSIZE register, 3-10, 4-77-4-78

PUSHST instruction, 13-215

PUTST instruction, 13-216
single-step interrupt, 6-17

Index-20

QFP package pinout, 2-5

iii
RO, R1 signals, 2-9, 2-13, 8-18,11-2
RAS signal, 2-9, 2-12, 8-3
RCAO-RCA12 signals, 2-9, 2-12, 8-3, 8-53

effect of RCM bits, 4-21
RCM bits (RCMO-RCM1), 4-21, 4-78, 8-4

effect on local-memory cyles, 8-51,8-52
write protecting the field, 4-22

read cycles
adding wait states, 8-46
general timing, 8-19-8-24
initiated by the host, 8-24
local memory, 8-18
timing with page mode, 8-20
VRAM read transfer, 8-30

read/write cycles, timing with page mode, 8-22
read-modify-write cycles

steps in operation, 8-22
timing with page mode, 8-22
with dynamic bus sizing, 8-26

REFADR register, 4-78-4-79, 8-5
address output to RCA and LAD buses, 8-44

refreshes
See also screen refreshes
address output, 4-42
automatic screen refreshes, 4-40
CAS-before-RAS, 8-44
DRAM refreshes, 4-78

selecting the refresh rate, 4-23
host-access delays, 7-38
pending counter, initial state following reset, 6-23
pseudo-address, 8-44
REFADR register, 4-78
refresh address, 4-78
VRAM screen refreshes, enabling for VRAMs

with split serial registers, 4-38
register files, 4-6-4-8

file A, 4-6-4-8
file B, 4-6-4-8
illustration, 4-6
register used as auxiliary stack pointer, 3-29
SP, 4-5, 4-6
storing registers on the stack, 3-27

register-direct operands, 13-4

register-indirect operands, 13-5
in XV mode, 13-9
with an offset, 13-6
with postincrement, 13-7
with predectement, 13-8

registers, 4-1-4-14, 4-62-4-92
cache registers

data, 5-2, 5-3
segment start address, 5-2, 5-3

general-purpose registers, 4-6-4-8
I/O registers, 4-9-4-13
program counter (PC), 4-4
SP,3-26
stack pointer (SP), 4-5
status register (ST), 4-2
STK,3-29

reserved ...
bits in the status register, 4-3
memory, 3-3

reset, 6-22-6-27
activity following reset, 6-24
configuring the TMS34020 at reset

selecting the endian addressing mode, 4-20,
4-21

selecting the row-I column-address mode,
4-20,4-21

effects on the cache, 5-4
emulation considerations, A-7
host-present mode, 6-25
how to reset the TMS34020, 6-22-6-27
initial state following reset

cache, 6-23
refresh-pending counter, 6-23
registers, 6-23
signals, 6-22

protecting the addressing-mode configuration,
4-22

RESET signal, 2-16
self-bootstrap mode, 6-25
software reset

using NMI, 4-58
using RST, 4-58

value of ST, 4-2

RESET signal, 2-10,6-2,6-22-6-27
effect on HLT bit, 4-61
priority, 6-7

RETI instruction, 6-10,13-217-13-218
how it differs from RETM, 6-32
single-step interrupt, 6-17

RETM instruction, 6-10,13-219
how it differs from RETI, 6-32
single-step interrupt, 6-17

retries
coprocessor cycles, 10-9
local-memory cycles, 8-13
on a host access, 4-64, 7-9

RETS instruction, 13-220
restrictions, 6-10

REV instruction, 13-221

RL instruction, 13-222, 13-223

RMO instruction, 13-224

rotate/shift instructions
RL, 13-222, 13-223
SLA, 13-233, 13-234
SLL, 13-235, 13-236
SRA, 13-237, 13-238
SRL, 13-239, 13-240

row address
bus, 2-12
configuration, 4-21
strobe, 2-12
time, 4-21, 8-8

RPIX instruction, 13-225

RR bits (RRQ-RR2), 4-23, 4-78, 8-4
effect on local-memory cyles, 8-44

RST bit, 4-57, 4-58, 6-4, 7-3

S (select) bit, 8-25

SADDR register, 4-79

scan line duration, 4-67

SCLK signal, 2-10, 2-15, 9-3

SCOUNT register, 4-80-4-81

screen origin
alternate, 3-12
default, 3-12

screen refreshes
address output during, 4-42
addressing sequence

interlaced video, 9-53
noninterlaced video, 9-53

automatic refreshes, 4-40
CAS-before-RAS, 8-44
disabling,9-49
during horizontal blanking, 9-42
effect of the display mask, 4-44

