AMDH Revision 14 Octoberl3, 200

RadeonR5xx Accekration

© 2008 Advanced Micro Devices, Inc.
Proprietary 1

AMDH Revision 14 Octoberl3, 200

Trademarks

AMD, the AMD Arrow logo, Athlon, and combinations thereof, ATI, ATl logo, Radeon, and Crossfire are trademarks of Advanced
Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corpora tion.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") pr oducts. AMD makes no
representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the
right to make changes to specifications and product descriptions at any time without notice. No license, wh ether express, implied,
arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's
Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any expre ss or implied warranty,
relating to its products including, but not limited to, the implied warranty of merchantability, fithess for a particular purpose, or
infringement of any intellectual property right. ~ AMD's products are not designed, intended, author ized or warranted for use as
components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or
in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe
property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time
without notice.

© 200 9 Advanced Micro Devices, Inc. All rights reserved.

© 2008 Advanced Micro Devices, Inc.
Proprietary 2

AMDH Revision 14 Octoberl3, 200

O LN I SO 10 16 L@ 1 [N TN 6
1.1 INTRODUCING TERIBCKXFAMILY, ... evteeeetttee et e e et e et e e e e e s et e e seb e e s e e es b e e e ba s eeeaba e s e ban s e s s s eeaneseannserernnns 6
1.2 (3 =N N = ([T ST T T 6
1.3 Ly OSSR 1 = o | N 6
1.4 (@Y N €] SR = 2T 10T 5 o T 7

2 I 1 1 N 9
2.1 L7 = =V =N 9
2.2 1Y/ [To1 = T0 = I o1 =TT 9
2.3 1Y FYod 0 3= I 0 L1 = TR 9

R S U 1 = 4 o N O o @] 31 72N 1 T 11

4, TEXTURE MEMORY LAYOMU. ...ttt ettt ettt e e e s ee e s s et s e e s e s e e s s aa e s s samesssabanseessaanseesee 13
41 MACRG LINEAH IMICRGO LINEAR ... ettt eeiee et ettt ettt s e e eae e et e e e et s e eaa s e s et e e s et s eesaasesaasestaeesennees 13
4.2 MACRG LINEAR IMICRG TILED. .. cttutiiietnieieteeeeett s eeetas e s st eesat e s ssaae e s st s eeba s essaaaeesaba s ssbasessnnsssstnssassnnaees 13
4.3 MACRG TILED IMICRG LINEAR ... ettt eeeet ettt e ettt e e e e st e ettt e e e e e e s e te s e e s e e saee s et e e eetasessansesstaseassnsaees 13
4.4 MACRG TILED IMICRG TILED. .. .uuuiiitttieittniettteeeet e e e s e s et e e se b e e saaasesaaeesabaesssaa e s saanssssnnseeanssassnnssseran 14
4.5 L= 1YY =TT 15
4.6 (@2 = Y Y = LS TN 15
4.7 B D =5 S I {2 16

5. COMMAND PROCESSQOIR ... ittt eee ettt e e e eme e e e e et e e e et e e e s et e s ems e e s esaaa e s saban e erebanss 18
51 OVERVIEW. 1 ettt ettt et et ettt et e et e et et e e ea e e et e e e s et e e e e e e e e e e s eaeeea e sa e ea e s aa e e ea e e bn s e an s s ebssnn s snnsranssensns 18
5.2 HOSTPROGRAMMINGAODEIDESCRIPTION. .. tvtuttuetttettettieeaneetttessaestersnesstersssterseestersersteraesrarsns 18
53 [ST YA 2 T 1Y/) = 18
5.4 [[N = = =Y N YT = = N 19
55 (@ T =ty = 8 0] = = = N0 1Y U =5 21
5.6 INDIRECBUFFERAANAGEMENT ... ttttittetttetteet ettt esaesst e eraaeest s esaa e ettt eaneestest s et satesstnersnsetsssnsersnesrnes 21
57 OVERVIEW OBV A OPERATION. 1.ttt tttt ettt eett et e et st e eaae s st s et et et s et s saa s eanssaa e st estasesasesaseansstnsssnsasnseren 22
5.8 RESETTING TKIDMMANDPROCESSOR. ...uuituiiitiiiiiitteteeit et e st e e se et e s s e s as s e s st e san e e st e st e et eaneeaneenns 24
5.9 COMMANDSTREANSYNCHRONIZATION. 1.ttt ettttetteete e seteesaeseaessaesanee st e san s et sssnsesnssssnseanssenessasssnssanerens 24
5.10 STARTING THEDIRECBTREAMS . ..utituuiituiitt ettt tttetettesst ettt e et ettasea ettt eateestetaneestieraesssierreernseenns 25
511 WRITINGHOSTDATA TO THEOMMANDSTREAMAUEUEcevtiiuetirtntnnnnnnnnnaseeseeeeaaaaeaeaeeeeeeeeeennnssnnnnnnnnnnnns 26
5.12 WRITING TO THEICRENGINERAIM. ... ittt e e e e b e e s b e s b e et e ea e et e e anseaa s enns 27
5.13 READING FROM TIMHCRENGINHRAM.eietiii ettt ettt e e e et et e et e et e e e et e e e s et s sanesanserasenserans 27
5.14 STARTING DIMAOPERATION. ... ittttitt ittt iettett ettt stt et ettt eeatessteranaetastanessteraneataerts st stteetntrstassaessnns 28

6 PV A ... et e e et ————— e eet et eeeet et eteetaa—————ateetetaaeteeeareetean———————eetataararraaraares 29
6.1 Y S =] =TS 29
6.2 DEFINITION OFf PES PACKE TS .. tttutttutttteteaetsnesaessneta ettt sttt een et teaett ettt ettt 33

T. VERTEX SHADERS e e e ettt e ettt e e et ebaa s ema b e e e s s b e e s s et e eseaba s smerasaas 59

© 2008 Advanced Micro Devices, Inc.
Proprietary 3

AMDH Revision 14 Octoberl3, 200

7.1 |\ =T0] 10 Lo o PP 59
7.2 10 SRR 59
7.3 VECTORRDER ANBECTOR S0 .. ittt et e e e et e e e e e et e e e e e taa e e e e e eneanns 64
7.4 N A PREGISTERS. ..ttt i tttttttttttteeeeeeeee st e s et e e e eeeetaeeesesaaaasasteeaeeeeeeaeeasss s nstaneeeaaeeeeeeeeesseasssrnbannnneneaaaees 65
7.5 R3X%RXXPROGRAMMABINERTESHADERDESCRIPTION. ... titiiiiitieeeeieeiiiieeseestnnaseeseesssneeeseesnnssessesssnnns 71
7.6 SFETTINEIP ANDSTARTING TREARP ... e s e e e e e aa e e e e eereans 101
7.7 METHODS APASSING/ERTEIDATA. ..eiiieieiii ittt e et e e e e e e et e s sttt e e e e e e e e e e seessantntbraeeereeaeeesseannnnnrenanees 102
8. FRAGMENT SHADERS........ottttiiiiiiiieie ettt e e et et e e e e e e e amt e e et e e et e e et e e e e e e e e e e e e e e e e e e e aeaaaaeaeeaseeaeseaesaaaaan 103
8.1 1N 23] 5T 1T) N P SESRPR 103
8.2 INSTRUCTIOINS et ttttt et et eettte e e e ettt s e e e e ee ittt s e e e e ee bt e e e e eetaa s e e et eetaa e e e e e e tas e eaeeeetan e eeeeeessann s aaeentnnnnas 103
8.3 INSTRUCTIOIORDS. ...t ttttit ettt s e e ettt e et et s e e e e e e et n e e e e e et e e e e e e et b s e et e et e e e e e e ee b e e e e e eesbnn e nanes 104
8.4 ALUINSTRUCTIONS ..t tttutetttteeteteeetaeeetteeeeta s eaeaa s aeassaaas s aeeaansetetaaeeesnaeeanasaessaeeesneeesnneeessneeennnees 105
8.5 TEXTURBNSTRUCTIONS. 11 1ttuteeteetttiasseeseatasseeseesssiassessesstan s eaasssssaseesseessansesseesssaaneeessestnnseeeeessnsnnneaes 113
8.6 L0117 @] 1 1 T) USRS 115
8.7 FLOATINGPOINTISSUES. ...ttt ttteetittis e ettt e ettt s e s e e e e et s e e e e e e bbb n e e e e e ee b e e s e e atbb s e e e e esbannneaes 121
8.8 WRITING TQI SREGISTERS ... i eetettti e e ee ettt e e e s ettt s e e e e e ettt e e e e eee s e e e e eetaa s eaeteetan e eaeeetnnnaeeesentannsnns 124
LS TR 1 7SR 126
9.1 LN 0] 518 T N 126
9.2 ENABLINGHIZ. ...ttt et e e e e et e e e et e et e e e e e e eab s e e e e e et e e e e e e et b e e e e n b s 126
9.3 (81N =10 =]\ (74PN 126
9.4 HIZOLEAR WITHIMAPACKET. ... ettt ettt e e ettt ttte e e e ettt e e et ettt n e e e e s eaa s e e e e e e bbb s e e e e e et s e e e e e baa e e e e eeebaans 128
9.5 EXAMPLEPUTTING IALLTOGETHER ... e tttt ettt ettt e et s e e ets e e et e eeat s e e eanaaaaseeeaa s eeeennsesetneeeaanneenneeenen 128
9.6 STATECHANGESHATINVALIDATENIZ ... ettt e et n e s e e e e e e e e aba s 129
10. DRIVER NOTES . ..o 130
O T R 45 0 (@ 7Y N1 =2 PP SUPPTTPPPN 130
L10.2 INTERFAQBOTES. ... iiitetttiteeeeeettt s eeseste s e e e eeaeta it eeeeeaaaa e e eeeastaanaeeeestaanaaeentanneeeeessnnnnseeeeessnnaaaeees 132
O TR T o =] o 1= @ =0 O PTPR 133
O T R o Ny U 1 @ 1 = 138
10.5 BLEND OPTIMIZATIONTHED......ceutuuuteettustunseeesensnsssseseesstnnsaeeseessssneeeeestnnemeteemsmeteeee. 141
O T =5 U - 1 = 141
10.7 GAPOINTLINEPOLYGOKEETUR.....uuuieieieieeeeeeeeeeeeeeeeeeeeeeaeteeesestesanaaaassaeaaeaaeaaaaaaeeeeeeeeeerannsnnnnnnnnnnnnns 142
0 T = =] 1N 1 SN 143
11. REGISTERS.....oeiii ettt ettt e ettt e e e e e e eme et b e e e e e e e e etabaeeeeee e s s bmsabeeeeeeeesantaeseeaeesasstamsraaneaaanan 145
11.1 COMMANDPROCESSGREGISTERS.....ceetttvrrrrrttutettutaaaeeseeeaaaaeaaeteseteseeearststarara i iaiaaeeaasasssesssessssees 145
11,2 GOLORBUFFEREGISTERS. .. tttttttttteesetttttssastastsaaeeteesssetaeteetaaeeteetsssaaeteestnnaeaaessnnaeeeresssnianeaees 154
I T 0 Y] =01 1 = 170
11.4 GEOMETRASSEMBLIREGISTERS ... i iittttttuuieeetettttaseestastaneeeteeastaaeetaetanaeeeeerstnaeeteersnaaasersaaarens 173
11.5 GRAPHICBACHINDREGISTERS. . uttuuteetettttiieeeeteatuteeetestnnaaeeteertanaeeestnnaeererttaeerertaaeeeresianaeereees 184
11,6 RASTERIZEREGISTERS ..uuuittttttttuteeetttttsseseestanseeetestanaeaettasaaetestaaatetaetstaatertsaeeetantaaeeeenns 197
R A O I [= = N T2 = T 31 = 3 TP 200
10,8 SETURUNITREGISTERS .ttt ttittttttieteetttttaseeteestat e e eaeeastaa e eesaatas e eeaeeattanaaeteesesaaaaeeesssanseeetanssnnaeeeeeeeen 208

© 2008 Advanced Micro Devices, Inc.
Proprietary 4

AMDH Revision 14 Octoberl3, 200

e T =5 M = =] 1 = 2 PP 217
11.10 FRAGMENBHADERREGISTERS uttttttteetieeeeesssssasssstesaesrreseesasssaassnsssssteseeeeeeeessssanssssssssnsssrereeeeenns 228
11.11 VB R T E RE GISTER S, 11ttt ettetttteeeeettttas e e s eeata e e eaeeeata e eeeeeaaa e eeeeeastaa e aeeeeastaaeeeeestan e eeaeeessannaeeeeesnns 253
11.12 ZBUFFERREGISTERS. .. uuttttttttteteeesssisaassttnteeereaeeeessaaasstestesaseeraeaeeesassasstessessaeareeaessssnansnsrnsnenseenes 278

© 2008 Advanced Micro Devices, Inc.
Proprietary 5

AMDH Revision 14 Octoberl3, 200

1. Introduction

1.1 Introducing the R5xx Family

The R5xx family provides the fastest and most advanced 2D, 3D, and multimedia graphics performance for desktop
PCs in the performance mainstream markete R5xx family supports Shader Model 3.0, advanced memory

interface technology, a brand new display controller and a consumer electronics (CE) quality TV (NTSC/PAL)
encoder The R5xx f amis2Xggenemton RC$ Expreésstechindayy produnt Eeverages a brand

new graphics architecturéhe R5xx family builds on the R3xx architecture. As such, much of this guide is

applicable to R3xx and R4xx chips as well wsthme caveats. Where applicalgenerational differences are noted.

1.2 Feature Highlights
1.2.1 Shader Technology

Support for Microsoft® DirectX® 9.0 programmable vertex and pixel shaders in hardware.
Shader Model 3.0 veex and pixel shader support.

Full speed 3ait floating point processing.

High dynamic range rendering with floagipoint blenéhg and antialiasing support.

High performance dynaimbranching and flow control.

Complete feature set also supported in OpenGL® 2.0.

= =4 =4 -4 -4 -4

1.2.2 Anti-Aliasing

2x/4x/6x AntiAliasing modes.

Sparse multsample algorithm with gamma correction, grammable sample tiarns, and centroid
sampling.

New Adaptive AnttAliasing mode.

Temporal AntiAliasing.

Lossless Color Compression (up to 6:1) at all resolutions, apddncluding widescreen HDTV.

=a =4

= =4 =

1.2.3 New Ring Bus Memory Controller

Programmable aitvation logic maximizes memory efficiency, software upgradeable.

New fully associative texte, color, and Z cache design.

Hierarchical ZBuffer with Early Z Test.

Lossless Buffer Compression (up to 48:1).

Fast ZBuffer Clear.

Z Cache optimizedor reattime shadow rendering.

Optimized for performance at high display resolutions, up to and including widescreen HDTV.

=4 =8 =8 =8 -8 -89

1.3 Features in Detall

1.3.1 2D Acceleration Features

1 A highly optimized 12&it engine, capable of processing multiple pixels/clock.

© 2008 Advanced Micro Devices, Inc.
Proprietary 6

AMDH Revision 14 Octoberl3, 200

= =4 = = = =

Hardware acceleration provided for BitBLT, line drawing, polygon and rectangle fills, bit masking,
monochrome expansion, panning and scrolling, scissoring, and full ROP support (including ROP3).

Optimized handling of fonts and text using ATI proprietary teghes.

Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtual Sprites,
Transparent BLT, and Masked BLT.

Acceleration in 8/15/16/3Bpp modes.
Support for WIN 2000 & WIN XP GDI extensions: Alpha BLT, Transparent BLT d@&ra Fill.

Hardware cursor support up to 64x64xX32p, with alpha channel for direct support of WIN 2000 & WIN
XP alpha cursor standard.

1.3.2 3D Acceleration Features

=a =4

= =4 =

Fully DirectX 9.0 compliant, including full speed-&2 floating point per component emtions.
Shader Model 3.0 support with programmable vertex shaders (full operand and operation support) allowing
up to 1024 instructions and 256 vectors of constant store. This includes vertex shader loops, branches, and
subroutines, whichllaw supportof the following:
0 1024 vertex shader instruction store.
0 261,888 istructions with a single loop.
0 4+ trillion instructions with nested loops.
o Dynamic flow control.
o 8full vertex processing units.
Advanced pixel shadsmwith the following features:
o Newadvanced shader design, with ulthmeading sequenceoifhigh efficiency operations.
o Full Pixel Shader 3.0 support.
o0 Advanced, higtperformance branching support.
0 32-bit floating point support for gh dynamic range computations.
Full antialiasing o render surfaces up to and includBwbit floating point formats.
Support for 2xAA, 4xAA and 6xAA subsamples, with littlerformance loss in most cases.
Advanced AA quality algorithms, generating visuals that are superior to other solutions eqthi\aient
number of samples.
New adaptive arddliasing modes dynamically select between fast rsaltipling and high quality super
sampling per polygon, deliveringetbenefits of both techniques.

1.4 Changes from R3xx/4xx

Changes from R3xx to R4xx

=8 =4 =8 =-4 -4 -8_8_4_49_9_9_-°9

Suppot for 1, 2, 3 and 4 quad pixel pipes

Support fo 1 to 6 vertex shader pipes

HDTYV resolution support for HiZ

Support of 16x16 and 32x32 pixel tile sizes (32x32 should now be the preferred amount)
Vastly redesigned Memory controller, with new client inteefa

Suppat for 8b of subpixel precision

Native support of 4Kx4K raster target

PS instruction support now at 512 each for Scalar, Vec3 and Texture (1536 total instructions)
VS native support for Sin/Cos

TX Component swizzling

Enhanced texture performance

MRT and wide pixel performance fixes

© 2008 Advanced Micro Devices, Inc.
Proprietary 7

AMDH Revision 14 Octoberl3, 200

=A =4 =4 =4 -4

Fog alpha rounding matches RGB

Line stipple fixes; SU texture stuffingiprovements

LOD Clamp/bias reorder

2D support for larger pixels (Pitch at 16b)

4x AA buffer tiling is changed when memory mapping is not used

Changes from R4xx to R5xx

=4 =4 =8 -8 -8-0_0_0_4_4_4_4_-49_-24.-°

New Memory controller

Support of VS3.0 features, except Vertex fetch

Support of all PS3.0 features, including extended GPRs and Constants, all branching and predication
New FP32 US, including most IEEE NANSs, INFs behavior correctdtd TRUNC rounding mode)
Support of new Z ranged,2], with per pixel clamping in SC

Support of up to 11 texture sets (10 explicit), or 44 iterators

Support of color to texture mappings, and texture to color mappings (for performance improvements)
New IS_IP for better mapping of components from VS to PS

Color now in FP20 mode, instead of S3.12 mode

New HiZ compression mode, allows high precision Z values to be stored

New FP16 render surfaces support, including blending and all backend functions, texturetfiltering
Fully set associative caches for Texture, Cadod Z

New more efficientfifos for all MC clients

New Filter4 mode for Texture unit

New 1b texture mode for texture unit

© 2008 Advanced Micro Devices, Inc.
Proprietary 8

AMDH Revision 14 Octoberl3, 200

2. Tiling
2.1 Overview
R3xx-R5xx supporttwo types of blocks

1 Micro block
T Macro block

Each block type can either be linear or tiled.

2.2 Micro Blocks

A micro block refers to a 3Byte consecutive data in memory. It is aligned to 32 boundary, which means that
the 5 LSBs of a micrblock address are zeros. Micro blocks cardibear or tiled. Linear maps a 1D area of an
image to the block. Tiled maps a 2D area of an image to a block. The following table shows the different type of
micro blocks and the region of the 2D image that maps to it (x X y)

Micro -linear Micro -tiled
8 bit pixel 32x1 pixels (x=32 , y=1) 8x4 pixels (x=8 , y=4) supported by : tx/cb/hdp
16 bit pixel 16x1 pixels (x=16 , y=1) 4x4 pixels (x=4 , y=4) supported by : tx/cb/zb/hdp
16 bit pixel 16x1 pixels (x=16 , y=1) 8x2 pixels (x=8 , y= 2) supported byx/cb/hdp/disp
32 bit pixel 8x1 pixels (x=8, y=1) 4x2 pixels (x=4 , y=2) supported by: tx/cb/zb/hdp/disp
64 bit pixel 4x1 pixels (x=4,y=1) 2x2 pixels (x=2 , y=2) supported by: tx/hdp
128 bit pixel 2x1 pixels (x=2, y=1)

2.3 Macro blocks

A macro block refers to a 20yte consecutive data in memory. Matrocks loosely refer to the size a DRAM
page. How micro tiles are arranged in a madeois controlled by whether the maebtock is linear or tiled. Linear
macro block maps-rrder sequerdi array of micreblocks to a macrdlock. When the end of the current scan is
reached, the mactolock continues with data from the next migiie in the next scan. The alignment for Linear
macroblocks is 32 bytes. An image can generally be more conugang macrdinear, but it is typically slower in
rendering performance. Tiled madotocks map a 2D region of micitdocks into a macrblock. Tiled macre
blocks are aligned to a 2Byte boundary, which means that the 11 LSBs of a ralock address areeros

There are 64 micrblocks in a macrdlock (2k divided by 32 bytes). In a tiled madstock these 64 micrblocks
are arranged as an 8x8. The number of pixels in x and y that map into a tiledbhoa&rs based on pixel size and
micro-block type.Multiplying the data from the previous table by 8 can do this:

© 2008 Advanced Micro Devices, Inc.
Proprietary 9

AMDH Revision 14 Octoberl3, 200
Macro-tiled Macro-tiled
Micro -linear Micro -tiled

8 bit pixel 256x8 64x32

16 bit pixel (8x2) | 128x8 64x16

16 bit pixel (4x4) | 128x8 32x32

32 bit pixel 64x8 32x16

64 bit pixel 32x8 16x16

© 2008 Advanced Micro Devices, Inc.

Proprietary

10

Revision 14 Octoberl3, 200

AMDA1

3. Surface Formats

This section describes all of tearface formats used by the R3R&xx texture unis and frame buffes: These
formats are first listed in summary, together with a list of features (fog, blend etc.) supported by each format

8-bit For mats

Format Layout Range | Display Blend| Fog Dither| Filter
C_8 16543210 0.0 to 1.0 (unsigned)| Yes Yes | No | Yes | Yes
-1.0 to +1.0 (signed)
C2 4 T8-S5 4| 320 0.0to 1.0 Yes No [No [No | Yes
C_ 332 | e 5| B 2| 1co°| 0.0t01.0 Yes No | No | No | Yes
16-bit Formats
C_16 15141312111 L 4.3 21 0.0 to 1.0 (unsigned)| No No | No | No | Yes
-1.0 to +1.0 (signed)
C_16_MPEG IJ&JAJ&JMJ-Q&—%—OY-M—‘L&—LLJ-I -1.0to +1.0 No No [No [No | Yes
C 16 FP 15141312111 L 4.3 21 -2™%t0 +2'° No No | No | No | No
C2_8 151413121110 9 8| 7 6 5 4(:03 2 10 00 to 10 (unsigned) YeS Yes NO Yes Yes
-1.0 to +1.0 (signed)
C565 15141312111 = 4321 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C 655 1 = e 0.0 to 1.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)
C4 4 el 0 s 2 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C1555 15141312111 = 4321 0.0to 1.0 Yes Yes | Yes | Yes | Yes
32-bit Formats
Format Layout Range | Display Blend| Fog Dither| Filter
C4_8 s 2‘|‘ = 1T = 8| % °| 0.0 to 1.0 (unsigned)| Yes Yes | Yes | Yes | Yes
-1.0 to +1.0 (signed)
C4_8 GAMMA s 2‘|‘ = 1f|3 = 8| % OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C_11 11 10 | =4 | 31 | = OI 0.0to 1.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)
C_10_11 11 = 24 | L | are OI 0.0t0 1.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)
C_2 10_10_10 &l 2 | e | = °| 0.0 to 1.0 (unsigned)| Yes No | No | No | Yes
-1.0 to +1.0 (signed)
C2_16 | 2 1T & °| 0.0 to 1.0(unsigned) | No No | No | No | Yes
-1.0 to +1.0 (signed)
C2_16_MPEG | 24 1f|3 & OI -1.0to +1.0 No No | No | No | Yes
© 2008 Advanced Micro Devices, Inc.
Proprietary 11

AMDH Revision 14 Octoberl3, 20
C2_16_FP | 24 4 g 9| -2°t0+2° No No | No |No | No
C_32_FP | 24 18 g 7 |20 +2¥ No No [No |[No | No
C_AVYU % 2‘|1 7 1<|5 7 8| ¥ OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C VYUY v 2‘|‘ = 1? 7 8| ~ OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C _YVYU v 2‘|‘ v 1? 7 8| 5 OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes

64-bit Formats

C4_16 | % 4|8 4 3|2 4 1|6 & (i 0.0to 1.0 (unsigned)| No No | No [No | Yes|
-1.0 to +1.0 (signed)

C4_16_FP - e -2™%t0 +21° No No |No |No | No

C2_32_FP [e e bl | 2510 2% No No [No [No | No

128-bit Formats

Blend | Fog | Dither| Filter

Format

C4 32 _FP

v

96

80 64

22

16

Cc2 |

Co

Display

No

No

No

No

Depth Formats

Format Layout Write Read
24 16 8 0 “
W_24 | A Tnas i) OtoZ™1 Yes No
24 16 8 0 763 3
W_24_FP | — | | [2P0 +2 Yes Yes

© 2008 Advanced Micro Devices, Inc.
Proprietary

12

AMDH Revision 14 Octoberl3, 200

4. Texture Memory Layout

4.1 Macro - Linear / Micro - Linear

The starting address of an image is aligned to-Bya2 boundary specifieby registefTX_OFFSET[31:5]. The
texels that make up the image are stored incolumn order. Each row of an image is aligned to 32 Bytes. The
image is stored contiguously in memory. This is illustrated in the following figure.

Image Memory

S
0 — > N

32B Alligned —> 0
0
T=0 lS
TJ/ 328 Aligned —> N
T=1 lS
M - N

Texel l

4.2 Macro - Linear / Micro - Tiled

The starting address of an image is aligned to-Bya82 boundary specified by registEX_OFFSET[31:5].

The MicroTiles that make up the image are stored in-ooumn order. Each row of Micrdiles is aligned to
32 Bytes.The image is stored contiguously in memory. This format is very similar to Linear/Linear with the
exception that MicreTiles are stored in rowolumn order, while texels are tiled within each Midrite. This is
illustrated in the following figure.

Image Memory
S,
0 MICRO ; A
32B Alligned —> 0
0

Thicro =0 Swicro

. A

TMICROJ/ 32B Alligned —> 0
Twicro =1 \LSMICRO

B v \ A

Texel MicroTile l

4.3 Macro - Tiled / Micro - Linear

The starting address of an image is aligned to #8g2t¢ boundary specified by registEX_OFFSET[31:5].
The MacreTiles that make up the image are stored in-ocmuimn order. Each row of Macfhiles is algned to

2K Bytes. Each image is stored contiguously in memory. This is illustrated in the following figures:-Tilésro
are reordered within a Macrdile to improve dram locality.

© 2008 Advanced Micro Devices, Inc.
Proprietary 13

Revision 14

Octoberl3, 200

MacroTile : MxN Texels

MxN-1

— 0

8x256x 8b Byte2K-1 <

ByteO

8x 128 x 16b
8x 64x32b
8x 32x64b

Image
0 MACRO ; c

2KB Alligned —>
T,

0

TMACROJ/
Tiacro=1
D

MacroTile = MxN Texels

=0

MACRO

2KB Alligned —>

Texel

Memory

U)O

MACRO

MACRO

0&520

4.4 Macro - Tiled / Micro - Tiled

The starting address of an image is aligned to #82t€ boundary specified by registEX_OFFSET[31:5].
8x8 Micro-Tiles are storeavithin a MacroTile. The MacreTiles that make up the image are then stored in row
column order. Each row of MaziTiles is aligned to 2K Bytes. Each image is stored contiguously in memory.
This is illustrated in the following figures. MiciBiles are reordered within a Macrd'ile to improve dram

locality.

MacroTile : 8x8 MicroTiles

3F

— 0

Byte2K-1 «

ByteO

MicroTile

© 2008 Advanced Micro Devices, Inc.
Proprietary

14

AM D‘: Revision 14 Octoberl3, 20®
Image Memory
0 SMACRO ; C
2KB Alligned —> 0
0

Tuacro=0 Smacro

TMACR{ 2KB Alligned —> ¢
Tuacro =1 J/SMACRO

D X &

MacroTile = 8x8 MicroTiles \L
MicroTile

4.5 Mip Maps

For a MipMap pyramids, the levels are stored contiguously in memory. The ordering of the images is from
largest to smallest. Each level of a mipmap pyramid must follow the same alignment and padding restrictions as
a planar image. If Macr@iled, once inage size drops below size of Ma€Fide, the hardware switches to
Macro-Linear to minimize memory use

Memory
MipMaps stored contiguously from largest to smallest.
Level 0
Level 1
Level 2
Level 3
l * Not Drawn To Scale

4.6 Cube Maps

Cube map faces must be power of two in width and height, and must be square. Cube maps can be planar or
mipmappedAll six cube faces must have the same dimensions as FaceO.

The faces of a cube map are stored contiguously in memory from FaceO to Face5. If mipmapped, levels 1 thru N
are then stored from largest to smallest. If Matiled, once image size ajps below sie of MacraTile, the
hardwareswitches to Macrd.inear to minimize memory use

© 2008 Advanced Micro Devices, Inc.
Proprietary 15

AMDH Revision 14 Octoberl3, 200

Memory
Face0
Facel
Cube faces stored contiguously from 0 to 5.
MipMaps stored contiguously from largest to smallest.
Face2
E— MipLevel O
Face3
Face4
Face5
Face0
Facel
Face2 .
MipLevel 1
Face3
Face4
Face5
l * Not Drawn To Scale

4.7 3D Textures

3D textures must be power of two in width, height, and depth, however they can-bguaoe. 3D textures can
be planar or mipmapped.

The layers of a 3D texture are stored contiguously in memory from LayerO to LayerM. If mipmapped, levels 1
thru N are then stored from largest to smallest. If Mddted, once image size dps below size of Macrdile,
the hardwareswitches to Macrd.inea to minimize memory use

© 2008 Advanced Micro Devices, Inc.
Proprietary 16

AMDA1

Revision 14

Octoberl3, 200

Memory

LayerO

Layerl

Layer2

Layer3

LayerO

Layerl

l

Layers stored contiguously from O to N.
MipMaps stored contiguously from largest to smallest.

MipLevel O

MipLevel 1

* Not Drawn To Scale

© 2008 Advanced Micro Devices, Inc.

Proprietary

17

AMDH Revision 14 Octoberl3, 200

5. Command Processor

5.1 Overview

The Command Processor is a programmable processor that is meant to provide-shipentelligence for a
Graphics Controller device. The CP architecture has been approached as gspgess computg engine,
targeted at fetching and interpreting a PROMO4 command stream.

The Command Processor takes on several tasks in a typical Graphics Controller:

1 Acts as a receiver of command streams from the video and graphics device driver(s) running on the host
CPU. These command streams are either read from system memory usingsbeisng on the PCI or
AGP bus, or directly written to the CP from the host CPU using the PCI or AGRwisst bus. Three
streams are supportédne Ring Buffer and two Indire@uffers.

T Parses and interprets a command stream, and writes
Graphics Controller device; for example, a 3D graphics processor, a 2D graphics processor, a Video
Processor, or an MPEG Decoder. The datéewican be 32, 64, 96, or 128 bits per clock. The 64, 96, and
128 bit writes wild.l o ectar writefmode is fialidenmbhen the strésm (PQelQ1Mo d e 0 .
1Q2) is in Pull Mode. Push mode will only write DWORDS (i.e. Lowed®B® of the 12&it data bus will
be valid with a DWO&E arkd 84ithviites wilkonlfi céudwhite the alignment of
the data is not on a 128t boundary.

1 There are two generglurpose DMA engines inside the CP, one for @&lated tasks, and one intended
Video Capture tasks. The DMA engines do byte alignment between the source and destination surfaces.

5.2 Host Programming Model Description

This section describes the manner in which the host CPU communicates with the graphics controller chip.

5.3 Push vs Pul Model

ThePush Models also referred to as Programmed 1/O (PIO). In this model the host CPU is writing to the graphics
controller chip across either the PCI or AGP bus. Thai
graphics controller. Tik information is in one of two forms:

1) A sequence of register writes to setup the state of a processing engine on the graphics controller, and
then starting the engine running. Typically, engines are started aseffsitteof writing to a special
it reirgpg or Ainitiatoro register.

2) Asequence o€ommand Packets whi ch are a Acompressedod way of ¢«
information to the graphics controller, relying on an intelligent processor in the graphics controller to
convert the command packets intoistgr writes to other processing engines in the graphics controller.

It is expected that option (1) above will only be used for debug purposes.

The Pull Modelutilizes busmastering on the part of the graphics controller, as it actively goes out androsads

area of system memory in which the host CPU has previously placed command information. An important part of
the pull model is how the host and the graphics controller manage access to the shared buffer in system memory.
This is discussed in thelfowing section.

The pull model allows more slip between the CPU and the graphics controller than does the push model, assuming
that the command buffer for the push model is limited tehip storage.

The push model may have some advantage when thdl®yetam performance is taken into account as it lightens
the bandwidth demand on system memory as compared to the pull model. The push model may be abigto make
for its limited slip by implementinganenh i p ¢ o mmand bouvfefreor e franhedntffet;fiowevel, | s
this of course begins to place a demand on the frame buffer bandwidth to write and read the command buffer.

© 2008 Advanced Micro Devices, Inc.
Proprietary 18

AMDH Revision 14 Octoberl3, 200

The Command Processor will support both the push and pull models; however, switching between these two models
must be careflly controlled. It is intended that switching is not done often; most likely the model is chosen at reset
time, and never changed once the system is running. The pull model is the preferred choice for systems that allow
busmastering, and whose API alis concurrent processing between the host CPU and the graphics controller,
primarily because of its superior capability for overlapped processing. The push model is available for systems that
are not welsuited to using the pull model.

5.4 Ring Buffer Management

When the Graphics Controller is set to operate in thentastering mode (pull model), the host application, say a
driver, has to allocate a block of system memory as a buffer faothenand packetsissues to the Graphics

Controller. The commanglackets, or simply packets, instruct the Graphics Controller to carry out operations such
as drawing objects on the screen. This memory block is treated as if it is a ring that allows the packets to be placed
into and taken away from the memory in a ciecuhanner, thus the narRéng Buffer

The Ring Buffer is a shared memory space between two cooperating processors. It is used to implemagnt one
communication from the Host processor (the Writer) to the Graphics Controller (the Reader). Each prastssor
maintain the state that it believes that the Ring Buffer is in. The state is composed of:

1 Buffer Base: The address of the beginning of the buffer.

1 Buffer Size: The size of the buffer.

1 Write Pointer: The address that the Host is writing to.

1 Read Poirdgr: The address that the Graphics Controller is reading from.

In order for the Ring Buffer to work properly, both processors must maintain a consistent view of this state. The
Buffer Base and Buffer Size are generally initialized when the system isréigglitup, and rarely changed after

that point. I't is a simple task to initialize both thi
Write Pointers, on the other hand, change quite frequently as the Ring Buffer is in operatiorer ta adthieve

consistency, when the Writer (the host) wupdates the Wri
Graphics Controllerds) copy of the Write Pointer. And

sendthatvae t o the Writerbés copy of the Read Pointer.

Packets are placed into the memory block, or buffer, from the beginning towards the end, i.e., from lower addresses
toward higher addresses. Once the data placement hits the end, it starts from the beginnihdeagavhile, the
packets are consumed from the head of the queue in a manner similar to how they were placed.

Figureillustrates how the ring buffer operates when combined with therassering operation.

© 2008 Advanced Micro Devices, Inc.
Proprietary 19

AMDH Revision 14 Octoberl3, 200

Host start of buffer = end of buffer Graphlcs
- - : Controller
Write Pointer Address !
Buffer Base - , : - Write Pointer -
Buffer Size o Read Pointer

Write Pointer

Buffer Base

v ReadPointer)

Buffer Size

IE 3
X
. 3
Ring Buffer Packets Bus %
Server ' g
Mastering ©
Unit S
€
Q
O

Driver(s) free area

Read Pointer
Address

. Execution
Legend: | Regiser | | g

Figure: Ring Buffer and its Control Structure

In the figure, packets are placed into the buffer in a cownhbekwise order, forming packet queuer he first
packet in the queue is denotedBy and the last byP, . The start of the queuds, , is pointed to by the Read

Pointer(s). The memory portion that is not occupied by packets is calléddlarea and it is pointed to by the
Write Pointer(s).

Initially, both the read and write pointers magint to the same location of the ring buffer, e.g. the start of the

memory block. The two pointers pointing to the same location of the ring buffer generally implies one of two

situations. One is that the buffer is empty, and the other is that thex ufifill. We want to define this situation as

an empty buffer. To resolve the ambiguity of both pointers being equal, we must prevent the case of a full buffer

from ever happening. 't i s the Hostedlacationdnsthebuffes.i bi | ity |

On the host side, the driver places command packets into the free area of the ring buffer, and informs the Graphics
Controller of any changes to the Write Pointer by writing directly to the Write Pointer register inside thesrap
Controller. The host tracks frespace in the buffer by comparing its Read and Write Pointers, and suspends writing
if the buffer becomes (almost) full.

On the Graphics Controller side, packets are taken awapyoae from the head of the packeege, pointed to

by its Read Pointer, through the Host Bus Interface, and placed into the Command Packet Buffer. As the Graphics
Controller updates its copy of the Read Pointer, ituses-alaus t er i ng wri te to update the
Pointer, esiding in a shared memory location. The Graphics Controller has a register that holds the memory address

of where the Hostdés Read Point er -masteringdeits., TheaGnaghicei s es t ha
Controller tracks frespace in théuffer by comparing its Read and Write Pointers, and suspends reading if the

buffer becomes empty (i.e., Read Pointer == Write Pointer).

To reduce traffic on the system memory bus, the Graphi
Poirter every time it changes on the Graphics Controller side. To facilitate this, we have adopted a concept of a

© 2008 Advanced Micro Devices, Inc.
Proprietary 20

AMDH Revision 14 Octoberl3, 200

blockof dwords in the packet queue. The Graphics Control
time it has oéewmsumedod flatacKrom the ring buffer. The
will update the Read Pointer is when it thinks that the packet queue is empty. The size of the block is

programmable, to allow the programmer to traffethe amount ofitne the system bus spends doing real data

transfer vs the amount of time it spends on the communication overhead of updating read/write pointers. Larger

bl ock sizes tend to reduce communication owtheghemegd, at
which reduces t he -caupliog)between the Hist dnd thedGraphjce Contrblier.

To reduce traffic on the system memory bus, the driver may want to minimize the frequency of accesses to its copies
of the Read and Write Poimge To minimize reads of the Read Pointer, it can check them once, calculate an amount
of free space, and then decrement a local copy of the amount of free space as it adds packets to the queue. When it
sees that the fregpace is small (queue nearlylfult can start this procedure over again. (Its copy of the Read

Pointer may have changed since the last time he read it.) The host also has the option of updating the Graphics
Controll er 6s Wrfiequent bBsisithantwihr eveoy nvriteatheek ® thes packet queue, possibly on a

blockbasi s similar to the Graphics Controllerés mechani sn
delay in updating the Graphics Controll erf®s ™addpgaoensPa itnd
this command packet . Al so, the host must be careful o

if it wants the Graphics Controller to read from the queue until it is empty.

When the queue has become (almost) full, thé Wwdkhave to poll the Read Pointer until space becomes available.
In certain systems (Pentium Il for example), this polling will stay within the processor cache, thus avoiding traffic
on the system bus, and the snoop logic of the host CPU will takefoasa@ntaining consistency between the main
memory and the processor cache when the Graphics Controller performsritagtesing write of the Read Pointer.

It is important to note that the Read Pointer must reside in PCI space in order for thissshoapie to work.

AGP writes are not snooped.

5.5 Chipset Coherency Issues

The Ragel28 product revealed a weakness in some motherboard chipsets in that there is no mechanism to guarantee
that data written by the CPU to memory is actually in a readable stfatetthe Graphics Controller receives an

update to its copy of the Write Pointer. I n an effort f
Graphics Controller that will delay the actual write to the Write Pointer for some programamatlet of time, in

order to give the chipset time to flush its internal write buffers to memory.

There are two register fields that control this mechanism: PRE_WRITE_TIMER and PRE_WRITE_LIMIT. There

is also a staging r e gualdMitePointeriregister df thé CPnAll hostavrites gairftothet he a c |
staging register and are held there until one of two events occurs: theedomter of PRE_WRITE_TIMER has

expired; or the host has written the staging register PRE_WRITE_L-tiids, foréng the contents of the staging

register into the actual Write Pointer register. The doounter is seeded with PRE_WRITE_TIMER every time

the host writes to the Write Pointer register address, and expires when it reaches zero. This implementation does n
guaranteea certain timedelay between the host write to the Write Pointer, and the Graphics Controller read of the

system memory; because the host could flood the Graphics Controller with multiple writes (more than the
PRE_WRITE_LIMIT) in a short amoumf time, thus overriding the timgéelay imposed by the

PRE_WRITE_TIMER. However, since the normal operation of this system is to increase the Write Pointer by some
significant amount with each write, it is likely that by the time the PRE_WRITE_LIMITbkas reached, the data

has in fact been fipushedod through the chipsetbds write |
memory.

Note that programming the PRE_WRITE_TIMER and PRE_WRITE_LIMIT to zero allows the chip to behave just
as the RageZB did.

The above solution is based otirae delay, the assumption being that if the chipset is given enough time, the write
buffer will be flushed to memory, and become available for a coherent read.

5.6 Indirect Buffer Management

The Command Processor hbe tapability to read commands from other locations in memory, outside of the Ring

© 2008 Advanced Micro Devices, Inc.
Proprietary 21

AMDH Revision 14 Octoberl3, 200

Buffer. These locations are known as Indirect Bufferl and Indirect Buffer2. This is accomplished as follows: there
is a packet in the Primary command stream (being reaal tihe ring buffer) which sets up the Indirect Bufferl

Address and Size registers of the Command Processor. The writing of the Indirect Bufferl Size register triggers the
Command Processor to begin fetching the new stream from the provided addressst pheket to be parsed from

the Primary stream is the one that sets the Indirect Bufferl Address and Size registers. The CP then begins fetching
data from Indirect Bufferl. The data stream in Indirect Bufferl may set up the Indirect Buffer2 Addr8szeand
registers of the Command Processor. As before, writing of the Indirect Bufferl Size register triggers the Command
Processor to begin fetching the new stream from the provided address. The last packet to be parsed from the
Indirect Bufferl stream ithe one that sets the Indirect Buffer2 Address and Size registers. The CP fetches the
correct amount of data from Indirect Buffer2 until The Buffer2 Size is exhausted; it then returns to its interpretation
of packets from Indirect Bufferl. The CP fetclies correct amount of data from Indirect Bufferl until the Bufferl

Size is exhausted; it then returns to its interpretation of packets from the Primary Stream (being read from the ring
buffer).

5.7 Overview of DMA Operation

The DMA engines in the Command Pessor fetch commands from the frame buffer memory which tell them what
to do. The command in memory is stored in a structure knowmasaiptor, having a fowdoubleword
(DWORD) format as shown below:

Ordinal Name Bit Function

0 SRC_ADDR 31:0 | Sourceaddress

1 DST_ADDR 31:0 | Destination address

2 COMMAND 31:0 | Command word. (See description below)
3 (Reserved) 31:0

The COMMAND word has the following format:

31 EOL End Of List Marker

30 INTDIS Interrupt Disable

29 DAIC Destination Address Increme@bntrol
28 SAIC Source Address Increment Control
27 DAS Destination Address Space

26 SAS Source Address Space

25:24 DST_SWAP Destination Endian Swap Control
23:22 SRC_SWAP Source Endian Swap Control

20:0 BYTE_COUNT[20:0] Byte Count of Transfer

There aressome constraints on the programming of the Descriptor, as follows: If either the Source or the Destination
is in the register address space, or is programmed to baecr@menting, then the atomic transfer unit is assumed to

be a DWORD. Namely, the both two-bits of the BYTE_COUNT and the Address will be ignored (assumed
A000) .

Note that a BYTE_COUNT of zero will perform no operation.

Multiple Descriptors may be stored contiguously in memory to makeDgsariptor Table (DT)seeFigure. The
last Descriptor in the Descriptor Table must be marked as such so that the DMA engine knows when to stop
consuming commands.

The programmer provides the DMA engine with a pointer to the beginning of the Descriptor Table, and the DMA

© 2008 Advanced Micro Devices, Inc.
Proprietary 22

AMDH Revision 14 Octoberl3, 200

engire fetches one Descriptor at a time, interprets the command to carry out a transfer, and then moves on to the
next Descriptor in the table. As mentioned above, the DMA engine will stop when it reaches the last Descriptor in
the table.

There is a bit calle@€P_SYNC in the Descriptor Address register (DMA_xxx_TABLE_ADDR). If this bit is set,

the DMA wiultldo filhceckmi croengine from performing any write

active. This mechanism can be used to synchronize a-OiN&n stream of register writes to the command FIFO.
among other things.

A DMA channel may have its operation aborted by writi

register. It is important that the programmer then poll the ACTIVE bit of #maesegister, waiting for a value of

606, before writing a 606 to the ABORT_EN bit. - Once

back stable state from all DMA registers.

Memory Space

| TABLE ADDR Redistel—* Dword 0
Dword 1
Dword 2
Dword 3
Dword 4
Dword 5
Dword 6
Dword 7

Descriptor 0

Descriptor 1

Dword (n*4)
Dword (n*4)+1
Dword (n*4)+2
Dword (n*4)+3

Descriptor n (Last)

Figure: Descriptor Table Layout in Memory

An alternate method to writing the DMA_XXX_TABLE_ADDR register to initiate a DMA operation is to write the
descriptors directly to the CP. This saves the fetching of the descriptor table from memory.

Three registers are provided for each of the Déiyines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,
CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and
COMMAND DWORDs of the descriptor table entry described above. Except that the EOL-isoldiaal TRUE in

the COMMAND DWORD. Writing to the CP_XXX_COMMAND register initiates a DMA operation using the
descriptor described in all three registers. A table of descriptors can be built from multiplé papkets each

containing the SRC, DST, and COMMAND data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 23

n

t

AMDH Revision 14 Octoberl3, 200

5.8 Resetting he Command Processor

To support recovery from a powdown state the read pointer (CP_RB_RPTR) is writable. The read pointer is
initialized by writing the writable read pointer (CP_RB_RPTR_WR). Then, when the write pointer
(CP_RB_WPTR) is subsequently ttein the contents of the writable read pointer (CP_RB_RPTR_WR) are
transferred to the active read pointer (CP_RB_RPTR). As a precaution, an enable bit must be set in the control
register (CP_RB_CNTL) to allow the contents to transfer to the active réatépCP_RB_RPTR). Note that the
read pointer still resets to zero to ensure starting at the beginning of the buffer if the host does not initialize the
writable read pointer (CP_RB_RPTR_WR).

Therefore, a certain sequence of actions is required of hé hoi n or der t o perform a #fAcl ea
1) Write CP_CSQ_CNTL and CP_CSQ_MODE to zero, effectively disabling the CP.
2) Write to the proper RBBM register to assert and theassert the Soft Reset signal to the CP.

3) Setthe RB_RPTR_WR_ENA bit to @&ole writing of the RPTR if desired not to start from the
beginning of the buffer.

4) Write the CP_RB_RPTR_WR register if it is desired not to start at the beginning of the buffer.
5) Write CP_RB_WPTR, to make it match the RPTR, causing the ring buffer to dppeaempty.

6) Clearthe RB_RPTR_WR_ENA bit if no further writes of the RPTR are desired.

7) Write CP_CSQ_CNTL or CP_CSQ_MODE to set the mode back to whatever you want.

5.9 Command Stream Synchronization

In the RBBM, there is an event engine that can be usedithisynize the sending of transactions to the Register

Backbone based on status signals from its clients. The CP however has a mechanism that can directly provide the

Host with knowl edge of command status. Ttheir assocteed hani s m |
functionality.

Associated with the eight ASCRATCHO registers in the CI
scratch register is written, the CP will subsequently write its value to a location equal to what is prograthemed

SCRATCH_ADDR register plus the number (0 to 7) of the
value by the CP is qualified by the registerds write m

So, at the end of processing an Indirect Buffer, for examplgpa-0 packet can be inserted that writes a data

pattern to SCRATCH_REGL1. The driver software can poll the external location SCRATCH_ADDR+1 and when it
changes to the value that was inserted inthe-Dypepac ket , t he Dr i ver wieted Aknowo t
parsing the indirect buffer up to that point. Note that this status only indicates that the CP is done to that point, the

data still may be being used by the rest of the pipeline.

© 2008 Advanced Micro Devices, Inc.
Proprietary 24

AMDH Revision 14 Octoberl3, 200

For R5xxan interrupt is added associated with the scratch registeic) is asserted when the scratch register pair
selected is written to memory and is greater than or equal to the pair of values written by the Driver.

The CP can receive sync pulses from the bauk of the pipeline (CBA_CP_SYNC, CBB_CP_SYNC,
CBC_CP_SYIC, and CBD_CP_SYNC). When a pulse freachis received (pulse pair), the CP will write the
targeted scratch register with the corresponding CP_RESYNC_DATA value. The targeted scratch register is
determined by the-Bit CP_RESYNC_ADDR which is a scratctyrster offset from the SCRATCH_ADDR base
address.

Because this function uses the SCRATCH_ADDR and SCRATCH_UMSK values, they must be initialized prior to
its use. The CP_RESYNC_ADDR and CP_RESYNC_DATA registerstalso be programmed with the target
scratt register offset and the appropriate data respectively before the pulses are received. Both the
CP_RESYNC_ADDR and CP_RESYNC_DATA values are written intte8p FIFOs so that multiple

synchronization events can begueued in the CP.

If the sync pulsesdm the CB are asserted before programming the CP_RESYNC_ADDR and

CP_RESYNC_DATA, the logic will still worlprovidingthat Dynamic Clocking for the CP is disabled. Receipt of

the sync pulses by the CP does not cause the clocks to be enabled to thenOR/|esigk of these pulses may not

be remembered if Dynamic Clocking is enabled. Writing the CP_RESYNC_ADDR and CP_RESYNC_DATA
registerdoese nabl e the c¢clocks to the CP. The fAbusyo signal t C
RESYNC data in th&@DDR and DATA FIFOs keeping the clock enabled to the CP.

5.10 Starting the Indirect Streams

A write to the CP_IB_BUFSZ register triggers the Command Processor to start fetching the command stream from
the Indirectl buffer, instead of from the Primary buff@dhe CP will continue to fetch from the Indirectl buffer,

starting at the address in the CP_IB_BASE register, and continuing until the CP_IB_BUFSZ amount is exhausted.
Then it will switch back to the Primary stream.

A write to the CP_IB2_BUFSZ registaiggers the Command Processor to start fetching the command stream from
the Indirect2 buffer, instead of from the Indirectl buffer. The CP will continue to fetch from the Indirect2 buffer,
starting at the address in the CP_IB2_BASE register, and corginuiil the CP_IB2_BUFSZ amount is exhausted.
Then it will switch back to the Indirectl stream.

Note that there are some important rules to follow when starting an indirect stream. Firstly, the write to the
CP_IB_BUFSZ or CP_IB2_BUFSZ register must belast registerwrite of a Type 0 or Type 1 packet. The very

next packet that is delivered to the Command Stream Interpreter is the first packet of the respective indirect buffer.
The second rule is that the respective CP_IB_BASE or CP_IB2_BASE registehave been setup with the

proper value before the appropriate CP_IB_BUFSZ or CP_IB_BUFSZ register is written.

In PIO mode, the BUFSZ register still needs to be written with the size of the indirect buffer. Care must be taken to
write this register befre the command queue fills in the CP.

© 2008 Advanced Micro Devices, Inc.
Proprietary 25

AMDH Revision 14 Octoberl3, 200

5.11 Writing Host Data to the Command Stream Queue

Either or all of the Primary, Indirectl and Indirect2 streams can be delivered to the Command Processer via host
programmed writes to the Graphics Controller device.rf leea range of registespace addresses assigned to each

of the three streams, that is, one aperture for the Primary Stream, one for the Indirectl Stream, and one for the
Indirect2 Stream. The act of writing to a location in the aperture causes th# tetenqueued to the Command

Stream Queue. Note that the actual address of the written data is inconsequential; the data will be enqueued into the
Command Stream Queue in thieler in which it was received from the host.

Note that each of the threeesams can be in one of three delivery modes, resulting in nine possible combinations.
The three modes are:

1) OFF: The stream is disabled.

2) PUSH: The host is writing the stream data to the Command Processor. (also known as Programmed
I/0, or PIO mode)

3) PULL: The Command Processor is actively fetching the command stream from memory. (also known
as Bus Master, or BM mode)

Note that the BUFSZ register must be written to initiaf

© 2008 Advanced Micro Devices, Inc.
Proprietary 26

AMDH Revision 14 Octoberl3, 200

5.12 Writing to the MicroEngine RAM

In order tochange a location in the MicroEngine RAM, first load the CP_ME_RAM_ADDR Register with the
address of the RAM into which data is to be written. Next, the host performs two writes; the first must be to the
CP_ME_RAM_DATAH port, and the second to the CP_MBMR DATAL port. Internally, the Command
Processor maintains a-b@t holding registers which concatenates the lowbit8 of the DATAH value to the top of
the 32bit DATAL value, and at the end of the write of the DATAL value, theb#G/alue is writterto the RAM at

the location specified by the RAM Address Register. The RAM Address Register is thémcaemoented to point

to the next location in the RAM. This process of writing two data values may be repeated to write to successive
RAM locations wihout reloading the RAM Address Register.

5.13 Reading from the MicroEngine RAM

In order to read a location in the MicroEngine RAM, first load the CP_ME_RAM_RADDR Register with the
address of the RAM from which data is to be read. This write triggers the GuiriPnacessor to read the-Bid

data value at that RAM location and transfer it to an internddidolding register. Also, the RAM Address
Register is autincremented to point to the next location in the RAM. Next, the host performs two read theles,
first from the DATAH port, and the second from the DATAL port. At the end of the DATAL cycle, the next
location of the RAM is transferred to the-B@ holding register, and the RAM Address Register is again auto
incremented. This process of reading values may be repeated to read from successive RAM locations without
re-loading the RAM Address Register.

© 2008 Advanced Micro Devices, Inc.
Proprietary 27

AMDH Revision 14 Octoberl3, 200

5.14 Starting a DMA Operation
There are two methods to initiate a DMA operatidbescriptor Tables or Direct Descriptor Entry Register Writes.

To progam a DMA operation via Descriptor Tables, the programmer has to build the table in the frame buffer first,
being sure to mark the | ast entry of the | ist as AEnd
the descriptor table into é¢hDescriptor Table Address Queue (DTAQ) through the xxx_DMA_TABLE_ADDR port.

The action of writing the first starting address into the DTAQ will trigger the DMA operation.

The type of transfer operation depends on the DMA_COMMAND DWORD in the Descriptmntrols such
variables as: the length of the transfer, whether the Source/Destination addresses are irsparaayregister
space, whether the Source/Destination addressesnmugonent with each transfer, and whether an interrupt is
generated wén the entire Descriptor Table has been processed.

The second methodDirect Descriptor Entry Register Writédnvolves writing the three DMA Entry registers.
Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,

CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and
COMMAND DWORDs of the descriptor table entry. Except that the EOL is-badéd TRUE in the COMMAND
DWORD. Writing to the CP_XXX_COMMAND register initiatesaMA operation using the descriptor described

in all three registers. A table of descriptors can be built from multiple-Oypeckets each containing the SRC,

DST, and COMMAND data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 28

AMDH Revision 14 Octoberl3, 200

6. PM4
6.1 Packet Types

When programming in the PM4 mode, we do not need to diréetly to registers to carry out drawing operations
on the screen. Instead, what we need to do is to prepare data in the format@bPMénd Packeia the system
memory, and let the hardware (Microengine) to do the rest of the job.

Four types of PM&ommand packets are currently defined. They are types 0, 1, 2 and 3 as shown in the following
figure. APM4 command packet consists qglaeket headeridentified by field HEADER, and ainformation body
identified by IT_BODY, that follows the header. & packet header defines the operations to be carried out by the
PM4 micreengine, and the information body contains the data to be used by the engine in carrying out the
operation. In the following, we use brackets [.] to denote-biBfeld (referred taas DWORD) in a packet, and

braces {.} to denote a sizgarying field that may consist of a number of DWORDs. If a DWORD is shared by more
than one field, the fields are separated by ¢Jadbd The f|
the field that appears on the far right takes the least significant bits. For example, DWORD [HI_WORD |
LO_WORD] denotes that HI_WORD is defined on bits3ll§ and LO_WORD on bits-05. A Gstyle notation of
referencing an element of a structuresed to refer to a subfield of a main field. For example,
MAIN_FIELD.SUBFIELD refers to the subfield SUBFIELD of MAIN_FIELD.

Type-0 packet

— 33222222222 1111
Bit position 1009876 54321009876543210287¢549334°
Packet header 00 COUNT a BASE_INDEX
REG_DATA 1
REG_DATA_2
IT_BODY
REG_DATA n
Type-1 packet
—— 222222 2 2 U U 411
Bit position 10/ 98 7165143 210098765 4321028994344 °
Packet header 01 Reserved REG_INDEX2 REG_INDEX1
REG_DATA_1
IT_BODY
REG_DATA_2

© 2008 Advanced Micro Devices, Inc.
Proprietary 29

AMDA1

Revision 14 Octoberl3, 200

Type-2 packet

... 32222 2 2 2 2 2 2 Uy 4111 T
Bit position 100/ 9/ 8| 7/ 6| 5/ 4/ 3/ 2/ 1] 0] o 8| 7| 6| 5/ 4/ 3/ 2{ 1] 0| *| & 7| € O 4 F Y °
Packet header 10 Reserved
Type-3 packet
— 32222222 2 2 2 Y U a1t
Bit position 10/ 9l 8| 7/ 6| 5| 4/ 3/ 2/ 1] 0| 9| 8| 7| 6| 5| 4/ 3 2| 1] 0] °| & 7| ¢ 9 4 33 Y ©
Packet header 11 COUNT IT_OPCODE Reserved
DATA 1
DATA 2
IT_BODY
Data n

6.1.1 TypeO Packet

Functionality

Write N DWORDs in he information body to the consecutive registers, or to the register, pointed to by the
BASE_INDEX field of the packet header.

Format
Ordinal Field Name
1 [HEADER]
2 [REG_DATA 1]
3 [REG_DATA 2]
N+1 [REG_DATA N]

Header Fields

Bit(s) Field Name Description

12:0 BASE_INDEX The BASE_INDEX[12:0] correspond to byte address bits [14:2]. So the
BASE_INDEX is the DWORD Memorynapped address.
The BASE_INDEX field width supports up to DWORD address: OX7FFF.

14:13 Reserved Reserved for future expdnsa of address space.

15 ONE_REG_WR | 0:- Write the data to N consecutive registers.

1:- Write all the data to the same register.

29:16 COUNT Count of DWORD:s in the information body. Its value should bk iNthere
are N DWORD:s in the information body.

31:30 TYPE Packet identifier. It should be zero.

Note:Sy mb edl rée:cads fAdefined as. 0

Information Body

© 2008 Advanced Micro Devices, Inc.

Proprietary

30

AMDH Revision 14 Octoberl3, 200

Bit(s) Field Name Description

31:0 REG_DATA _x | The bits correspond to those defined for the relevant register. Note the sy
of REG_DATA_x stand$or an integer ranging from 1 to N.

Comment

The use of this packet requires the complete understanding of the registers to be written.
6.1.2 Typel Packet

Functionality

Write REG_DATA_1 and REG_DATA 2 in the information body respectively to the registeregamby
REG_INDEX1 and REG_INDEX2. Note that this packet cannot address the entire address space. It is recommended
that Type O packets be used instead.

Format
Ordinal Field Name
1 [HEADER]
2 [REG_DATA 1]
3 [REG_DATA 2]

Header fields

Bit(s) Field Name Description

10:0 REG_INDEX1 | The field points to a memomnapped register that REG_DATA 1 is written to.

21:11 REG_INDEX2 | The field points to a memomapped register that REG_DATA 2 is written to.

29:22 Reserved

31:30 TYPE Packet identifier. Ishould be 1 (one).

Information Body

Bit(s) Field Name Description

31:0 REG_DATA_x | The bits correspond to those defined for the relevant register.

6.1.3 Type2 Packet
Functionality
This is a filler packet. It has only the header, and its content is nottampexcept for bits 30 and 31. It is used to

fill up the trailing space left when the allocated buffer for a packet, or packets, is not fully filled. This allows the
microengine to skip the trailing space and to fetch the next packet.

Format
Ordinal Field Name
1 [HEADER]

Header fields

Bit(s) Field Name Description

29:0 reserved

© 2008 Advanced Micro Devices, Inc.
Proprietary 31

AMDA1

Revision 14 Octoberl3, 200

[31:30 |

TYPE

| Packet identifier. It should be 2.

6.1.4 Type3 Packet

Functionality

Carry out the operation indicated by field IT_OPCODE.

Format
Ordinal Field Name
1 [HEADER]
2 {IT_BODY}
Header fields
Bit(s) Field Name Description
7:0 Reserved This field is undefined, and is set to zero by default.
15:8 IT_ OPCODE Operation to be carried out. See section B.2 for details.
29:16 COUNT Number of DWORDsL1 in the information bdy. It is N-1 if the information body
contains N DWORDs.
31:30 TYPE Packet identifier. It should be 3.
Information Body

The information body IT_BODY will be described extensively in the following section.

© 2008 Advanced Micro Devices, Inc.

Proprietary

32

AMDH Revision 14 Octoberl3, 200

6.2 Definition of Type-3 packets

Type-3 packets haa common format in their headers. However, the size of their information body may vary
depending on the value of field IT_OPCODE. The size of the information body is indicated by field COUNT. If the
size of the information isl DWORDSs, the value of COUNIB N-1. In the following packet definitions, we will

describe the field IT_BODY for each packet with respect to a given IT_OPCODE, and omit the header. The MSB
of the IT_OPCODE identifies whether this packet requires the GUI_CONTROL field (describgd Aaiem the

MSB of the IT_OPCODE indicates that GUI control is required. A 0 in the MSB of the IT_OPCODE indicates that
the GUI_CONTROL should be omitted.

© 2008 Advanced Micro Devices, Inc.
Proprietary 33

AMDH Revision 14 Octoberl3, 20

6.2.1 Summary of packets

Packet Name IT OPCODE | Description

NOP 0x10 Skip N DWORDs to get to the nepacket.

PAINT 0x91 Paint a number of rectangles with a colour brush.

BITBLT 0x92 Copy a source rectangle to a destination rectangle.

HOSTDATA BLT 0x94 Draw a string of large characters on the screen, or cop,
number of bitmaps to the video memory.

POLYLINE 0x95 Draw a polyline (lines connected with their ends).

POLYSCANLINES 0x98 Draw polyscanlines or scanlines.

NEXTCHAR 0x19 Print a character at a given screen location using the
default foreground and background colours.

PAINT_MULTI Ox9A Paint a number of rectangles on the screen with one
colour. The difference between this function and PAIN]
the representation of parameters.

BITBLT_MULTI 0x9B Copy a number of source rectangles to destination
rectangles of the screen respectively.

TRANS BITBLT 0x9C 2D transparent bitblt operation.

PLY NEXTSCAN 0x1D Draw polyscanlines using current settings.

SET_SCISSORS Ox1E Set up scissors.

PRED EXEC 0x20 Predicated execute wrapper for a sequence of packets

COND_EXEC 0x21 Conditional execute wrappér a sequence of packets

WAIT_SEMAPHORE 0x22 Wait in the CP micreengine for semaphore to be zero

WAIT_MEM 0x23 Wait in the CP micreengine for GPlhccessible memory
semaphore to be zero

3D _DRAW_ VBUF 0x28 Draw primitives using vertex buffer

3D _DRAW_IMMD 0x29 Draw primitives using immediate vertices in this packet

3D_DRAW_INDX Ox2A Draw primitives using vertex buffer and indices in this
packet

LOAD PALETTE 0x2C Load a palette for 2D scaling.

3D _LOAD_VBPNTR Ox2F Load pointers to vertex buffers

INDX_ BUFFER 0x33 Load Indices Using Indirect Buffer #2

3D_DRAW_VBUF_2 0x34 Same as 3D_DRAW_VBUF, but without
VAP _VTX_FMT

3D_DRAW_IMMD_2 0x35 Same as 3D_DRAW_IMMD, but without
VAP _VTX_FMT

3D_DRAW_INDX_2 0x36 Same as 3D_DRAW_INDX, but without
VAP _VTX_FMT

3D _CLEAR HIZ 0x37 Clear portion of the Hierarchal Z RAM

3D_DRAW 128 0x39 Draw packet to write to 12Bit VAP data port.

MPEG_INDEX 0x3A MPEG Packet Registers and Index Generation

6.2.2 2D Packets

The information body IT_BODY of-D packets may have the followirfigrmat:

Ordinal Field Name
1 {SETTINGS}
2 {DATA_BLOCK}

© 2008 Advanced Micro Devices, Inc.

Proprietary

34

AMDH Revision 14

Octoberl3, 200

SETTINGS
This field consists of 2 subfields, GUI_CONTROL and SETUP_BODY.

Ordinal Field Name

1 [GUI CONTROL]

2 {SETUP_BODY}

1 SETTINGS.GUI_CONTROL

This field will be used to setup the registd? BGUI_ MASTER_CNTL, and it also decides the content of
SETTINGS.SETUP_BODY

Bit(s)

Field Name

Description

Status

0

SRC_PITCH_OFF

The bit controls the pitch and offset of the blitting source.

0:- Use the default pitch and offset, and no datum
[SRC_PITCHOFFSET] is supplied in SETUP_BODY.

1:- Use the datum [SRC_PITCH_OFFSET] supplied in SETUP_BOD
to set up a new pitch offset.

DST_PITCH_OFF

The bit controls the pitch and offset of the blitting destination.

0:- Use the default pitch and offset, anddaium
[DST_PITCH_OFFSET] is supplied in SETUP_BODY.

1:- Use the datum [DST_PITCH_OFFSET] supplied in SETUP_BOD
The pitch may mean the bitmap pitch and the offset may points the 0
screen area of the video memory.

SRC_CLIPPING

This bit controls thelipping parameters of the blitting source.

0:- Use the default clipping parameters, and no relevant clipping dat
supplied in SETUP_BODY.

1:- Use datum [SRC_SC_BOT_RITE] supplied in SETUP_BODY to
up the bottom and right edges of the clipping red&ang

DST_CLIPPING

This bit controls the clipping parameters of the blitting destination.
0:- Use the default clipping parameters, and no relevant clipping datg
supplied in SETUP_BODY.

1:- Use data [SC_TOP_LEFT] and [SC_BOTTOM_RIGHT] supplied
SETUP_BDDY to set up a new clipping rectangle.

74

BRUSH_TYPE

Types of brush used in drawing. The type code determines how to sy
data to the subfield BRUSH_PACKET in SETUP_BODY. See detailg
definition of BRUSH_TYPE in the following.

11:8

DST_TYPE
{Not Used by uCode}

The pixel type of the destination.
0--1 - (reserved)

- 8 bpp pseudocolor

- 16 bpp aRGB 1555

- 16 bpp RGB 565

- reserved

- 32 bpp aRGB 8888

- 8 bpp RGB 332

- Y8 greyscale

- RGB8 greyscale (8 bit intensity, duplicdtfor all 3 channels. Green
channel is used on writes)

10 = (reserved)

11 = YUV 422 packed (VYUY)
12 = YUV 422 packed (YVYU)

© 00 ~NO Ol WN

13 = (reserved)

7 through 15
not supported in
3D pipe

© 2008 Advanced Micro Devices, Inc.
Proprietary

35

AMDA1

Revision 14

Octoberl3, 200

14 - aYUV 444 (8:8:8:8)

15 :aRGB4444 (intermediate format only. Not understood by the
Display Controller)

Note: choices 715 only valid in 3D mode.

13:12 | SRC_TYPE The field indicates the pixel type of blitting source.
{Not Used by uCode} | 0:- The source data type is mono opaque, and the dokbackground
colours needa be redefined.
1:- The source data type is mono transparent, and only the foregroun
colour needs to be redefined.
2:- Reserved.
3:- The source pixel type is the same as that given in field DST_TYP
If bit 27 (SRC_TYPE) is one then the following new sms are
available:
4:- 4bpp source clut translation (May not be supported, value reserve
5:- 8bpp source clut translation
6:- 32 bpp source clut translation (gamma correction)
7:- 64 bpp Obuffer blit
14 | PIX_ORDER The bit decides #order of bits (or pixels) in DWORD to be consumed
{Not Used by uCode} | Only applicable to the monochrome mode.
0 - Bits to be consumed from the Most Significant Bit (MSB) to the L
Significant Bit (LSB).
1 - Bits to be consumed from LSB to MSB.
15 COLOR_CONVT Reserved Not supported
{Not Used by uCode} in 2D pipe
23:16 | WIN31_ROP This field tells the GUI engine how the raster operation to be carried
{Not Used by uCode} | The code of this field follows the ROP3 code defined by Microsoft. §
WIN31 DDK for reference.
26:24 | SRC_LOAD The field indicates where the source data come from.
{Not Used by uCode} | 0,1 - Reserved
2 - loaded from the video memory (rectangular trajectory)
3 - loaded through the HOSTDATA registers (linear trajectory)
4 - loaded through the HOTDATA registers (linear trajectory & byte
aligned)
Note that during 3D/Scale Operations (whenever
SCALE_3D_FCN@MISC_3D_STATE_REG is naero), this field is
ignored and data is always loaded from the 3D/Scaler pipeline.
27 SRC_TYPE Third bit of SRC_TYPE Compatible 128
{Not Used by uCode} code must write
zero to this
register.
28 GMC_CLR_CMP_FCN|] 0 - No change to CLR_CMP_FCN_SRC and CLR_CMP_FCN_DST| TBD
_DIS 1 - clear CLR_CMP_FCN_DST and CLR_CMP_FCN_SRCt0 0
{Not Used by uCode}
29 Reserved Reserved Reserved
{Not Used by Code}
30 | GMC_WR_MSK_DIS | 0 - No Change to DP_WR_MSK/CLR_CMP_MSK
{Not Used by uCode} | 1 :-Set DP. WR _MSK/CLR_CMP_MSK to Oxffffffff
© 2008 Advanced Micro Devices, Inc.
Proprietary 36

AMDA1

Revision 14 Octoberl3, 200

31 BRUSH_FLAG

This field indicates whether there is a field BRUSH_Y X field in the
SETTINGS.SETUP_BODY.

0:- No such a field in SETTINGS.SETUP_BODY.

1:- There is a field in SETTINGS.SETUP_BODY.

1 SETTINGS.SETUP_BODY

This field may contain the following subfields. Their presence depends on therbits O
SETTINGS.GUI_CONTROL

Ordinal

Field Name

Description

1

[SRC_PITCH_OFFSET]

Bit 30: Select between untiled(0) and tiled (1)

Bit 31: select between no microtiling(0) and microtiling(1
Bits 29:22 Pitch in units of 64 bytes, 64 to 16384 bytes acro|
bits 21:00ffset in units of 1KB, 0 to 4GHAK

[DST_PITCH_OFFS&T]

Bit 30: Select between untiled(0) and tiled (1)

Bit 31: select between no microtiling(0) and microtiling(1
Bits 29:22 Pitch in units of 64 bytes, 64 to 16384 bytes acro
bits 21:0 Offset in units of 1KB, 0 to 4GAK

[SRC_SC_BOT_RITE]

The paramets are used to setup the clipping area of the sourd
The implied coordinates of the tdgft corner of the clipping
rectangle is the same as the source.

[13:0] - x-coordinate of the right edge of the clipping rectanglg
number of pixels).

[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number of scanlines).

[SC_TOP_LEFT]
[SC_BOT_RITE]

The parameters are used to setup the clipping area of destina
SC_TOP_LEFT:

[13:0] - x-coordinate of the left edge of the clipping eeagle (in
number of pixels).

[29:16] - y-coordinate of the top edge of the clipping rectangle
number of scanlines).

SC_BOT_RITE:

[13:0] - x-coordinate of the right edge of the clipping rectanglg
number of pixels).

[29:16] - y-coordinate of théottom edge of the clipping
rectangle (in number of scanlines).

{ BRUSH_PACKET }

The content of this field is determined by field
SETTINGS.GUI_CONTROL.BRUSH_TYPESee the following
table for the possible content.

[BRUSH_Y X

[4:0] :- x-coordinate fo brush alignment.

[12:8] :- y-coordinate for brush alignment.

[20:16] = Initial value used for BRUSH_X pointer in drawing
Lines. When POLY_LINE iff, it is reloaded from BRUSH_X
at the end of the line. When POLY_LINEas, it is reloaded
from the curent Brush pointer at the end of the line. Whenever
BRUSH_X is updated, the field should be written with the sam
value.

1 SETTINGS.SETUP_BODY.BRUSH_PACKET

© 2008 Advanced Micro Devices, Inc.

Proprietary

37

AMDA1

Revision 14

Octoberl3, 200

Note that all but 6 and 7 are not available for lines, and 6 and 7 are only usable for lines.

BRUSH_TYPE | Description of the brush Packet size Packet content
0 A 8 x 8 mono pattern with the foreground | 4 DWORDs [BKGRD_COLOR]
and background colours specified in the [FRGRD_COLOR]
packet. Here the matrix is represented in tf [MONO_BMP_1]
formatcolumnby-row. [MONO_BMP_2]
1 A 8 x 8 mono pattern with the foreground | 3 DWORDs [FRGRD_COLOR]
colour specified in the packet and the [MONO_BMP_1]
background colour the same as that of the [MONO_BMP_2]
area to be painted.
2 Reserved not applicable
3 Reserved not gplicable
4 Reserved not applicable
5 Reserved not applicable
6 A 32 x 1 mono pattern with the foreground 3 DWORDs [BKGRD_COLOR]
and background colours specified in the [FRGRD_COLOR]
packet. This pattern corresponds to the PH [MONO_BMP_1]
of Win95 DDK. And is only usable for lines
7 A 32x1 mono pattern with the foreground | 2 DWORDs [FRGRD_COLOR]
colour specified in the packet and the [MONO_BMP_1]
background colour the same as that of the
area to be painted. This is PEN as well. An
is only usable for lines.
8 Removed, see 32x32 in 3D pipe not applicable
9 Removed, see 32x32 in 3D pipe not applicable
10 A 8x8 colour pattern. The pixel type is give| 16* N DWORDs, | [COLOR_BMP_1]
by field where N stands | [COLOR_BMP_2]
SETTINGS.GUI_CONTROL. for the number of | ...
DST_TYPE. bytes pempixel [COLOR_BMP_16*N]
with exception
that a 24BPP
pixel is still
represented by 4
bytes.
11 Reserved not applicable
12 Reserved not applicable
13 Use the colour specified in the packet as tif 1 DWORD [FRGRD_COLOR]
solid (plain) colour fothe brush, i.e. a coloy
brush without pattern.
14 Use the colour specified in the packet as tif 1 DWORD [FRGRD_COLOR]
solid (plain) colour for the brush, i.e. a colg
brush without pattern.
15 No brush used. 0

© 2008 Advanced Micro Devices, Inc.

Proprietary

38

AMDH Revision 14 Octoberl3, 20
Brush packet cantent
Field Name Description

[FRGRD_COLOR]

The foreground colour of the text in the RGBQUAD format.
bits [7:0] = intensity of Blue;

bits [15:8] = intensity of Green; and

bits [23:16] : intensity of Red.

bits [31:25] : reserved.

[BKGRD_COLOR]

The ba&ground colour of the text in the RGBQUAD format.
bits [7:0] - intensity of Blue;

bits [15:8] + intensity of Green; and

bits [23:16] : intensity of Red.

bits [31:25] : reserved.

[MONO_BMP_x]

Raster data of monochrome pixels. One bit represents ek pithe
number of pixels for the field is less than 32, the pixels take the lower b
The remaining bits should be fil

[COLOR BMP _x]

Raster data of colour pixels. The representation depends on the pixel ty

DATA_BLOCK

The compositia of this field depends on the operation c6HeOPCODEgiven in the header. Section B.2 gives

details ofDATA_BLOCHKuith respect tdT_OPCODE In the following, the fiel SETTINGSmay appear in the

definition of a packet, but will not be described further

6.2.2.1 NOP

Functionality

Skip a number of DWORDs to get to the next packet.

Format
Ordinal Field Name
1 [HEADER]
2 {DATA BLOCK}
DATA_BLOCK

This field may consist of a number of DWORDSs, and the content may be anything.

6.2.2.2 PAINT
Functionality

Paint a numbeof rectangles with a colour brush.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA BLOCK}

© 2008 Advanced Micro Devices, Inc.

Proprietary

39

AMDH Revision 14 Octoberl3, 200

DATA_BLOCK
Ordinal Field Name Description
1 [TOP_1 | LEFT_1] | The coordinates of the tdpft corner of the 1st rectangle to be painted.

LEFT_1:[15:0]:- x-coordinate, ranging fror8192 to 8191. Bits 14 and 15
should be copies of bit 13.
TOP_1: [31:16} y-coordinate, ranging fror8192 to 8191. Bits 30 and 31
should be copies of bit 29.

2 [BOTM_1| RITE_1] | The coordinates of the botteright comer of the 1st rectangle to be painte
RITE_1: [15:0]: x-coordinate, ranging fron8192 to 8191. Bits 14 and 15
should be copies of bit 13.

BOTM_1: [31:16]: y-coordinate, ranging fror8192 to 8191. Bits 30 and

31 should be copies of bit 29.

2nl [TOP_n| LEFT_n] The coordinates of the tdpft corner of the #ih rectangle to be painted.

2n [BOTM_n| RITE_n] | The coordinates of the botteright corner of the #h rectangle to be
painted.

6.2.2.3 HOSTDATA BLT
Functionality

Copy a number of bipacked bitnaps to the video memory. It can be used to print a string of large characters on the
screen. In other words, the function supports the LARGEBITGLYPH structure of Windows95 DDK.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}
DATA_ BLOCK
Ordinal Field Name Description
1 [FRGD_COLOUR] | Foreground colour in the RGBQUAD format. For metoacolour expansior

only. The field is ineffective if field SRC_TYPE at
SETTINGS.GUI_CONTROL is set to a type other than mono opaque o
mono transparer(O or 1).

2 [BKGD_COLOUR] Background colour in the RGBQUAD format. For metoocolour
expansion only. The field is ineffective if field SRC_TYPE at
SETTINGS.GUI_CONTROL is set to a type other than mono opaque o
mono transparent (0 or 1).

3 {BIGCHAR 1} Data block of the 1st character.

m+2 {BIGCHAR _m} Data block of the nth character.

1 DATA_BLOCK.BIGCHAR_x

Ordinal Field Name Description

1 [BaseY | BaseX] The coordinate ofthetedpe ft corner of the ch

© 2008 Advanced Micro Devices, Inc.
Proprietary 40

AMDH Revision 14 Octoberl3, 200

BaseX: [15:0] : x-coordnate.
BaseY: [31:16]- y-coordinate.

2 [HEIGHT | WIDTH] | The geometry of the bitmap.
WIDTH: [15:0] :- width of the bitmap.
HEIGHT: [31:16] = height of the bitmap.

3 [NUMBER[13:0]] The number of DWORDs in the bitmap. It shouldnb& this case. The ma
value is Ox3FFF.
4 [RASTER_1] The 1st DWORD of the mono bitmap data.
m+3 [RASTER m] The mth DWORD of the mono bitmap data.

6.2.2.4 POLYLINE

Functionality

Draw a polyline specified by a set of coordinaes, Y,) . (X, ¥,). .. (X,, ¥,), where coordinatéX,, ¥,) is the
beginning of the polyline, and coordinaf, , Y,) is the end.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA BLOCK}
DATA BLOCK
Ordinal Field Name Description
1 [YO | X0] The starting coordinate of the polyline.
X0: [15:0] - x-component of the coordinaté0: [31:16]- y-component.
2 [Y1] X1] The 2nd coordinate of the polyline. Definition of bits is the same as ab0g
n+1 [Yn | Xn] The ending coordinate oféhpolyline. Definition of bits is the same as
above.

6.2.2.5 POLYSCANLINES
Functionality

Draw a number of scanlines and polyscanlines. The number can be one. The difference between a scanline and a
polyscanline is that a scanline has only one startingatdinde and one ending-goordinate while a polyscanline
has a number of startirending xcoordinate pairs.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

© 2008 Advanced Micro Devices, Inc.
Proprietary 41

AMDA1

Revision 14 Octoberl3, 200

3 | {DATA BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [SCAN_COUNT] The number of scasubpackets identified by SCAN_x, where x denotes {
ordinal number of a SCAN subpacket.
2 {SCAN_ 1} The 1st scanline/polyscanline.
n+1 {SCAN n} The nth scanline/polyscanline.