Index

Index-21

Index

generating addresses, 9-51
horizontal blanking

address generation, 9-52
minimum duration, 9-51

interlaced video, addressing sequence, 9-53
latency, 9-50
memory-to-register cycles, 4-39
midline reload, 9-43, 9-55
noninterlaced video, addressing sequence, 9-53
REFADR register, 4-78
refresh address, 4-78
register-to-memory cycles, 4-39
registers

DING,4-32
DPYMSK, 4-44
DPYNX, 4-42
DPYST, 4-46

scheduling, 9-50-9-51
split-serial-register midline reload, 4-38

screen sizes, 9-36

screens, configurable origin, 3-12

SDB,1-12

segment miss, 5-6

self-bootstrap mode, 6-25

self-modifying code, effects on instruction cache, 5-8

serial registers, 4-38
converting pixel access to serial-register transfer

accesses, 4-39
register-to-memory cycles, 8-32, 8-33
split serial registers, 4-38
transfers, 8-6

status-code on local-memory cycle, 8-11

serration, ending (HESERR), 4-54

serration pulses, 9-15-9-16
on CSYNC, 9-16

SETC instruction, 13-226

SETCDP instruction, 13-227
implied operands

GONVDp, 4-29
DPTGH,4-34

SETCMP instruction, 13-228
CONVMP register, 4-28
implied operands

GONVMP, 4-29
MADDR,4-71
MPTGH,4-72

Index-22

SETCSP instruction, 13-229
implied operands

GONVSP, 4-29
SPTGH,4-83

SETF instruction, 13-230-13-231
SETHCNT register, 4-81--4-82, 9-4

SETVCNT register, 4-82--4-83, 9-5

SEXT instruction, 13-232
SF signal, 2-9, 2-12, 8-3, 10-2

shift instructions, 13-28

shift/rotate instructions
RL, 13-222, 13-223
SLA, 13-233, 13-234
SLL, 13-235, 13-236
SRA, 13-237, 13-238
SRL, 13-239, 13-240

sign-extending
field 0, 4-2
field 1,4-2

signal buffering, for emulator connections, A-4

signal descriptions, 2-1-2-16
by category, 2-9-2-16
DRAMNRAM interface, 2-12
host interface, 2-13
local-memory interface, 2-11-2-16
major interfaces, 2-8
multiprocessor interface, 2-13
pinouts, 2-2-2-7

PGA package, 2-2-2.-7
QFP package, 2-5-2-7

power, 2-16
system control, 2-16
video interface, 2-15

single-step interrupt, 6-17, 6-28
disabling, 6-6
enabling, 6-6
interaction with other interrupts, 6-30
priority, 6-7

SIZE16 signal, 2-9, 2-11, 8-3, 8-12, 8-18
dynamic bus sizing, 8-25

SLA instruction, 13-233, 13-234

SLL instruction, 13-235, 13-236

software development board, 1-12

software libraries
8514 adaptor emulation, 1-12
CCITT data compression, 1-12
font, 1-12
math/graphics, 1-12

software reset, 7-32
using NMI, 4-58
using RST, 4-58

source pitch
conversion factor, 4-28-4-30
CONVSP register, 4-28
SPTCH register, 4-83-4-84