1 DATA_BLOCK.SCAN_X

Ordinal Field Name Description
1 [NUM_LINE[13:0]] | The number of line segments in a polyscanline. Maximum is Ox3fff.
2 [HEIGHT | TOP] TOP: [15:0] : y-coordinate of the polyscanline.
HEIGHT: [31:16] : The thickness of the line measured in pixels.
3 [END_1 | START_1]| START_1: [15:0] : the startiig x-coordinate of the 1st line segment.
END_1:[31:16]: the ending »xcoordinate of the 1st line segment.
n+2 [END_n |START_n] | START_n: [15:0] : the starting xcoordinate of theth line segment.

END_n: [31:16]: the ending »xcoordinate of the4th line segment.

6.2.2.6 NEXTCHAR

Functionality

Print a character at a given screen location using the default foreground and background colours.

Format
Ordinal Field Name
1 [HEADER]
2 {DATA_BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [DST_Y | DST_X] The coordinates of the tdpft corner of the destination bitmap.
DST_X: [15:0]= x-coordinate, ranging fror8192 to 8191. Bits 14 and 15
should be copies of bit 13.
DST_Y: [31:16]: y-coordinate, ranging fror8192 to 8191. Bits 30 and 3]
should becopies of bit 29.
2 [DST_H | DST_W] | The width and height of the destination bitmap, expressed in unsigned
integers.
DST_W: [15:0]: width. DST_H [31:16}: height.
3 [BITMAP_DATA 1] | The 1st DWORD of the bitmap data.

© 2008 Advanced Micro Devices, Inc.

Proprietary

42

AMDH Revision 14 Octoberl3, 200

N+2 | [BITMAP DATA n] | The nth DWORD of the bitmap data.

6.2.2.7 PAINT_MULTI
Functionality

Paint a number of rectangles on the screen with one colour. The colour used is specified in field SETTINGS while
the location and geometry of the rectangles are specified in field DATA_BLOCK.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA BLOCK}
DATA BLOCK
Ordinal Field Name Description
1 [DST_X1 | DST_Y1] | The coordinates of the tdpft corner of the 1st rectangle.

DST_Y1: [15:0]: y-coordinate, ranging fror8192 to 8191. Bits 14nd 15
should be copies of bit 13.

DST_X1: [31:16]: x-coordinate, ranging fron8192 to 8191. Bits 30 and
31 should be copies of bit 29.

2 [DST_W1 | DST_H1]| The width and height of the 1st rectangle, expressed in unsigned intege
DST_H1: [15:0]: height.
DST_W1.: [31:16}: width.

2nl [DST_Xn | DST_Yn] | The coordinates of the tdpft corner of the fih rectangle.
DST_Yn: [15:0]: y-coordinate, ranging fror8192 to 8191. Bits 14 and 11
should be copies of bit 13.

DST_Xn: [31:16]: x-coordinag, ranging from8192 to 8191. Bits 30 and
31 should be copies of bit 29.

2n [DST_Wn | DST_Hn]| The width and height of the-thh rectangle, expressed in unsigned integer
DST_Hn: [15:0]: height.
DST Whn: [31:16]: width.

6.2.2.8 BITBLT
Functionality

Copy asource rectangle to a destination rectangle of the screen. It is assumed that the geometry of the destination is
identical to its source.

Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

© 2008 Advanced Micro Devices, Inc.
Proprietary 43

AMDH Revision 14 Octoberl3, 200

3 | {DATA BLOCK} |
DATA_BLOCK
Ordinal Field Name Description

1 [SRC_X1 | SRC_Y1]| The coordinates of the tdpft corner of the 1st source bitmap.
SRC_Y1: [15:0} y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
should be copies of bit 13.
SRC_X1: [31:16F x-coordinate, ranging fror8192 to 8191. Bits 3@nd
31 should be copies of bit 29.

2 [DST_X1 | DST_Y1] | The coordinates of the tdpft corner of the 1st destination.
The definition of bits is the same as SRC_X1 and SRC_Y1.

3 [SRC_W1| SRC_H1]| The width and height of the 1st source bitmap, expressaasigned
integers.
SRC_H1: [13:0F height.
SRC_W1: [29:16}: width.

6.2.2.9 BITBLT_MULTI
Functionality

Copy a number of source rectangles to destination rectangles of the screen respectively. It is assumed that the
geometry of the destination is identicalitosource.

Format
Ordinal Field Name
1 [HEADER]
2 {SETTINGS}
3 {DATA_BLOCK}
DATA_BLOCK
Ordinal Field Name Description
1 [SRC X1 | SRC_Y1] | The coordinates of the tdpft corner of the 1st source bitmap.
SRC_Y1: [15:0}: y-coordinate, ranginfrom -8192 to 8191. Bits 14 and 1§
should be copies of bit 13.
SRC_X1: [31:16F x-coordinate, ranging fron8192 to 8191. Bits 30 and
31 should be copies of bit 29.
2 [DST_X1 | DST_Y1]| The coordinates of the tdpft corner of the 1st destination.
The cefinition of bits is the same as SRC_X1 and SRC_Y1.
3 [SRC_W1| SRC_H1]| The width and height of the 1st source bitmap, expressed in unsigned
integers.
SRC_H1: [13:0F height.
SRC_W1: [29:16F width.

© 2008 Advanced Micro Devices, Inc.
Proprietary 44

AMDA1

Revision 14 Octoberl3, 200

3nl

[SRC_Xn | SRC_Yn]

The coordinates of thp-left corner of the fih source bitmap.

SRC_Yn: [15:0}: y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
should be copies of bit 13.

SRC_Xn: [31:16F x-coordinate, ranging fror8192 to 8191. Bits 30 and
31 should be copies of bit 29.

3an2

[DST_Xn | DST_VYn]

The coordinates of the tdpft corner of the fth destination.
The definition of bits is the same as SRC_Xn and SRC_Yn.

3n

[SRC_Wn| SRC_Hn]

The width and height of theth source bitmap, expressed in unsigned
integers.

SRC_Hn: [13:0F height.

SRC_Whn: [29:16} width.

6.2.2.10 TRANS_BITBLT

Functionality

Copy pixels from the source rectangle to the destination with transparency.

Format
Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA BLOCK}

DATA_BLOCK
Ordinal Field Name Description

1 [CLR_CMP_ CNTL] | This field decides how the transparent blitting is done. See following for
details.

2 [SRC_REF_CLR] Source reference colour in the RGBQUAD format. This is the colour to
stripped off from the source.

3 [DST_REF_CLR] Destination refeence colour in the RGBQUAD format. This is the colour
be preserved at the destination.

4 [SRC_X1 | SRC_Y1]| The coordinates of the tdpft corner of the 1st source bitmap.
SRC_Y1: [15:0}: y-coordinate, ranging fror8192 to 8191. Bits 14 and 1§
shouldbe copies of bit 13.
SRC_X1:[31:16} x-coordinate, ranging fror8192 to 8191. Bits 30 and
31 should be copies of bit 29.

5 [DST_X1 | DST_Y1]| The coordinates of the tdpft corner of the 1st destination.
The definition of bits is the same as SRC_Xtl SRC_Y1.

6 [SRC_W1| SRC_H1]| The width and height of the 1st source bitmap, expressed in unsigned
integers.
SRC_H1: [13:0F height.
SRC_W1:[29:16} width.

1 DATA_BLOCK.CLR_CMP_CNTL

This field controls how the source pixels are written to the de&timalepending on the source and destination

reference colours and comparison settings. The source pixels may be filtered against the source reference colour,

and the destination pixels with a specific colour may be preserved according to field CLR_CMP_DS

Bit(s)

Bit-Field Name

Description

2:0

CLR_CMP_SRC

Strip off the source reference colour from the source pixels.

© 2008 Advanced Micro Devices, Inc.

Proprietary

45

AMDA1

Revision 14 Octoberl3, 200

0 - Do not strip off source pixels. All source pixels are written to the destinatio
1 - Block the blitting source. No source pixel isitten to the destination.

2, 3 - reserved.

4 - The source pixels whose colour is equal to the reference colour are written
destination.

5 - The source pixels whose colour is NOT equal to the reference colour are W
to the destination.

6 - Reserved.

7 - The source pixels whose colour is equal to the reference colour will be XO
with the foreground colour of a mono bitmap, and then written to the destinatig
That is, destPixel = srcPixel XOR foregrndColor if srcPixel is equal to the
foregmound colour of a mono bitmap, specifically text. This is referred to as flipy
sometimes.

7:3 Reserved

10:8 | CLR_CMP_DST Preserve pixels at the destination.
0 - Do not preserve the destination pixels. All pixels from the source are writte
the dedhation.
1 - Preserve all the destination pixels. No source pixel is written to the destina
2, 3 - Reserved.
4 - The destination pixels whose colour is equal to the reference colour are
preserved. No source pixel is written on top of the pixels.
5:- The destination pixels whose colour is NOT equal to the reference colour §
preserved.
6, 7 - Reserved.

23:11 | Reserved

25:24 | CMP_ENABLE The bits controls what type of operation to be carried out.
0 - Enable function CLR_CMP_DST.
1 - Enable functtn CLR_CMP_SRC
2 - Enable both CLR_CMP_SRC and CLR_CMP_DST. The final decision is b
on the agreement between decisions made separately.
3 - Reserved.

31:26 | Reserved

6.2.2.11 PLY_NEXTSCAN

Functionality

Draw a number of scanlines or polyscanlines usingtineent settings.

Format
Ordinal Field Name Description

1 [HEADER] The packet header

2 [HEIGHT | TOP] TOP: [15:0] : y-coordinate of the scanline/polyscanline.
HEIGHT: [31:16] + The thickness of the line measured in pixels.

3 [END_1 | START_1] | START_1: [15:0] : the starting xcoordinate of the 1st dash.
END_1: [31:16]: the ending xcoordinate of the 1st dash.

n+2 [END_n |START_n] | START_n: [15:0] : the starting xcoordinate of the 1st dash.

END_n: [31:16]: the ending xoordinate of the 1slash.

© 2008 Advanced Micro Devices, Inc.

Proprietary

46

AMDH Revision 14 Octoberl3, 200

6.2.2.12 LOAD_PALETTE
Functionality

Set up the 3D engine scaler and load a palette for a consequent 2D scaling operation.

Format
Ordinal Field Name Description

1 [HEADER] The packet header

2 [SCALE_DATATYPE] | 1:- The palette has 16 entries (4 bpp galet
2:- The palette has 256 entries (8 bpp palette).

3 [COLOR_1] The F'entry of the palette.
Data is in destination for mat

4 [COLOR_2] The 2 entry of the palette. Bits are defined as above.

n+2 [COLOR_n] The nth entry of the palette. n = 16 (4bpp) or 256 (8bpp)

6.2.2.13 SET_SCISSORS
Functionality

Set the scissors to the given parameters.

Format
Ordinal Field Name Description

1 [HEADER] The packet header

2 [TOP_LEFT] [13:0] - x-coordinate of the left edg® the clipping rectangle (in number d
pixels).
[29:16] - y-coordinate of the top edge of the clipping rectangle (in numi
of scanlines).

3 [BOTTOM_RIGHT] | [13:0] :- x-coordinate of the right edge of the clipping rectangle (in numQg
of pixels).
[29:16] :- y-coordinate of the bottom edge of the clipping rectangle (in
number of scanlines).

© 2008 Advanced Micro Devices, Inc.
Proprietary 47

AMDA1

Revision 14 Octoberl3, 200

6.2.3 3D Packets
6.2.3.1 3D_DRAW_VBUF

Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VTX_ FMT] ** Not Written to Hardware, Microcode Throws Away **
3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

6.2.3.2 3D_DRAW_IMMD

Functionality

Draws a set of primitives using vertices stored in packet.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **
3 [VAP_VF_CNTL] Primitive type and other control (SE&P_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16
4toend | Vertex data Up to 16,380 DWORDs of vertex data.

© 2008 Advanced Micro Devices, Inc.
Proprietary

48

AMDH Revision 14 Octoberl3, 200

6.2.3.3 3D_DRAW_INDX
Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indliaeket. Indices are
either 16bit or 32bit.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VTX_FMT] ** Not Written to Hardware, Microcode Throws Away **
3 [VAP_VF_CNTL] Primitive type and other control (See VAP_VINTL register in register spec)

Number of Vertices is bits: 31:16

4toend | [indx16 #2 |indx16 #1] | Up to or 32,760 1it indices or 16,380 3Bit indices to vertex data points
or [indx32] to by state registers. The INDEX_SIZE field in the VAP_VF_CNTListsy
indicates whether the indices areHldi6or 32bit. See INDX_BUFFER
packet for support of more indices.

6.2.3.4 3D_DRAW_VBUF_2
Functionality
Draws a set of primitives using a vertex buffer(s) pointed to by state data.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16

© 2008 Advanced Micro Devices, Inc.
Proprietary 49

AMDH Revision 14 Octoberl3, 200

6.2.3.5 3D_DRAW_IMMD_2
Functionality
Draws a set of primitives using vertices stored in packet.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16
3toend | Vertex data Up to 16,381 DWORDs of vertex dat

6.2.3.6 3D_DRAW _INDX_2
Functionality
Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from indices in packet.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and otheromtrol (See VAP_VF_CNTL register in register spec)

Number of Vertices is bits: 31:16

3toend | [indx16#2 |indx16 #1]| Up to or 32762 14bit indices or 16,381 3Bit indices to vertex data pointe
or [indx32 #1] to by state registers. The INDEX_SIZE figtdthe VAP_VF_CNTL registef
indicates whether the indices areldi6or 32bit. See INDX_BUFFER
packet for support of more indices.

© 2008 Advanced Micro Devices, Inc.
Proprietary 50

AMDH Revision 14 Octoberl3, 200

6.2.3.7 3D_DRAW_128
Functionality

Draws a set of primitives using a vertex buffer(s) pointed to by state data, index from ingliaeket. Data/Indices
are written to 12&it VAP vector data port to take advantage of the-ii28lata path for sending data. The packet
should only be used in bus master mode.

Vector mode operates as follows:

1. Data will be written to the destination istgr (VAP_POR_DATA_IDX 128) one DWORD at a time until
the source address of the data is aligned to a vector (128 bits).

2. Once aligned, the data will be written 1B&s per clock to the destination register. The CP does grouping
of the data such that it ivivait until a full vector is available if the MC is slow in returning the data that

was requested.

3. If the last DWORDs of a packet do not fill a vector, they will still be written in one clock, but the DWORD
write mask will be set accordingly.

Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 [VAP_VF_CNTL] Primitive type and other control (See VAP_VF_CNTL register in register spec)
Number of Vertices is bits: 31:16
3toend | Data or Indices See other 3D _DRAW packets for details.
6.2.3.8

© 2008 Advanced Micro Devices, Inc.
Proprietary 51

AMDA1

Revision 14

Octoberl3, 200

6.2.3.9 3D_LOAD_VBPNTR
Functionality

Load the vertex arrays pointers.

Format
Ordinal Field Name Description

1 [HEADER] Header of the packet
2 VTX_NUM_ARRAYS Number of arrays
3 VTX_AOS ATTRO1 Control for the first two arrays
4 VTX_AOS_ADDRO Pointer to fist array
5 VTX_AOS_ADDR1 Pointer to second array
6 VTX_AOS_ATTR23 And so oné.
7 VTX_AOS_ADDR2
8 VTX_AOS_ADDR3
9 VTX_AOS_ATTR45
10 VTX_AOS_ADDRA4
11 VTX_AOS_ADDRS5
12 VTX_AOS ATTR67
13 VTX_AOS_ADDRG6
14 VTX_AOS_ADDR7
15 VTX_AOS_ ATTR89
16 VTX_AOS_ADDRS8
17 VTX_AOS_ADDR9
18 VTX_AOS ATTR1011
19 VTX_AOS_ADDR10
20 VTX_AOS ADDR11

6.2.3.10 3D_CLEAR_HIZ

Functionality

Clear HIZ RAM.
Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 START Start
3 COUNT[13:0] Count[13:0]i Maximum is Ox3FFF.
4 CLEAR_VALUE The value to write into the HIZ RAM.

6.2.3.11 INDX_BUFFER

Functionality

Initiates Indirect Buffer #2 (1B #2) to fetch data that is written to the destination address. The main reason for this
packet is to fetch indices from amdex buffer. The packet however can be used to fetch any type of data and write it

to destination address(s) in the chip.

To process an index buffer, first issue a 3D_DRAW_INDX packet with only the VAP_VTX_FMT and
VAP_VF_CNTL DWORDs (i.e. count = 1). Thgmocess an INDX_BUFFER packet to supply the indices that
would have otherwise been in the 3D_DRAW_INDX packet. Note: For a 3D_DRAW_INDX_2 packet, the
VAP_VTX_FMT is not present and the count in the header should be zero.

© 2008 Advanced Micro Devices, Inc.
Proprietary

52

AMDA1

Revision 14 Octoberl3, 200

The maximum size of the Indirec2Buffer is 8,192K DWORD$ as determined by the BUFFER_SIZE field. So
the maximum number of indices supported is 8,192Ki82r 16,384K 1ébit indices. These maximums may be
further limited by the design of the Vertex Fetcher/Vertex Cache. See thepé&Rication for detalils.

Format
Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [ONE_REG_WR | ONE_REG_WR Bit 31 (Set for uppeword-aligned buffers)
SKIP_COUNT | SKIP_COUNTI Bits 18:16: Number of DWORDSs to discardssrt of data buffer
DESTINATION] DESTINATION Addresd Bits 12:0

3 BUFFER BASE[31:2] | Base Address of Buffér Written to CP_IB2_ BASE

4 BUFFER_SIZE[22:0] Size of Buffer in DWORDS$ Written to CP_IB2_BUFSZ to initiate the Indirect

Buffer #2. Note that the (BUFFER_SHA 1) also overwrites the CNT register in
the micro engine so that the parser will not finish with this packet until all the d;
from the IB #2 is transferre@or misaligned data, this number must be increase
1.

© 2008 Advanced Micro Devices, Inc.

Proprietary

53

AMDA1

Revision 14

Octoberl3, 200

6.2.3.12 MPEG_INDEX

Functionality

Packed reigter writes for MPEG and Generation of Indices.

Format

Ordinal

Field Name

Description

1

[HEADER]

Header field of the packet.

2

[MASK]

DWORD write Mask: Bits
write the register:

bit[0]
bit[1]

bit[2]
bit[3]

bit[4]
bit[5]
bit[6]
bit[7]
bit[8]
bit[o]
bit[10]
bit[11]
bit[12]
bit[13]
bit[14]
bit[15]
bit[16]
bit[17]
bit[18]

bit[19]

VAP_PVS_CODE_CNTL_(resent
VAP_PVS_ CODE_CNTL_1 present

VAP_PROG_STREAM_CNTL_O present
VAP_PROG_STREAM_CNTL_1 present

VAP_PROG_STREAM_CNTL_2 present
VAP_PROG_STREAM_CNTL_3 present
VAP_OUT_VTX_FMT_O present
VAP_OUT_VTX_FMT_1 pesent
VAP_VTX_NUM_ARRAYS present
RS_COUNT present

RS_INST_COUNT present

TX_ENABLE present
US_CODE_ADDR_O present
US_CODE_ADDR_1 present
US_CODE_ADDR_2 present
US_CODE_ADDR_3 present
US_CONFIG present
RB3D_DSTCACHE_CTLSTAT present
RB3D_COLOROFFSETO present

RB3D_COLORPITCHO present

15: 0 ar e

Conditional

[Register Values]

Values to Write into Registers. Only present in packet if corresponding

© 2008 Advanced Micro Devices, Inc.

Proprietary

54

AMDH Revision 14 Octoberl3, 200

3upto 22 ApresentivthetMABK. i s s et
Next [VF_CNTL] Written Unconditional to VAP_VF_CNTL register
Next+1 [NUM_INDICES] | Number of Index Base Values (0x3FFF Maximum)
Next+2 to [FIRST_INDEX] First Index of Quad. (0x0000 to OXFFFC)
Next+2+
For each #fFi Hgenerate thelother@ indic€sRandwutput:
NUM_INDIC
ES FIRST_INDEX
FIRST_INDEX+1
FIRST_INDEX+2
FIRST_INDEX+3
Last Values | [DUMMY] Any value is fine. Any number of dummy values are supported.

© 2008 Advanced Micro Devices, Inc.
Proprietary 55

AMDH Revision 14 Octoberl3, 200

6.2.4 PRED EXEC
Functionality
Perform a predicated execution of a sequence dgta¢type 0, 2, and type 3) on select devices.

Format
Ordinal Field Name Description
1 [HEADER] Header field of the packet.
2 [DEVICE_SELECT | DEVICE_SELECT: [31:24] bitfield to select one or more device upo

EXEC_COUNT] which the subsequent predted packets will be executed
EXEC_COUNT: [22:0]i total number of DWORDs of subsequent
predicated packets. This count wraps the packets that will be predic
by the device select.

6.2.4.1 WAIT_SEMAPHORE
Functionality

Wait for a semaphore to be zero beforetoming to process the subsequent command stream. There are four
microcode ram slots set aside for use as semaphores. These are at offd@tfXFC

Notes

The driver/application executing on the CPU can write-reno values at any time to semaphore mgmdhe
application can write a nerero value to cause the CP mi@ogine to pause at the next WAIT_SEMAPHORE
packet in the command stream. This has the affect of pausing all GPU rendering that is queued in the indirect and
ring buffers. The applicatioran then write a zero to the semaphore to allow the reingine to proceed.

The application can write to the semaphore memory by a direct (PIO) register write to two registers:
1. Write the semaphore offset (OxFC, OxFD, OxFE, or OxFF) t€eME_RAM_ADDRregister.
2. Write the semaphore value (zero or framo) to the CP_ME_RAM_DATAL register.

Format
Ordinal Field Name Description
1 [HEADER] Header field of the packet.
2 Semaphore offset This is the desired semaphore to test in the wait loop. This camylmna of
0xFC, OxFD, OxFE, OxFF.
3 Semaphore reset Optional. This value, if present, is written to the semaphore offset oncsg
wait loop has been satisfied (i.e., once the semaphore is zero).

© 2008 Advanced Micro Devices, Inc.
Proprietary 56

AMDH Revision 14 Octoberl3, 200

6.2.5 Miscellaneous Packets

6.2.5.1 COND_EXEC
Functionality

Perform a onditional execution of a sequence of packets (type 0, 2, and type 3) based on a boolean stored in GPU
accessible video memory.

This packet use the Indirect Buffer #2 (IB2) to read the boolean in memory. Therefore, this packet can not be
initiated from anB2.

Notes

Care must be taken to make certain that EXEC_COUNT contains the exact number of DWORDs for the subsequent
packets that are to be conditionally executed. The microengine will start parsing the DWORD immediately
following EXEC_COUNT DWORDs. If ths is not a packet header, the device will encounter corruption or hang.

Format
Ordinal Field Name Description
1 [HEADER] Header field of the packet.
2 TWO This value must be 2
3 EXEC_COUNT EXEC_COUNT: [22:0]i total number of DWORDs of subsequent
corditional packets. This count wraps the packets that will be
conditionally executed.

6.2.5.2 WAIT_MEM
Functionality

Wait for a GPUaccessible memory semaphore to be zero before continuing to process the subsequent command
stream. The semaphore can reside in@RYyJ}-accessible memory (local or ndotal). The base address of the
semaphore must be aligned to a DWORD boundary. The semaphore in memory consists of two DWORDSs.

This packet has no ability to increment, decrement or otherwise change the contents ofiding seenaphore.

The memory semaphore consists of two DWORDSs: the actual semaphore and an extra DWORD with a fixed value
of two. The extra DWORD is required and guarantees that the command processamgiceocan loop properly
in order to repeatedly tedte semaphore value as necessary. The semaphore is organized as follows:

Semaphore value

Fixed value of 2

This packet use the Indirect Buffer #2 (IB2) to read the memory semaphore. Therefore, this packet can not be
initiated from an IB2.

Notes

If both ordinal 3 (SEM_LEN) and the DWORD in memory following the semaphore value is not equal to two, the
CP micreengine will become confused and ultimately hang the hardware.

The driver/application executing on the CPU can write-peno values at any time termaphore memory. The
application can write a nerero value to cause the CP mi@ogine to pause at the next WAIT_MEM packet in the

© 2008 Advanced Micro Devices, Inc.
Proprietary 57

AMDH Revision 14 Octoberl3, 200

command stream. This has the affect of pausing all GPU rendering that is queued in the indirect and ring buffers.
The applcation can then write a zero to the semaphore to allow the Hemgjime to proceed.

Format
Ordinal Field Name Description

1 [HEADER] Header field of the packet.

2 SEM_ADDR[31:2] Memory semaphore device address (DWORD aligned)
This value is written tohe CP_IB2 BASE in order to read the semaphor

3 SEM_LEN Memory semaphore length
This value MUST be 2
This value is written to the CP_IB2_BUFSIZ in order to read the semap
the first time

© 2008 Advanced Micro Devices, Inc.

Proprietary 58

AMDH Revision 14 Octoberl3, 200

7. Vertex Shaders

7.1 Introduction

The VAP includes the Vertex Féter and Vertex Cache which take commands and vertex data from a command
stream and formats it into vertices and primitives. Typically, the commands are stored in a ring buffer and the
vertex data is stored as a separate array in memory, although thetieeangossibilities described later. The VAP
begins operation when a command to render a set of primitives is received. Depending on the command, the VAP
will either expect vertex data to be sent, or it will perform the memory accesses to read thdatarta its own.

The format of the vertex data is described later in this section.

The VAP includes a Programmable Vertex Shader (PVS) Engine which performs programmable operations on
vertices which are then subsequently assembled and clipped. Tdriampmoable processing path will also be used
to perform all FixeeFFunction vertex processing after driver generation of a shader fromftiretlon state

settings.

The VAP includes a Clip Engine which will clip primitives (using the PM8cessed vertice$) the 6 frustum

planes as well as to 6 Usbefined Clip Planes. The VAP includes a Viewport Transform Engine (VTE) which
performs the perspective divide and viewport transformation operations on the vertex data and a Reciprocal Engine
(RCP) which perfams an IEEE 2dit mantissa accurate 1/X function.

7.2 Input

The input to the VAP is @ommand Packethich contains two parts: a command to render some set of primitives
(like a list of triangles), and a set of vertex data. As described later, the vatdexaly be sent to the VAP or the

Vertex Fetcher may fetch the data. There are a number of different data formats which are possible. Data may be
stored as an array of structures (AOS), a structure of arrays (SOA), or in a strided vertex format. Tineda@S

what has been used up to DX6. In AOS mode, all of the data for a vertex is stored sequentially as one contiguous
block of memory as shown Figure In SOA mode, the data for each parameter (like x dssfored as a separate
array. To get all of the data for a vertex, one must look into several different arrays. For example, assume that we
have eight vertices which have the parameters X, Y, W, S, and T. In SOA mode the data would be stored in five
different arrays as shown kFigure In the strided vertex format, data is stored in several different arrays. Each

array holds a variable number of parameters. For example, the first array might hold thelx, goardinates. A

second array might hold the diffuse color, a third array might hold the S and T coordinates for a textUfeyanap.
shows how a strided vertex with x, y, z, w, S, and T might be stored. dldé®ih the xyz array are not required but

are shown to indicate the flexibility allowed with the strided vertex format.

dword O 1 2 3 4

Base Address —» | X0 | YO |wO| SO| TO
X1]Y1l|W1| S1| T1
X2 Y2|W2| S2| T2
X3 Y3|W3| S3| T3

Figure: AOS Vertex Data Storage

© 2008 Advanced Micro Devices, Inc.
Proprietary 59

AMDH Revision 14 Octoberl3, 200

dword 0 1 2 3

Base Address ——» | X0 || X1 | X2 | X3|

Base Address ——» | YO0 || Y1 | Y2 | Y3|

Base Address ——» |WO|| W1|W2|W3|

Base Address ——» | SO || Sl| 82| 83|

Base Address ——» | TO || T1| T2| T3|

Figure: SOA Vertex Data Storage
dword o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base Address — [xo] o[zo [xa [va| zs] x2[v2 [z2] x3] v3[zzs [
Base Address —» |WO|W1|| W2|W3|

Base Address —» | so| o] s1| 1] s2] 12] s3] T3]

Figure: Strided Vertex Data Storage

To represent all of these formats, the Vertex Fetcher architecture allows for a vertex to be desernilthgoles

arrays of structures Each array is described wittbase addressacountand astride. The base address points to

the beginning of the array. The count indicates the number of dwords of vertex data in this array. The stride gives
the number of dwords to the next structure in the array of structures. The AOS vert@&iduoewith 5 parameters
would be represented with a single array which consists of 5 dwords with a stride of 5 dwords. The SOA vertex
from Figurewould be represented with 5 arrays. Eachyawould have a count of 1 and a stride of 1. The strided
vertex fromFigur would be represented with three arrays. The first array would have a count of 3 and a stride of 4.
The second array would have a cobohl and a stride of 1. The third array would have a count of 2 and a stride of
2. A given implementation of this architecture may have a different maximum number of arrays of structures. If
only AOS is supported, then only one array is requiredsupport a strided vertex format with three textures, 7
arrays would be required (xyz, w, diffuse, specular, SOTO, S1T1, S2T2.) To support a true SOA mode, each
parameter would require its own array.

The access to vertex data may be immediate or by ar.indémmediate mode, the base address of an array of
vertex data is provided. The vertex data should be read in the order in which it is stored to produce the desired
primitives. In indexed mode, a base address to the beginning of the vertex datédisdpalong with a set of

indices. The indices are used to access vertices in any order.

The vertex indices are clamped between a minimum and maximum state value which is supplied by the driver. This
prevents making requests to illegal or unavailablenovg addresses.

Finally, the vertex data can be embedded as part of the command stream, or it can be stored in a sepdriate array.
figure belowshows all of the possible vertex data storage modes along with implementation details for each mode.

© 2008 Advanced Micro Devices, Inc.
Proprietary 60

AMDA1

Revision 14

Octoberl3, 200

The table below describes the parameters that may be in a vertex, as supplied to the graphics controller

device.

NOTE: With the R300 PVS-only vertex processing path and PS&@nly input vertex data mapping path, the

TCL (or PVS) input memories have no predefined mapping to vertex values. This is completely determined

by the driver FF->PVS conversion process. Due to this fact, the table below is fairly meaningless to the vertex
process. ltis retained as a guide to help describe the fixdédnction possibilitiesfor vertex data.

Type Param Description Format Applicable
eter Interface
(PRE-TNL/
POST-TNL
/ BOTH)**
Position0 XY X0 The x coordinate of the vertex IEEE floating point BOTH
YO The y coordinate of the vertex IEEE floating point BOTH
Position0 Z Z0 Thez coordinate of the vertex IEEE floating point BOTH
Position0 W WO W or RHW (1/Homog W) coordinate of the | IEEE floating point BOTH
vertex
Vertex Blending | BWO0-4 | 0-4 Blend Weights IEEE floating point PRETNL
Weight(s)
PerVertex Matrix | PVMS | VertexBlending Matrix Selects 8888 packed fixed point PRETNL
Select
Vertex Normal O NxO | The x coordinate of the vertex normal IEEE floating point PRETNL
NyO The y coordinate of the vertex normal IEEE floating point PRETNL
NzO | The z coordinate of the vertex maal IEEE floating point PRETNL
Point Size Modifier| PS Point Size Modifieii Point Sprite§ Post IEEE floating point BOTH
TCL only
Discrete Fog F Fog value' Post TCL only IEEE floating point POSTFTNL
Shininess0 Shine0 | Used for GL Material PevertexSupport IEEE floating point PRETNL
Shininess1 Shinel | Used for GL Material PeYertex Support IEEE floating point PRETNL
Color 0 ARGB | Typically Diffuse color and alpha weight Usually 8888, but can be BOTH
three or four separate IEEE
floating point values **
© 2008 Advanced Micro Devices, Inc.
Proprietary 61

AMDA1

Revision 14

Octoberl3, 200

Color 1 ARGB | Typically Specular color and fog/alpha weig| Usually 8888, but can be BOTH
three or four separate IEEE
floating point values **
Color 2 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four gearate IEEE
floating point values **
Color 3 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color 4 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate |IEEE
floating point values **
Color 5 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color 6 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Color 7 ARGB | Typically Used for GL Material Pevertex Usually 8888, but can be PRETNL
Support three or four separate IEEE
floating point values **
Texture Coordinatg SO The 1st coordinate for texture number O IEEE floating point BOTH
Set 0
(usually the single dimension horizontal
component S)
TO The 2nd coordinate for texture number O IEEE floating point BOTH
(usually the two dimension vézal
component T)
RO The 3rd coordinate for texture number O IEEE floating point BOTH
(The 3" & 4™ components can have many
uses)*
Q0 The 4th coordinate for texture number 0 IEEE floating point BOTH
(The 3° & 4™ components can have many
uses)*
Texture Coordinatg S1 The 1st coordinate for texture number 1 IEEE floating point BOTH
© 2008 Advanced Micro Devices, Inc.
Proprietary 62

AMDA1

Revision 14

Octoberl3, 200

Setl

(usually the single dimension horizontal
component S)

T1

The 2nd coordinate for texture number 1

(usually the two dimension vertical
component T)

IEEE floating point

BOTH

R1

The 3rd coordinate for texture number 1

(The 3° & 4™ components can have many
uses)*

IEEE floating point

BOTH

Q1

The 4th coordinate for texture number 1

(The 3" & 4™ components can have many
uses)*

IEEE floating point

BOTH

Texture Coordinatg
Set5

S5

The 1st coordinate for texture number 5

(usually the single dimension horizontal
component S)

IEEE floating point

BOTH

T5

The 2nd coordinate for texture number 5

(usually the two dimension vertical
component T)

IEEE floating point

BOTH

R5

The 3rd coordinate for texture number 5

(The 3° & 4™ components can have many
uses)*

IEEE floating point

BOTH

Q5

The 4th coordinate for texture number 5

(The 3" & 4™ components cahave many
uses)*

IEEE floating point

BOTH

Position1 XY

X1

The x coordinate of the vertex for blending

IEEE floating point

PRETNL

Y1

The y coordinate of the vertex for blending

IEEE floating point

PRETNL

Positionl Z

The z coordinate of the vertéar blending

IEEE floating point

PRETNL

© 2008 Advanced Micro Devices, Inc.

Proprietary

63

AMDA1

Revision 14

Octoberl3, 200

Position1 W w1 W or RHW (1/Homog W) coordinate of the | IEEE floating point PRETNL
vertex for blending

Vertex Normal 1 Nx1 | The x coordinate of the vertex normal IEEE floating point PRETNL

Nyl The y coordinate ahe vertex normal IEEE floating point PRETNL

Nzl | The z coordinate of the vertex normal IEEE floating point PRETNL

** The Applicable Interface column is provided to specify which values are inputs to the TCL processtand/or t

Figure: Vertex Parameters

Raster Process. All of the values can appear in the FVF at the same time, BtXPR&ues are ignored by the
raster process and POSNL values are ignored by the TCL process. In the unlikely circumstance that PRUST
values are provided in the F\as inputs to the TCL process, there will be the ability to pass these values around the

TCL process.

7.3Vector

With the move to a PS@nly and PVSonly Vertex Process, there is no fixed definition of data (or location of data)

Order and Vector

D6 s

in theinput vertex memory. Therefore, the destination vector locations in the PSC are fully flexible and map

directly into the corresponding location in the input vertex memory. The PSC also allows for write_mask and

swizzle capabilities to allow for more cotap fixed-function and/or shader usage.

The special vector known as the NULL vector is used to keep the pipeline flow the same when there are no vectors

to be processed. It is a sortf

Afspecial 6 vector

t hat e a ssingisaorérmed

but it is used because we need to send some kind of token down the pipeline for synchronization purposes.

The NULL vector is a vector that is not to undergo vector processing, but which will carry information in its

associated flagsuch as endOfPacket . It is used when a vertex has been deleted (for culling, clipping, or other

potential reasons) and there is no valid vertex to be sent with the control information.

For the case of TCL_BYPASS (or when there is no TCL present in thg tH&/PSC destination vector locations
shall map directly to the semantically defined locations of the GA input memories. In this mode, the discrete fog
and point size terms can use the write_enable and or swizzle capabilities of PSC to get theotdneappropriate

channels.

© 2008 Advanced Micro Devices, Inc.

Proprietary

64

knows

AMDH Revision 14 Octoberl3, 200

7.4 VAP Reqisters

7.4.1 VAP Vertex Data Port Reqisters

The DATA and IDX PORT registers are written with either primitive vertex data or primitive vertex indices after a
Atriggerd write has occur rvdd VF CMWL riedistei withgaeneaéro piim itypee i s a

The correct (expected) number of data words or index words must be written to these registers or undefined
behavior will result.

For R300, there is a new DATA/IDX port register added for-h2&ccess. his register is only accessible via a
PM4 Type3 packet and can only be used for indexed TRI_LIST and LINE_LIST. Other than thgparim
limitations, using this 128it register (or PM4 Type 3 packet opcode) is identical to using the standard method.

ThePRIM_WALK field in the VAP_VF_CNTL register defines what method of vertex data or indx updates are to
occur.

1 =Indexes (Indices embedded in command stream; vertex data to be fetched from memory)

In this mode, vertex indices are written to the DATA/IPXrt registers. Data is fetched using the AOS registers
corresponding to the indices in the input list. The number of indices expected is
VAP_VF_CNTL.NUM_VERTICESi 1. This mode does not use the VAP_VTX_SIZE register. The size of the
vertices is detenined by the AOS register setup.

2 = Vertex List (Vertex data to be fetched from memory)

This mode does not require any vertex data or vertex indices written to the DATA/IDX port registers. Data is
fetched using the AOS registers for the indices froim WAP_VF_CNTL.NUM_VERTICES 1. Identical to
Indexes mode, except indices are internally generated.

3 = Vertex Data (Vertex data embedded in command stream)
In this mode, the vertex data is written to the DATA port registers. The number of DWORD&dxpec

VAP_VTX_SIZE.DWORDS_PER_VTX * (VAP_VF_CNTL.NUM_VERTICEB1). The VAP_VTX_SIZE
register is new to R300.In R100 / R200, this size was derived from the VAP_VTX_FMT_0/1.

7.4.2 VAP Control Register
The PVS_NUM_SLOTS should be set to the minimum of
1 theMAX_SLOTS, (POR is 10)
1 the INPUT_VTX_MEM_SIZE / INPUT_VECTORS_PER_VTX (POR is 128/ Var)
1 the OUPUT_VTX_MEM_SIZE /| OUTPUT_VECTORS_PER_VTX (POR is 128 / Var)

These equations assume the input and output vertex data has been packed. If not, use the
MAX_INPUT_VECTOR_USED instead of INPUT_VECTORS_ PER_VTX

The PVS_NUM_CNTLRS should be set to the minimum of
§ the MAX_CNTLRS, (POR is 6)
1 the TEMP_VTX MEM_SIZE / TEMP_VECTORS PER_VTX (POR is 128 / Var)

© 2008 Advanced Micro Devices, Inc.
Proprietary 65

AMDH Revision 14 Octoberl3, 200

These equations assume the temp vertex data has been packedusié tioee MAX_TEMP_VECTOR_USED
instead of TEMP_VECTORS_PER_VTX.

When modifying either of PVS_NUM_SLOTS or PVS_NUM_CNTLRS, a flush must be inserted prior to the
update.

The PVS_NUM_FPUS will typically remain constant for a given chip, but can be uspdrformance testing.

The Shader HW will support up to a max of 32 vectmesvertex of input data and 3&ctorspervertex of temp
data as long as the NUM_SLOTS and NUM_CNTLRS are set to obey the-désagbed rules.

New R5xx Fields

The TCL_STATE_OPTIMIZATION bit enables a hardware optimization to improve small batch and
multiple instance performance. The TCL_STATE_OPTIMIZATION is a bit which should be set all the time.
The bit can be reset to return operation to preR5xx status.

7.4.3 R300 Edge Flag Suport Description

Edge Flags refers to the bits which are provided, generated and/or modified during the primitive process which
affect which edges (lines) or points of a triangle are drawn when in a wireframe or point fill mode. Edge Flags are
not applicéle to line or point primitive types, but are applicable to all 3 or rsated primitives (i.e quad, polygon,

etc). R300 will support edge flags for wireframe rendering as follows

1. Prim Type initialization of edge flags is done by the vertex fetchée.ldgdge flags are initialized
by the vertex fetcher based on the VAP_VF_CNTL.PRIM_TYPE field. The edge flags values for
points and lines are not used during the triangle fill process, so are irrelevant. The edge flags for all
triangle primitive typesre all 3 set. For more complex prim types like quads and polygons, only
the exterior of the primitive is supposed to be drawn, so the vertex fetcher applies the edge flags in a
way which only sets the bits which correspond to an external edge of theedypphitive.

2. Clipping modification of edge flags is done by the clipping processor according to the OpenGL
specification. Basically, the rule is that edges introduced by clipping (which would lie along a clip
plane) will always have thier correspondiedge flag set and edges which are fragments of initial
edges would retain thier original edge flags. The boundary edges introduced by clipping may be
either always set or never based on the VAP_CLIP_CNTL.BOUNDARY_EDGE_FLAG_ENA bit.

7.4.4 Input Vertex Format Registers
The VAP_VTX_FMT_0 and VAP_VTXFMT _1 registers were used for@asons on R200:

1. Decoding / Data Conversion / Data Direction of Vertex Stream Data from output of Cache to Vector
| D6 s

2. Computation of Dwords/Vtx for Command Stream load of vertex data.
These registers will no longer exist for R300. They are replaced as follows:

1 The Decoding / Data Conversion / Data Direction will be controlled completely by the Programmable
Stream Control logic. R300 will contain the additional functionality of compbswizzle and write
mask specification to ensure full control of input stream.

1 The computation of Dwords/Vtx will be replaced by the VAP_VTX_SIZE register which must be
loaded by the driver when using command stream vertex data.

7.4.5 TCL Output Vertex FormatReqgisters

The purpose of these controls is to indicate which vertex data should be transmitted from the PVS output vertex

© 2008 Advanced Micro Devices, Inc.
Proprietary 66

AMDH Revision 14 Octoberl3, 200

memories, and from which vector locations they come. The PVS output vertex memories are not directly mapped to
semantic values to ebke the splitvertex mode described later. The RASTER_VTX_FMT_0/1registers define
which values will be transmitted from PVS to CLIP/Setup to GA to Raster.

The locations of the vectors in the PVS output memory must be packed based on the VAP_OUT_VT1FMT _
register settings. Only the fields which are present in the OVFRs should be packed in the output memory. The
packing order is as follows: Position is always in location 0, Point Size (if present) is next (Point Size consumes an
entire vector in thenemory, the Xchannel is the value used by the raster), Colof}) @e next (if present), and

Textures (67) are next (if present). For example if the OVFR specified POS, PNT_SIZE, CO, C2, T1 and T5, these
vectors should be mapped (by the shader owtpetand offsets) to Output Memory locationS Gespectively.

For Points (Sprites) using Tex Gen (GB_ENABLE.TEX#_SOURCE == STUFF), the
VAP_OUT_VTX_FMT_1.TEX# should not be set. This is because, in general, there is no texture coordinate data
transferrediom VAP to GA for this case. In the case of point clipping with tex gen, VAP will send these texture
coordinates to the GA even though the OVFR bit is not set, as follows:

OVFR COUNT STUFF TEX DESIRED CHANGED RESULT

0 0 No texture ever

0 >0 Clipper andor GA creates (stuffs)
texture

>0 0 Normal texture (use vertex/pvs
texture)

>0 >0 Normal texture (use vertex/pvs
texture)

There is also the ability to pack 2dBnensional textures into a singlecdmponent texture for the VAPGA
interface by only spcifying one texture and mapping the raster state to think it is two textures.

7.4.6 Vertex State Control

This vector controls how the peertex state is processed. This input method is designed for OpenGL Immediate
Mode and Display List Processing.

UPDATE_USER_COLOR_0/1_ENA are deleted from R300 since they are not needed, only one user color is
required.

The COLOR_# ASSEMBLY_CNTL change fror2 fields on R200 to -bit fields on R300 since there is only 1
USER COLOR.

7.4.7 Programmable Input Stream Control Redess

These registers control the pastrtexcache mapping of input vertex stream data to the vector ids for TCL or SE
input memories. These registers replace the R200 Input Vertex Format Registers. Terminology: A vertex is
composed of multiple (up to62for R300) streams. A stream can be composed of multiple elements (where an
element is pos or norm or texcoord). The control data is arranged as 16 sets of element control data. There is not
necessarily a onfor-one mapping of stream to element. Ttream control shall be set up in the order that the data

is received (or fetched).

The DataType specifies the number of DWORDS and format for each input element.

The SkipDwords specifies the number of DWORDS to skip (discard from the input stream)eaéierrésponding

© 2008 Advanced Micro Devices, Inc.
Proprietary 67

AMDH Revision 14 Octoberl3, 200

element has been processed. This allows multiplecnatiguous elements to reside within one streAl®TE:
There is not support for skipping DWORDS prior to the first element, the assumption is that the driver can
prevent this from occuring.

There are two sets of PSC control registers, the VAP_PROG_STREAM_CNfTardidentical to the R200
registers of the same name. R300 adds VAP_PROG_STREAM_CNTL_EXWhich are extensions to the first
set of registers to allow a swizzle and writeagk capability. The expectation is that the EXT registers will not be
updated frequently, biihey must be updated at least once to provide default control

The DstVecLoc specifies the destination vector location (TCL / SE input vector address) forethelgiment.

The data type of FLOAT_8 has been added to R300 to permit using input vertices greater than 16 vectors. By
making sure that the VAP_CNTL.PVS_NUM_SLOTS and VAP_CNTL.PVS_NUM_CNTLRS are appropriately
sized, it is possible to use up to 32 westfor the input vertex representation.

7.4.8 PVS State Flush Register

Since the driver is given control over mistate updates to PVS Code and Constant memories, there is the need for

the driver to be abl e t o f orgisteraddressfislwitter)the Stafe Blochwill st at e
force a flush of TCL processing so that both versions of TCL state are available before updates are processed. This
register is write only, and the data that is written is unused.

7.4.9 PVS Vertex Timeout Reqgiste

A condition can occur in the HW, in pathological vertex reuse cases, where when many primitives are sent which do
not use any new verts, the HW could hang. The solution for this hang is to wait a programmable number of clocks
when in the condition of pmitive buffer full and waiting on vertices. After this number of clocks has passed

without receiving any new vertex data, the accumulated vertex data (less than 4 vertices) will be submitted to the
PVS engines. This register defaults to OXFFFFFFFF.

7.4.10 VECTOR Indx/Data Update Register Pair

The Vector Indx Data pair is used to update all TCL vector state memories.

There are basically 2 vector memories, the PVS Constant Memory and the PVS Code Memory.

The index register contains the octword offset to watéot read from) on the subsequent DATA_REG write/read. All
writes/reads must start octword aligned. An internal Dword counter is incremented each time a write or read occurs
to/from the DATA_REG. The Dword counter is reset when the index registeitisny(or read). When the dword

counter rolls from 3 back to 0, the index register value (octword address) is incremented. (Writes to the DATA_REG_128
register do not use or affect the dword counter. The DATA_REG_128 register is not readable.

The VAP_PVS_VECTOR_DATA_REG_128 register is very similar to the VAP_TCL_VECTOR_DATA_REG, but
allows 128bit writes into the vector memory. There may be some restrictions when writing to this register (i.e. enly 128
bit aligned, 12&it updates allowed).

The vertex shader instruction store increased from 256 to 1024 for R5xx VS3.0.

To account for the increased shader instruction stioeeQffsets Used to get to the various memories (and elements of
memories) are as follows:

#define VERTEX_SHADER_CONST_VECS 256
#define VERTEX_SHADER_CODE_LINES 1024 // R3®

#define PVS_CODE_START 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 68

AMDH Revision 14 Octoberl3, 200

#define PVS_CONST_START 1024 // R30612
#define UCP_START_OFFSET 1536 // R300L024

#define POINT_VPORT_SCALE_OFFSET 1542 // R300030
#define POINT_GEN_TEX_OFFSET 1543 // R300031

7.4.11 StateVector Engine State Data

The input vector state data required for TCL is listed in the table below. Each entry will consistgbé #&nision

IEEE floating-point vector values. The entire StVe_Vector memory is accessed via an index/data register pair. When
updating multiple DWORDS through this path, the PM4 packet bit which preventiargmentation should be used so
that allwords are written to the data register.

UCPO XYZW User clip plane 0 4 |EEE fp
UCP1 XYZW User clip plane 1 4 |IEEE fp
UCP5 XYZW User clip plane 5 4 |EEE fp
Point Sprite XYZW Viewport scaling parameters for Point Sprite Exgian in Clip Coords| 4 IEEEfp
Viewport Scale /
Misc X = X-Radius Expansion

Y = Y-Radius Expansion
Z = State Size Multiply Constant

W = Culling Radius Expansion (SQRT(XRadExp *2 + YradExp 2

Point Tex Gen XYZW Texture values to apply to points when tex gen is on 4 |EEEfp
Corner Values
X = Lower Left Corner S/alue

Y = Lower Left Corner TValue
Z = Upper Right Corner-S¥alue
W = Upper Right Corner-Value

** These values may be updated using the

VAP_PVS VECTOR_DATA_REG or via the
GA_POINT_S0,T0,S1,T1 Registers. Note that updates using th
VAP_PVS_VECTOR_DATA_REG will not update the GA registers

VECTOR MEMORY DESCRIPTIONS

There are two vector memories.

The vertex shader instruction store increased from 256 to 1024 for R5xx VS3.0.

© 2008 Advanced Micro Devices, Inc.
Proprietary 69

AMDH Revision 14 Octoberl3, 200

The PVS_CODE memory which will be 1024 entrikeep and can operate as a ring (similar to R200), is linearly
addressed using offsetsl023. Auteincrementing writes to this memory segment will awmt@ap back to 0 from
1023.

The PVS_CONST memory will be 256+8 entries deep. The first 256 enttieis afiemory will operate as a ring
(similar to R200/R300), and are linearly addressed using offsets1BB5 Auteincrementing writes to this
memory segment will autarrap back to 1024 from 1535.

The last 8 entries of this memory are used for Clippliaig which currently includes the Us@lip Planes , Point
Sprite Viewport Scale vector, and Point Sprite Gen Tex Corner values. These entries will be updated starting at
address 1536 through 1543. Since the PVS_CONST wilharap at 1535 for constanpdates, the UCP writes

must start with an index update to 1536 or above. #dementing writes will autevrap back to 1536 from 1542
(NOT 1543). This wraqaround probably will never be used, but, note that the-arapnd intentionally excludes

the Point Gen Tex vector since it is considered raster state.

These memories are not doubleffered in the code and constant range of addresses. For the code and const
memories, it is expected that the driver will insert a flush if the currently eaugd shader code or const overlaps

the immediately preceding shader code or const. Updates to the UCP / PS_VPORT_SCALE / Point Gen Tex values
are doublebuffered and therefore no flush is required.

7.4.12 Scalar Indx / Data Reqisters

These memories and registarslonger exist for R300. The only data in them that is still relevant is the guard band
data which now resides in dedicated registers as described below.

7.4.13 VAP _GB VERT CLIP ADJ

The VAP_GB_* registers will only be singleuffered which means thahdAP_PVS_STATE FLUSH REG
write must precede updates to these registers.

7.4.14 Programmable Vertex Shader Control Registers

The VAP_PVS_CNTL register allows control over which instructions in the PVS code store are executed with
respect to the current shader.

The VAP_PVS CONST_CNTL register allows control over which address ranges in the PVS const store (STVE)
are used with respect to the current shader.

7.4.15 Vertex Blending Control Register

The COLOR2_IS_TEXTURE and COLOR3_IS_TEXTURE bits enable the R5xx VAP VS3.@posu0 general

output vectors. For prB5xx, VAP supported 4 color vectors and 8 texture vectors to output to the pixel shader.
During new clip vertex generation, the color interpolation supported color clamping and flat shading and the texture
interpdation supported point texture coordinate generation and cylindrical wrap. In order to create general output
vectors, color vectors required point texture coordinate generation and cylindrical wrap processing while texture
vectors required color clampirand flat shading.

© 2008 Advanced Micro Devices, Inc.
Proprietary 70

AMDH Revision 14 Octoberl3, 200

7.4.16 Texture to Color Control Registers

The TEX_RGB_SHADE_FUNC_¢J), TEX_ALPHA SHADE_FUNC_(&7), and TEX RGBA CLAMP_ (&)

bits enable the R5xx VAP VS3.0 to support 10 general output vectors. FHabgxe VAP supported 4 colors and 8
textures to output to the pixel shader. During new clip vertex generation, the color interpolation supported color
clamping and flat shading and the texture interpolation supported point texture coordinate generation and cylindrical
wrap. In order to create geral output vectors, color vectors required point texture coordinate generation and
cylindrical wrap processing while texture vectors required color clamping and flat shading.

The TEX_RGB_SHADE_FUNC_J), TEX_ALPHA_SHADE_FUNC_(0r7), and TEX_RGBA_CLAMP_(&r)

bits enable the R5xx VAP VS3.0 to support color type interpolation during clipping on texture vectors. The bits
enable flat shading or color clamping selectively on all 8 texture vectors. These bits only support clipper
functionality of flat shading.The rasterizer has separate register bits to enable flat shading at pixel interpolation.

7.4.17 VAP VTE CNTL

This register is used to control the functionality of the VAP Viewport Transform Engine.

7.4.18 GA COLOR CONTROL

This register is used by the clipper to gohflat shading of all 4 colors and alphas based off of the provoking
vertex.

7.4.19 GA ROUND MODE

This registespecifies the rouding mode for geometry & color SPFP to FP conversiomg the RGB and
ALPHA_CLAMP fields are used by VAP.

7.4.20 GA POINT SO0/T0/S1/T1

These registers are used to control the texture coordinates for texture coordinate generation. These are only used by
VAP for point clipping

7.4.21 GB ENABLE

This register is used by VAP to control when and how point textures are generated for clipping.

7.4.22 SU TEX WRAP
This register is used by VAP when clipping in order to perform cylindrical wrap clipping calculations.

7.5 R3xx-R5xx Programmable Vertex ShadeiDescription

7.5.1 OVERVIEW
The R300 PVS model is a superset of the R200 PVS model. Differences are noted below

R200->R300 Notable Shader Model Differences at Shader Definition Level

© 2008 Advanced Micro Devices, Inc.
Proprietary 71

AMDA1

Revision 14 Octoberl3, 200

Constant Store Size Increase from 192 to 256

Code Store Size Increase from 128 to 256

Ability to increase Input Size from 16 to 32 vectpes-vertex

Ability to increase Temp Regist&ize from 12 to 32 vectogervertex

Increase support from 6 Output Textures to 8

Increase support from 2 Output Colors to % ¢dlor only used for Bided lighting)
Ability to perform flow control instructions of jump, loop and subroutine

NouhrwhE

R200>R300Notable Shader Model Differences at Driver Compilation Level

1. Requirement to Manage NUM_SLOTS & NUM_CONTROLLERS based on Input, Output

and Temp Register sizes relative to the respective veptoreertex.
Requirement to fipacko output vectors
Discrete Fog resides in one of ColeB@lpha.

Ability to write back into Input Memory frorshader (For HOS Evaluation Shader)

Noohkwn

operands. There is not a current known use for this, but it was simple to add.

The R5xx VS3.0 PVS model is a superset of the RB@8 VS2.0 model. Differences are noted below:

The programmable vertex shader (PVS) is a model which replaces the standard DirectXer@fgirocessing

1.

©CoNOO AW

based

Addition of Alternate Temp Memory. Can be used as additional standard Temp Memory.
Addition of DuatOp Vector/Math Capability along with Alternate Temp Reg Memory

Ability to use address register with Input, Output, and Temp registers as src and dest

Ability to support dynamic flow control through the use of predication opcodes, predication bit,
predicated writes, and a nested false count maintained in a temporary memory location.

Ability to support prediation register through predication opcodes, predication bit, and

predicated writes or use CONDITIONAL vector opcodes where sources are conditionally written

or conditionally selected.
Code store size increase from 256 to 1024.

Temporary memory size increaffom 72 to 128 (supports 4 threads and 32 vectors per thread).
Input memory size increase from 72 to 128 (supports 4 threads and 32 vectors per thread).

Output memory size increase from 72 to 128.
Static control flow nested loops and subroutines (4 ttemps and 4 deep subroutines)
Ability to access input, temporary, and output memories with inner most loop index.

Added new loop repeat type where the fipant loop index is not loaded at loop initialization.

FLI is inherited from parent loop.

10. Added rew source input modifier (absolute value).
11. Added new instruction modifier saturate to clamp outputs between 0 and 1.

pipeline. It replaces only éhpervertex operations (i.e. transformation, lighting, texture coordinate generation,
texture transform, fog), but does not replace any of the primitive operations (i.e. primitive assembly, clipping,
backface culling, &ided lighting. The functional metifor the PVS HW is as shown in the following diagram. For
R300, 2sided lighting is achieved by writing up to 4 output colors (both front and back color results) and allowing
the setup engine to select the appropriate color(s) based on the facedhegssanigle.

The general model of the PVS is that all operands are of a vector type (4 floating point values). When there are
scalar operations, generally they emit the scalar result on all 4 channels of the output vector.

The input vertex memory (IVM)apresents the data which is provided on aveetex basis (i.e. position, normal,
color, etc). This vertex data does not have any semantic attachment from the perspective of the shader HW. All

© 2008 Advanced Micro Devices, Inc.

Proprietary

72

on

AMDH Revision 14 Octoberl3, 200

vertex attributes are generighere is a total of 128 vedirs of IVM memory where up to 32 vectors (16 is
typical) may be used per vertex. (See description of slot/controller dependencies below).

The constant state memory (CSM) represents the constant values which are used in the shader process (i.e rotation
matices, light positions, etc). This data also has no semantic attachment from the perspective of the shader HW.
There are 256 vectors of constant memory available.

The temporary register memory (TRM) represents the intermediate storage of temporargorajfuged during the
shader processThere are a total of 128 vectors of TRM memory where up to 32 vectors (12 is typical) may be
used per vertex. (See description of slot/controller dependencies below).

The alternate temporary register memory (ATRM) wedded to R300 to allow both a vector engine operation and a
math engine operation to output unique results simultaneously. The ATRM can be used in the same manner as the
TRM for regular vector operations except there is only a single read port on thd AiERory, thus only 1 unique

source operand of an instruction may come from ATRM memory. The ATRM memory is the only memory that the
math portion of a duaihath operation can writeThere are a total of 20 vectors of ATRM memory where up to

20 vectors (4is typical) may be used per vertex. (See description of slot/controller dependencies below). (See
description of dual math op for ATRM limitations).

There are 4 address registers arranged as a vector (A0.x,y,z,w) which are signed integer fixeldg®int ra

address registers can only be used as an offset to the address into the constant memory. The address registers are
loaded using a MOV instruction from any of the IVM, CSM, TRM or ATRM. This special MOV instruction will
perform a floating pointo fixed point conversion of the selected source vector. There are two separate MOV
instructions for unique float to fix conversion. One is a truncate to minus infinity (the floor() C function), the other

is a round and truncate to minus infinity (wa.5f, followed by floor() C function. The value is clamped between

the range of 256 and 255. When this value is added to the constant address of the current operation, the result is
tested for in the range of 0 to MAX_SHADER_CONST where MAX_SHADER_GODN determined by the

driver as the maximum constant address provided by the shader declaration. If the resultant address is out of the
range 0 to MAX_SHADER_CONST, (0,0,0,0) is returned on the data path. Therebis@d@ress register select

for each source operand which is used to select between the x,y,z,w components of the address register vector. Only
a single address register (component) may be used for CSM offsets across all of the source operands of a given
instruction. If the address retgss are used for offsets to IVM, TRM, ATRM, or OVM, there is no limitation on the
number of address registers which can be used.

The output vertex memory (OVM) represents the data that is computed or passed by the shader program. These
locations have seamtics attached since they are passed through the clipping, viewport transform, rasterization
process. The locations in the OVM are as follows:

PVS_OUT_POS The output x,y,z,w position. This output vector must be written to by all
shaders.

PVS OUT_PT_SIZE The output scalar point sprite size modifier-comp only.
PVS OUT_CLR(83) The output r,g,b,a colors. Support for 4.
PVS OUT_TEX(Q7) The output s,t,r,q textures. Support for 8.

PVS_OUT_FOG The output scalar discrete fog.-cémponent only.

© 2008 Advanced Micro Devices, Inc.
Proprietary 73

AMDH Revision 14 Octoberl3, 200

There area total of 128 vectors of OUT memory. These values are mapped based on the compression
described below. (See description of slot/controller dependencies below).

For R300, the driver must remap the shagssquentiaidutpuit me mo |
vectors based on the OVFR register definition. For example, if the only attributes present in the OVFR are Pos,

Pt _Size, CIrl and Tex 2, then these values must be written to output ve8tomfh@ order of the vectors, when

present, is as listed above. Note that Fog does not have an associated vector, it can be placed in amBof color 0

alpha channel. There is a GB_SELECT.FOG_SELECT setting in the raster to control where fog comes from.

Operations are defined generally as

PVS_OP DST_OP.write_mask SRC_OP_A.modifier = SRC_OP_B.modifier
SRC_OP_C.modifier

Different PVS ops have differing numbers of source operands. The number of source operands for each instruction
is specified below with the function descriptions.

One stict limitation of the PVS model is that a single operation may only use one unique address from the IVM,
CSM, or ATRM. One, Two, or Three addresses may be used from the TRM (although 3 unique addresses from the
TRM on a single instruction will take 2 dgs in the HW). More than one source operand may utilize the IVM,

CSM, or ATRM memory as long as they all access the same vector address.

Each source operand has a modifier which can be applied orcamponent basis. There are two basic types of

sour@ operand modification, Swizzle and negation. The swizzle operation is performed first. For each component
X,¥,Z,W it is possible to define independently which component gets mapped to these components, including a 0.0 or
1.0 value. So for each compomngou can select from (X, Y, Z, W, 0.0, 1.0). Following the swizzle operation, it is
possible to specify a negation of the value on acpemponent basis.

The destination operand has a write mask which allows any or all of the vector componentsdiamtdmd uphis is
particularly useful when performing scalar output operations to pack the result into a single component of a vector
value (since the scalar results are generally emitted on all component channels).

7.5.2 SLOT AND CONTROLLER MANAGEMENT

For R5xx,the input memory size, the temporary memory size, and the output memory size have been increased from
72 to 128 vectors. As stated below, with larger memories, the PVS design can run more efficiently with more
NUM_SLOTS and more NUM_CNTRS.

The R300 PVSlesign has a degree of flexibility which allows the driver to increase the effectivenex sizes of
the IVM, TRM, ATRM, and OVM memories at the expense of reduced performance. There are two variables in this
performance tradeoff for R300: (NOTE: artéx group is 8 vertices per group for R5xx since 8 vector engines)

a. the number of slots (NUM_SLOTS): the max number of vertex groups that can
reside from the input of vertex data to the IVM to the output of vertex data
from the OVM, and

b. the number of conbllers (NUM_CNTLRS): the max number of vertex groups
that are available for vector engine processing at any given time.

© 2008 Advanced Micro Devices, Inc.
Proprietary 74

AMDH Revision 14 Octoberl3, 200

The IVM and OVM memory flexibility is affected by NUM_SLOTS, while the TRM and ATRM memory flexibility
is affected by the NUM_CNTLRSIn general, the higher the values for NUM_SLOTS and NUM_CNTLRS, the
more efficient (higher performance) the PVS engine will run. The values for NUM_SLOTS and NUM_CNTLRS
are restricted by the vectepervertex required for the active vertex shader paogr

The equations for determining valid values for these terms are as follows:

NUM_SLOTS <= MIN(10, IVM_SIZE / IVM_VEC_PER_VTX, OVM_SIZE /
OVM_VEC_PER_VTX)

Where IVM_SIZE = 128, OVM_SIZE =128 and IVM_VEC_PER_VTX and
OVM_VEC_PER_VTX are vertex shadermdent values.

NUM_CNTLRS <= MIN(5, TRM_SIZE / TRM_VEC_PER_VTX, ATRM_SIZE /
ATRM_VEC_PER_VTX)

Where TRM_SIZE = 128, ATRM_SIZE = 20, and TRM_VEC_PER_VTX and
ATRM_VEC_PER_VTX are vertex shader dependent values.

Note that NUM_SLOTS and NUM_CNTLRS are pettal to be set too low, but there is a performance penalty for
setting them lower.

Note that when changing NUM_SLOTS or NUM_CNTLRS, a flush of the PVS engine is required by writing the
VAP_PVS_STATE_FLUSH_REG.

7.5.3 VS3.0 DYNAMIC FLOW CONTROL USING R5xx PREDICAION LOGIC

VS3.0 dynamic flow control is implemented on R5xx in a mamsimailarto R400 where vector engine operations

and math engine operations are used to manipulate a predication bit to mask writes to the temporary memory, the
output memory, the inpuhemory, the alternate temporary memory, and the address register. The operations are
designed to use a temporary memory location as a stack counter to keep the count of false branches. For nested
if/felse/endif branches, the operations receive as ihgustack counter as well as the boolean operation to determine
whether the predication bit is set and whether the stack counter is incremented or decremented. Within the
if/felse/endif construct, the ALU operations are predicated which kills the writes jfredication bit is not set.

A possible implementation of nested if/else/endif constructs is as follows:

if(Ax==0){ TEMP.w = ME_PRED_SET_EQ AXXXX
if(Ay>0){ TEMP.w = VE_PRED_SET_GT_PUSH TEMP.000w, A.000y
B=C; B =C with pred_ enable = 1 and pred_sense =1
}else { TEMP.w = ME_PRED_SET_INV TEMP.000w
B =D; B =D with pred_enable =1 and pred_sense =1
} TEMP.w = ME_PRED_SET_POP TEMP.000w
}else { TEMP.w = ME_PRED_SET_INV TEMP.000w
If (Az>=0){ TEMP.w = VE_PRED_SET_GTE_PUSHTEMP.000w, A.000z
B=E; B =E with pred_enable = 1 and pred_sense =1
}else { TEMP.w = ME_PRED_SET_INV TEMP.000w
B=F; B =F with pred_enable = 1 and pred_sense =1
} TEMP.w = ME_PRED_SET_POP TEMP.000w
} TEMP.w = ME_PRED SET_POP TEMP.000w

Firstifbeseht&ments turn in to ME_PRED_SET_EQ, ME_PRED_
ME_PRED_SET_NEQ depending on the boolean expression. '

© 2008 Advanced Micro Devices, Inc.
Proprietary 75

AMDH Revision 14 Octoberl3, 200

the predication bit and false b@ncounter to 0 or 1 depending on the result of the boolean expression. Second

| evel or deeper fAlfo statements turn in to VE_PRED_SET.
VE_PRED_SET_GTE_PUSH, or VE_PRED_SET_NEQ_PUSHnth These |
counter as an additional input to determine the final status of the predication bit and the output false branch counter.

For these Al fd statements, the predication bit wil!/l on|
expression s tr ue. AEl sed statements turn into ME_PRED_SET_
an input and only set the predication bit if this counter is 1. If the input false branch counter is 0, the

ME_PRED_SET_INV sets the output false branobinter to 1 for later nesting and resets the predication bit.

AEndi fo statements turn into ME_PRED_SET_POP, which de
negative.

The ME_PRED_SET_CLR and ME_PRED_SET_RESTORE operations can be used furelalogtatements.

The ME_PRED_SET_CLR resets the predication bit and outputs maximum float to set the false branch counter to
an extremely high number to disable successive operations in a breaked loop. The ME_PRED_SET_RESTORE
operation can be used tastere the predication bit and the false branch counter after exiting a breaked loop.

In the R300 architecture, the best performance is achieved by trying to interlace computations so that an operations
source is not the destination of the preceding oparatiln the above example, the false branch stack counter stored

in TEMP.w is a very popular source and destination operand, and R5xx performance would be better optimized by
finding other operations to interlace between them.

7.5.4 VS3.0 PREDICATION AND SIMPLE DYNAMIC FLOW CONTROL USING R5xx CONDITIONAL
OPCODES

In a manner similar to R400, R5xx has conditional moves, writes, or muxes to support VS3.0 predication and simple
dynamic flow control. For predication support in VS3.0, a temporary memory vectbeased in place of a

predication bit. VE_COND_WRITE_EQ, VE_COND_WRITE_GT, VE_COND_WRITE_GTE, and
VE_COND_WRITE_NEQ have two input vector source operands where the first source operand is a conditional
component write mask for the writing of the secondrse vector into the destination vector. An example of VS3.0
predication being supported with a conditional move or write is as follows:

P = pred_set_gt(A.xyzw,Bxyzw); TEMPxyzw = VE_SET_GREATER_THAN(A.xyzw,Bxyzw);
(P) Cxyzw = Dxyzw; Cxyzw = VE_COND_WRTE_NEQ(TEMPxyzw,Dxyzw);
('P) Cxyzw = Exyzw; Cxyzw = VE_COND_WRITE_EQ(TEMPxyzw,Exyzw);

Conditional mux opcodes include VE_COND_MUX_EQ, VE_COND_MUX_GT, and VE_COND_MUX_GTE
have three input vector source operands where the first source operand is aszamp select selecting between
the second and third source vectors to write the destination vector. The above example can simplified to the
following:

TEMPxyzw = VE_SET_GREATER_THAN(A.xyzw,Bxyzw);
Cxyzw = VE_COND_MUX_EQ(TEMPxyzw,Exyzw,Dxyzw);

The primary limitation of the conditional mux opcodes is that only two of the three source operands can come from
temporary memory since the temporary memory has only two read ports. A possible solution is using the input
memory as a temporary location for orfdte three source operands (the input memory can be written by the vector
and math engine). Also, VE_COND_MUX operations could be reverted into two VE_COND_WRITE
opcoderations as above.

© 2008 Advanced Micro Devices, Inc.
Proprietary 76

AMDH Revision 14 Octoberl3, 200

7.5.5 PVS FLOW CONTROL CAPABILITY

R300 adds the DX9 support for Vertexa8ller Flow control. There are 3 types of flow control instructions: JMP,
LOOP and JSR. Up to 16 total IMP, LOOP, and JSR instructions are allowed for any one shader program.

A JMP is a simple conditional JMP from one instruction to another instrucBaity forward jumps are allowed by
DX9. The hardware is capable of backward jumps, but they are not recommended. There is not actually a
conditional jump in R300, if the Boolean jump bit is not set, the the driver should disable the JIMP.

A JSR instructions a conditional Jump to Subroutine. Similar to the JMP, if the JSR Boolean control is disabled,

the driver should disable the JSR. Upon reaching the activation instruction, (the JSR), a jump is made to the
subroutine label (the jump address). TheREA st ructi on i s temporarily fAactivat e
RET instruction is reached, it jumps back to the location specified in the VAP_PVS_FLOW_CNTL_ADDRS#

register.

A LOORP instruction allows a set of instructions to be executed multiple tibhesn reaching the loop start

instruction, the loop count is initialized and the fixgaint loop index register is initialized. The Loop End
instruction address is temporarily fiactivatedodo such t h:
deaemented, the fixegoint loop index register is incremented (by inc_value) and it jumps back to the location

specified in the VAP_PVS_FLOW_CNTL_ADDRS# register. When loop count is decremented to 0, the

LOOP_END instruction is taken out of the temporaaityivated list.

R5xx VS3.0 required the following changes to the PVS flow control capability:

1. Loops and subroutines can be nested up to four levels deep. The official definition is 4 levels of loops and
4 levels of subroutines. The actual R5xx impleragan supports 8 total between loops and subroutines
(any combination not to exceed 8). Some special points with regard to loop and subroutine nesting:

o Only the innemmost fixedpoint loop index register is accessible for memory addressing.
0 The innermost fixedpoint loop index is visible within all nested subroutines.
0 The fixedpoint loop index is initialized for a loop on the activation address for the loop.

2. Rb5xx support VS3.0 capability for fixegoint loop index addressing for constant memory, impemory,
output memory and temporary memory. VS3.0 requires support for constant memory, input memory, and
output memory. Address clamping is only provided for constant memory, and therefore shader validation
should verify all fixedpoint loop index regiter addressing is within input, output, or temporary boundaries
for that vertex and loop.

3. R5xx supports VS3.0 capability for the loop repeat construct. The loop repeat is similar to a general loop
except the fixegboint loop index is not initialized alhé activation of the loop. The loop repeat inherits the
fixed-point loop index from the above nested loop. Though the init value is not used, the loop step value is
still used for the loop repeat. This enables the possibility for creative dual lagngef memories, but
the general VS3.0 functionality would set the step value to 0. Upon loop repeat completion, the original
fixed-point loop index is popped back to its goep repeat value. Loop repeats can be nested and use the
fixed-point loop irdex under a general loop.

4. R5xx VS3.0 supports 16 flow control instructions. VS3.0 treats flow control instructions in the same
manner as ALU instructions and therefore has a logical maximum of 512 flow control instructions if no
ALU instructions were usedHowever, the 16 R5xx flow control registers can really equate to
approximately 32 VS3.0 flow control instructions since an R5xx loop instruction includes the loop begin
and the loop end and a R5xx subroutine call includes the call, the subroutinenstalne subroutine
return.

*NOTE: When a loop count is set to 0, the driver must change the loop instruction to a jump instruction to jump
over the loop, since the control flow in the HW is done at the end of the loop.

Details on the language syntax described below.

Caveats:

© 2008 Advanced Micro Devices, Inc.
Proprietary 77

AMDA1

Revision 14 Octoberl3, 200

When a loop count is changed to 0, the driver must change this loop to be a jump tedhéepdabel.

Jump Instruction

jump b#, labelname;

b# is a boolean flow control constant register signified by "b" and "#" can range
from O to 15

labelnamemust be defined downstream and terminated with a ":"

There are 16 flow control constant registers of 1bit boolean type

Jumps are conditional (the jump will only occur if the value in the specified
boolean flow control constant 'iE)

Example
mul

mad
jump b2, end;

mad
rcp

end:
mul
out

Subroutine Call Instruction

call

Pown

7.
8.

b#, labelname;

b# is a boolean flow control constant register signified by "b" and "#" can range
from O to 15

labelnamemustbe defined downstream and terminated with a ":"

There are 16 flow control constant registers of 1bit boolean type

Subroutine calls are conditional (the call will only occur if the value in the

specified flow control constant is na@ero)

A subroutine bbck is defined as the code between the label referenced when called
to the return from subroutine instruction

Loop instructions are allowed inside the subroutine block as long as the end of loop
label is also within the same subroutine block

Nested subrdines and loops are allowed to a depth of 8 total.

A parent fixedpoint index is visible through all subroutine nesting.

Example
call b5 normalize;

Return from Subroutine

© 2008 Advanced Micro Devices, Inc.

Proprietary

78

AMDA1

Revision 14 Octoberl3, 200

ret;
1. The "ret" instruction is used to indicate the end of a subroutine

Example

normalize:

dp3 r0.w, r0, r0;
rsq rO.w r0.w;
mul r0, r0, r0.w;
ret;

Loop Instruction

loop i#, labelname;

1.

2.

©®

i# is an integer flow control constant register signified by "i" and "#" can range from
Oto 15

The 'i' registeis comprised of tltee components i#loop count (range 0 to 255), i#.i
initial value (range from 0 to 255), and i#.s step value (range fi@®to 127)

which when referenced as i# is an integer scalar defined by i# =n##.s wheren

is the number of times the loop$been traversed The loop value is clamped to be
in the rangei(25671 255) if it over/underflows.

For the "loop" instruction, only the first component (initial value) of the
is used and the i#.s step value is ignored and treated as '1'
labdnamemust be defined downstream and terminated with a ":"

The loop will be traversed i#.c times regardless of the i#.i and i#.s values

A zero value i#.c loop count is treated as??? so may not be supported (thendyiver
be required to preprocess thiase to be a jump to the enttloop label)

Jump instructions are allowed withénloop block as long as the jump target label is
also within the same loop block

Jump Subroutine instructions are allowed within a loop block

Nested subroutines and loops allewed to a depth of 8 total.

i" register

Example

mul
mad
loop i13, endloop;

mad
mul

endloop:
mul
out

Loop Instruction With Auto -Increment

iloop i#, labelname;

1.

i# is an integer flow control constant register signified by "i" and "#" can riaoge

© 2008 Advanced Micro Devices, Inc.

Proprietary

79

AMDH Revision 14 Octoberl3, 200

Oto 15

2. The 'i' registeis comprised of three components itaop count (range 0 to 255), i#.i
initial value (range from 0 to 255), and i#.s step value (range fi@&to 127)
which when referenced as i# is an integer scalar defined by i# =n##.s wheren
is the number of times the loop has been traversed The loop value is clamped to be
in the rangei(2567 255) if it over/underflows.

labelnamemust be defined downstream and terminated with a ":"
4. The loop will be traversed i#.c times rediass of the i#.i and i#.s values

A zero value i#.c loop count is treated as??? so may not be supported (the driver may
be required to preprocess this case to be a jump to thefdodp label)

6. Jump instructions are allowed withém iloop block as longs the jump target label
is also within the same iloop block

7. Jump Subroutine instructions are allowed within an iloop block
8. Nested subroutines and loops are allowed to a depth of 8 total.

9. With nested loops, only the innarost fixedpoint loop index is amessible for ALU
source operand addressing. The resulting address is not clamped for the input,
output, and temporary memories so shader validation is required to ensure all
addressing using the fixgabint loop index is within the boundaries for thattear
and loop.

10. A loop repeat construct does not initialize the fixmnt loop index. The loop
repeat inherits the fixedoint loop index from the above nested loop. Though the
init value is not used, the loop step value is still used for the loop repbt
enables the possibility for creative dual loop indexing of memories, but the general
VS3.0 functionality would set the step value to 0. Upon loop repeat completion, the
original fixed-point loop index is popped to its pl@op repeat value.

Example

mul

mad

iloop i5, endloop;
mul
mad r0, r0, c[i5]; // faster to use loop counter than a0
add

endloop:

mul

out

7.5.6 DUAL MATH OP USAGE

The R300 PVS design enables the ability to use both the Vector Engine and the Math Engirsaime ttleck. An
instruction which combines a Vector Engine and a Math Engine instruction will be termed-sl&hbdhstruction.
A Dual-Math Instruction has the following restrictions:

The Vector Instruction of a Dudllath Inst must not use more than 2ig® operands because the Math Instruction
definition is stored in the"3source operand bits of the instruction field.

© 2008 Advanced Micro Devices, Inc.
Proprietary 80

AMDH Revision 14 Octoberl3, 200

The Math Instruction of a Dudllath Inst must have 2 or less source scalar operands which must both come from a
single source vectorSwizzles enable the two scalar operands to come from any components of the single source
vector.

The Vector Instruction of a Dudllath Inst cannot have the destination operand use the ATRM memory.

The Math Instruction of a Dudllath Inst can only usthe ATRM memory as the destination operand and can only
write to locations €8 and cannot use relative addressing (address register).

The combined instructions source operands must conform to the same memory restrictions as a single op (1 unique
src fromCSM, IVM, ATRM, 2 unique src from TRM (3 unique src from TRM only allowed for single op Vector
Macro inst)).

7.5.7 VECTOR INSTRUCTIONS
VE_DOT_PRODUCT: 2 VECTOR SOURCE OPERANDS

OUT.X = (IN_AX *IN_B.X) + (IN_A.Y *IN_B.Y)
+(IN_AZ*IN_B.Z) + (IN_AW * IN_B.W)):
OUT.Y = OUT.Z = OUT.W = OUT.X
VE_MULTIPLY: 2 VECTOR SOURCE OPERANDS
OUT.X = IN_A.X * IN_B.X;
OUT.Y = IN_A.Y *IN_B.Y;
OUT.Z=IN_AZ*IN_B.Z
OUT.W = IN_AW * IN_B.W;
VE_ADD: 2 VECTOR SOURCE OPERANDS
OUT.X = IN_AX + IN_B.X;
OUT.Y =IN_AY +IN_B.Y;
OUT.Z=IN_AZ+IN_B.Z;
OUT.W = IN_AW + IN_B.W;
VE_MULTIPLY_ADD: 3 VECTOR SOURCE OPERANDS (MACRO IF 3 UNIQUE TEMPS)
OUT.X = (IN_AX *IN_B.X) + IN_C.X;
OUT.Y = (IN_A.Y *IN_B.Y) + IN_C.Y;
OUT.Z=(IN_AZ*IN_B.Z) +IN_C.Z;

OUT.W = (IN. AW * IN_B.W) + IN_C.W;

© 2008 Advanced Micro Devices, Inc.
Proprietary 81

AMDH Revision 14 Octoberl3, 200

VE_DISTANCE_VECTOR: 2 VECTOR SOURCE OPERANDS
OUT.X =1.0;
OUT.Y = IN_AY *IN_B.Y;
OUT.Z=IN_A.Z,
OUT.W = IN_B.W,
Potentially wuseful as follows (XX = Dondét Car e,
IN_A=(XX,D*D, D*D, XX)
IN_B = (XX, 1/D, XX, 1/D)
OUT = (1.0, D, D*D, 1/D) for light attenuation multiply.
VE_FRACTION: 1 VECTOR SOURCE OPERAND
OUT.X = IN_A.Xi FLOOR(IN_A.X);
OUT.Y =IN_A.Y i FLOOR(IN_A.Y);
OUT.Z=IN_A.Zi FLOOR(IN_A.Z);
OUT.W = IN_AWi FLOOR(IN_A.W);

This furction returns the positive difference between a floating point number and the
largest integer number less than the floating point number.