SP, 3-26, 4-5
effects of interrupts, 6-9
illustration, 4-5
position in the register files, 4-6

special-function pin, 2-12

SPTCH register, 4-83-4-84
XV-to-linear conversion, 3-15

SQR (,34082 pseudo-op), 14-90, 14-91
SQRO ('34082 pseudo-op), 14-92

SQRF (,34082 pseudo-op), 14-93, 14-94

SQRT (,34082 pseudo-op), 14-95, 14-96
SQRTO (,34082 pseudo-op), 14-97

SQRTF (,34082 pseudo-op), 14-98, 14-99

SRA instruction, 13-237, 13-238

SRE bit, 4-40, 9-6
effect on local-memory cyles, 8-31,8-32

SRINC bits, 9-7, 9-52, 9-53, 9-54, 9-55
SRINC value, 4-32, 4-33

S RL instruction, 13-239, 13-240

SRNX bits, 9-7, 9-52, 9-53, 9-54, 9-55

SRNX value, 4-42, 4-43

SRST bits, 9-52, 9-53, 9-54, 9-55

SRST value, 4-46

SS (single-step) status bit, 4-2,6-3,6-6,6-17
clearing, 6-29
setting, 6-28

SSA registers, 5-2
illustration, 5-3
initial state following reset, 6-23

SSV bit, 4-38, 9-6
effect on local-memory cyles, 8-31,8-58

ST,4-2-4-3
and the stack, 3-29
BF bit, 6-3
definitions of status bits, 4-2--4-4
IE bit, 6-3, 6-6
illustration showing bit positions, 3-5, 4-2
initial state following reset, 6-23
instructions that change it, 6-29
IX bit, 6-3

SS bit, 6-3, 6-6, 6-17
value at reset, 4-2

stack pointer. See SP
stacks, 3-26-3-32

. auxiliary stacks, 3-29-3-32
growing toward higher addresses, 3-31
growing toward lower addresses, 3-30

system stack, 3-26-3-29
instructions that pop values, 3-27
instructions that push values, 3-27

Index

saving information during a subroutine call,
3-29

saving information during an interrupt, 3-29
saving register values, 3-27-3-29

standards, video
NSTC, 9-27
PAL,9-27
RS-170, 9-27
SECAM,9-27

starting corner, selecting, 4-30, 4-79
status bits, 4-2
status codes

bus cycle completion, 2-12
local-memory cycles

block write, 8-11
bus-locked operation, 8-11
cache fill, 8-11
color-latch register load, 8-11
coprocessor cycle, 8-10
data access, 8-11
DRAM refresh, 8-10
emulator operation, 8-10
host cycle, 8-10
instruction fetch, 8-11
interrupt-vector fetch, 8-11
pixel operation, 8-11
serial-register transfer, 8-11
write-mask load, 8-11

status register. See ST
strobes

byte-select strobes, 7-7
chip-select, 7-7
read strobe, 7-7
write strobe, 7-7

SUB instruction, 13-241
SUB (,34082 pseudo-op), 14-100-14-103

SUBB instruction, 13-242
SUBO (,34082 pseudo-op), 14-104-14-105
SUBF (,34082 pseudo-op), 14-106-14-109

Index-23

SUBI instruction, 13-243, 13-244

SUBK instruction, 13-245

subroutines
effects on PC, 4-4
effects on SP, 4-5
saving information on the stack, 3-29

subsegment miss, 5-5

SUBXY instruction, 13-246

SWAPF instruction, 13-247-13-248

symbolic debugger, A-1

sync signals
composite sync, CSYNC, 2-15, 4-37
ending

horizontal sync, 4-52
vertical sync, 4-87

horizontal sync
ending (HESYNC), 4-55
HSYNC, 2-15, 4-36

vertical sync, VSYNC, 2-16, 4-37

system
configuration

with a coprocessor, 10-18
with multiple processors, 11-3

configuration (CON FIG register), 4-20-4-24
considerations, bus faults, 6-20
control, signals, 2-16