VE_MAXIMUM: 2 VECTOR SOURCE OPERANDS
OUT.X = MAX(IN_A.X, IN_B.X);
OUT.Y = MAX(IN_A.Y, IN_B.Y);
OUT.Z = MAX(IN_A.Z, IN_B.Z2);

OUT.W = MAX(IN_A.W, IN_B.W);

VE_MINIMUM: 2 VECTOR SOURCE OPERANDS
OUT.X = MIN(IN_A.X, IN_B.X);
OUT.Y = MIN(IN_A.Y, IN_B.Y);

OUT.Z = MIN(IN_A.Z, IN_B.Z);

© 2008 Advanced Micro Devices, Inc.
Proprietary 82

AMDH Revision 14 Octoberl3, 200

OUT.W = MIN(IN_A.W, IN_B.W);

VE_SET_GREATER_THAN_EQUAL: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X >= IN_B.X) ? 1.0 : 0.0;
OUT.Y = (IN_A.Y >= IN_B.Y) 2 1.0 : 0.0;
OUT.Z=(IN_A.Z>=IN_B.Z) ? 1.0, 0.0;

OUT.W = (IN_AW >=IN_B.W) ? 1.0, 0.0;

VE_SET_LESS_THAN: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X < IN_B.X) ? 1.0, 0.0;
OUT.Y = (IN_A.Y < IN_B.Y) ? 1.0, 0.0;
OUT.Z=(IN_A.Z<IN_B.Z) ? 1.0, 0.0;
OUT.W = (IN_AW < IN_B.W) ? 1.0, 0.0;

VE_MULTIPLYX2_ADD: 3 VECTOR SOURCE OPERANDS (MACRO IF 3 UNIQUE
TEMPS)

OUT.X = (2.0 * (IN_AX *IN_B.X)) + IN_C.X;
OUT.Y = (2.0 * (IN_A.Y *IN_B.Y)) + IN_C.Y;
OUT.Z=(2.0*(IN_A.Z*IN_B.Z)) + IN_C.Z;
OUT.W = (2.0 * (IN_AW * IN_B.W)) + IN_C.W;

VE_MULTIPLY_CLAMP: 3 VECTOR SOURCE OPERANDS (NO MACRO-> NO 3
UNIQUE TEMPS)

IF(C.W < (AW * B.W)) {
OUT.X = C.W;
} ELSE IF(C.X >= (A.X * B.X)) {
OUT.X =C.X;
} ELSE {

OUT.X=AX*B.X;

}

© 2008 Advanced Micro Devices, Inc.
Proprietary 83

AMDH Revision 14 Octoberl3, 200

OUT.Y =0OUT.Z = OUT.W = OUT.X;

This function is used for point sprite clamping. May or may not be useful for other
functions.

VE_FLT2FIX_DX: 1 VECTOR SOURCE OPERAND
OUT.X = FLOOR(IN_A.X);
OUT.Y = FLOOR(IN_A.Y);
OUT.Z = FLOOR(IN_A.2);
OUT.W = FLOOR(IN_A.W);

This function is a componemtise float to fixed conversion which returns the largest
integer less than the input value. This function is used to load the address register.

VE_FLT2FIX_DX_RND: 1 VECTOR SOURCE OPERAND
OUT.X = FLOOR(IN_A.X + 0.5);
OUT.Y = FLOOR(IN_A.Y + 0.5);
OUT.Z = FLOOR(IN_A.Z + 0.5);

OUT.W = FLOOR(IN_A.W + 0.5);

This function is a componemtise float to fixed conversion which returns the nearest
integer to tle input value. This function is used to load the address register.

VE_PRED_SET_EQ PUSH: 2 VECTOR SOURCE OPERANDS
IF((IN_B.W==0) && (IN_A.W==0)) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;

OUT.W = IN_AW + 10;

OUT.X = OUT.Y = OUT.Z = OUT.W;
VE_PRED_SET_GT_PUSH: 2 VECTOR SOURCE OPERANDS

IF((IN_B.W>0) && (IN_A.W==0)) {

© 2008 Advanced Micro Devices, Inc.
Proprietary 84

AMDH Revision 14 Octoberl3, 200

PREDICATE_BIT = 1;
OUT.W =0;

} ELSE {
PREDICATE_BIT = 0;

OUT.W =IN_AW + 1.0;

OUT.X = OUT.Y = OUT.Z = OUT.W;
VE_PRED_SET _GTE_PUSH: 2 VECTOR SOURCE OPERANDS
IF((IN_B.W>=0) && (IN_A.W==0)) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;

OUT.W = IN_AW + 1.0;

OUT.X = OUT.Y = OUT.Z = OUT.W;
VE_PRED_SET NEQ PUSH: 2 VECTOR SOURCE OPERANDS
IF((IN_B.W!=0) && (IN_A.W==0)) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;

OUT.W = IN_AW + 1.0;

OUT.X=0UT.Y = OUT.Z = OUT.W,
VE_COND_WRITE_EQ4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X==0) ? 1: 0;

© 2008 Advanced Micro Devices, Inc.
Proprietary 85

AMDH Revision 14

Octoberl3, 200

WRITE_ENABLE[1] = (IN_A.Y==0)? 1: 0;
WRITE_ENABLE[2] = (IN_A.Z==0) ? 1 : 0;
WRITE_ENABLE[3] = (IN_AW==0)?1:0;
OUT = IN_B;

VE_COND_WRITE_GT4 : 2 VECTOR SOURCE OPERANDS
WRITE_ENABLE[0] = (IN_A.X>0) ? 1 : 0;
WRITE_ENABLE[1] = (IN_A.Y>0)? 1:0;
WRITE_ENABLE[2] = (IN_A.Z>0)? 1: 0;
WRITE_ENABLE[3] = (IN_AW>0)?1:0;

OUT = IN_B;

VE_COND_WRITE_GTE4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X>=0)?1:0;
WRITE_ENABLE[1] = (IN_A.Y>=0)? 1 :0;
WRITE_ENABLE[2] = (IN_A.Z>=0) 2 1: 0;
WRITE_ENABLE[3] = (IN_AW>=0)?1:0;

OUT = IN_B;

VE_COND_WRITE_NEQ4 : 2 VECTOR SOURCE OPERANDS

WRITE_ENABLE[0] = (IN_A.X!=0) ? 1:0;
WRITE_ENABLE[1] = (IN_A.Y!=0)? 1:0;
WRITE_ENABLE[2] = (IN_A.ZI=0) ?1:0;
WRITE_ENABLE[3] = (IN_AW!=0)?1:0;
OUT = IN_B;

VE_COND_MUX _EQ4 : 3 VECTOR SOURCE OPERANDS
/[only 2 unique input vectors can be from temporary storage
OUT.X=(IN_AX==0)? IN_B.X:IN_C.X;
OUT.Y=(IN_A.Y==0)? IN_B.Y : IN_C.Y;

OUT.Z=(IN_AZ==0)?IN_B.Z:IN_C.Z;

© 2008 Advanced Micro Devices, Inc.
Proprietary

86

AMDH Revision 14 Octoberl3, 200

OUT.W = (IN_AW==0)?IN_B.W:IN_C.W;
VE_COND_MUX_GT4: 3 VECTOR SOURCE OPERANDS
/[only 2 unique input vectors can be from temporary storage
OUT.X = (IN_A.X>0)? IN_B.X : IN_C.X;
OUT.Y =(IN_A.Y>0)? IN_B.Y : IN_C.Y;
OUT.Z=(IN_AZ>0)?IN_B.Z:IN_C.Z;
OUT.W = (IN_AW>0)?IN_B.W:IN_C.W;
VE_COND_MUX_GTE4 : 3 VECTOR SOURCE OPERANDS
/I only 2 unique input vectors can be from temporary storage
OUT.X = (IN_AX>=0)?IN_B.X:IN_C.X;
OUT.Y = (IN_AY>=0)? IN_B.Y: IN_C.Y;
OUT.Z=(IN_AZ>=0)?IN_B.Z:IN_C.Z;
OUT.W = (IN_AW>=0)? IN_B.W: IN_C.W;
VE_SET_GREATER_THAN: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X>IN_B.X) ?1.0: 0.0;
OUT.Y = (IN_A.Y >IN_B.Y) ?1.0: 0.0;
OUT.Z=(IN_A.Z>IN_B.Z) ? 1.0, 0.0;
OUT.W = (IN_AW > IN_B.W) ? 1.0, 0.0;
VE_SET_EQUAL: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_A.X == IN_B.X) ? 1.0 : 0.0;
OUT.Y = (IN_A.Y==IN_B.Y) 2 1.0: 0.0;
OUT.Z=(IN_A.Z==1IN_B.Z) ? 1.0, 0.0;
OUT.W = (IN_A.W == IN_B.W) ? 1.0, 0.0;
VE_SET_NOT_EQUAL: 2 VECTOR SOURCE OPERANDS
OUT.X = (IN_AX!=IN_B.X) ?1.0:0.0;
OUT.Y =(IN_A.Y I=IN_B.Y) ?1.0: 0.0;

OUT.Z=(IN_A.Z'=IN_B.Z) 2 1.0, 0.0;

© 2008 Advanced Micro Devices, Inc.
Proprietary 87

AMDH Revision 14 Octoberl3, 200

OUT.W = (IN_AW I= IN_BW) ? 1.0, 0.0;

NOTES
* A Vector Move Instruction can be accomplished via a VE_ADD with other source operand set to (0,0,0,0).

* A 3-Component Dot Product can be accomplished via a VE_DOT_PRODUCT "hitbrdponents forced to Q.0

7.5.8 SCALAR INSTRUCTIONS

The scalar (math) instructions have changed their src operands somewhat for R300. The general rules are as
follows:

1. Only w channels of src operands are available for math ops

2. For all 1 source operand instructions, the input is IN_A.W (except for ME_EXPEBASF
because of rule 3 below)

3. All source operands which are powers (e”x, 2"x, X"y, etc) will be on IN_C.W, all source operands
which are bases will be on IN_A.W and all sources which are clamps will be on IN_B.W. As long
as the compiler (driver) replites the last valid src operand to all unused src operands, the
behavior looks clean as follows:

i. 1 source operand instructions (like e”x), the x would be in IN_C.W, but it can appear as
if in IN_A.W as long as this value is replicated

ii. 2 source operand insittions (like xy), the base is in the IN_A.W, and the pow is in
IN_C.W, but it can appear as if in IN_B.W as long as this value is replicated.

All of the function definitions below are written with the assumption that the last valid source operanidaseetpl

to the Aunusedd source operands. The HW does not al wa
the replication. These will be noted in comments below.
ME_EXP_BASE2_DX: 1 SCALAR SOURCE OPERAND

OUT.X = 2 A FLOOR(IN_A.W);
IF (IN_A.W > 128.0) {

OUT.Y = 0.0; //NOTE: THIS IS NOT EQUIV TO DX BEHAVIOR
} ELSE {

OUT.Y = FRAC(IN_A.W);

}
OUT.Z =2 " (IN_A.W);
OUT.W =1.0;
ME_LOG_BASE2_DX: 1 SCALAR SOURCE OPERAND

IF(IN_A.W == 0.0) {
OUT.X = MINUS_MAX_FLOAT;

© 2008 Advanced Micro Devices, Inc.
Proprietary 88

AMDH Revision 14 Octoberl3, 200

OUT.Y =1.0;
OUT.Z = MINUS_MAX_FLOAT;
OUT.W = 1.0;

} ELSE {
OUT.X = Unbiased exponent of ABS(IN_A.W) as float(i.e. 4:@.0);
OUT.Y = mantissa of IN_A.W as float (1.0 <= OUT.Y < 2.0);
OUT.Z = LOG2(ABS(IN_A.W));
OUT.W =1.0;

}

ME_EXP_BASEE_FF:1 SCALAR SOURCE OPERAND

OUT.X = e " (IN_A.W); /INOTE WAS IN_A.X FOR R200 *FROM C.W, IN_A.W if operand
replicate

OUT.Y = OUT.Z = OUT.W = OUT.X;

ME_LIGHT_COEFF_DX: 3 SCALAR SOURCE OPERANDS (NO MACRO -> NO 3 UNIQUE
TEMPS)

This function was a single vectsource operand for R200. Now it uses 3 vector source operands
(w components only).

The 3 operands may be the same vector using different swizzles to emulate R200 behavior.

OUT.X =1.0;
OUT.Y = MAX(IN_B.W, 0.0);
IF(IN_B.W > 0) {

IN_C.W = CLAMP(IN_C.W,-128.0, 128.0);

OUT.Z = (MAX(IN_A.W, 0.0)) * IN_C.W;
} ELSE {
OUT.Z =0.0;

}
OUT.W = 1.0;

ME_POWER_FUNC_FF: 2 SCALAR SOURCE OPERANDS (IN ONE VECTOR)

© 2008 Advanced Micro Devices, Inc.
Proprietary 89

AMDH Revision 14 Octoberl3, 200

IF(IN_AW < 0.0) {

OUT.X =- (ABS(IN_A.W) N IN_B.W); //IN_B.W is from IN_C.W, busame if operand
replicate

} ELSE {
OUT.X = IN_AW " IN_B.W;
}

OUT.Y = OUT.Z = OUT.W = OUT .X;

Special cases (in order of detection) are (using x*n notation):

0.0~n A Plus Infinity

0.0’n A 0.0

X~ 0.0A 1.0

InfA-nA 0.0

Inf An -> Inf

IF (x>L0and n==Inf) A 0.0

IF (x <1.0 and n ==Inf) A Inf

IF (x >1.0 and n == Infp Inf

IF (x<1.0 and n == InfpA 0.0
ME_RECIP_DX: 1 SCALAR SOURCE OPERAND

OUT.X=1.0/IN_AW

OUT.Y = 0OUT.Z = OUT.W = OUT.X;

An input of 0.0 yields a resutif MAX_FLOAT.
ME_RECIP_FF: 1 SCALAR SOURCE OPERAND

OUT.X=1.0/IN_AW

OUT.Y = 0OUT.Z = OUT.W = OUT.X;

An input of 0.0 yields a result of zero.
ME_RECIP_SQRT_DX: 1 SCALAR SOURCE OPERAND

OUT.X = 1.0 / SQRT(ABS(IN_A.W))

OUT.Y = OUT.Z= OUT.W = OUT.X;

© 2008 Advanced Micro Devices, Inc.
Proprietary 90

AMDH Revision 14 Octoberl3, 200

An input of 0.0 yields a result of MAX_FLOAT.
ME_RECIP_SQRT_FF: 1 SCALAR SOURCE OPERAND
OUT.X = 1.0 / SQRT(ABS(IN_A.W))
OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of zero.
ME_MULTIPLY: 2 SCALAR SOURCE OPERANDS (IN ONE VECTOR)
OUT.X=IN_AW *IN_B.W,
OUT.Y = OUT.Z = OUT.W = OUT.X;
ME_EXP_BASE2: 1 SCALAR SOURCE OPERAND
OUT.X = 2.0~ (IN_A.W); /*FROM C.W, IN_A.W if operand replicate
OUT.Y = OUT.Z = OUT.W = OUT.X;
ME_LOG_BASEZ2: 1 SCALAR SOURCE OPERAND
OUT.X = LOG2(ABS(IN_A.W));
OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of MINUS_MAX_FLOAT.
ME_POWER_FUNC_FF _CLAMP_B: 3 SCALAR SOURCE OPERANDS (NO MACRO)
IF (IN_AW <IN_B.W) {//IN_B.W is the clamp value.
OUT.X =0.0;
} ELSE {

SAME BEHAVIOR ASME_POWER_FUNC_FFWITH IN_A.W as base antN_C.W as
power (not IN_B.W)

}

OUT.Y = OUT.Z = OUT.W = OUT.X;

ME_POWER_FUNC_FF_CLAMP_B1: 3 SCALAR SOURCE OPERANDS (NO MACRO)
IF (IN_A.W < IN_B.W) {//IN_B.W is the clamp value.
OUT.X =0.0;

} ELSE IF (IN_AW > 1.0) {

© 2008 Advanced Micro Devices, Inc.
Proprietary 91

AMDH Revision 14 Octoberl3, 200

OUT.X = 1.0;
} ELSE {

SAME BEHAVIOR ASME_POWER_FUNC_FFWITH IN_A.W as base antN_C.W as
power (not IN_B.W)

}

OUT.Y =0OUT.Z = OUT.W = OUT.X;

ME_POWER_FUNC_FF_CLAMP_01: 2 SCALAR SOURCE OPERANDS
IF (IN_A.W <= 0.0) {
OUT.X = 0.0;
} ELSE IF (IN_A.W > 1.0) {
OUT.X = 1.0;
} ELSE {
SAME BEHAVIOR ASME_POWER_FUNC_FF

}
OUT.Y =0OUT.Z = OUT.W = OUT.X;

ME_SIN: 1 SCALAR SOURCE OPERAND
OUT.X = SIN(IN_A.W);

OUT.Y = OUT.Z = OUT.W = OUT.X;
The tardware implementation of SIN/COS clamps the input, including nans and ird$ tdot+pi
before computing the output, so for any inputs outside that range, cod(@nd sin(x) = 0. Except
for inputs of zero where sin(0) = 0, the minimum value thiatftmction will output is +/
0x33800000. In other words, the absolute value of the output is clamped to 0x33800000 minimum
except for sin(0) and sin(-pf).

ME_COS: 1 SCALAR SOURCE OPERAND
OUT.X = COS(IN_A.W);

OUT.Y = OUT.Z = OUT.W = OUT.X;
The hardware implementation of SIN/COS clamps the input, including nans and iffi$dotpi
before computing the output, so for any inputs outside that range, cod(@nd sin(x) = 0. Except
for inputs of zero where sin(0) = 0, the minimum value thiatftimction will output is +/
0x33800000. In other words, the absolute value of the output is clamped to 0x33800000 minimum
except for sin(0) and sin(-pf).

ME_LOG_BASE?2_|EEE: 1 SCALAR SOURCE OPERAND

© 2008 Advanced Micro Devices, Inc.
Proprietary 92

AMDH Revision 14 Octoberl3, 200

OUT.X = LOG2(ABS(IN_A.W));
OUT.Y = OUT.Z = OUTW = OUT.X;
An input of 0.0 yields a result of minus infinity.

ME_RECIP_IEEE: 1 SCALAR SOURCE OPERAND
OUT.X=1.0/IN_AW

OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of infinity.
ME_RECIP_SQRT_IEEE: 1 SCALAR SOURCE OPERAND
OUT.X = 1.0/ SQRT(ABS(IN_A.W))
OUT.Y = OUT.Z = OUT.W = OUT.X;
An input of 0.0 yields a result of infinity.
ME_PRED_SET_EQ: 1 SCALAR SOURCE OPERAND
IF(IN_A.W==0) {
PREDICATE_BIT =1,
OUT.X=0UT.Y =0UT.Z=0U.W =0;
} ELSE {
PREDICATE_BIT = 0;
OUT.X =OUT.Y =OUT.Z=0UT.W =1,
}
ME_PRED_SET_GT: 1 SCALAR SOURCE OPERAND
IF(IN_A.W > 0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W =0;
}ELSE {
PREDICATE_BIT =0;

OUT.X=0UT.Y =0UT.Z=0UT.W =1;

© 2008 Advanced Micro Devices, Inc.
Proprietary 93

AMDH Revision 14 Octoberl3, 200

ME_PRED_SET_GTE: 1 SCALAR SOURCE OPERAND
IF(IN_A.W >= 0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = 0;
} ELSE {
PREDICATE_BIT = 0;
OUT.X = OUT.Y = OUT.Z = OUT.W =1;
}
ME_PRED_SET_NEQ: 1 SCALAR SOURCE OPERAND
IF(IN_AW != 0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = 0;
} ELSE {
PREDICATE_BIT = 0;
OUT.X = OUT.Y =0OUT.Z = OUT.W =1;
}
ME_PRED_SET CLR: 0 SCALAR SOURCE OPERANDS
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = MAX_FLOAT;
ME_PRED_SET_INV: 1 SCALAR SOURCE OPERAND
IF(IN_A.W==1) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;
IF(IN_A.W==0) {

OUT.X =0UT.Y =0UT.Z=0UT.W = 1;

© 2008 Advanced Micro Devices, Inc.
Proprietary 94

AMDH Revision 14

Octoberl3, 200

} ELSE {

OUT.X=O0UT.Y =0OUT.Z = OUT.W = IN_A.W;

}
ME_PRED_SET_POP: 1 SCALAR SOURCE OPERAND
OUT.W = IN_AWi 1.0;
IF(OUT.W < 0) {
PREDICATE_BIT = 1;
OUT.W =0;
} ELSE {
PREDICATE_BIT = 0;
}
OUT.X = OUT.Y = OUT.Z = OUT.W;
ME_PRED_SET_RESTORE: 1 SCALAR SOURCE OPERAND
IF(IN_A.W==0) {
PREDICATE_BIT = 1;
OUT.X = OUT.Y = OUT.Z = OUT.W = 0;
} ELSE {
PREDICATE_BIT = 0;

OUT.X =0OUT.Y = OUT.Z=0OUT.W = IN_A.W;

7.5.9 PVS INSTRUCTION DEFINITION

© 2008 Advanced Micro Devices, Inc.
Proprietary

95

AMDA1

Revision 14 Octoberl3, 200

PVS INSTRUCTION

Description of PVS 13-bit Instruction for Vector Memory

Field Name Bit(s) Description
PVS OP DST OPERAND 31:0 | Defines the opcode and destination operand.
PVS _SRC _OPERAND O 63:32 | Defines the first source operand for the instruction.
PVS _SRC_OPERAND_1 95:64 | Defines the firssource operand for the instruction.
PVS _SRC_OPERAND_2 127:96 | Defines the first source operand for the instruction.

PVS Source Operand Description
Applies to PVS SRC_OPERAND 0,1 & 2

Field Name Bit(s) Description
PVS _SRC REG _TYPE 1.0 Defines the Memky Select (Register Type) for the Source Operand. Seg
Below.
SPARE_O 2
PVS_SRC_ABS_XYZW 3 If set, Take absolute value of all 4 components of input vector.
PVS_SRC_ADDR_MODE_O 4 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O (Isb) to fornbi2
ADDR_MODE & follows:
0 = Absolute addressing
1 = Relative addressing using AO register
2 = Relative addressing using 10 register (loop index)
PVS SRC_OFFSET 12:5 | Vector Offset into selected memory (Register Type)
PVS_SRC_SWIZZLE_X 15:13 | X-Component Swizzle Sele@ee Below
PVS _SRC_SWIZZLE Y 18:16 | Y-Component Swizzle Select. See Below
PVS_SRC _SWIZZLE 7 21:19 | Z-Component Swizzle Select. See Below
PVS_SRC_SWIZZLE W 24:22 | W-Component Swizzle Select. See Below
PVS_SRC_MODIFIER_X 25 If set, Negate X Component of inpvector.
PVS_SRC_MODIFIER_Y 26 If set, Negate Y Component of input vector.
PVS_SRC_MODIFIER_zZ 27 If set, Negate Z Component of input vector.
PVS_SRC_MODIFIER_W 28 If set, Negate W Component of input vector.
PVS_SRC_ADDR_SEL 30:29 | When PVS_SRC_ADDR_MDE is set, this selects which component of t
4-component address register to use.
PVS_SRC_ADDR_MODE_1 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O0 (Isb) to forabR
ADDR_MODE as follows:
0 = Absolute addressing
1 = Relative addressing using AO regist
2 = Relative addressing using 10 register (loop index)

The memory selects (or register type) valid selections are as follows:

© 2008 Advanced Micro Devices, Inc.

Proprietary

96

AMDH Revision 14 Octoberl3, 200

SOURCE REG_TYPES:
PVS SRC_REG_TEMPORARY =0; //Intermediate storage
PVS_SRC_REG_INPUT =1; /lInput VertexStorage
PVS SRC_REG_CONSTANT =2; //Constant State Storage
PVS SRC REG_ALT _TEMPORARY = 3; //Alternate Intermediate Storage

The valid swizzle selects are as follows:

PVS SRC SELECT X =0; //Select X Component
PVS _SRC_SELECT_Y =1; //ISelet Y Component

PVS_SRC_SELECT Z =2; /ISelect Z Component
PVS SRC SELECT W = 3; //Select W Component

PVS SRC_SELECT_FORCE_0=4; //[Force Componentto 0.0

PVS SRC_SELECT_FORCE_1=15; //[Force Componentto 1.0

For R5xx VS3.0, the PVS_SRC_ABS_XYZVitbenables the absolute value for the four components of the source
vector.

© 2008 Advanced Micro Devices, Inc.
Proprietary 97

AMDA1

Revision 14 Octoberl3, 200

PVS Opcode & Destination Operand Description

Field Name Bit(s) Description

PVS DST_OPCODE 5.0 Selects the Operation which is to be performed.

PVS_DST_MATH_INST 6 Specifies aMath Engine Operation

PVS DST_MACRO_INST 7 Specifies a Macro Operation

PVS DST _REG _TYPE 11:8 | Defines the Memory Select (Register Type) for the Dest Operand.

PVS_DST_ADDR_MODE _1 12 Combine ADDR_MODE_1 (msb) with ADDR_MODE_0 (Isb) to fornbi
ADDR_MODE as follows:
0 = Absolute addressing
1 = Relative addressing using AO register
2 = Relative addressing using 10 register (loop index)

PVS _DST_OFFSET 19:13 | Vector Offset into the Selected Memory

PVS_DST_WE_X 20 Write Enable for X Component

PVS DST WE_Y 21 Write Enable for Y Component

PVS DST WE _Z 22 Write Enable for Z Component

PVS_DST_WE_W 23 Write Enable for W Component

PVS _DST_VE_SAT 24 Vector engine operation is saturate clamped between 0 and 1 (all
components)

PVS DST_ME_SAT 25 Math engine opetin is saturate clamped between 0 and 1 (all compone

PVS_DST_PRED_ENABLE 26 Operation is predicatedOperation writes if predicate bit matches predica
sense.

PVS DST_PRED_SENSE 27 Operation predication sensdf set, operation writes if prediaabit is set. If
reset, operation writes if predicate bit is reset.

PVS DST _DUAL _MATH_OP 28 Set to describe a duatath op.

PVS DST_ADDR_SEL 30:29 [When PVS_DST_ADDR_MODE is set, this selects which component of
4-component address register to use.

PVS_DST_ADDR_MODE_O 31 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O (Isb) to fornbi2

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO register

2 = Relative addressing using 10 register (loop index)

For R5xx VS3.0, the PVS_DOSVE_SAT and PVS_DST_ME_SAT bits enable a zero to one saturate clamp for all

four component of the output.

For R5xx VS3.0, the PVS_DST_PRED_ENABLE and PVS_DST_PRED_SENSE bits enable predicated writes for
the temporary memory, the output memory, the altertemporary memory, the address register, and the input
memory. The PVS_DST_PRED_ENABLE enables the feature while PVS_DST_PRED_SENSE determines the
polarity of the predication bit for the write to be enabled. When the predication bit matches thetipredense,

the predicated write is enabled. For dual vector/math engine operations, both operations are predicated.

The PVS_DST_MACRO_INST bit was meant to be used for MACROS such as awettor multiply, but
currently is only set for the followingases:

© 2008 Advanced Micro Devices, Inc.
Proprietary

98

AMDH Revision 14 Octoberl3, 200

1 AVE_MULTIPLY_ADD or VE_MULTIPLYX2_ADD instruction with all 3 source operands using
uniqgue PVS_REG_TEMPORARY vector addresses. Since R300 only has two read ports on the temporary
memory, this special case of these instructions is broken up (biMtfiénto 2 operations.

1 When the MACRO enable bit is set, the opcode (lower 6 bits is remapped as follows:
PVS_MACRO_OP _2CLK_MADD =0
PVS_MACRO_OP_2CLK_M2X ADD =1

The PVS_DST_MATH_INST is used to identify whether the instruction is a Vector Engingctistror a Math
Engine instruction.

The PVS_DST_OPCODE values are listed below:

VECTOR_NO_OP =0
VE_DOT_PRODUCT =1
VE_MULTIPLY =2
VE_ADD =3
VE_MULTIPLY_ADD =4
VE_DISTANCE_VECTOR =5
VE_FRACTION =6
VE_MAXIMUM =7
VE_MINIMUM =8
VE_SET_GREATER_THAN_EQUAL =9
VE_SET_LESS_THAN =10
VE_MULTIPLYX2_ADD =11
VE_MULTIPLY_CLAMP =12
VE_FLT2FIX_DX =13
VE_FLT2FIX_DX_RND =14
/I NEW R5xx OPCODES below
VE_PRED_SET_EQ_PUSH =15
VE_PRED_SET_GT_PUSH =16
VE_PRED_SET_GTE_PUSH =17
VE_PRED_SET_NEQ_PUSH =18
VE_COND_WRITE_EQ =19
VE_COND_WRITE_GT =20
VE_COND_WRITE_GTE =21
VE_COND_WRITE NEQ =22
VE_COND_MUX_EQ =23
VE_COND_MUX_GT =24
VE_COND_MUX_GTE =25
VE_SET_GREATER_THAN =26
VE_SET_EQUAL =27
VE_SET_NOT_EQUAL =28
MATH_NO_OP =0
ME_EXP_BASE2_DX =1
ME_LOG_BASE2_DX =2
ME_EXP_BASEE_FF =3
ME_LIGHT_COEFF_DX =4
ME_POWER_FUNC_FF =5
ME_RECIP_DX =6

© 2008 Advanced Micro Devices, Inc.
Proprietary 99

AMDH Revision 14 Octoberl3, 200

ME_RECIP_FF =7
ME_RECIP_SQRT_DX =8
ME_RECIP_SQRT_FF =9
ME_MULTIPLY =10
ME_EXP_BASE2_FULL_DX =11
ME_LOG_BASE2_FULL_DX =12

ME_POWER FUNC_FF_CLAMP_B= 13
ME_POWER_FUNC_FF_CLAMP_B% 14
ME_POWER_FUNC_FF_CLAMP_0% 15

ME_SIN =16
ME_COS =17
/I NEW R5xx OPCODES below

ME_LOG_BASE2_IEEE =18
ME_RECIP_IEEE =19
ME_RECIP_SQRT_IEEE =20
ME_PRED_SET_EQ =21
ME_PRED_SET_GT =22
ME_PRED_SET_GTE =23
ME_PRED_SET_NEQ =24
ME_PRED_SET CLR =25
ME_PRED_SET_INV =26
ME_PRED_SET_POP =27
ME_PRED_SET_RESTORE =28

DEST REG_TYPES:

PVS_DST_REG_TEMORARY = 0; /lintermediate storage

PVS DST_REG_AO =1; //Address Register Storage
PVS_DST_REG_OUT = 2; //Output Memory. Used for all outputs

PVS DST_REG_OUT_REPL_ X = 3; //Output Memory & Replicate X to all channels

PVS DST_REG_ALT_TEMPORARY =4, //Alternate Intermediate Storage

PVS_DST_REG_INPUT =5; //Output Memory & Replicate X to all channels

The PVS_REG_AO may only be used as the destination operand register type when using the VE_FLA2FIX_D
the VE_FLT2FIX_DX_RND opcodes.

For R300, PVS_REG_OUT_*is replaced by the single PVS_REG_OUT and the PVS_DST_OFFSET field will be
used to place data in the appropriate vectors. This allows the PVS Output Vertex memories to be variable format for
thevariable vertex methodology. The PVS_REG_OUT_REPL_X is equivalent to PVS_REG_OUT except that it
forces the X channel to be replicated onto all 4 output channels. This capability is used to allow the mapping of
PointSprite and Discrete Fog to any outpugmory channel from an instruction with a uniquehannel output.

The PVS_DST_DUAL_MATH_OP bit must be set when combining Vector and Math Engine operations.

The PVS_DST_ADDR_MODE and DST_ADDR_SEL are the same as the SRC operand definitions.

© 2008 Advanced Micro Devices, Inc.
Proprietary 100

AMDH Revision 14 Octoberl3, 200

Dual Math In struction (Replaces PVS SRC OPERAND 2)

Field Name Bit(s) Description
PVS SRC REG TYPE 1:0 Defines the Memory Select (Register Type) for the Source Operand. Sd
Below.
PVS DST_OPCODE_MSB 2 Math Opcode MSB for Dual Math Inst.
PVS _SRC_ABS XYZW 3 If set, Take absolute value of both components of Dual Math input vecto
PVS_SRC_ADDR_MODE_0 4 Combine ADDR_MODE_1 (msb) with ADDR_MODE_O (Isb) to fornbi

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO register

2 = Relative adkssing using 10 register (loop index)

PVS_SRC_OFFSET 12:5 | Vector Offset into selected memory (Register Type)

PVS_SRC _SWIZZLE X 15:13 | X-Component Swizzle Select. See Below

PVS_SRC SWIZZLE_Y 18:16 | Y-Component Swizzle Select. See Below

DUAL_MATH_DST_OFFET 20:19 | Selects Dest Address ATRM3Ifor Math Inst.

PVS _DST_OPCODE 24:21 | Math Opcode for Dual Math Inst.

PVS_SRC_MODIFIER_X 25 If set, Negate X Component of input vector.

PVS_SRC_MODIFIER_Y 26 If set, Negate Y Component of input vector.

PVS _DST_WE_SE 28:27 | Encoded Write Enable for Dual Math Op Inst (0=X,1=Y,2=2,3=W

PVS_SRC_ADDR_SEL 30:29 | When PVS_SRC_ADDR_MODE is set, this selects which component of
4-component address register to use.

PVS_SRC_ADDR_MODE_1 31 Combine ADDR_MODE_1 (mghbwith ADDR_MODE_0 (Isb) to form it

ADDR_MODE as follows:

0 = Absolute addressing

1 = Relative addressing using AO register

2 = Relative addressing using 10 register (loop index)

The PVS_DST_OPCODE_MSB is the most significant bit of the PVS_DST_OPG@IdEo be used for the math
engine for dual ops. This enables math engine operations 16 through 28 to be used during dual ops.

For R5xx VS3.0, a PVS_SRC_ABS_XYZW bits enables the absolute value for the two components of the dual op
math engine sourceegtor.

7.6 Setting-Up and Starting the VAP
The following method of programming is required in order to get the VAP to run.

The format and storage method for vertex data must be conveyed to the VAP by loading the set of Address and
Attribute registers for th#lultiple Arrays of Structures paradigm. The Vertex Format register also must be loaded.

After all of the registers have been-sgt the VAP is started by a single write to the Vertex Fetcher Control

Register (VF_CNTL). Thits ategiost er fAsrsagigerDorkegi amnefii !
causing the VAP to begin running. A single primitive or a group of primitives can be processed as a result of the

single trigger; the exact number of primitives being controlled by the N\WBRRTICES field of the Vertex Fetcher

Control Register.

Depending on the daféow configuration of the VAP (controlled by the VTX_AMODE and VTX_LOCN fields of

© 2008 Advanced Micro Devices, Inc.
Proprietary 101

AMDH Revision 14 Octoberl3, 200

the Vertex Control Register), the VAP may expect an external entity (the host, or CommandoPrezesdiver

data for the current operation. It is the responsibility of the external entity to perform the exact number of register
writes in accordance with the value set in the NUM_VERTICES field; otherwise the VAP will hang. For Index
data, the hdasmust write to any dword in the PORT _IDX range; and for parameter data, the host must write to any
dword in the PORT_DATA range.

Once the VAP has completed processing the number of vertices specified in the NUM_VERTICES field, it goes
back to an idle stat waiting for another trigger.

7.7 Methods of Passing Vertex Data
There are three parameters that characterize the passing of vertex data for 3D primitives to the Graphics Controller.

1) Location: Embedded vs. Separate.
In Embedded mode, the vertex informatierpresent directly in the command packet.
In Separate Mode, the command packet contains a pointer to another memory area containing the
vertex information.

2) Addressing Mode:Immediate vs. Indexed.
The vertex information can be expressed as either the \aataitself (Immediate Mode), or a list of
indices into a buffer of vertices (Indexed Mode).

3) Format: Examples are: StructureOfArrays(SOA), ArrayOfStructures(AOS), Strided Vertex Format.
The format of the vertex data is conveyed to the Setup Engine Viaxtde vertex format register, as
well as the address and attribute registers for the Multiple Array of Structures.

The Location and AddressifhngwMeadea ffiigalrds i oot ndl tthiee VRP:
information will be fowing on the register backbone and on the memory backbone while the VAP is processing a
command packet.

© 2008 Advanced Micro Devices, Inc.
Proprietary 102

AMDH Revision 14 Octoberl3, 200

8. Fragment Shaders

8.1 Introduction

This section describes the functional behavior of the Univ&tsadler®f on R5xx.

8.2 Instructions

There are 512 ingiction slots. A program can begin execution at any address. In the absence of flow control,
programs will increment the program counter after each instruction. The program counter wraps at 512
automatically, so it is valid to load shader programs whtdlze the bottommost and topmost regions of the
instruction store.

Each instruction can be one of four types:

US_INST_TYPE_ALU Arithmetic and Logic Unit instruction
US_INST_TYPE_OUTPUT Output instruction (with ALU functionality)
US_INST_TYPE_FC Flow Control instruction
US_INST_TYPE_TEX Texture instruction

ALU and OUTPUT instructions both have full RGB and Alpha math functionality. The only functional difference
between them is that ALU instructions can set the predicate bits, and OUTPUTtiostrgan write to the output
registers. There is no way to do both in the same instruction. Internally, the sequencer must treat instructions that
have potential outputs specially for scheduling. The last executed instruction of the shader progedsoastn
OUTPUT instruction, even if it's not outputting anything interesting.

The first OUTPUT instruction will reserve space in the output register fifo. This space is limited, therefore issuing
an OUTPUT earlier than necessary may cause threatiIteaglier than necessary. You should not set an ALU
instruction as type OUTPUT unless it is actually writing to an output register, or it is the last instruction of the
program.

Flow control instructions and texture instructions each have their oenmpiatation of the bits in the instruction
word.

The active shader should reside in the range US_CODE_RANGE.CODE_ADDR to
US_CODE_RANGE.CODE_ADDR + US_CODE_RANGE.CODE_SIZE, inclusive (note that
US_CODE_RANGE.CODE_SIZE is the size of the shader progranysnaine). You may setup additional shaders

in advance outside of this range, but the current shader should not attempt to execute code outside of this range.

The shader has an offset, US_ CODE_OFFSET.OFFSET_ADDR, associated with it that is added to various
instruction addresses, minimizing the number of registers you may need to update when relocating a shader. Each
pixel starts the shader at instruction US_CODE_ADDR.START_ADDR + US_CODE_OFFSET.OFFSET_ADDR
(instruction addresses are always modulo 512ecHtton continues until the program counter reaches
US_CODE_SIZE.END_ADDR + US_CODE_OFFSET.OFFSET_ADDR. It does not matter how many pixels in

the group are active (even none), the program will end after that instruction is executed. The instructemdat the

© 2008 Advanced Micro Devices, Inc.
Proprietary 103

AMDH Revision 14 Octoberl3, 200

address must be an OUTPUT instruction (even if the output mask is zero), and should always wait for the texture
unit semaphore by setting the TEX_SEM_WAIT bit (see below). At the time of termination, the contents of the
output registersra sent to th render targets.

Multiple shaders can be loaded into the instruction memory. Switching between them only requires changing global
registers like US_CODE_ADDR, US_CODE_RANGE, US_CODE_OFFSET, US_PIXSIZE, and US_FC_CTRL.

Updates to shader code outside¢heently active program are safe, and do not stall the pipeline. If you intend to
overwrite the active shader, however, the pixel shader pipe must be flushed so that pixels running the old shader get
out before the update. Register writes to US_CODE_RDDS_CODE_RANGE, US_CODE_OFFSET, and/or
US_PIXSIZE should flush the pixel shader pipe.

The US instruction and ALU constant registers cannot be written to directly, due to addressing limitations elsewhere
in the pipe. A vector mechanism is provided ia @A block for writing to the US registers. Details on writing the
US registers are provided toward the end of this document.

8.3 Instruction Words

US_INST_TYPE_ALU / US_INST_TYPE_OUTPUTB registerk
US_CMN_INST_*

US_ALU_RGB_ADDR_*

US_ALU_ALPHA_ADDR_*

US_ALU_RGB_INST *

US_ALU_ALPHA_INST_*

US_ALU_RGBA_INST_*

= =4 =4 =4 A -4

US_INST_TYPE_FC (3 registerk
T US_CMN_INST_*
1 US_FC_INST_*
1 US_FC_ADDR_*

US_INST_TYPE_TEX (4 registerk
T US_CMN_INST_*
T US_TEX_INST_*
1 US_TEX ADDR_*
1 US_TEX ADDR_DXDY_*

The FC and TEX words overlap with the ALU/OUTPUT words in instruction memory. The unused memory
locations for FC and TEX are ignored by UWlSey may bdeft uninitialized, or set to zero, with no ill effect.
However, the driveshould take are to write to all registers thate required by eadhstruction type.

Within US_CMN_INST_*, the fields effective for each instruction type are indicated by *s:

ALU OUTPUT FC TEX
TYPE * * * *
TEX_SEM_WAIT * * * *
RGB_PRED_SEL | * * * *
RGB_PRED_NV * * * *
ALPHA PRED_SEL| * * *
ALPHA _PRED_INV | * * *

© 2008 Advanced Micro Devices, Inc.
Proprietary 104

AMDH Revision 14 Octoberl3, 200

WRITE_INACTIVE

LAST

NOP

RGB_WMASK

ALPHA WMASK

RGB_OMASK

ALPHA_OMASK

RGB_CLAMP

ALPHA_ CLAMP

ALU RESULT SEL

| k| k| k| k| k| k| *[*| *| *
k| k| k| w| k| k| H| *[*| *| *

ALU RESULT OP

ALU_WAIT * *

STAT WE * * x

8.3.1 Synchronization of instruction streams

The US allows you to freely intermix instructions of multiple typkswill process the three types (ALU/Output,
Texture, and FC) iparallel whenever possible. Instructiongdé¢o be synchronizedhen an instruction of one
type depends on the output of anottygre. The cases where explicit synchronization may be required are:

1 TEX instruction dependent on ALU for source register or preditechronized with the ALU_WAIT
bit.

1 FCinstruction dependent on ALU for predicate or ALU res8inchronized with the ALU_WAIT bit.

1 ALU instruction dependent on TEX for lookup result. Synchronirgdg the texture semaphore.

A texture or FC instruction that uses a result computeal fmjor ALU instruction should set the ALU_WAIT bit.

This forces processirfgr the thread to stall until pending ALU instructions are complétéatency of about 30

cycles is imposed on the thread.

Note that a static FC instruction never needs té\ket WAIT since it never depends on a result computed within
the shader. Also, an AListructionnever needs to set ALU_WAIF dependencies amongst Alikktructions are
resolved internally.

The texture semaphore is used to synchronize the outpuéxtuadinstruction with a subsequent ALU or texture
instruction that uses thegsult. Since th&atency for a texture fetch is difficult to anticipate in advancetakture

semaphore mechanism is more complex than ALU_WAIT. The testumaphore is deribed in more detail
below.

8.4 ALU Instructions

An ALU instruction actually consists of an RGB vector instruction amé\pha scalar instruction.

There are only a few operations that only one or the other unétozapute, but in each case there ipecsl
instruction the otheengine can use to copy the result.

8.4.1 Sources

© 2008 Advanced Micro Devices, Inc.
Proprietary 105

AMDH Revision 14 Octoberl3, 200

Each instruction can specify the addresses for 6 different sduBR&B vectors and 3 Alpha scalars. Each source
can either come from oraf 128 temporary registers (which cam modified during the shademd be different for
each pixel), or from one of 256 constant regisfetsich can only be changed between geometry packets). In
addition, asource can be an inline constant. The loop variable (aL) may be &daleg combiation of source
addresses, but may not be added tmkme constant.

Each color register (temporary and constant) consists afoa®onenRGB vector and a scalar Alpha value.

Inline constants are unsigned floatipgint values with 4 bits aéxponen{with bias 7) and 3 bits mantissa. Inline
constants represefihite values only-- there is no representation for NaN or infinityline constants can express
denormal values though. Also, the étttern 0x0 represents-20, rather than zero. Exghe values arghown
below:

EXPONENT MANTISSA
2710 0x0 0x0
279 0x0 0Ox1
27-8 0x0 0x2
207 0Ox1 0x4
27-6 0x7 0x0
1 Oxf 0x0
256 Oxf 0x0
480 Oxf 0x7

You can obtain negative inline constants and the value zero usiimpthenodifiers and swizzte described below.

Each source is specified with three fields. Valid encodings of fledde are shown below (for source 0, in this
example):

ADDRO[7] ADDRO[6:0] ADDRO_CONST | ADDRO REL
register N 0 N 0 0
register N + alL 0 N 0 1
constant N N /128 N % 128 1 0
constant N + aL N /128 N % 128 1 1
inline const X 1 X 0 0

Note that inline constants set the MSB of ADDRO and clear ADDRO_CONST.

8.4.2 Presubtract

Each RGB and Alpha instruction has a presubtract operation, whiclsalmesextra math on inoong data from
the first or from the first andecond sources. The available operations are:

US_SRCP_OP_BIAS 17 2*srcO
US SRCP_OP_SUB srcl- srcO
US SRCP_OP_ADD srcl + srcO
US_SRCP_OP_INV 1-srcO

The RGB presubtract happens on all three compsnemarallel. Thé\lpha presubtract is scalar.

© 2008 Advanced Micro Devices, Inc.
Proprietary 106

AMDH Revision 14 Octoberl3, 200

If any presubtract result is used in the instruction, and oneegbilrces being used in a presubtract is written in the
previous instruction, and the previous instruction is an ALU or output instruetid@P needs to be inserted

between the two instructions. Do this $stting the NOP flag in the previous instruction, so the NOP does not
consume an instruction slot. This allows the HW the extra cycle necessary to resolve the dependencies involved in
doing this extra matfthere are additional cases where NOP may need to be set, noted below).

NOP is never required if the previous instruction is a texture lookup.

8.4.3 Inputs

Each math operation has zero to three inputs. Each input can be configutedtta seurce and swizzle its
channels. There are fieltts configure 6 inputs per instruction: 3 for RGB and 3 for Alpha.in&struction can read
in at most 12 independent colour component8@B components and 3 alpha components).

8.4.3.1 Select

Each inputelects from srcO, srcl, src2, or the presubtract r@sutp”). One can conceive of the selects
assembling a<¢omponenvector as seen below. The swizzle selects (see next section) detetmdhef the four
values are chosen to actually take pathaxcomputations.

{rgb_addre>r
srcO ={ rgh_addré>g

{rgb_addrG>b

{ alpha_addre>a

{rgb_addrt>r
srcl ={rgb_addri>g

{rgb_addrt>b

{ alpha_addri>a

{rgb_addr2>r
src2 ={ rgh_adr2>g

{rgb_addr2>b

{ alpha_addrz>a

{rgb_srcp_result.r =rgb_srcp_op(rgb_adgrQrgb_addri>r)

srcp ={rgb_srcp_result.g =rgb_srcp_op(rgb_adeyOrgb_addri>g)
{rgb_srcp_result.b =rgb_srcp_opfrgaddro>b, rgb_addri>b)
{ alpha_srcp_result.a = alpha_srcp_op(alpha_addr@lpha_addrita)

The RGB and alpha units each take three operands, A, B, and C. opeeards are selected with the RGB_SEL_x
and ALPHA_SEL_x fields. Not#hat sc0, srcl and src2 are fetched from a combination of the RGRIphd

source addresse#f. the RGB unit swizzles in an alpha componé, alpha component will always come from
alpha_addr*. Similarly, ithe alpha unit swizzles in an RGB component,iit aways come fromrgb_addr*.

8.4.3.2 Swizzle

© 2008 Advanced Micro Devices, Inc.
Proprietary 107

AMDH Revision 14 Octoberl3, 200

Each component of each input can specify one of seven values.cdmapbnent can select R, G, B, or A from the
selected source, or it cahoose 0, 0.5, or 1. The RGB unit has 3 components, so there arsvitnae select fields
per input. The Alpha unit only has 1 swizslgect per input.

The RGB unit always uses the RGB selectors (RGB_SEL_x) and, excepiefease noted below, the red
(RED_SWIZ_x), green (GREEN_SWIZ_x), abtle (BLUE_SWIZ_x) swizzle set¢s. The alpha unit always uses
thealpha selectors (ALPHA_SEL_Xx) and the alpha (ALPHA SWIZ_Xx) swigelects.

DP4 is a special case in that it is an RGB operation which operatesamponents instead of 3. The fourth input

component is configuredith the Alpha's select (ALPHA_SEL_x) and swizzle (ALPHA_SWIZ_x). Thite only
case where the Alpha's swizzle has an effect on the @@Gputation's input.

8.4.3.3 Input Modifier

Each input has a modifier applied to it. The modifier can be one of:

US_ IMOD_OR No modification

US IMOD_NEG Negate

US IMOD_ABS Take absolute value

US IMOD_NAB Take negative of absolute value

8.4.4 The Operation

Following are the possible math operations the ALU can perform.tifee inputs are denoted by A, B, and C.

US_OP_RGB_86P/US_OP_ALPHA DP Get results from the other unit's unique ops. In the cq
of RGB_SOP, the result is replicated to all three
channels. RGB's unique ops all have scalar results, g
ALPHA_DP simply copies that scalar result to its alph
destination.

RGB_SOP is only valid if the alpha operation is a
transcendental operation: EX2, LN2, RCP, RSQ, SIN
COS. ALPHA_DP is only valid if the RGB operation
a dot product: DP3, DP4, D2A.

US_OP_RGB_MAD /US_OP_ALPHA_MAD A*B+C
US_OP_RGB_MIN /US_OP_ALPHA_NN A<B?A:B

Minimum of A and B.
US_OP_RGB_MAX/US_OP_ALPHA MAX A>=B?A:B

Maximum of A and B.
US_OP RGB CND/US OP_ALPHA CND C>05?A:B
US_OP_RGB_CMP /US_OP_ALPHA_CMP C>=07?A:B
US_OP_RGB_FRC/US_OP_ALPHA FRC A - floor(A)

floor(A) is the largest integer value less than or equal

A.
US_OP_RGB_MDH /US_OP_ALPHA MDH A*B+C

Where:

A is forced to topleft.srcO (source select and
swizzles ignored)

© 2008 Advanced Micro Devices, Inc.
Proprietary 108

AMDA1

Revision 14 Octoberl3, 200

C is forced to topright.srcO (source select and
swizzles ignored)

MDH operates on a quad of pixels at a time; Aand C
will be the same value for each pixel within a quad, a
the result will also be the same if B is a constant valu

Used to computes change in horizontal direction
between neighboring pixels. For example, totge
difference (topright.rQ topleft.r0)
set:

src0=r0 B=1
Note that input modifiers work on all three inputs.

If srcO is computed in the previous instruction, then a
NOP needs to be inserted between the two instructio
Do this by settinghte NOP flag in the previous
instruction. This is not required if the previous
instruction is a texture lookup.

US_OP_RGB_MDV /US_OP_ALPHA_MDV

A*B+C
Where:

A is forced to topleft.srcO (source select and
swizzles ignored)

C is forced to bottimleft.srcO (source select and
swizzles ignored)

MDYV operates on a quad of pixels at a time; A and C
will be the same value for each pixel within a quad, a
the result will also be the same if B is a constant valu

Used to computes change in verticakdtion between
neighboring pixels. For example, to get the differenc
(bottomleft.rO- topleft.r0) set:

srcO=r0 B=1
Note that input modifiers work on all three inputs.

If src0 is computed in the previous instruction, then a
NOP needs to beserted between the two instructiong
Do this by setting the NOP flag in the previous
instruction. This is not required if the previous
instruction is a texture lookup.

US_OP_RGB_DP3

A.r*B.r+ A.g*B.g + A.b*B.b
Results are broadcast to all 3 channels.
UseUS_OP_ALPHA_DP to get result into Alpha.

US_OP_RGB_DP4

A.r*B.r + A.g*B.g + Ab*B.b + A.a*B.a

Results are broadcast to all 3 channels.

Use US_OP_ALPHA DP to get result into Alpha.
Note that ".a" actually comes from the alpha instructiq
swizzle and sefd (see the section on swizzle above).

US_OP_RGB_D2A

ArB.rr+AgB.g+C.b
Results are broadcast to all 3 channels.
Use US_OP_ALPHA DP to get result into Alpha.

US_OP_ALPHA_EX2

2MA

© 2008 Advanced Micro Devices, Inc.
Proprietary

109

AMDH Revision 14 Octoberl3, 200

Use US OP_RGB_SOP to get result into RGB.

US OP_ALPHA LN2 log2(A)

Use US OP_RGB_SOP to get result into RGB.
US OP_ALPHA RCP 1/A

Use US OP_RGB_SOP to get result into RGB.
US_OP_ALPHA RSQ 1/ squareRoot(A)

Use US_OP_RGB_SOP to get result into RGB.

Note that the SM3 specification defines reciprocal
square root as 1 / sgreRoot(abs(A))- this can be
achieved by using the input modifier for A.

US_OP_ALPHA_SIN sin(A * 2pi)
Use US OP_RGB_SOP to get result into RGB.
US_OP_ALPHA_COS cos(A * 2pi)

Use US OP_RGB_SOP to get result into RGB.

8.4.5 Instruction modifiers

Each instuction can have an output modifier applied to its result:

US_OMOD_U1 Multiply by 1
US_OMOD_U2 Multiply by 2
UuS_OMOD_U4 Multiply by 4
Us_OMOD_U8 Multiply by 8
UsS_OMOD_D2 Divide by 2
US_OMOD_D4 Divide by 4
US_OMOD_D8 Divide by 8
US_OMOD_DISABLED No nmodification

Each instruction can also be optionally clamped to the range OThid happens after the above output modifier.

8.4.5.1 Disabling the output modifier

The multiply/divide output modifiers all convert NaN values insiandardized NaN (0x7ffffff and squash any
denormal values to plus minus zero. For most ALU operations this is acceptable, howaeM&V instruction
needs to preserve the source exactly. Forybis,can disable the output modifier for the MIN, MAX, CMP and
CND instructions. With US_OMOD_DISABLED, the result is not modifiedalt; the value is neither multigd
nor divided, and clamping is napplied.

This allows a MOV to be implemented using any of the followirggructions, with US_OMOD_DISABLED set:
MIN(src, src)
MAX(src, src)
CND(src, src, 0)
CMP(src, src, 0)

US_OMOD_DISABLED is not valid with any other ALU operation.

© 2008 Advanced Micro Devices, Inc.
Proprietary 110

AMDH Revision 14 Octoberl3, 200

8.4.6 Writemasks

There are a number of writemasks for each instruction:

RGB_WMASK 3 hits; write R,G,B to register destination.
ALPHA WMASK 1 bit; write A to register destination.
RGB_OMASK bits; write R,G,B to output or to predicate bits.
ALPHA OMASK 1 bit; write A to output or to predicate bits.
W_OMASK 1 bit; write A to W output.

WRITE_INACTIVE 1 bit; if set, ignores flow control pixel masken

writing. Affects ALU and texture instructions. If in
doubt, this bit should be cleared.

STAT_WE 4 bits; Mask R,G,B,A to increment sigrount
performance counter.
RGB_PRED_SEL 3 bits; Sets one of six modes that specify which of the

predicate bit(sto AND with the RGB writemask (and
output mask when applicable). One of:

NONE - no predication

RGBA - normal predication

RRRR- replicate R predicate bit

GGGG- replicate G predicate bit

BBBB - replicate B predicate bit

AAAA -replicate A predicate bit

RGB_PRED_INV 1 bit; Inverts selected RGB predicate bit(s). Should b
zero if RGB_PRED_SEL is set to NONE.

ALPHA PRED_SEL 3 bits; like RGB_PRED_SEL, but used to control
predication for the alpha unit's write mask.

ALPHA PRED_INV 1 bit; Inverts selectedha unit predicate bit. Should K
zero if ALPHA_PRED_SEL is set to NONE.

IGNORE_UNCOVERED 1 bit; if set, excludes uncovered pixels (outside triang

or killed via TEXKILL) from TEX lookups and flow
control decisions. Affects texture and flow control
instructions. If in doubt, this bit should be cleared.

ALU_WMASK 1 bit; if set, update the ALU result. Similar to the
predicate write mask.

Flow control instructions only have one predicate select, using@® PRED_SEL and RGB_PRED_INV fields.
ALU/Output instructions can ughfferent predicate selects for the RGB (vector) computation analpha (scalar)
computation. For texture instructions, the RGB reduit® the texture unit will be influenced by
RGB_PRED_SEL/RGB_PRED_IN\4nd the alpha redurom the texture unit will be influenced by the
ALPHA_PRED_SEL/ALPHA_PRED_INYV fields.

8.4.7 Destination

The destination address refers to a temporary register. The loop variable (aL) may optionally be added to the address
before writing. Thepredicate selédn RGB_PRED_SEL, RGB_PRED_INV, ALPHA_PRED_SEL, and
ALPHA_PRED_INV will be applied when writing to the destination.

© 2008 Advanced Micro Devices, Inc.
Proprietary 111

AMDH Revision 14 Octoberl3, 200

8.4.8 Output

With OUTPUT instructions, the TARGET field indicates where the regutie instruction should be written.
When in cached writemode (thedefault mode), the following options are available:

US RNDR _TGT_A Write to render target A register
US RNDR _TGT B Write to render target B register
US RNDR TGT _C Write to render target C register
US RNDR _TGT D Write to render target D regeést

The US_OUT_FMT_* registers describe render targets A through D reBlts are stored and the final value is
sent out when the prograerminates. If a channel in an output target is written moredhe@, the final value
written is what will besent out. The RGB aralpha unit may write to different targets in the same instruction.

The output may be predicated using PRED_SEL and PRED_INV.

8.4.9 Setting Predicate Bits

Each instruction may optionally set one or more predicate bits. iAktductions(as opposed to OUTPUT
instructions) interpret the OMASHelds as a predicate writemask. The TARGET field determines whsaettthe
bits associated with each channel:

US PRED OP_EQUAL Set when channel is zero

US PRED OP LESS Set when channel is negative
US PRED OP_GREATER EQUAL Set when channel is naregative
US PRED OP_NOT_EQUAL Set when channel is narero

The enumeration's names are based on the assumption that theypnithiely used after a subtraction of two
values. That's not the onpossible use, of course. The RGB and alpha units may use diffenetibns to set the
predicate in the same instruction.

In order to achieve the remaining common comparisons, <= and zaargmply reverse the order of the values
being subtracted, oeverseboth signs, and use the >= and < operations respectively.

You can simultaneously write to the predicate register and a tempeggsier, and you can perform a predicated
temporary register write ifou are also writing the predicate register.wdaer, the old valuef the predicate will
only be applied to the temporary register's wmiigsk; it will not be applied to the predicate write mask. In other
words, if the predicate is 0x7, your temporary write mask is Oxfyand predicate write mask Oxf, you will write
only RGB component® the temporary register, but you will write to all 4 predicate bits.

If the instruction result is clamped, the comparison happens qositelamped result. If output modifier is
disabled, denormals mde canpared-- denormals are equivalent to zero.

8.4.10 ALU Result

Every instruction has an "ALU result." In order to use it, an Ah&truction must write an ALU result, and a it must
be consumed bthe next flow control instruction. The ALU result is preservebssother ALU/texture

© 2008 Advanced Micro Devices, Inc.
Proprietary 112

AMDH Revision 14 Octoberl3, 200

instructions that do not write a new ALU result, BUNOT preserved across flow control instructions; therefore the
ALU result must be consumed by the first flow control statement aftewititten.

The ALU result is a singleitb The channel source for the ALU resiglselected by the ALU_RESULT_SEL field:

US_ALU_RESULT_SEL_RED
US_ALU_RESULT_SEL_ALPHA

How to interpret the floating point result to set the ALU result bspiscified by the ALU_RESULT_OP field,
which is simibr to the interpretation of the TARGET field for setting the predicate bits:

US ALU RESULT OP EQUAL Set when channel is zero

US ALU RESULT OP_LESS Set when channel is negative
US ALU RESULT OP_GREATER EQUAL Set when channel is naregative
US_ALU RESULT OP_NOT_EQUAL Set when channel is narero

The ALU instruction that updates the ALU result must set the ALU_WMAEK

If the instruction result is clamped, the comparison happens @otitelamped result. If output modifier is
disabled, denormalsay be compared- denormals are equivalent to zero.

8.5 Texture Instructions

Texture instructions are simpler than ALU or flow control instructiohexture instructions have one destination
temporary address, 1 tosBurce temporary addresses, a samfleahd an opcode and conthots specifying how
to lookup the texture. Most texture configuratisrhandled in the pesampler configuration.

As with ALU temporary addresses, the loop variable (aL) may be addey texture temporary address (source
and destination). Texture souraddresses allow arbitrary swizzles from RGBA to STRQ coordinate spatéhe
RGBA result from the texture unit may also be swizzled. Unlite ALU instructions, the texture swizzles cannot
be used to selecbnstant iputs (0, 0.5, 1). Texture source addresses always readtfeotmmporary registers; they
cannot read from the constant bank.

Texture instructions feature a texture semaphore mechanism to synchronize texture lookup with instructions using
the result oftie lookup. See below for more information.

You may choose to limit which channels of a texture lookup are whitarsing the write masks RGB_WMASK
and ALPHA_WMASK. These write masksay be predicated; the RGB results from the texture unit are prediicat
with RGB_PRED_SEL and RGB_PRED_INV, while the alpha result from the texture unit is predicated with
ALPHA PRED_SEL and ALPHA PRED_INV.

Texture instructions have an UNSCALED bit that to control whethetetktere coordinates are scaled by the
texture dmensions before lookupn typical usage, this bit is cleared for normal texture lookups wsupiply

coordinates in the range [0.0, 1.0], and set for texture lookbjh supply coordinates that are prescaled to the
texture dimensions.

8.5.1 Operations

There are currently fexture operations available.

© 2008 Advanced Micro Devices, Inc.
Proprietary 113

Revision 14 Octoberl3, 200

AMDA1

US TEX INST_NOP Perform no operation. The source addresses are igng
and nothing is written to the destination address. A
texture NOP may acquire the texture semaphore, so

NOP can be used for synchipation purposes.

US_TEX INST_LOOKUP A standard texture lookup. Reads the coordinates fro
SRC_ADDR and writes the results of the lookup to

DST_ADDR.

US_TEX INST KILL LT O Kill the pixel if any components in SRC_ADDR are le
than zero. Note that the goe swizzles are ignored in
this case; if you want to limit which channels are
examined, you may use the write masks in
WMASK_RGB, WMASK_ALPHA, and/or predication
Nothing is written to the destination address, but the

coverage mask may be updated.

US_TEX_INST_LOOKUP_PROJ Lookup a projected texture. Q is used for the project

divide.

US TEX INST_LOOKUP_LODBIAS Lookup a texture, biasing the LOD that is computed.

US_TEX_ INST_LOOKUP_LOD Lookup a texture, using the value specified in the Q

coordinate othe input as an explicit LOD value.

US_TEX_INST_LOOKUP_DXDY Lookup a texture, computing a LOD based on slopes
given. This is the only opcode that uses the DX_ADD
and DY_ADDR source addresses. These registers

contain the slope values the texture unitidtiaise when

determining the slope.

8.5.2 Semaphore

The semaphore is used to synchronize texture lookups witrstiiessequent use in the shader program.

Each texture instruction has a bit, TEX_SEM_ACQUIRE, specifying whéteaould hold the texture sephore

until the lookedup data comelack and is written to the destination temporary register. All shaskeuctions have
another semaphore bit, TEX_SEM_WAIT, that specifilxether to wait on the semaphore so its (dependent) source
data is ugo date You may take advantage of the texture semaphore to perforous independent computations
while waiting on the texture operatitm complete.

Hardware disallows more than one ACQUIRE operation at a time, so §etolEX_SEM_ACQURE on a lookup
you must also sesTEX_SEM_WAIT for that instruction. WAIT has no cost if there areontstanding ACQUIRE
operations. For an instruction with TEX_SEM_WAdhd TEX_SEM_ACQUIRE both set, the wait happens first.

There is only one texture semaphore, howevermay use it to protechultiple texture lookups, as long as the
lookups are themselves iqzendent.When a texture instruction sets TEX_SEM_ACQUIRE, the texiaie
ensures that that particular lookup, and all prior lookups, bargleted before releiag the semaphore. Therefore,
to protect severdexture lookups, you may set TEX_SEM_ACQUIRE only on the last teldokeip, and set
TEX_SEM_WAIT on the first instruction that uses anytleé results. This example illustrates the usage:

INSTRUCTION TEX_SEM_WAIT TEX_SEM_AQUIRE
0: r4 = TEXLD(SO, r1) 0 0
1: 15 = TEXLD(SL, r2) 0 0
2: 16 = TEXLD(S2, r3) 1 1

© 2008 Advanced Micro Devices, Inc.

Proprietary

114

AMDH Revision 14 Octoberl3, 200

3: ri=r1+1 0
4. r2=r2+1 0
5: r3=r3+1 0
6: rd=r4+1 1

In the above example, note that instruction 2 waits for the semafohensure the semaphore is available before
acquiring it.

Remember that the last instruction of the shader program magEXeSEM_WAIT, to ensure that the texture unit
is ready to proceghe next quad. Itis invalid to terminate the shader while hgltli@ texture semaphofom a
texture lookup

8.6 Flow Control

Each flow control instruction is essentially a conditional jurkfarious optional stack operations allow all the
different kinds otraditional flow control statements. In particular, flow trohinstructions allow branch statements
(if’else/endif blocks), loogtatements (with an optional loop register, alL), and subroutine €xtismizers may be
able to combine these basic types of instructiand, utilize more esoteric flow control modes

HW supports two flow control modes, "partial” and "full”. Partial flo@ntrol mode enables twice as many
contexts as full mode, but partfédw control mode has a limited nesting depth of branch statementdpasdot
support loops or subroutinellsa Partial flow control modshould be used unless the program requires branch
statements nestedore than 6 deep, or the program requires loops or subroutines fidfuttontrol mode is used,
then your shader must declare at leasttevoporary regiters (the US_PIXSIZE.PIXSIZE field must be greater than
or equal to 1). The US_FC_CTRL register, described below, contrdietiaviour of all flow control statements in
a program including whethéo use partial or full flow control mode.

See the Fiels section below for descriptions of fields that affectjtingp condition and the various flow control
stacks. Following that atle values of those fields for the most common types of flow conpexiations.

8.6.1 Dynamic Flow Control

As the US is a SIMI2ngine, applying the same instruction to a groupixéls, dynamic flow control must be
implemented with pixel masks. Ifgxel wants to take a jump because it failed an IF condition, baeighbors in
the pixel group don't want to jump, the pixel shbemasked off for a time until that branch of the IF statement is
completed. Only if all pixels fail the IF condition would the program couettrally be changed. Conversely, if
some pixels don't want to jump teabroutine, they must be masked aff the entire subroutine. Onlyrifone of

the pixels want to jump would the call be skipped. A bitakement within a loop masks off passing pixels until
the loop iscomplete, and the program counter is only changed if all pixels wannhjm

These piel masks are organized into stacks so flow control blockstrmayested. The operations on these stacks
are encoded in the flogontrol instructions as flags, instead of having one set of opeduehl hardwire the stack
behavior. This orthogonality alivs for morecreative control of the shader's behavior, and provides opportunity for
optimizations in shaders that use a lot of flow control.

Jump conditions can be based off of a boolean constant, the rethdtpEvious ALU operation, and/or a predie
bit. Booleans areonstant across all pixels, so dynamic flow control is only achiesédpredicates and
conditionals (ALU result). Any ALU instructiocan specify whether to write the ALU result and what channel
suppliesthe data for the resulfThe ALU result is only valid until anothél_U instruction writes to the result, or a

© 2008 Advanced Micro Devices, Inc.
Proprietary 115

AMDA1

Revision 14 Octoberl3, 200

flow control instruction isencountered. The predicate bits can be set anywhere and are prasevgsdlow

control instructions, but there are only 4 of them.

Flow control predication cannot be pehannel. One of the replicad@izzles must be used for predication of flow
control instructions (albther types of instructions can be predicated per channel). délietrol instructions use the
RGB_PRED_SEL and RGB_PREINV fields tocompute the predicate.

8.6.2 The Stacks, and Branch Counters

The HW maintains two separate stacks for flow control.

Address Stack

Purely an address stack. No other state is maintaineq
Popping the address stack overrides the instruction
addess field of the flow control instruction. The addre
stack will only be modified if the flow control
instruction decides to jump.

Loop Stack

Stores an internal iteration count, loop variable (aL),
a pixel mask per frame. The only way to access the
iteration count is with the LOOP/ENDLOOP and

REP/ENDREP operations. The only way to alter the 4
variable is with the LOOP/ENDLOOP ops. The only
way to read the alL variable is with relative addressing
The only way to alter the pixel mask is with the BREA
or CONTINUE instruction.

Each stack's size is dependent on whether the program is in paftitifflorv control mode. Stack overflows and
underflows producendefined behaviour in the hardware. The stack sizes are:

PARTIAL FULL
Loop stack n/a 4
Address stack n/a 4

The loop stack is maintained in such a way that an inner REP Wlb@ontinue to see the loop variable from an
outer LOOP block. NestddOOP blocks will shadow the loop variable. The loop variable ivalid if you are not

in at least one LOOP block.

In addition to the two stacks, hardware maintains an Active Bit &rdrech Counter for each pixel that indicate
whether the pixel is activand, if it was disabled by a conditional statement (if, else), howdefaye it can be

reactivated. If the active bit is unset, the pixehactive and the branch counter indicates the number of conditional

blocks we must exit before the pixel can be activated again.makamum value of this counter is dependent on
whether the progrars in partial or full flow control mode. The limits (which determine maximseife nesting

depth) are:

PARTIAL FULL
Branch counter 0.3 0..31
Maximum depth 4 32

© 2008 Advanced Micro Devices, Inc.

Proprietary

116

AMDH Revision 14 Octoberl3, 200

The branch counter can be incremented and decremented directly thgvaogntrol instriction based on whether
the pixel agrees with tjamp decision.Manipulating the branch counter may affect the adtitie Incrementing
the counter on an active pixel will disable fiigel by clearing the active bit, and set the branch counter to zero.
Decrementing the counter of an inactive pixel to a negative véllset the active bit, reactivating the pixel. The
branch counteis ignored in hardware while the active bit is set.

Pixels disabled by looping statements (BREAKLOOP, BREAKREP GONTINUE) are also tracked with "loop
inactive" counters, howevenlike the branch counter, the loop counters cannot be manipdiatetly.

Since only conditional (if, else) and loop statements maintain gutieé masks, to call a function based on a
condition requires thehader to use the branch counters on CALL and RETURN so theaptied mask will be
updated on the conditional call. If you knaead of time that *all* calls to a particular subroutine will be
unconditional calls, you can omit theanch counter manipulation ¢imat subroutine's return and on any calls to that
subroutine. Théenefit of this is unclear, unless you are nearing the upperdimttie branch counter.

Returns within dynamic branches and/or loops (nested in the sulgiare not supported. A return can be made
conditional (by incremenetinipe branch stack counter on stay), but the hardware does not sgbpianing within
other conditional blocks that might partially masklita branch is entirely static (based a constant boolean), you
mayput a return within a branch (just get the branch counter decreigktt This cannot be done inside loops,
however.

8.6.3 Fields

8.6.3.1 Fields cortrolling conditions on the jump

JUMP_FUNC | 2x2x2 table indicating when to jump

Bit 0 = Jump when (lalu_result && !predicate && 'boolean).
Bit 1 = Jump when (lalu_result && !predicate && boolean).
Bit 2 = Jump when (lalu_result && predicate && 'boolean).
Bit 3 = Jump when (lalu_result && predicate && boolean).
Bit 4 = Jump when (la_result && !predicate && !boolean).
Bit 5 = Jump when (‘alu_result && !predicate && boolean).
Bit 6 = Jump when (‘alu_result && predicate && 'boolean).
Bit 7 = Jump when (alu_result && predicate && boolean).

Common JUMP_FUNC values:

0x00 = Never jump

0xOf = Jump iff alu_result is false.

0x33 = Jump iff predicate is false.

0x55 = Jump iff boolean is false.

Oxaa = Jump iff boolean is true.

Oxcc = Jump iff predicate is true.

0xf0 = Jump iff alu_result is true.

Oxff = Always jump

JUMP_ANY How to treat partially passing groups of pixels
false = Don't jump unless all pixels want to jump.

© 2008 Advanced Micro Devices, Inc.
Proprietary 117

AMDH Revision 14 Octoberl3, 200

true | = Jump if at least one active pixel wants to jump. |

When JUMP_ANY is false, the instruction behaves like a univepsattifier, and will decide jap if there are no
active pixels.When JUMP_ANY is true, the instruction behaves like an existequehtifier, and will never decide
to jump if there are no actiyiixels. Looping statements may override the jump decision mattelpixels based
on theloop counter.

8.6.3.2 Fields contolling optional stack operation

OP Loop Stack Operations

US_FC_OP_JUMP None

US_FC_OP_LOOP Initialize counter and aL, and push loop stack if stay
US_FC_OP_ENDLOOP Increment counter and alL if jump, else pop loop stac
US FC_®_REP Initialize counter, and push loop stack if stay
US_FC_OP_ENDREP Increment counter if jump, else pop loop stack

US FC_OP_BREAKLOOP Pop loop stack if jump

US_FC_OP_BREAKREP Pop loop stack if jump

US FC OP_CONTINUE Disable pixels until end of currefoop

You should use US_FC_OP_BREAKLOORP if the innermost looping constru€@@P, and
US_FC_OP_BREAKREP if the innermost looping construct is REP.

A OP Address Stack Operations

US FC_A_OP_NONE = None

US_FC_A OP_POP = Pop address stack if jump (ovides JUMP_ADDR
given in instruction)

US FC_A OP_PUSH = Push address stack if jump

B_OPO Branch stack Operations if stay

US FC_B_OP_NONE = None

US_FC_B_OP_DECR = Decrement branch counter for inactive pixels by
amount in B_POP_CNT. Activate pixels whigo
negative.

US_FC_B_OP_INCR = Increment branch counter for inactive pixels by 1.

Deactivate pixels which disagree with the jump decis
(by deciding to jump) and set their branch counter to

B OP1 Branch stack Operations if jump

US_FC B OP_NONE = None

US_FC_B_OP_DECR = Decrement branch counter for inactive pixels by
amount in B_POP_CNT. Activate pixels which go
negative.

US_FC_B_OP_INCR = Increment branch counter for inactive pixels by 1.

Deactivate pixels which disagree with the jump decis
(by deciding not to jump) and set their branch counte
0.

B _POP_CNT Branch Stack Pop Count

How much to decrement the branch counters by when appropriate B_OP* field says to decrement.

© 2008 Advanced Micro Devices, Inc.
Proprietary 118

AMDH Revision 14 Octoberl3, 200

B ELSE Branch Stack Else
false = None
true = Activate pixels wose branch count is zero (pixels

deactivated by the innermost conditional block), and
deactivate all pixels that were active.

Special Cases:

1 When the iteration count is zero, LOOP/REP ignore JUMP_FUNC and jump.

1 When the iteration count is zero, ENDLO@BRDREP ignore JUMP_FUNC amtbn't jump.

1 Any pixels deactivated by B_ELSE "want to jump" regardlesifP_FUNC.

1 Any pixels deactivated by a branching statement (if, else)iniibit a decision to jump by a BREAK or
CONTINUE statement.

1 Any pixels deactiated by a CONTINUE statement will inhibitdecision to jump by a BREAK statement;
they will not inhibita decision to jump by another CONTINUE statement.

1 Pixels deactivated by other flow control are indifferent todéeision to jump by a BREAK or
CONTINUE statement.

8.6.3.3 Address Fields

BOOL ADDR Which of 32 constant booleans to use for jump condition

INT_ADDR Which of 32 constant integers to use for loop initialization (the red channel is used fo
iteration count, green for aL initialization, and blue dibrincrement)

JUMP_ADDR Which instruction to jump to if conditions pass

JUMP_GLOBAL Whether JUMP_ADDR is global, or if OFFSET ADDR should be added to JUMP_AL

8.6.3.4 Global Configuration

FULL FC _EN Whether to enable full flow control support.
false = Noloops or calls, limited branching. Better performance.
true = All flow control functionality enabled.

8.6.4 Common Flow Control Statements

JUMP_FUNC[JUMP_ANY | OP A_OP [B_OPO [B_OP1 [B_POP_CNT [B_ELSE | JUMP_ADDR
IFb 0x55 0 JUMP NONE | NONE | NONE [0 0 ELSE+1
ELSE Oxff 0 JUMP NONE | NONE | NONE [0 0 ENDIF
ENDIF
IFp 0x33 0 JUMP NONE [INCR [INCR [0 0 ELSE+1
ELSE 0x00 0 JUMP NONE | NONE | DECR [1 1 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR | NONE | 1 0 0
IFc 0xOf 0 JUMP NONE [INCR _[INCR [0 0 ELSE+1
ELSE 0x00 0 JUMP NONE | NONE | DECR [1 1 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR | NONE [1 0 0
IFb [0x55 [0 [Jump [NONE [NONE [NONE [0 [0 | ENDIF

© 2008 Advanced Micro Devices, Inc.
Proprietary 119

AMDH Revision 14 Octoberl3, 200

ENDIF | | | I | | | I I

IF p 0x33 0 JUMP NONE | INCR NONE 0 0 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR NONE | 1 0 0

IFc 0x0f 0 JUMP NONE | INCR NONE | O 0 ENDIF+1
ENDIF 0x00 1 JUMP NONE | DECR NONE 1 0 0

LOOP 0x00 0 LOOP NONE | NONE | NONE | O 0 ENDLOOP+1
ENDLOOP Oxff 1 ENDLOOP NONE | NONE NONE 0 0 LOOP+1
REP 0x00 0 REP NONE | NONE NONE 0 0 ENDREP+1
ENDREP Oxff 1 ENDREP NONE | NONE | NONE | O 0 REP+1
BREAK Oxff 0 BREAK NONE | NONE DECR n 0 END+1
BREAK b Oxaa 0 BREAK NONE | NONE | DECR n 0 END+1
BREAK p Oxcc 0 BREAK NONE | NONE DECR n 0 END+1
BREAK ¢ 0xf0 0 BREAK NONE | NONE DECR n 0 END+1
CONTINUE | Oxff 0 CONTINUE | NONE | NONE DECR n 0 END
CONTINUE | Oxaa 0 CONTINUE | NONE | NONE DECR n 0 END

b

CONTINUE | Oxcc 0 CONTIUNE | NONE | NONE DECR n 0 END

p

CONTINUE | 0xfO 0 CONTINUE | NONE | NONE DECR n 0 END

c

CALL Oxff 1 JUMP PUSH | NONE INCR 0 0 Subroutine
CALL b Oxaa 1 JUMP PUSH | NONE INCR 0 0 Subroutine
CALL p Oxcc 1 JUMP PUSH NONE INCR 0 0 Subrautine
CALL c 0xf0 1 JUMP PUSH | NONE INCR 0 0 Subroutine
RETURN Oxff 0 JUMP POP NONE DECR 1 0 0

* n indicates how many branch stack frames the BREAK is inside vitikicurrent loop.
* Lines with no fields filled out indicate no FC instructiomiscesary in that spot.

8.6.5 Optimizations

Clearly, not all the possible combinations are explored abovefl@ikility of the flow control instruction allows
for more creativélow control operations, or (more likely) optimizations.

One of the easiest optimizans makes use of the B_POP_CNT to mergesecutive ENDIF statements:

JUMP_FUNC [JUMP_ANY | OP A OP [B OP0O [B_OP1 [B POP_CNT [B_ELSE [JUMP_ADDR
IF ¢ 0x0f 0 JUMP NONE | INCR NONE |0 0 ENDIF_0+1
[€]
IF ¢ | oxof [0 [JUMP [NONE JINCR [NONE [O [0 | ENDIF_1+1
[€]
IF ¢ | oxof [0 [JUMP [NONE JINCR [NONE JO [0 | ENDIF_2+1
[e]
ENDIF 0x00 1 JUMP NONE | DECR [NONE [1 0 0
ENDIF 0x00 1 JUMP NONE | DECR [NONE [1 0 0
ENDIF 0x00 1 JUMP NONE | DECR | NONE |1 0 0
Becomes

JUMP_FUNC [JUMP_ANY | OP A OP [B OP0O [B_OP1 [B POP_CNT [B_ELSE [JUMP_ADDR
IF ¢ 0x0f 0 JUMP NONE [INCR NONE |0 0 ENDIF+1

© 2008 Advanced Micro Devices, Inc.
Proprietary 120

AMDH Revision 14 Octoberl3, 200

[€]

IF c | oxof [0 [JuMP [NONE [INCR [DECR 1 [0 | ENDIF+1
[€]

IFc [oxOf [0 [JUMP [NONE [INCR [DECR [2 [0 | ENDIF+1
[€]

ENDIF

ENDIF

ENDIF 0x00 1 JUMP NONE | DECR | NONE |3 0 0

8.6.6 LAST Bit

The LAST bitin the US_CMN_INST instetion word allows shaders terminate before reaching the address
indicated byUS_CODE_SIZE.END_ADDR. The LAST bit can be indicated for imsyruction type. Any active
pixel for an instruction of any typ@&C, ALU, OUTPUT or TEX) marked "last" will beonsidered "done" fahat
instruction and all future instructions that the shader neghtute for that thread. Future instructions may or may
not beexecuted, according to the hardware implementation.