CLKIN, 2-16, 8-2
LCLK1, LCLK2, 2-16,8-2
LlNTt, LlNT2, 2-16, 8-2
RESET, 2-16

control (CONTROL register), 4-24--4-28
design

connecting an emulator to a target system,
A-2, A-3

emulation considerations, A-1-A-10
multiple processors, 11-1

with multiple TMS34020s, 7-40-7-41

system memory, 8-56

D
T bit, 4-25

tap point, 4-44

target cable, mechanical dimensions, A-9

target system, setup with XDS emulator, A-2

test and emulation, A-1-A-1 0

Index-24

TFILL instruction, 13-249-13-252
implied operands

COLOR 1, 4-19
CONTROL, 4-27
CONVDp, 4-29
DADDR,4-31
DPTCH,4-34
OFFSET, 4-73
PMASK,4-76
PSIZE,4-77
SADDR,4-79
WEND,4-90
WSTART, 4-91

TIGA,1-13
TM bits (TMQ-TM2), 4-24
TMS34010, registers not used by TMS34020

DPYADR,4-35
D PYSTRT, 4-48
DPYTAP, 4-49
HSTADRH, 4-56
HSTDATA, 4-65

TMS34020
applications, 1-3
architecture, 1-4-1-9
block diagram, 1-5
compatibility with the TMS3401 0, 1-16-1-18
development tools, 1-10
in a graphics system, 1-14
instruction set, 13-1-13-31

addressing modes, 13-2-13-9
arithmetic instructions, 13-24
compare instructions, 13-24
condition codes for jumps, 13-26
context-switching instructions, 13-25-13-27
jump instructions, 13-25-13-31
logical instructions, 13-24
move instructions, 13-19-13-23
operand formats, 13-2-13-9
program-control instructions, 13-25-13-27
shift instructions, 13-28
summar, 13-9-13-18
XY instructions, 13-29

internal functions, 1-5
key features, 1-2-1-3
major interfaces, 1-8
overview, 1-1-1-18

TMS34020 Emulator, A-1
TMS34082,14-1-14-7

key features, 14-2-14-7
overview, 14-2-14-7

pseudo-ops, 10-3
See also Chapter 14
format, 14-3-14-5
register operands, 14-6-14-7

sample graphics system, 1-14

TMS44C251 (1M VRAM), 1-15

TR/QE signal, 2-9, 2-12, 8-3

transceivers, used in host interface, 7-6

transparency
enabling, 4-25
modes

on destination=COLORO, 4-24
on resu!t=O, 4-24
on source=COLORO, 4-24

selecting a mode, setting the TM bits, 4-24
T bit, 4-25

TRAP L instruction, 13-256-13-258

TRAP N instruction, 13-253-13-255

traps, 6-21
how many supported?, 6-1
vector locations, 6-8 ;::-

V (overflow) status bit, 4-3

VBLT instruction, 13-259-13-261
enabling the VRAM block-write feature, 4-22
implied operands

DADDR,4-31
DPTCH,4-34
DYDX, 4-51
PMASK,4-76
PSIZE,4-77
SADDR,4-79

use of VRAM block-write feature, 8-39, 8-40,
8-41

Vcc, 2-10

VCE bit, 4-39, 9-6
effect on local-memory cyles, 8-30, 8-31,8-32

VCLK signal, 2-10, 2-15, 9-3

VCOUNT register, 4-84-4-86, 6-17, 9-5
external synchronization, 9-29
loading with the SETVCNT value, 4-82

VEBLNK register, 4-86-4-87, 9-5
interlaced video, 9-26

vector addresses, 6-8

VEN bit, 4-22, 8-4
effect on local-memory cyles, 8-34, 8-36

vertical
back porch, 9-10
front porch, 9-10
video timing (internal), 9-13-9-14

vertical blanking, 9-9
interlaced video, 9-23
NTSC and PAL standards, 9-27

vertical sync, 9-9
direction, 4-37

vertical timing
SETVCNT register, 4-82
VCOUNT,4-84
VESYNC register, 4-87
VOTAL register, 4-89
VSBLNK register, 4-88

VESYNC register, 4-87-4-88,9-5
interlaced video, 9-25

VFILL instruction, 13-262-13-263

Index

enabling the VRAM block-write feature, 4-22
implied operands

DADDR,4-31
DPTCH,4-34
DYDX, 4-51
PMASK,4-76
PSIZE,4-77

use of VRAM block-write feature, 8-39, 8-40,
8-41

video
American vs. European, 9-21,9-27
capture enable, 4-39
capture feature, 9-48
composite video, 9-15-9-17

enabling/disabling, 4-38
control

CSYNC direction (CSD bit), 4-37
HSYNC direction (HSD bit), 4-36
selecting CBLNK or VBLNK, 4-38
selecting CSYNC or HBLNK, 4-38
VSYNC direction (VSD bit), 4-37

display interrupt, 9-37
display mask, 4-44-4-46
display next address, 4-42
enabling the display, 4-40
equalization region, 9-15-9-17
external synchronization, 9-29-9-35
horizontal timing, 9-11-9-12
interlaced video, 9-21-9-28
interlaced video (selecting), 4-40
midline reload, 9-55
midlines reload, 9-43-9-46

Index-25

noninterlaced video, 9-18-9-20
non interlaced video (selecting), 4-40
registers, 9-4-9-8

DINC,9-7
DPYCTL,9-5
DPYMSK,9-8
DPYNX,9-7
DPYST, 9-7
HCOUNT, 9-4
HEBLNK,9-4
HESERR,9-4
HESYNC,9-4
HSBLNKi 9-4
HTOTAL,9-4
SETHCNT, 9-4
SETVCNT, 9-5
VCOUNT, 9-5
VEBLNK,9-5
VESYNC,9-5
VSBLNK,9-5
VTOTAL,9-5

screen refreshes, 9-55
disabling, 9-49
generating addresses, 9-51
scheduling, 9-50-9-51

serration region, 9-15-9-17
signals, 2-15, 9-2

CBfiiiRJVBLNK, 2-15, 9-2
CSYNCIHBLNK, 9-2
HSYNC, 2-15,9-3
SCLK, 2-15, 9-3
VCLK, 2-15, 9-3
VSYNC, 2-16, 9-3

standards
NTSC,9-27
PAL, 9-27
RS-170, 9-27
SECAM,9-27

start address for display, 4-46-4-48
timing examples, 9-38-9-42
timing registers

DPYCTL, 4-36
HCOUNT, 4-52
HEBLNK, 4-53
HESERR, 4-54
HESYNC, 4-55
HSBLNK, 4-66
HTOTAL, 4-67
SCOUNT, 4-80
SETHCNT, 4-81-4-82

Index-26

SETVCNT, 4-82-4-83
VCOUNT, 4-84
VEBLNK, 4-86
VESYNC, 4-87
VSBLNK, 4-88
VTOTAL, 4-89

vertical timing, 9-13-9-14
VRAM control, 9-42

video control logic
horizontal blanking

HEBLNK, 4-53
HSBLNK, 4-66

horizontal timing, HCOUNT, 4-52
scan line duration, 4-67
serration, HESERR, 4-54
sync signals

HESYNC, 4-55
VESYNC, 4-87

vertical blanking
VEBLNK, 4-86
VSBLNK, 4-88

video timing, 9-1-9-58

VLCOL instruction, 13-264-13-265
implied operands, COLOR1, 4-19

VRAMs, 9-42
1M VRAMs, 1-15,2-12,9-55
alternate write transfers, 8-33
automatic screen refreshes, 4-40
big-endian addressing, 3-25
block-write cycles, 8-37

data mapping, 8-41
with mask, 8-37, 8-40
without mask, 8-37, 8-39

block-write modes, 4-22
bulk initialization, 9-47
control, 9-42
data expansion, 8-37
display mask, 4-45
fast fills, 8-37
load-color-register cycles, 8-37, 8-38
load-write-mask cycles, 8-34
memory-to-register cycles, 4-40
memory-to-serial register cycle, 8-30
memory-to-split-serial register cycle, 8-31
midline reload, 4-38
pseudo-write transfer, 8-32
screen refreshes, 4-38, 4-39, 4-40

during horizontal blanking, 9-42
serial registers, 4-38

serial-register transfer cycles, 4-39
adding wait states, 8-48

telling the TMS34020 that the graphics system
contains special-function VRAMS, 4-22