In the R5xx hardware implementation, when all [gxare "done” in ghread and we hit an OUTPUT instruction
that is marked as "last" (amés a texture semaphore waitthis is required), we will stop thread, even if this
isn't the instruction specified by END_ADDRIso, pixels that are "done" have the same as pixels considered
"inactive" when encountering flow control instructions, meaningabde that would have been skipped over if all
pixels were "inactiveWwould also be skipped over if the only pixels marked as "active" alscemarked &"done."

8.7 Floating Point Issues

The US is designed to be compliant with the Shader Model 3, whicmdbefficially support IEEE special values
(denormal, infinity, NaN)and allows for leniency in various corner cases.

The US strives to provide a neocomplete IEEE floating point implementation. US supports the IEE#kt32
floating point format, with 23 bitmantissa, 8 bits biased exponent (bias 127), and 1 bit sign. Thls®Supports
the special IEEE values (denormal, infinity, NaN), there #ae some important caveats in the implementation
which are notedbelow. There is no distinction between an sNaN and a qNaN.

8.7.1 Deviations from |IEEE

The most pervasive caveat is that denormals are flushed to an appropriately signed zero throughouelssSnorher
gradual underflow, andlentities are not preserved for denormal values. This will be apparestnparison
operations where a denormal is treated as equivaleetto

Also pervasive, the internal rounding mode is not configurable amat iyact to the IEEE standard. It could best
be said that rounding imndom; operations in and near US round with differing standards isridfg¢asible to
specify a uniform rounding mode at this stagel@dign. Most ALU operations are accurate to withie bit on
eachinput; transcendental functions have larger tolerances.

The lack of separable multiply and add instructions has consequenaasiding and sign preservation; when

using MAD to perform only a multiply or addition, keep in mind that theeobperation may influendbe result

despite apparent identities. For example, the obvious instructions to use for moving a value from one register to
another bothutilize MAD, either with the additive identity "0 * O + r1", or a combination of additixd

multiplicative identities, "rO * 1 + 0".Neither these instructions will correctly cof.0, because the add=annot
generate0.0 except with two negative inputs. In this caseose accurate move instruction would be * 0 + r1".

(the ideaMOV instruction is described below).

© 2008 Advanced Micro Devices, Inc.
Proprietary 121

AMDH Revision 14 Octoberl3, 200

US only supports comparisons against zero (predication, ALU resul€i®] and +0.5 (CND), and this has
consequences for implementing@neral compare function with special values. It is tempting to implement a
gereral comparison between values A and B by subtractingethsts, but this will not have the desired effect for
special valuesin IEEE, an infinite value is equivalent to itself, but NaN is negrivalent to NaN. Yet (infinity
infinity) = (NaN - NaN) = NaN, andhe results are indistinguishable. The limited operator set furttimplicates
issues, since (A > B) is not equivalent to (A <= B) wiegther input is NaN.

The behaviour for CMP and CND is described below. When using the predicateriscomp@erators, the
following hold for special values:

VALUE X<0 X>=0 X==0 X1=0
+0.0 0 1 1 0
-0.0 0 1 1 0
+Inf 0 1 0 1
-Inf 1 0 0 1
NaN 0 0 0 1

* Denormals compare as equivalent to zero. Note that the only deyamal may be involved in a coangson
for predicate/alu result i§the output modifier is disabled with US_OMOD_DISABLED.

8.7.2 ALU Non-Transcendental Floating Point

Nontranscendental ALU operations maintain extra precision to represemutations where an intermediate result
exceeddEEE's finite range For example, if a MAD generates a result outside the finite rangé&dooutput
modifier brings the value back into range, the ALU will generate a finite value, not infinity.

The ALU accepts denormal values, but denormals aredftlhzeropreserving sign. It is possible for a
multiplicative output modifieto bring a denormal intermediate result into the normal range; indhées the ALU
will generate a normal nonzero value.

The ALU MAD operation, which many ALU operationseeased on, followstandard IEEE rules when handling
special input values, for example:

OPERATION RESULT NOTE

X * NaN NaN Xis any value
0.0 * Inf NaN

Inf * Inf Inf

Inf * -Inf -Inf

0.0*-0.0 -0.0

X + NaN NaN X is any value
Inf + -Inf NaN

Inf + Inf Inf

Inf +-1.0 Inf

0.0 +-0.0 0.0

-0.0 +-0.0 -0.0

Dot products may lose precision in cases where the values to bediffielegreatly in magnitude. For example, if
the two largest valugs be added cancel exactly, and the darges value has a magnitudenaller by a factor of

© 2008 Advanced Micro Devices, Inc.
Proprietary 122

Revision 14 Octoberl3, 200

AMDA1

2725 or more, US will emit +0.0 rather than e of the two remaining components. IEEE is silent on the
behaviorof such fused operations, and it seems unlikely that this condlitibmanifest very often

MIN and MAX operations return the second argument if either inpMals (this is consistent with IEEE and SM3
specifications); infinitevalues compare as usual. If both inputs afe0G; MIN and MAX will return the second
input (consistent with IEEEral the SM3 sped) asa result, MIN(+0,0) ==-0, and MIN¢0, +0) == +0.

CND and CMP operations return the second argument if either injaNsinfinite values compare as usual. As
with the predicate compaoperators, +0.0 an®.0 are both "equatb 0.

MIN, MAX, CND, and CMP are guaranteed to return one of theirfiivetarguments. If you use
US_OMOD_DISABLED as well, then you wiflet abit-exact representation of one of the first two arguments.

ALU operations usually enable the output modjfighich in turnstandardizes NaN values and flushes denormal
results to zero. MOV instruction which preserves the source bits may be impleméntedtting
US_OMOD_DISABLED for the instruction and using thiX(src, src) instruction. The output modificannot be
disabledfor a saturated MOV (MOV with clamping enabled).

8.7.3 ALU Transcendental Fbating Point

In US, transcendental operations are EX2, LN2, RCP, RSQ, SIN, andregdsmatically speaking, one of these
functions does not belong).ranscendetals do not maintain extra internal precision; as a raéthie result of the
transcendental operation exceeds the IEEE fraitge, the ALU will generate infinity even if the output modifier
would bring the result back into range. Similarly if tlesult is denormathe ALU will generate a pure zero
(preserving sign) even if the outpubdifier would bring the result back into the normal range.

Special values are computed as shown in the following table:

INPUT EX2 LN2 RCP RSQ SIN COS
+0.0 +1.0 -Inf +Inf +Inf +0.0 +1.0
-0.0 +1.0 -Inf -Inf +Inf * -0.0 +1.0
+Inf +Inf +Inf +0.0 +0.0 NaN NaN
-Inf +0.0 NaN -0.0 NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN

* For RSQ, recall that the square root occurs first. IEEE spesiiig§0.0)-> -0.0; the US dviates from this,
however this doesot affect SM3 compliance since RSQ is always used with the absaluteinput modifier for
SM3 shaders.

8.7.4 Texture Floating Point

Projected and cubemapped texture coordinates are processed inttoek)isefore beig sent to the texture unit.
The texture unit doesot accept NaN, so NaN coordinates are converted to +infinity bleéimg sent to the texture
unit. As with the ALU, denormal inputs adénormal results are converted to pure zero, preserving sign.

Themultiplier used for projection and cubemapping does not follEEE rules when handling special values. This
will become apparerdnly when you attempt to project or cubemap a coordinate that coataingnite or NaN
component.

© 2008 Advanced Micro Devices, Inc.
Proprietary 123

AMDH Revision 14 Octoberl3, 200

You should use cautiomhen generating very large values for useawdinates in a texture lookup. These values
may generate infinitgalues when scaled by the texture dimensions, projected, or cubemapped.

8.7.5 Legacy multiply behaviour

By default multiplication by zero is IEEcompliant for any ALU instruction. To support legacy (SM1.x) shaders
which did not have an IEEEompliant multiplier, set
US_CONFIG.ZERO_TIMES_ANYTHING_EQUALS_ZERGSetting this bit will cause the multiplier used by
MAD, dot productsMDH and MDV to teat "+0 * x == +0" for all values x. Note that IEEteviates from this
behaviour when x is infinity or NaN. Modern shadgsuld not set this bit.

8.8 Writing to US Registers

The US configuration, integer constant, and boolean constant registelogwritten to directly. However due to
addressing limitationslsewhere in the pipe, the US instruction and ALU constant regéster®t be written
directly; they must be programmed via a vector mechanism provided in the GA block. You write to thenvector
two partsifirst, you program the write destination in GA_US_VECTOR_INDEX, then write data to
GA_US_VECTOR_DATA until you have set all the valugsnterest.

8.8.1 Writing instructions

To write one or more shader instructions, set GA_US_VECTOR_INDERHt0 GA_US_VECTOR_INST and
GA_US_VECTOR_INDEX.INDEX to the address of tfiest shader instruction you want to write (from 0 to 511).
Then writeeach instruction register to GA_US_VECTOR_DATA (usually, a totalwfis per instruction), in the
following order:

ALU/OUTPUT TEX FC
0: US CMN_INST US CMN_INST US CMN_INST
1 US ALU RGB_ADDR US TEX INST 0
2: US ALU ALPHA ADDR | US TEX ADDR US FC_INST
3: US ALU RGB_INST US TEX ADDR DXDY | US FC ADDR
4; US ALU ALPHA INST |0 0
5: US ALU RGBA INST 0 0
A few notes:

1 If you are writing an FC or TEX instruction, you may need to thedvector with zeros; note that a zero
dword must be written ithe middle of the FC instruction.

1 You can write to multiple instructions without updating the ind&fter you write 6values to
GA_US_VECTOR_DATA, the GA will automatally increment the instruction index. The index wraps at
512.

1 If the last instruction you write to is a TEX or FC instructigoy do not need to write the last two zero
dwords that are usddr padding.

1 Similarly, if you do not need to update all instruction regisferghe last instruction you write, you do not
need to write theegisters that follow it.

1 You should always write to GA_US_VECTOR_INDEX before writingegjuence of instructions, to
ensurelie GA is setup appropriately.

© 2008 Advanced Micro Devices, Inc.
Proprietary 124

AMDH Revision 14 Octoberl3, 200

8.8.2 Writing ALU constants

To write one or more ALU constants, set GA_US VECTOR_INDEX.TYPGAoUS VECTOR_CONST and
GA _US VECTOR_INDEX.INDEX to the addressthie first constant you want to write (from 0 to 255). Then
write each constant register to GA_US_VECTOR_DATA (usually, a totd wfites per constant), in the following
order:

0: US ALU CONST R
1: US ALU CONST G
2: US ALU CONST B
3: US ALU CONST A
A few notes:

1 You can write to multiple constants without updatihg index After you write 4 values to
GA_US_VECTOR_DATA, the GA will automatically increment the constant index.

91 If you do not need to update all components of the last consiantrite, you do not need to write the
components that followt.

1 You shouldalways write to GA_US_VECTOR_INDEX before writingsaquence of constants, to ensure
the GA is setup appropriately.

© 2008 Advanced Micro Devices, Inc.
Proprietary 125

AMDH Revision 14 Octoberl3, 200

9. Hiz

9.1 Introduction

The R5xxHizZ (Hierarchical Z) unit performs a coarse z occlusion test on a tile of pixels to generate a mask
indicatingwhether a set of quads within the tile is potentially visible. The Scan Converter (SC) block uses this mask
to determine which quads will be passed on to the Rasterizer (RS) and which will be pruned. In this manner, HiZ
provides an earkput mechanism fodropping quads.

This section presents an overview of the operation of the HiZ unit and a guide on how to program it.

9.2 Enabling HiZ

HiZ operation must be enabled in both the SC and ZB. It is enabled or disabled in the SC by setting the HZ_EN field
in the £_HYPERZ_EN field to 1 or 0. Similarly, it is enabled or disabled in the ZB by setting the HIZ_ENABLE
field in the ZB_BW_CNTL register to 1 or 0.

9.3 Configuring HiZ

The following registers must be set to configure the HiZ unit for operation.

The ZB_HIZ_PIT® register specifies the pitch of the HiZ buffer in HiZ RAM. The host writes the pitch in pixels.
The register interprets bits [13:4] as the 16 padadned HIZ_PITCH field. This field is used as pitch_mux in
formula 1 in section 2.2, which calculates D/ORD address in HiZ RAM where z floor updates are written
during z cache line evictions.

The ZB_HIZ_OFFSET register specifies a base offset into HiZ RAM. Bits [16:2] of this register are the DWORD
aligned HIZ_OFFSET field.

The HZ_MAX field in the SC_HYERZ_EN register specifies whether the minimum or maximum z in the 8x8 tile

is interpreted as the closest z whose floor is sent to the HiZ unit. The definition of which is the closest depends on
the sense of the z function. For instance, if the z fun@idfESS, the minimum value is the closest. The

programmer should set this field according to the z comparison function that is set in the ZFUNC field of the
ZB_ZSTENCILCNTL register. Setting SC_HYPERZ_EN.HZ_MAX to 0 sends the floor of the minimum, and
settng it to 1 sends the floor of the maximum.

The HIZ_MIN field of the ZB_BW_CNTL register specifies whether the HiZ unit updates the HiZ RAM with the
floor of the minimum or maximum z value during z cache line evictions. As with the SC_HYPERZ_EN.HZ_MAX
field, this field is also dependant on the z function set in the ZB_ZSTENCILCNTL. Setting HIZ_MIN to 0 updates
HiZ RAM with the floor of the maximum z, and 1 updates with the floor of the minimum.

The following table shows how the SC_HYPERZ_EN.HZ_MAX and BB/_CNTL. HIZ_MIN fields should be
set according to ZFUNC. It also shows what the HiZ RAM should be initially cleared to, and what action the HiZ

© 2008 Advanced Micro Devices, Inc.
Proprietary 126

AMDH Revision 14 Octoberl3, 200

comparison takes. The é6Z_ MI NMAX® column corresponds to
writetoHZ (X, Y)® corresponds to the ZB_BW_CNTL. HI Z_MIN se

ZFUNC HiZ Clear Z_MINMAX HZ 2" Level Z Function ZB write to HIZ(X,Y)
Value
0 - Never Donét C| Min(Z0, 71, Prune the Block Donét care
Z2)
1-Less Floor(Z_Clear) | Min(Z0, 21, If (floor(Z_MINMAX) > Floor(Maximum(Z))
Z2) HiZ(X,Y))

Prune the Block

Else

Pass the Block

2-Less or Equal | Floor(Z_Clear) | Min(Z0, Z1, If (floor(Z_MINMAX) > Floor(Maximum(Z))
Z2) HiZ(X,Y))

Prune the Block
Else

Pass the Block

3- Equal Donét C| Min(Z0, 21, Pass the Block Donbét <care
Z2)

4 - Greater or Floor(Z_Clear) | Max(Z0, Z1, If (floor(Z_MINMAX) < Floor(Minimum(2))

Equal Z2) HiZ(X,Y))

Prune the Block

Else

Pass the Block

5- Greater Than | Floor(Z_Clear) | Max(Z0, Z1, If (floor(Z_MINMAX) < Floor(Minimum(2))
Z2) HiZ(X,Y))

Prune the Block
Else

Pass the Block

© 2008 Advanced Micro Devices, Inc.
Proprietary 127

AMDH Revision 14

Octoberl3, 200

6 - Not Equal Donét C| Max(Z0, Z1, Pass the Block Donét Car e
Z2)

7 - Always Donét C| Max(Z0, Z1, Pass the Block Donét Car e
Z2)

9.4 HiZ Clear with PM4 Packet

The most efficient manner fardriver to clear HiZ RAM is to use the 3D_CLEAR_HIZ Typ&M4 packet. The

3D_CLEAR_HIZ packet is described below.

3D_CLEAR_HIZ

Functionality

Clear HIZ RAM.
Format
Ordinal Field Name Description
1 [HEADER] Header of the packet
2 START Start
3 COUNT[13:0] Count[13:0]i Maximum is Ox3FFF.
4 CLEAR_VALUE The value to write into the HIZ RAM.

9.5 Example: Putting it All Together

Here is a simple example that demonstrates typical steps in setting up the HiZ unit:

/I enable z buffering

regwrite (ZB_CNTL, Z_ENABLE, 1);

/I set the ZFUNC to LESS

regwrite (ZB_ZSTENCILCNTL, ZFUNC, 1); // 1 = LESS

/I enable HiZ in the SC

regwrite (SC_HYPERZ_EN, HZ_EN, 1);

/I enable HiZ in the ZB

regwrite (ZB_BW_CNTL, HZ_EN, 1);

/l set HZ_MAX in SC_HYPERZ_EN to MIN for ZFUNC=LESS
regwrite (SC_HYPERZ_EN, HZ_MAX, 0);

/l set HIZ_MIN in ZB_BW_CNTL to MAX for ZFUNC=LESS
regwrite (ZB_BW_CNTL, HZ_MIN, 0);

/I set HIZ_OFFSET to O

regwrite (ZB_HIZ_OFFSET, HIZ_OFFSET, 0);

/I set HIZ_PITCH to 1024

regwrite (ZB_HIZ_PITCH, HIZ_PITCH, 1024 >> 4) ;
/I initialize the HiZ RAM to a clear value of Oxff

/I for all the bytes in a 1024x768 area:

/I set initial write index. It will auto - increment
/I after each write to ZB_HIZ_DWORD

regwrite (ZB_HIZ_WINDEX, HIZ_WINDEX, 0);

© 2008 Advanced Micro Devices, Inc.
Proprietary

128

AMDH Revision 14

Octoberl3, 200

/I write floors for one 8x8 tile with each DWORD.
/I this example assumes a dual - pipeline configuration.
/I since half the screen is owned by the second pipeline,

/I and host writes are broadcast to both pipeline RAMS

/I at the same address, we write the clear DWORD for

/ half of 1024>> 3. Inasingle - pipeline configuration,
/I we would write the clear DWORD for 1024>>3.

for (inty = 0; y < (768 >> 3); y++)

{

for (int x = 0; X < ((1024 >> 3)>1); x++)

{
regwrite (ZB_HIZ_DWORD, HIZ_DATA, OXxffffffffL);
}
}
/I read back a DWORD in pipe line 1 at address O

regwrite (SU_REG_DEST, SELECT, 1);
regwrite (ZB_HIZ_RINDEX, 0);
DWORD dwGetHizZValue = regread (ZB_HIZ_DWORD);

9.6 State Changes That Invalidate HiZ

This section describes the conditions that invalidate HiZ RAM and those that have ho effec

Disabling Z testing or disabling Z writes does not invalidate HiZ RAM, so no special action is required in these
cases. Because both of these states result in no new z data being written to the z buffer, there are no z cache
evictions that update th@witents of HiZ RAM. Therefore, HiZ RAM is preserved and can continue to be used after

Z buffering or Z writes are renabled.

Certain ZFUNC transitions can invalidate the contents of HiZ RAM. As a general rule, the safest approach when
ZFUNC is changed i disable HiZ testing until the contents of HiZ RAM are reset, e.g. until the start of the next
frame where HiZ RAM is rénitialised. Having said that, there are transitions where either HiZ does not need to be

disabled, or it may be +enabled beforente end of the frame:

1) HiZ does not need to be turned off when transitioning back and forth between LESS and LESSEQUAL.
HiZ must be disabled when transitioning from either LESS or LESSEQUAL to EQUAL, but may be re

enabled when transitioning back from EQUALULESS or LESSEQUAL.

2) HizZ does not need to be turned off when transitioning back and forth between GREATER and
GREATEREQUAL. HiZ must be disabled when transitioning from either GREATER or
GREATEREQUAL to EQUAL, but may be fenabled when transitioning baftkm EQUAL to

GREATER or GREATEREQUAL.

All other transitions invalidate the contents of HiZ RAM with respect to the new sense of the z comparison.

© 2008 Advanced Micro Devices, Inc.
Proprietary

129

AMDH Revision 14 Octoberl3, 200

10. Driver notes
10.1 R5xx Changes

10.1.1 PS3.0

R520 TX supports pixel shader model 3.0. Support febiBEEEE input cordinates from the shader and-3ig
IEEE output colors to the shader. Support for per pixel (or per quad) TEXLDB, TEXLDL, and TEXLDD
instructions.

10.1.2 Filter4

R520 can support limited Filter4 filtering. The kernel is 4x4 symmetric and separable with &6.pHaes kernel

weight precision is S,1.9. There is one global kernel shared by all textures. The kernel is loaded using the global

TX_FILTERA4 register. Filter4 can be enabled per texture using the MAG and MIN filter registers. Only one of four
8-bit comporents can have Filter4 applied at a time. That component is selected using FORMAT2.SEL_FILTERA4.

10.1.3 Maximum Image Extents
R520 supports up to 4K texels in width, height, or depth.

10.1.4 Trilinear Interpolation Precision
R520 supports-Bits of trilinear precisionR420 supported-bits.

10.1.5 Image Formats
New image formats over R420 : ATI1N, 10, 10_10, 10 _10 10 10, 1,1 REVERSED

10.1.6 Border Color

Added border color support for FAT formats, specifically 16_16_16_16, 16f 16f 16f 16f, 32f 32f,
32f _32f 32f 32f. Border colds now supported for all image formats.

10.1.7 Non-Square mipmaps with border color

Added mode register FILTER1.BORDER_FIX which when asserted will stop right shifting the texture coordinate
once the image size has been right shifted to one. BORDER_FIX adyg e be asserted when the clamp mode is
a border mode and mipmapping is enabled and the mipmap-sqoaine. However it should be safe to assert
BORDER_FIX anytime.

10.1.8 POW2FIX2FLT

Added mode register FORMAT2.POW2FIX2FLT which when asserted the TX witledlyy pow?2 instead of
pow2-1 when doing fix2float conversion of the filtered texture color.

10.1.9 GA IDLE

R520 has a new status register called GA_IDLE which can be used to get information abaurtchbakgs. To
read this register, the following procedunay be used:

1 Read RBBM_STATUS to make sure the HW is hung. If GA bit is busy, this may indicate a
backend hang.
1 Write 0x32005 to the RBBM_SOFTRESET register. This is to reset GA, CP and VAP.

© 2008 Advanced Micro Devices, Inc.
Proprietary 130

AMDH Revision 14 Octoberl3, 200

Read RBBM_SOFTRESET to make sure the write went through.

Write 0 to RBBM_SOFTRESET. This is necessary to get VAP to go idle.

RBBM_STATUS should now show that VAP and CP are idle but GA still busy. If GA is not busy,

then GA_IDLE should be readable at this point.

If GA was still hung, write 0x200 to GA_SOFTRESET

NowGA_ | DLE can be read. See the register spec for
indicates an idle unit.

=A =4 =9

=A =

10.1.10 HDP surface0 upper boud 64 byte alignment requirement

HDP surface 0 upper bound needs at least 64 byte alignment. This aplliessamface 0 and not to surface 1 to
7, which can be programmed as specified (32 byte aligned).

10.1.11 New Soft resets for CP
CPnow has total of 3 soft resets:

CP_SOFT_RESET =as before (for backward compatibility)
CP_SOFT_RESET_NO_DMA => soft reset CPepicDMA engine

CP_SOFT_RESET_DMA => soft reset only DMA engine of CP.

10.1.12 CPSTOP CONEXT

Once SC/CB informs CP to stop_context, CP will not fetch/process any further read requests from command
buffers.

10.1.13 UpdatedCP Scratch compare logic
Scratch register inteupt functions as follows:

(a) Driver programs two 32bit registers with timestamp for comparisons with a pair of scratch registers. We can call
this as DRV_REGS

(b) Driver programs PM4 stream with writes to two consecutive scratch registers (pairgé@-&5495,6-7) to be
compared with DRV_REGS.

(c) In due course of time PM4 pkt would get executed , this address/data would sit in the input fifo of CP , ready to
program both the scratch registers.

(d) As soon as CB (color buffer) sends two sets of RESYMEes (4 of them from each pipe with mask), CP
allows the FIFO contents to get transferred to scratch registers for further action. (RBBM transactions are stalled at
this time)

(e) SCR_REGS data gets compared with DRV_REGS data for preprogrammed caiditibar "equality” or
"non-equality” or "greater than" or "less than " or "greater than or equal” or "less than or equal".

© 2008 Advanced Micro Devices, Inc.
Proprietary 131

AMDH Revision 14 Octoberl3, 200

(f) If the condition is satisfied then an interrupt is generated informing driver/system teuyakel proceed for the
next commad.

(9) The scratch register data gets written to system memory (if umask is set) at premapped address to be read back
by the system/driver.

10.1.14 Host requests (GFX, ISYNC CNTL, RBBM GUICNTL, WAIT UNTIL)

PreR5xx, requests made within the aperture range OxX4BAEFF and 0x2000 OxFFFF were queued=rom

R5xx, onwards these requests will not be queued. ISYNC_CNTL, RBBM_GUICNTL and WAIT_UNTIL can be
programmed only for queued requests. As none of the host (P10O) requests are queaadnbtpsbgram abo#
three registers through PIO.

10.1.15 Double Z

RV530 has two Z pipes, but a single raster pipe. In the past, SU_REGDEST was used to select which raster pipe
you want to select. On RV530, you use FG_ZBREG_DEST. Because the pipe selection happens in the FG, you
must be in Z bottom mode This mainly applies to occlusion queries where you want to get Z pass data from each
Z unit.

10.1.16 EP16 AA support

R5xx-family chips support FP16 AA. However, there is an issue with the blend optimizations while FP16 AA is
enabled.Because of this, RB3D_BLENDCNTL.DISCARD_SRC_PIXEhfsist beset to
CB_DISCARD_SRC_DISABLE while FP 16 AA is enabled.

10.1.17 FP16 Blending

FP16 (64bit pixel) bleding is added in R5xgarts. FP16 Blend bandwidth is half the rate of 32 bit pixels; i.e. 8
pixels/dk in a 16 pipe system. FP16 blending uses the new 64 bit clear color register and constant color registers.
Setting the FP16 blend equation to multiply by 1.0 is subtly different from disabling blending. A negative zero
(Ox8000) will be converted to e (0x0000) if it is blended but 0x8000 will be drawn if blending is disabled. The
driver should distinguish between FP16 and 16 bit integer formats and never enable blending for 16 bit integer
formats. The CB FP16 implementation supports denorms butndbssipport NaNs and Infs. Only a 4 component
(ARGB16161616) format is supported. There are no 116 or IA1616 formats.

10.2 Interface Notes

10.2.1 Raster Reset
The proper sequence for a full raster reset is the following:

1 Perform a RBBM reset with the GA RBBM dfieflag set
1 Perform a register write to the GA_SOFT_RESET register, with a value of 0x200 or higher

In the above sequence, the first item causes the GA to delete all pending register reads & writes and resets the
RBBM interface. If the GA status is idlthen the RBBM reset is not required. After this reset, the GA is ready to
accept register read and write commands. However, the 3D pipe could be in a hung state, which would prevent it

© 2008 Advanced Micro Devices, Inc.
Proprietary 132

AMDH Revision 14 Octoberl3, 200

from accepting 3D commands or register commands.

The second operatis{GA_SOFT_RESET) causes a soft reset of the 3D pipe. This reset causes a loss of all state in
the 3D, except in the GA & SU blocks. Shadow register valuesaineset. The 3D pipe should then switch to the

idle state after the reset. It will take 0x208¢les for the idle state to be-asserted (should be less than 0x200 +

64). The value of 0x200 is a suggestion, which should be enough to reset all the pipelines. A larger value can be
used (up to 16b), but should not offer any benefit.

10.2.2 Non-textured,non-colored primitives

The R300 always does at least one 2D texture and one color per primitive. The RS_COUNT has a baseline value of
1, which indicates up to 1 color and 1 texture are to be rasterized. The other registers used to specify the colors and
textures are the VAP_RASTER_VTX_FMT_0 and RASTER_VTX_FMT _1 registers. These registers can be set to
have no color and no texture. So if one wants to specify dextired and nowolor primitive, one should set the
RASTER_VTX_FMT registers to no color and texture, and set the RS_COUNT to 0. The raster will still

rasterize the extra colors and textures, but the rasterized values will be wrong. The shader code should then be set to
ignore the texture coordinates and colors and to setup a constant ctierC# could be disabled so no color

writes occur (to setup the ZB, for example).

10.2.3 Flushing primitives out of the SC

All 3D operations need to be terminated with a register write to the SC, US or some down stream register. Unless
this is done, the SC/RSilwnever assert idle (which will be reflected as GA_BUSY). The final polygon rendered
should still drain out of the pipe.

10.3 Register Notes

10.3.1 Update to register reads

R520 and followon chips now support simultaneous G3D register reads and writes. Cohefrezags and writes
is not guaranteed (reads can occur before writes). However, switching from write/cmd mode to read mode (PIO
through RBBM) does not require idling the G3D pipe anymore. However, this mode is not enabled by default. The
following fields have been added to the GA_ENHANCE register:

REG_READWRITE 2:2

REG_NOSTALL 3:3

When the REG_READWRITE field is set, this enables the GA to support simultaneous register reads and writes.
However, simply enabling this mode allows the GA to receivh bead and write commands (and to deal with

both), but it still tells the GA to wait for register return before continuing. Consequently, the GA will cause a stall
bubble, of (n) cycles to be injected, where (n) is the latency for register read btukredister is shadowed, that
value is very small (A few cycles). If not, then it can be hundreds of cycles

When REG_NOSTALL field is set, this enables GA to support mixing the G3D pipe with reads and other activity;
in this mode, the register read imply part of the pipeline data. This mode would allow for no performance hit at
all, when doing register reads, since the GA will not cause a stall bubble (it will not wait for the register data to
return). It does not permit the GA to have multiple tartding read requests, but it allows for minimal performance
impact.

10.3.2 Reqisters that cause stalls

© 2008 Advanced Micro Devices, Inc.
Proprietary 133

AMDH Revision 14 Octoberl3, 200

10.3.2.1 ZB Registers

Unpipelined registers

Writes to these registers causes a stall in the pipe. The stall is on as long as there are any quads in the ZB block.
Oncethe ZB block is empty the register is updated and the stall is removed. If multiple unpipelined registers are
updated with no quads in the middle, then the first one will cause a stall to drain the ZB, but the following
unpipelined writes willgo atfuk p e e d é

ZB_FORMAT

ZB_ZCACHE_CTLSTAT

ZB BW_CNTL

ZB_DEPTHOFFSET

ZB_DEPTHPITCH

ZB_DEPTHCLEARVALUE

ZB_HIZ_OFFSET

ZB_ZPASS_DATA

ZB_ZPASS_ADDR

ZB_DEPTHXY_OFFSET

Pipelined Registers
ZB_CNTL
ZB_ZSTENCILCNTL
ZB_STENCILREFMASK
ZB_HIZ_DWORD

Special register ZTOP

Whenever ZTOP wgster is switched from 1 to 0 or 0 to 1 a stall occurs at the SC stage of the pipe and it goes away
when all the quads between the SC and CB are drained from the pipe. Then the Zbuffer is moved iirtlee.pipe
Writing to Ztop a value that it currentholds (0 to O or 1 td) has no performance penalty.

10.3.2.2 CB Registers

Unpipelined registers

Writes to unpipelined registers cause the CB to stall until all previous quads, pipelined registers, and partially
pipelined registers have finished processing. Qmcanpipelined register has been written, a write to another
unpipelined register will not cause more stalls as long as there are no intervening quads, pipelined registers, or
partially pipelined registers. The unpipelined CB registers are the following:

RB3D_CCTL
RB3D_COLOR_CLEAR_VALUE
RB3D_COLOROFFSET(0, 1, 2, 3)
RB3D_COLORPITCH(0, 1, 2, 3)
RB3D_DSTCACHE_CTLSTAT
RB3D_AARESOLVE_OFFSET
RB3D_AARESOLVE_PITCH
RB3D_AARESOLVE_CTL
GB_TILE_CONFIG
GB_AA_CONFIG

Partially pipelined registers
Partially pipelined rgisters are pipelined everywhere in the CB except in one module. That module must stall until

all the quads that it is currently processing have finished. The number of stall cycles should not exceed about 15
cycles. The partially pipelined CB registarg the following:

© 2008 Advanced Micro Devices, Inc.
Proprietary 134

AMDH Revision 14 Octoberl3, 200

RB3D_ROPCNTL
RB3D_CLRCMP_FLIPE
RB3D_CLRCMP_CLR
RB3D_CLRCMP_MSK

Pipelined registers
These registers are fully pipelined and may be freely intermixed with quads without causing stalls. The pipelined

registers are the following:

RB3D_BLENDCNTL
RB3D_ABLENDCNTL
RB3D_COLOR_CHANNEL_MASK
RB3D_CONSTANT_COLOR
RB3D_DITHER_CTL

CB register ordering

Because unpipelined registers can stall on preceding pipelined or partially pipelined registers, it is recommended
that all unpipelined registers areitten first. Pipelined and partially pipelined registers may be freely intermixed
without penalty.

10.3.2.3 TX Registers

Global registers

Global registers are registers that affect all texture stages. On a write to any global texture register, the US will wait
for the TX to flush completely before passing the register to the TX. This could take on the order of a couple
hundred clocks worst case. Obviously writes to these registers should be minimized. There are two global registers
that cause the TX to flush : TINVALTAGS and TX_PERF.

Stage registers

Stage registers are registers that only affect 1 of the 16 possible texture stages. On a write to a Stage register, the US
will wait until that texture stage is inactive in the TX pipe, and only then will it peesssegisteto the TX It is

therefore important to rotate through the 16 sets of registers to avoid a register write to a stage that is still being
processed in the TX. Otherwise unnecessary stalls will occur.

10.3.3 Reugisters that affect performance

10.3.3.1 US_W_FMT

When the W value is not being used (FG_DEPTH_SRC does not select discrete W), then this register should be set
to specify that the source is the US and the format is always 0. Specifying that W comes from the rasterizer causes
stalls inside the US.

10.3.4 Other Reqistes

10.3.4.1 GB_TILE_CONFIG

The GB_TILE_CONFIG contains multiple raster pipe control fields. Some of these need a soft reset afterwards to
apply the change. All of them require the pipe to be idle before performing the change. As well, in the R5xx, this
register is simply shadowed in the shadow RAM, except for the PIPE_COUNT field, which always indicates the
internal value of this field. This might or might not match the written value, depending on bad_pipes and max_pipes.
All fields after Hard reset Wishow the default values shown below. The fields all hard reset to the default values.

© 2008 Advanced Micro Devices, Inc.
Proprietary 135

AMDA1

Revision 14

Octoberl3, 200

Soft reset (GA_SOFT_RESET) does not affect this register.

Here are the fields, with the default values, the reset status and a slight comment:

Fields Possible valug Defaults Reset Comments
Enable [0:0] 0: Disable tiling Enabled (1) If changed, soft | The default value of
1: Enable tiling reset should be (1) should never be
applied changed
Pipe_count [3:1] 0: RvV350 Dependon fuses If changed, soft Should be

3: R300 reset should be programmed with 4P

6: R420 (3 pipes) applied (7), 3P (6), 2P (3) or

7: R420 (4 pipes 1P (0).

Tile_size [5:4] 0: 8x8 pixels 1:16x16 No reset required | R5xx supports 16x16

1: 16x16 pixels or 32x32 only.

2: 32x32 pixels 32x32 should be
used, in 3p or 4p
cases, as performang
testing determines

Super_size [8:6] 0: 1x1 tile 0: 1x1 tile Only 1x1 mode

1: two 1x1 A,B tiles guaranteed Feature

2: one 2x2 tile only used in mult

3: two 2x2 A,B tiles chip boards
Only support super
tiling with 1,2 or 4
pipes (not in 3P
config)

Super_X, Super_Y, | 7b ID identifies 0 No reset required | When in single chip,
Super_Tile [15:9] unique location of value should be 0.
chip in multichip

board

Subpixel [16:16] 0: 1/12 subpixel 0:1/12 Can ke changed | Selects the 1/12 or
1: 1/16 subpixel whenever pipe is | 1/16 subpixel mode

idle without Reset

Quads_per_ras 0: 4 quads 0: 4 quads No reset required | Reserved for R350

[18:17] 1: 8 quads Leave at 0 for R300,
2: 16 quads RV350
3: 32 quads

Bb_scan [19:19] 0: Use intercept scarn 0: Intercept No reset required | Intercept method is
conv. new and higher

1: Use bounding boy performance.

scan conv. Bounding box is
traditional & slower,
but fAguar g
work. Should only be
changed if raster
issues come up.

Alt_scan_en[R:20] 0: Do Ztype scan | 0: Z type Can be changed | RV350 andR420

conversion
1: Do S type scan
conversion

when pipe idle.

support S scan
conversion, which
maintains local
coherence from scan
line to scan line,
instead of Z type

© 2008 Advanced Micro Devices, Inc.

Proprietary

136

AMDH Revision 14 Octoberl3, 200

whi ch HfAgoe€g
the lefton every scan

line
Alt_offset[21:21] 0: Use 1440/1088 | 0: 1440/1088 mode | Should be When in mode (1),
offset for SC switched when allows for a render
1: Use 672/1088 pipe is idle. target of 4k x 4k,
offset for SC only for 1/12

subpixel mode. The
X,Y offsetsin the GA
are not affected, so
that the viewport
should be loaded with
a value of (672
1440=768) to match.

Subprecision [22:22] | 0: Uses 4b of sub | 0: 4b Should be Allows for 4 extra
pixel precision changed when bits of subpixel
1: Uses 8b of sub pipe is idle. precision. All
pixel precision computations done in

higher precision
when in use. Should
always be enabled.

Alt_tiling [23:23] 0: Use regular tiling | 0: Regular tiling No reset required | Empirical tesing
for 3P mode needs to be done to
1: Use alternate determine which has
tiling for 3P mode higher performance.
Either tiling mode is
possible.
Z_extended[24:24] 0: Use [0,1] Z clamp| 0: R3xx/R4xx mode | Should be Should allow us to
range changed when increase guardband
1:Usef2,2]Z pipe is idle Per pixel clamping to
range [0,1] still occurs in
SC

10.3.4.2 GB_PIPE_SELECT

GB_PIPE_SELECT controls the physical and logical pipe mapping, as well as the total number of active pipes. It
works with GB_TILE_CONFIG to configure the pipelines. It is procedural adimadowed; if you read the

register back after hard reset, you should get the default values. Changing this register is generally not required, if
the fuses are set correctly (i.e. max_pipes reflects total number of working and desired pipes; biadigzipeEs

which of the 4 pipes are bad). The MAX_PIPES and BAD_PIPES fields ar@ndgdand reflect what the SU unit
receives from the fuse unit. The fuse unit can be programmed to alter the max_pipes/bad_pipes, but not contrary to
the actual fuse sétigs (can never set, through SW, internally max_pipes to higher than the fuse setting).

Fields Possible Values | Defaults Reset Comments
PIPEO_ID [1:0] 0,1,2,3 Depends on fuse{ Pipe should be | Determines the logicahapping
i Often 0 soft reset after of physical pipe 0
changing
PIPEL1_ID [3:2] 0,123 Depends on fusey Pipe should be | Determines the logical mappin
i Often 1 soft reset after of physical pipe 0
changing
PIPE2_ID [5:4] 0,1,2,3 Depends on fuse{ Pipe should be | Determines the logical mappin
i Often 2 soft reset afte of physical pipe 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 137

AMDA1

Revision 14

Octoberl3, 200

changing

PIPE3_ID [7:6]

0,1,2,3

Depends on fuse

T Often 3

Pipe should be
soft reset after
changing

Determines the logical mappin
of physical pipe 0

Pipe_mask [11:8]

0 through 16

Depends on fuse

T Max is 4

Pipe should be
soft reset after
changing

Each bit of the mask identifies
if a physical pipe is good (1) of
not (0). A value of Oxf
indicates 4 good pipes.

Max_pipes [13:12]
Read Only

0: 1 good pipe

1: 2 good pipes
2: 3 good pipes
3: 4 sweet pipg

Depends on fuse

Read only field

Indicates the fuse state for the
number of good pipes.
GB_TILE_CONFIG.pipe_coun
should not try to use more thar
this number of pipes. HW will
ignore any programming that
tries to override this value.

Bad_pipes [17:14]

0 through 16

Depends on fusey

Read only field

Returns a (1) for each good
pipe. Matches pipe_mask
format. You cannot enable mo
pipes than max_pipes.