TMS44C251, 1-15
write cycles, with mask, 8-36
write transfers, 8-32
write-mask cycles, 8-34

VSBLNK register, 4-88-4-89, 9-5
interlaced video, 9-26

VSD bit, 4-37, 9-6

Vss, 2-10

VSVNC signal, 2-16, 9-3
pin number, 2-10
selecting as input or output, 4-37

VTOTAL register, 4-89-4-90, 9-5
interlaced video, 9-26

W bits (WO-W1), 4-25, 6-17

wait states, 8-46-8-48
coprocessor cycles, 10-9
extending a local-memory cycle, 8-12

WE signal, 2-9, 2-12, 8-3,10-2

WEND register, 4-90-4-91

window checking
defining a window

end address (WEND), 4-90
start address (WSTART), 4-91

effect of DVDX, 4-50
modes, selecting, 4-25
pixel arrays, 3-19
W bits (Wo-W1), 4-25
window-violation interrupt, 6-17

window-violation interrupt, 4-25, 6-17
disabling, 6-6
enabling, 4-69, 6-6
pending indication, 4-70
priority, 6-7

worst-case, delays to host accesses, 7-37
bus-master arbitration, 7-38
CPU cycles, 7-39
DRAM-refresh cycles, 7-38
host request synchronization, 7-38
previous host cycle, 7-38
screen-refresh cycles, 7-38

write cycles
adding wait states, 8-46
block-write cycles

data mapping, 8-41
with mask, 8-40
without mask, 8-39

general timing, 8-19-8-24
initiated by the host, 8-24

Index

local memory, 8-18
serial-register-to-memory cycles, 8-32, 8-33
timing with page mode, 8-20
VRAM block-write cycles, 8-37
with mask, 8-36

write masks
loads, status code on local-memory cycle, 8-11
local-memory cycles, 8-34

write-enable signal, 2-12

write-per-bit (block write) operation, 4-22

write-with-mask, 4-22

WSTART register, 4-91-4-92

WVE bit, 4-69, 6-3

WVP bit, 4-70,6-4,6-17

II
X1 E bit, 4-69, 6-3

X1 P bit, 4-70, 6-4, 6-15

X2E bit, 4-69, 6-3

X2P bit, 4-70, 6-4, 6-15

XDS emulator, 1-12,4-63, A-1

XOR instruction, 13-266

XORI instruction, 13-267
XV addressing, 3-14

array addresses
destination address (DADDR), 4-30
source address (SADDR), 4-79

benefits, 3-14
configurable screen origin, 3-11
coordinate range, 3-14
format illustration, 3-14
general-purpose registers, 3-14
instructions that use it, 3-15
limits, 4-50
mapping to on-screen memory, 3-12
OFFSET register, 4-73
origin, 3-14
pixels, 3-11, 3-14
window checking, 3-14

Index-27

Index

XY instructions, 13-29
ADDXY, 13-38
ADDXYI,13-39
CMPXY, 13-84
CVXYL,13-92-13-93
FILL XV, 13-117-13-120

XY-to-linear conversion, 3-15-3-17
automatic conversion, 3-15
calculating the Y component, 3-15
CVXYL instruction, 3-16
formula, 3-15
pitch

actual pitch, 3-15
conversion factors, 3-15,3-16
destination pitch, 4-28, 4-34
mask pitch, 4-28, 4-72
source pitch, 4-28, 4-83

Index-28

process, 3-17

Y-zoom,4-32
increment value, 4-33, 4-42

V-zoom feature, 9-56-9-57

YZCNT bits (YZCNTo-YZCNT4), 4-42, 9-7, 9-56
YZINC bits (YZINCO-YZINC4), 4-32, 4-33, 9-7

Z (zero) status bit, 4-3
zero-extending

field 0, 4-2
field 1,4-2

ZEXT instruction, 13-268

Printed in U.S.A., August 1990
2564006·9761 revision·

-IjJ
TEXAS

INSTRUMENTS

SPVU019