Config_pipes
[18:18]

0: Do nothing
1: Force aute
config

N/A

Should be soft
reset after
writing, if fields
are changed

Causes the HW to ignore the
pipe#_ID and pipe_mask fieldg
and to generate those values
based on the fuse state.

The GB_PIPE_SELECT configures the pipes to match the desired configuration. SW should not attempt to
configure the pipes inway that contradicts the max_pipes value, which is programmed througjk fuses at die

test time. SW will be ignored if it contradicts the fuses. However, the bad_pipes can be programmed to enable a
b upipe, since theuatat nurbbrefractideipipes imustebe eguabooless

fimar ked

bado

pipe,

than max_pipes, otherwise the HW will ignore the bad_pipes register.

10.4 Feature Notes

10.4.1 Switching Pipeline configuration / Resetting 3D pipe

The raster pipeline can be switched from singpeeo dual pipe and back through the use of the

GB_TILE_CONFIG register. As well, the GB_TILE_SELECT should be used to select the physical pipes to use.

Switching from one mode to another requires the following sequence:

f
1

The 3D pipe must be idle (WAIT F@D IDLE)
The GB_PIPE_SELECT register should then be read, to determine the current max_pipes and bad_pipes.

The SW can then program it with those values or new values.

T The
P10):

GB_TILE_CONFI G

o 0xO for single pipe (RV350

0 0x3 for dual pipgR300)

o 0x6 for triple pipe (R426BP)
0 0x7 for quad pipe (R420
1 The 3D pipe & GUI must be idle again after writing the registers
1 The GA_SOFT_RESET register must be written with 0x100 or gréata PIO)

registeros

Pl PE_ COU Nadlue fusee | d

© 2008 Advanced Micro Devices, Inc.

Proprietary

138

AMDH Revision 14 Octoberl3, 200

Wait for ~1 ms (prevents race conditions between GA_SOFT_RESET And 3d idle status read)

The 3D pipe & GUI must be idle again to permit any other activity (register or data) (read RBBM status for
GAidle)

1 If the fuses are set to limit the numladractive pipes to a given level (1,2,3 or 4), then GB_TILE_CONFIG
and GB_PIPE_SELECT settings will not be able to override those values. A hang or other problem could
actually occur if SW tries to enable fibad pipeso.

= =4

The above sequence will invalidateetstate of the pipe as well as switching it.

For resetting the pipe, the same process as above is followed:

The 3D pipe must be idle (WAIT for 3D IDLE) or hung

The RBBM soft reset of GA must be done, if chip is not idle

The GA_SOFT_RESET register must ritten with 0x100 or greater (use PIO)

Wait for ~1ms

The 3D pipe & GUI must be idle again to permit any other activity (read RBBM status for GA idle)

= =4 -4 -4 -9

10.4.2 Switching vertex data rounding mode

The GA_ROUND_MODE register can be used to select between romedtest and truncate (round to 0) for both
vertex geometry (X,Y) and color conversions. The default is to truncate. This register should only be changed when
the 3D pipe is idle. Otherwise, switching can occur in the middle of primitives, which coukl\daual anomalies.

This register, once set, should never be changed again.

10.4.3 Switching from 1/13" to 1/16" subpixel mode

Switching from 1/12 to 1/16 subpixel mode is done through the use of the GB_TILE_CONFIG register. Normally,
changing this registeequires the use of a soft reset afterwards. However, changing the subpixel field does not
require a reset. However, it does require that the 3D pipe be idle. Also, the Z buffer can become incompatible after
switching the subpixel mode. Basically, if Z comapsion is enabled, the values contained in the Z buffer are
incompatible between subpixel modes, so that the buffer needs térfitgatized after each switch.

10.4.4 Fastfill and compression in Z

Fast fill and compression only works in midited mode. e following table shows the valid combinations of fast
fill and rd/wr compression :

Fast Flll | RdCompression WrCompression | description

0 0 0 no fastfill or compression, the Z buffer has to be cleared explicitly.

1 0 0 fastfill, Z buffer does not need be cleared explicitly, The zmask should b
set to 26b00 for all for all 4x4
will hold the cleared Z value

1 1 1 Same as above , with compression turned on.

1 1 0 Used to decompress , a compressed Z beéffer

Note that all other combinations in the above table are invalid. The emulator is programmed to generate an assert in
thee casesCompression does not work with all-b@ formats. For 16it integer buffering, compression causes a
hung with one otwo samples and should not be used.

© 2008 Advanced Micro Devices, Inc.
Proprietary 139

AMDH Revision 14 Octoberl3, 200

10.4.5 Z-Top

It is beneficial for performance to have Z buffer at the top of the pipe, since the quads that do not pass Z buffer do
not have to be sent to the shader. Depending on how many instructions the shader exeadaekl gain you a lot
of advantage. There@severatases in which the Z buffer has to be at the bottom:

1- Alpha thresholddfunction is turned on
2- Shader uses texkill instructions.

3- Chroma key cull enabled.

4- W-buffering

Cases 1,2 and 3 can kill a pixefore Z buffering . However, if the contents of the Z/stencil buffer will not be
modified, then ztop can remain enabldd. This implies that the following staigin effect:

1- Z-buffering is disabled or Zwritenask is off .
2- Stencil is disabled or steil-wrmask is off or SFAIL/ZPASS/ZFAIllare all set to KEEP.

W values are always generated at the bottom of the pipe, selfoffering, ztop should be set to 0.

There is penalty in moving the Z buffer from top to bottom or vice versa. The pipe sithlbe at the sc and all

the quads that are in the pipe between the sc and cb have to be processed before the switch occurs. This is all done in
HW. If the ztop =0 and you write another O toliete is no performance penalty.it is 1 and you writea 1 to it,

there is no performance penalty. The penalty is only incurred when you switclofsambottom or bottom to top.

10.4.6 Sub-sample locations

In point sample mode, POSO defines the X,Y of the upper left pixel of the quad. POS1 defines the Xippéthe

right pixel of a quad. POS2 defines the X,Y of the lower left pixel in a quad and POS3 defines the X,Y of the lower
right pixel in a quad. This is done so that in R200 style ss@epling mode, the sample locatidosthe pixels can

be jittered Hierarcical Z has to be shut off when the 4 pixels in the quad have diff@catibns in point sample

mode.

In multi-sample mode , samples 0,1,2,3,4,5 of pixels 0,1,2,3 of a quad are defines by pos0,1,2Ba, pixels in
the quad have the samébsgsample pattern.

There is a quirk when setting the MSPOS0.msbd0_x. The value represents the distance from the left edge of the
pi xel quad to the first sample in subpixels. Al'l val
usedf or t he drhesharédware will con8edt 7 into 8 internally.

It is also important that when using less than 6 multisample positions, the unused samples must be set to the position
of other valid samples.

10.4.7 Dithered Clears

Fast cmask clears of atssampled buffer will not be dithered.
The ZB doesndt do color dithering so ZBCB clears will |

When doing clears in 16 bit mode with dithering enabled the driver should examine the clear color value and
determine if it would be affected/ldithering. For example a color value of zero when dithered will remain zero for
all dither factors. If the color would not be affected by dithering either fast clears or ZBCB clears can be used,
otherwise a full window rectangle write should be useddarahe buffer. This is only an issue for 16 bit buffers
with some clear color values so hardware support is not provided.

© 2008 Advanced Micro Devices, Inc.
Proprietary 140

AMDH Revision 14 Octoberl3, 200

10.4.8 4x AA tiling

R420 introduced a newliig mode for 4x AA buffers.Each 4x4 block of pixels occupies 8 cache lines of memory

(32 bytes per cache line). When the block is decompressed, the color samples are grouped together. Thus, all 16
sample Os are in one chunk, all 16 sample 1s are in another, etc. On R300, decompressed blocks where organized
with sample 0s being first, thenmple 1s, then 2s then 3s. On R420, groups of 8 cache lines have the top and

bottom halves interchanged when the block address is odd in the x dimension. For example, block (0,0) is organized
just like R300, but block (1,0) would have samples 2 and I®eafmmples 0 and 1. Block (2, 0) would be just like

R300 again.Note: This new tiling mode only applies when memory mapping is disabled.

10.4.9 8x8 Z plane compression

Chips based on the RV350 and beyond support a new 8x8 Z plane compression mode spingified in
GB_Z PEQ_CONFIG register. When compression is not enabled, the Z plane compression mode has to be set to
4x4 in order for the GA and ZB to agree on the Z plane equation format and avoid visual corruption.

10.5 Blend optimization notes

10.5.1 Disabling reads duing blending

The destination color is not necessary for some blending operations. The cb has a read enable called
RB3D_BLENDCNTL.READ_ENABLE to control whether the destination color is read or not during blending
operations. Reads must be enabled durlagding operations that require the destination color. Failure to do so
will result in incorrect results. Leaving the register enabled when blending is disabled does not have any adverse
affects.

10.5.2 Discarding pixels based upon the source color

There areases where blend operations do not change the contents of the frame buffer. For example, adding zero to
the frame buffer does not change the frame buffer contents. Although the operations do nothing to the frame buffer,
they still take bandwidth. Thévaan discard pixels based on the source color to eliminate some useless blend
operations. The RB3D_BLENDCNTL. DISCARD_SRC_PIXELS register controls the functionality. When to use
this feature is under driver control. The cb will not override this regisit is not safe to use under the current

blending mode.

10.5.3 ZB/CB cache flushes

ZB/CB cache flushes take hundreds of cycles to complete, so they should be avoided if possible. Performing a
cache flush when the cache is already clean only takes asyole,t her e i sndét any penalty fo
multiple times as long as there are no intervening quads.

10.6 Texture Notes

TX_CHROMA_KEY must be the same format as the texture b
should be AVYU for all YUV formats

TX_FMT_*_MPEG formats are implicitely signed. However the TX_FORMAT1_*_SIGNED_COMP* bits must
still be explicitely set. It is a bug to use an MPEG format and indicate that the components are unsigned.

© 2008 Advanced Micro Devices, Inc.
Proprietary 141

AMDH Revision 14 Octoberl3, 200

10.7 GA Point/Line/Polygon Setup
10.7.1 Wide & Anti-aliased points

Al points in the GA are converted to parallelograms
larger heighand width and so are not different than other points. AA points are identical to regular points,

dimension wise. However, AA points do have at least 1 texture coordinate. The AA texture coordinates will be

fist uf fthednilicated texture coordinat@he values to stufire loaded from register§he geometry for the

point (height and width) will be used to compute the screen coordinates of the versegspbdhe incoming VO

vertex.

To compute the geometry alinalf height and half width of a point are supplied in a register, or can be supplied per
vertex.Note that the %2 height and % width represent 16b values irot/1/26pixel increments (since they ave

size, the minimum point width and height are 1¥&8hen supplied per vertex, the ¥z height and % width are equal.
Per vertex size is always square

The(min_s, min_t, max_s, max_t) are loaded fra@ygisters in the GA. The third dimension for the AA texture will
be stuffed with 0.0, indicating an AA point.

Note: If textureAA/Stipple stuffing is enabledor a set of texture coordinatdsjt AA points are not, thepecifial
texture coordinates will be stuffed with (0.0, 0.0, 0.0).

10.7.2 Wide & AA linesgeometry

For wide linesthe width isprogrammed in aegister that indicates %2 width of the line (in 16.06£26.0/16
format).

10.73 Anti-Al i ased and Stippled |Iinesdé texture

For lines that are stippled and/or aalinsed, the setup will stuff thiedicaiedtexture coordinate with procedural
texture coordinate values. It is to be noted that the pipe must be setup to handle (n+1) texture coordinates in this
mode(where n is the number of replicated texture coordinalés) generated texture coordinatd be 3

dimensions. The S component will be used for Adtased lines. The (min_s, max_s) values for AA linase

loaded fronregisters in the GAThe stippleuses the t coordinatéor lines.

The third coordinate will be stuffed with 1.0, which indicates to the texture unit that the texture td efase
lines (stipple, AA or AA& Stipple).

Note: If AA/stipple texture stuffing is enabled, but AMks and stippled lines adésabled, then (0.0, 0.0, 1.0) will
be stuffed in thepecifiedtexturgs). Also, if texture stuffing is disabldalt line stippling is enabled, then
accumulation of stipple pattern will still be done, even though no texture coordinates will be outputted.
10.7.4 Stipple Polygon

For stippled polygons, the GA unit will stuff thedicated textureoordinate witha 3D texture. The first two

coordinates will be computed based on the screen coordinates of the triingléhird component of the stuffed
texture will be 2.0, which indicates to the texture unit that the stippled polygon texture should be used.

10.7.5 Texture Stuffing

The GA has the ability to stuff any of the texture coordinates with the following items:

© 2008 Advanced Micro Devices, Inc.
Proprietary 142

t

AMDH Revision 14 Octoberl3, 200

Encoding Texture Coordinate Source

Replicate VAP Supplied texture coordinates
PointTexture| Point (S,T) GA supplied texture coordinates
StippleAA Stipple and or AA GA supplied texture coordina

A texture is active if th& AP FMT_1 register enables thigxture and its stuff option is Replicate, or if its stuff
option is other than Replicate.

10.7.6 GA Fog guffing (R5xXx)

The GA supports the stuffing of texture coordinates with the current fog value. A single texture component of a
single texture can be seted The GB SELECT register controls the stuffing of the texture. The

FOG_STUFF_TEX selects which texture, while the FOG_STUFF_COMP selects the component. FP20 values of
AO0,A1,A2 or A3 can be selected, as well as FP32 values of 1/W aithiZ.could ado be used as a way to get 1/W
buffering into the pixel shader, which can then be sent instead of Z.

10.8 Errata

10.8.1 Facing bit with Polymode & colors

INRExx, just as R4xx, when |lines are sent from the setup
since no facing information is sent between the SU and SC. This implies that lines will always be treated as
Aiforward facinger .i nThihse fsaainn g oinnvfeartmati on i s passed to

be used as a conditional.

Consequently, in polygon outline mode, where lines have front and back meaning, when rendering a line polygon
(for either front or back), the fawy bit will always be marked as front facing, regardless of the facing of the original
triangle. Back / Front culling does occur correctly here (i.e. if the front render is line and front face culling is
enabled, then no front facing lines will get drawmt the facing bit for rendered lines or points will be always front
facing.

The R5xx contain a workround for this problefin the form of a special modé& his mode is enabled by setting

the bits of SU_PERF. PERF3_ Siidwill foxe tlelsign bits@fghe ¢cotgopents of Wh e n e |
the colors to be set to (0) for front facing, or (1) for back facing. All colors in a primitive will get their sign bit

changed, based on the facing of the primitive, or of its provoking vertex (in th@ftpslymode). If source colors

are positive, then, in the pixel shader, back facing polygons will have negative colors, while front facing polygons

will have positive colors. This mode will work, regardless of PS2 or PS3 mode in the pipe.

10.8.2 PS3 Polymodéextures

In the R5xx mode, polymode texture coordinates are not computed correctly when the pipe is in PS3 mode. To fix
this, a polymde_ps3ix has been implemented. This mode is enabled by setting the GA_PERF.PERF3_SEL[4] bit
to 0x1. This mode shoulshly be set when in PS3 mode. As well, when set and in PS3 mode, colors will not
longer be computed correctly in polymode for polygons, but that is acceptable, since colors are not naturally
available in PS3 mode.

10.8.3 GA Fog stuffing

The GA supports stuffinthe fog value (either an FP20 from G8&3a, or W or Z) into a texture compnt. The
limitation for R5xx, is that the GA can only stuff the component of the first active texture. It can only stuff any one

© 2008 Advanced Micro Devices, Inc.
Proprietary 143

AMDH Revision 14 Octoberl3, 200

of the first 2 active components of the firstige coordinate set.

10.8.4 Line rendering

When subpixel precision is enabled, there is a possibility that the rendering hardware will determine an incorrect
dominating direction, when the start and end X values of the line have the same 1/12 or 1/16ugixblva

different subpixel values. This can cause double pixel hits or missing pixels in continuous line digveivgork
around,is to disable subpixel precision rendering when drawing lines.

10.8.5 PS3 VTX FMT & PS3 TEX SOURCE

Writes to the PS3_VTX_FMT ahPS3_TEX_SOURCE register can cause bad textures or hangs in R5xx chips, if
followed immediately by VF_CNTL writes (i.e. draw commanépllowing any of these 2 registers with 2 register
writes (to GA or any block below) will always avoid the problempbethe next VF_CNTL.

© 2008 Advanced Micro Devices, Inc.
Proprietary 144

AMDH Revision 14 Octoberl3, 200

11. Registers

11.1 Command Processor Registers

|CP:CP_CSQ2_STAT- [R] - 32 bits - Access: 8/16/322 MMReg:0x7fc

|

|DESCRIPTION: (RO) Command Stream Indirect Queue 2 Status

[Field Name |Bits |Default |Description |

CSQ_WPTR_INDIRECT 9:0 none Current Write Pointer into the Indirect Queue. Defau
0.

CSQ_RPTR_INDIRECT2 19:10 none Current Read Pointer into the Indirect Queue. Defau
0.

CSQ_WPTR_INDIRECT?2 29:20 none Current Write Pointer into the Indirect Queue. Defau
0.

[CP:CP_CSQ ADDR - [W] - 32 bits - Access: 8/16/32 MMReg:0x7f0

|

|DESCRIPTION: (WO) Command Stream Queue Address

[Field Name |Bits |Default |[Description

Command Stream Queue.

CSQ_ADDR 11:2 none Address into the Command Stream Queue which is
read from. Used for debug, to redw tcontents of the

|CP:CP_CSQ_APER_INDIRECT - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x1300-0x13fc

|DESCRIPTION: IB1 Aperture map in RBBMPIO

[Field Name |Bits |Default |[Description |
CP_CSQ_APER_INDIRECT ||31:0 none IB1 Aperture
(Access: W)

|CP:CP_CSQ_APER_INDIRECT2 - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x1200-0x12fc

|DESCRIPTION: IB2 Aperture map in RBBMPIO

[Field Name |Bits |Default |[Description |
CP_CSQ_APER_INDIRECT2 (|31:0 none IB2 Aperture
(Access: W)

|CP:CP_CSQ_APER_PRIMARY - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x1000-0x11fc

|DESCRIPTION: Primary Aperture map in RBBMPIO

|Field Name ||Bits ||Defau|t ||Description

© 2008 Advanced Micro Devices, Inc.
Proprietary

145

AMDH Revision 14 Octoberl3, 200

CP_CSQ_APER_PRIMARY [|31:0 none Primary Aperture
(Access: W)

|CP:CP_CSQ_AVAIL - [R/IW] - 32 bits - Access: 8/16/32: MMReg:0x7b8 |
IDESCRIPTION: Command Stream Queue Available Counts |

|Field Name ||Bits “Default ||Description |
CSQ_CNT_PRIMARY 9:0 none Count of available dwords in the queue for the Primg
(Access: R) Stream. Read Only.
CSQ_CNT_INDIRECT 19:10 none Count of available dwords in the queue for the Indire]
(Access: R) Stream. Read Only.
CSQ_CNT_INDIRECT?2 29:20 none Count of available dwords in the queue for the Indire
(Access: R) Stream. Read Only.

[CP:CP_CSQ_CNTL - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x740 |
|DESCRIPTION: Command Stream Queue Control |
[Field Name |Bits |Default |[Description |

CSQ_MODE 31:28 0x0 Command Stream Queue Mode. Controls whether e
command stream is enabled, and whether it is in pus
mode (Programmed 1/O), or pull mode (Bhkster).
Encodings are chosen to be compatible with Rage1Z
Primary Disabled, Indirect Disabled. 1= Primary PIO
Indirect Disabled. 2= Primary BM, Indirect Disabled.
3,5,7=Primary PIO, Indirect BM. 4,6,8= Prima3,
Indirect BM. 314= Reserved. 15= Primary PIO, Indir
P10 Default =0

|CP:CP_CSQ_DATA - [R] - 32 bits - Access: 8/16/322 MMReg:0x7f4 |
|DESCRIPTION: (RO) Command Stream Queue Data |
[Field Name |Bits |Default |[Description |

CSQ_DATA 31:0 none Datafrom the Command Stream Queue, from locatio
pointed to by the CP_CSQ_ADDR register. Used for|
debug, to read the contents of the Command Strean
Queue.

[CP:CP_CSQ_MODE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x744 |
|DESCRIPTION: Alternate Comrand Stream Queue Control |
|Field Name |Bits |Default |[Description |

INDIRECT2_START 6:0 none Start location of Indirect Queue #2 in the command
cache. This value also sets the size in double octwor
the Indirect Queue #1 cache that will reside in locatig
INDIRECT1_START to (INDIRECT2_START 1). The
Indirect Queue #2 will reside in locations

© 2008 Advanced Micro Devices, Inc.
Proprietary 146

AMDA1

Revision 14

Octoberl3, 200

INDIRECT2_START to 0x5f. The minimum size of th
Indirect Queues must be at least twice the MAX_FE]
size as programmed in the CP_RB_CNTL register.

INDIRECT1_START

14:8

none

Start location of Indirect Queue #1 in the command
cache. This value is also the size in double octwords
the Primary Queue cache that will reside in locations
(INDIRECT1_START- 1). The minimum size of the
Primary Queue cache must be astetwice the
MAX_FETCH size as programmed in the
CP_RB_CNTL register.

[CSQ_INDIRECT2_MODE

lox0

|0=>PI0, 1=>BM |

CSQ_INDIRECT2_ENABLE

27

0x0

Enables Indirect Buffer #2. If this bit is set, the
CP_CSQ_MODE register overrides the operation of
CSQ_MODE vaiable in the CP_CSQ_CNTL register.

[CSQ_INDIRECT1_MODE

lox0

|0=>PI0, 1=>BM |

CSQ_INDIRECT1_ENABLE

0x0

Enables Indirect Buffer #1. If this bit is set, the
CP_CSQ_MODE register overrides the operation of
CSQ_MODE variable in the CP_CSQ_CNTL registe

[CSQ_PRIMARY_MODE

lox0

|0=>PI0, 1=>BM |

CSQ_PRIMARY_ENABLE

0x0

Enables Primary Buffer. If this bit is set, the
CP_CSQ_MODE register overrides the operation of
CSQ_MODE variable in the CP_CSQ_CNTL registe

|CP:CP_CSQ_STAT- [R] - 32 bits - Access: 8/16/322 MMReg:0x7f8 |

IDESCRIPTION: (RO) Command Stream Queue Status |

|Field Name |Bits |Default |[Description |

CSQ_RPTR_PRIMARY 9:0 none Current Read Pointer into the Primary Queue. Defau
0.

CSQ_WPTR_PRIMARY 19:10 none Current Write Pointer intthe Primary Queue. Default
0.

CSQ_RPTR_INDIRECT 29:20 none Current Read Pointer into the Indirect Queue. Defau
0.

[CP:CP_GUI_COMMAND - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x728 |

|DESCRIPTION: Command for PIO GUI DMAs

[Field Name

|Bits

| Default

| Description |

CP_GUI_COMMAND

31:.0

none

Command for PIO DMAs to the GUI DMA. Only
DWORD access is allowed to this register.

[CP:CP_GUI_DST_ADDR - [R/W] - 32 bits - Access: 8/16/32- MMReg:0x724 |

IDESCRIPTION: Destination Address for PIO GUDMAs |

|Field Name

|Bits

|Default

| Description |

© 2008 Advanced Micro Devices, Inc.

Proprietary

147

AMDH Revision 14 Octoberl3, 200

CP_GUI_DST_ADDR 31:0 none Destination address for PIO DMAs to the GUI DMA.
Only DWORD access is allowed to this register.

|CP:CP_GUI_SRC_ADDR - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x720 |
IDESCRIPTION: Source Address for PIO GUI DMAs |
|Field Name ||Bits “Default ||Description |

CP_GUI_SRC_ADDR 31:0 none Source address for PIO DMAs to the GUI DMA. Only
DWORD access is allowed to this register.

[CP:CP_IB2_BASE - [R/W] - 32 bits - Access: 8/16/32 MM Reg:0x730 |
[DESCRIPTION: Indirect Buffer 2 Base |

[Field Name |Bits |Default |[Description |

IB2_BASE 31:2 none Indirect Buffer 2 Base. Address of the beginning of tf
indirect buffer. Only DWORD access is allowed to th
register.

|CP:CP_IBZ_BUFSZ- [R/W] - 32 bits - Access: 8/16/32: MMReg:0x734 |
[IDESCRIPTION: Indirect Buffer 2 Size |
|Field Name |Bits |Default |[Description |

IB2_BUFSZ 22:0 0x0 Indirect Buffer 2 Size. This size is expressed in dwor]
This field is an initiator to begin fetching commands
from the Indirect Buffer. Only DWORD access is
allowed to this register. Default = 0

[CP:CP_IB_BASE - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x738 |
[DESCRIPTION: Indirect Buffer Base |

[Field Name |Bits |Default |[Description |

IB_BASE 31:2 none IndirectBuffer Base. Address of the beginning of the
indirect buffer. Only DWORD access is allowed to th
register.

[CP:CP_IB_BUFSZ - [R/W] - 32 hits - Access: 8/16/32 MMReg:0x73c |
[DESCRIPTION: Indirect Buffer Size |
|Field Name |Bits |Default |[Description

IB_BUFSZ 22:0 0x0 Indirect Buffer Size. This size is expressed in dwordg
This field is an initiator to begin fetching commands
from the Indirect Buffer. Only DWORD access is
allowed to this register. Default = 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 148

AMDH Revision 14 Octoberl3, 200

[CP:CP_ME_CNTL - [R/W] - 32 hits - Access: 8/16/32: MMReg:0x7d0 |
|DESCRIPTION: Micro Engine Control |

[Field Name |Bits |Default |[Description |

ME_STAT 15:0 none Status of MicroEngine internal registers. This value

(Access: R) depends on the current value of the ME_STATMUX
field. Read Only.

ME_STATMUX 20:16 0x0 Selects which status is to be returned on the ME_ST]|
field.

ME_BUSY 29 none Busy indicator for the MicroEngine. 0 = MicroEngine

(Access: R) not busy. 1 = MicroEngine is active. Read Only.

ME_MODE 30 0x1 Run-Mode of MicroEngine. 0 Single Step Mode. 1 =
Freerunning Mode. Default = 1

ME_STEP 31 0x0 Step the MicroEngine by one instruction. Writing a "1

(Access: W) this field causes the MicroEngine to step by one
instruction, if and only if the ME_MODE bitisa 0.
Write Only.

|CP:CP_ME_RAM_ADDR - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x7d4 |
|DESCRIPTION: MicroEngine RAM Address |

[Field Name |Bits |Default |[Description |
ME_RAM_ADDR 7:0 none MicroEngine RAM Address (Write Mode) Writing this
(master with mirrors) register pits the RAM access circuitry into "Write Mog

, which allows the address to atiti@rement as data is
written into the RAM.

|CP:CP_ME_RAM_DATAH - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x7dc |
[DESCRIPTION: MicroEngine RAM Data High |
|Field Name |Bits |Default |[Description |

ME_RAM_DATAH 7:0 none MicroEngine RAM Data High Used to load the
MicroEngine RAM.

|CP:CP_ME_RAM_DATAL - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x7e0 |
|DESCRIPTION: MicroEngine RAM Data Low |
[Field Name |Bits |Default |[Description |

ME_RAM_DATAL 31:0 none MicroEngine RAM Data Low Used to load the
MicroEngine RAM.

|CP:CP_ME_RAM_RADDR - [R/W] - 32 hits - Access: 8/16/32: MMReg:0x7d8 |
IDESCRIPTION: MicroEngine RAM Read Address |
|Field Name |Bits ||Default]|Description |

© 2008 Advanced Micro Devices, Inc.
Proprietary 149

AMDH Revision 14 Octoberl3, 200

ME_RAM_RADDR 7:0 none |[MicroEngine RAM Address (Read Mode) Writing
(mirror of this register puts the RAM access circuitry into 'R
CP_ME_RAM_ADDR:ME_RAM_ADDR Mode" , which allows the address to airiorement
(Access: W) as data is read from the RAM. WriGnly.

|CP:CP_RB_BASE- [R/W] - 32 bits - Access: 8/16/32- MMReg:0x700 |
[DESCRIPTION: Ring Buffer Base |

|Field Name ||Bits “Default ||Description |
RB_BASE 31:2 none Ring Buffer Base. Address of the beginning of the rir
buffer.

[CP:CP_RB_CNTL - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x704 |
|DESCRIPTION: Ring Buffer Control |
[Field Name |Bits |Default |[Description |

RB_BUFSZ 5:0 0x0 Ring Buffer Size. This size is expressed in log2 of th
actual size. Values 0 and 1 are clamped to an 8 DW
ring bufer. A value of 2 to 22 will give a ring buffer:

2N(RB_BUFSZ+1). Values greater than 22 will clamg
22. Default =0

RB_BLKSZ 13:8 0x0 Ring Buffer Block Size. This defines the number of
quadwords that the Command Processor will read
between updates tbe host’s copy of the Read Pointe
This size is expressed in log2 of the actual size (ibi6
quadwords). For example, for a block of 1024

quadwords, you would program this field to 10(decin
Default =0

BUF_SWAP 17:16 0x0 Endian Swap Control for Rg Buffer and Indirect
Buffer. Only affects the chip behavior if the buffer
resides in system memory. 0 = No swap 1 =hit&wap:
OxAABBCCDD becomes OXxBBAADDCC 2 = 3ait
swap: 0OXAABBCCDD becomes 0OxXDDCCBBAA 3 =
Half-dword swap: OXAABBCCDD becomes
0xCCDDAABB Default = 0

MAX_FETCH 19:18 0x0 Maximum Fetch Size for any read request that the C
makes to memory. 0 = 1 double octword. (32 bytes)
2 double octwords. (64 bytes) 2 = 4 double octwords
(128 bytes) 3 = 8 double octwords. (256 bytes). Defg
=0

RB_NO_UPDATE 27 0x0 Ring Buffer No Write to Read Pointer 0= Write to Ho
copy of Read Pointer in system memory. 1= Do not
to Host's copy of Read pointer. The purpose of this
control bit is to have a fatback position if the bus
mastered write tgystem memory doesn't work, in wh
case the driver will have to read the Graphics
Controller’s copy of the Read Pointer directly, with s
performance penalty. Default = 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 150

AMDH Revision 14 Octoberl3, 200

RB_RPTR_WR_ENA 31 0x0 Ring Buffer Read Pointer Write Transfer Enable. Wh
set he contents of the CP_RB_RPTR_WR register is
transferred to the active read pointer (CP_RB_RPTR
whenever the CP_RB_WPTR register is written. Def
=0

|CP:CP_RB_RPTR - [RIW] - 32 bits - Access: 8/16/322 MMReg:0x710 |
[IDESCRIPTION: Ring Buffer Rad Pointer Address (RO) |

|Field Name |Bits |Default |[Description |
RB_RPTR 22:0 none Ring Buffer Read Pointer. This is an index (in dword
(Access: R) of the current element being read from the ring buffe

[CP:CP_RB_RPTR_ADDR - [R/W] - 32 bits - Acces: 8/16/32- MMReg:0x70c |
[DESCRIPTION: Ring Buffer Read Pointer Address |

[Field Name |Bits |Default |[Description |

RB_RPTR_SWAP 1:0 0x0 Swap control of the reported read pointer address. S
CP_RB_CNTL.BUF_SWAP for the encoding.

RB_RPTR_ADDR 31:2 0x0 Ring Buffer Read Pointer Address. Address of the H¢
copy of the Read Pointer. CP_RB_RPTR (RO) Ring
Buffer Read Pointer

[CP:CP_RB_RPTR_WR - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x71c |
|DESCRIPTION: Writable Ring Buffer Read Pointer Address |
|Field Name |Bits |Default |[Description |

RB_RPTR_WR 22:0 0x0 Writable Ring Buffer Read Pointer. Writable for
updating the RB_RPTR after an ACPI.

|CP:CP_RB_WPTR - [R/W] - 32 hits - Access: 8/16/32. MMReg:0x714 |
IDESCRIPTION: (RO) Ring Buffer Write Pointer |
[Field Name |Bits |Default |[Description

RB_WPTR 22:0 0x0 Ring Buffer Write Pointer. This is an index (in dwords
of the last known element to be written to the ring bu
(by the host).

|CP:CP_RB_WPTR_DELAY - [R/W] - 32 bits - Access: 8/16/32: MM Reg:0x718 |
|DESCRIPTION: Ring Buffer Write Pointer Delay |
|Field Name ||Bits ||Defau|t ||Description |

PRE_WRITE_TIMER 27:0 0x0 PreWrite Timer. The number of clocks that a write tg
the CP_RB_WPTR register will be delayed until actu
taking effect. Default = 0

© 2008 Advanced Micro Devices, Inc.
Proprietary 151

AMDA1

Revision 14

Octoberl3, 200

PRE_WRITE_LIMIT 31:28 0x0

PreWrite Limit. The number of times that the
CP_RB_WPTR register can be written (while the
PRE_WRITE_TIMER has not expired) before the

most recently written value. Default = 0

CP_RB_WPTR register is forced to be updated with

|CP:CP_RESYNC_ADDR - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x778

|DESCRIPTION: Raster Engine Sync Address (WO)

|Field Name |Bits |Default |[Description |
RESYNC_ADDR 2:0 0x0 Scratch Register Offset Address.
(Access: W)

[CP:CP_RESYNC_DATA - [R/W] - 32 hits - Access: 8/16/32 MMReg:0x77¢

IDESCRIPTION: Raster Engine Sync Data (WO)

[Field Name |Bits |Default |[Description |
RESYNC_DATA 31:0 none Data written to selected Scratch Register when a syt
(Access: W) pulse pair is received from the CBéhd CBB.

|CP:CP_STAT - [R] - 32 bits - Access: 8/16/32: MMReg:0x7c0

|DESCRIPTION: (RO) Busy Status Signals

|

|
|Field Name |Bits |Default |[Description |
IMRU_BUSY o |lnone |[Memory Read Unit Busy. |
|MWU_BUSY ||l ||n0ne ||Memory Write Unit Busy. |
[RSIU_BUSY 2 |lnone |IRegister Backbone Input Interface Busy. |
[RCIU_BUSY 3 |lnone |[RBBM Output Interface Busy. |
|CSF_PRIMARY_BUSY o |lnone |[Primary Command Stream Fetcher Busy. |
[CSF_INDIRECT_BUSY [10 |lnone |[Indirect #1 Command Stream Fetcher Busy. |
|CSQ_PRIMARY_BUSY ||11 ||n0ne ||Data in Comman®ueue for Primary Stream. |
ICSQ_INDIRECT_BUSY |12 |lnone |IData in Command Queue for Indirect #1 Stream. |
[CSI_BUSY 13 lnone |[Command Stream Interpreter Busy. |
ICSF_INDIRECT2_BUSY |14 |lnone |lIndirect #2 Command Stream Fetcher Busy. |
|CSQ_INDIRECT2_BUSY ||15 ||n0ne ||Data inCommand Queue for Indirect #2 Stream. |
|GUIDMA_BUSY |28 |lnone ||GUI DMA Engine Busy. |
\VIDDMA_BUSY [29 [none |VID DMA Engine Busy. |
[CMDSTRM_BUSY [30 |[none][Command Stream Busy. |
lcP_BUSY |31 |lnone |lCP Busy. |

HCP:CP_VID_COMMAND - [RIW] - 32 bits - Access: 8/16/32 MMReg:0x7cc

© 2008 Advanced Micro Devices, Inc.
Proprietary

152

AMDH Revision 14 Octoberl3, 200

|DESCRIPTION: Command for PIO VID DMAs |
|Field Name |Bits |Default |[Description |

CP_VID_COMMAND 31:.0 none Command for PIO DMAs to the VID DMA. Only
DWORD access is allowed to this register.

|CP:CP_VID_DST_ADDR - [R/IW] - 32 bits - Access: 816/32 - MMReg:0x7c8 |
|DESCRIPTION: Destination Address for PIO VID DMAs |
[Field Name |Bits |Default | Description |

CP_VID_DST_ADDR 31:0 none Destination address for PIO DMAs to the VID DMA.
Only DWORD access is allowed to this register.

|CP:CP_VID_SRC_ADDR - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x7c4 |
[DESCRIPTION: Source Address for PIO VID DMAs |
[Field Name |Bits |Default |[Description |

CP_VID_SRC_ADDR 31:.0 none Source address for PIO DMAs to the VID DMA. Only
DWORD access is allowed to this regist

[CP:CP_VP_ADDR_CNTL - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x7e8 |

DESCRIPTION: Virtual vs Physical Address ControBelects whether the address corresponds to a physica
virtual address in memory.

[Field Name |Bits |Default |[Description |
I[SCRATCH_ALT_VP_WR |0 l0x0 ||l0=Physical (Default), 1=Virtual |
|SCRATCH_VP_WR 1 lox0 |l0=Physical (Default), 1=Virtual |
[RPTR_VP_UPDATE 2 lox0 ||0=Physical (Default), 1=Virtual |
I\VIDDMA_VP_WR 13 lox0 |l0=Physical (Default), 1=Virtual |
I\VIDDMA_VP_RD |4 lox0 ||l0=Physical (Defau)t 1=Virtual |
IGUIDMA_VP_WR |15 l0x0 ||l0=Physical (Default), 1=Virtual |
|GUIDMA_VP_RD |6 lox0 |l0=Physical (Default), 1=Virtual |
INDR2_VP_FETCH 7 l0x0 ||l0=Physical (Default), 1=Virtual |
INDR1_VP_FETCH 8 lox0 |l0=Physical (Default), 1=Virtual |
[RING_VP_FETCH |l lox0 ||l0=Physica(Default), 1=Virtual |

© 2008 Advanced Micro Devices, Inc.
Proprietary 153

AMDH Revision 14 Octoberl3, 200

11.2 Color Buffer Registers

|CB:RB3D_AARESOLVE_CTL - [R/W] - 32 hits - Access: 8/16/32: MMReg:0x4e88 |
[DESCRIPTION: Resolve Buffer Control. Unpipelined |
|Field Name |Bits |Default |[Description |

AARESOLVE_MODE 0 0x0 Specifies if he color buffer is in resolve mode. The
cache must be empty before changing this register.

POSSIBLE VALUES:
00- Normal operation.
01 - Resolve operation.

AARESOLVE_GAMMA 1 none Specifies the gamma and degamma to be applied to|
samples bfore and after filtering, respectively.

POSSIBLE VALUES:
00-1.0
01-2.2

AARESOLVE_ALPHA 2 0x0 Controls whether alpha is averaged in the resolve. 0
the resolved alpha value is selected from the sample
value. 1=> the resolved alphalue is a filtered (averag
result of of the samples.

POSSIBLE VALUES:
00- Resolved alpha value is taken from sample O
01- Resolved alpha value is the average of the
samples. The average is hot gamma corrected.

|CB:R83D_AARESOLVE_OFFSET - [RIW] - 32 bits - Access: 8/16/32: MMReg:0x4e80 |

DESCRIPTION: Resolve buffer destination address. The cache must be empty before changing this regist
cb is in resolve mode. Unpipelined

[Field Name |Bits |Default |[Description |
IAARESOLVE_CFFSET [31:5 |lnone |[256-bit aligned 3D resolve destination offset. |

|CB:R83D_AARESOLVE_PITCH - [R/IW] - 32 bits - Access: 8/16/32. MMReg:0x4e84 |

DESCRIPTION: Resolve Buffer Pitch and Tiling Control. The cache must be empty before changing thisifg
the cb is in resolve mode. Unpipelined

[Field Name |Bits |Default |[Description |
|AARESOLVE_PITCH ||13:1 ||n0ne ||3D destination pitch in multiples ofg@ixels. |

|CB:RB3D_ABLENDCNTL - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4e08 |
|DESCRIPTION: AlphaBlend Control for Alpha Channel. Pipelined through the blender. |
|Field Name ||Bits ||Defau|t ||Description |

© 2008 Advanced Micro Devices, Inc.
Proprietary 154

AMDA1

Revision 14 Octoberl3, 200

COMB_FCN

14:12

none

Combine Function , Allows modification of how the
SRCBLEND and DESTBLEND are combined.

POSSIBLE VALUES:

00- Add and Clamp

01- Add but no Clamp

02 - Subtract Dst from Src, and Clamp

03- Subtract Dst from Src, and don’t Clamp

04 - Minimum of Src, Dst (the src and dst blend
functions are forced to D3D_ONE)

05 - Maximum of Src, Dst (the src andtddend
functions are forced to D3D_ONE)

06 - Subtract Src from Dst, and Clamp

07 - Subtract Src from Dst, and don't Clamp

SRCBLEND

21:16

none

Source Blend Function , Alpha blending function (SR

POSSIBLE VALUES:
00- RESERVED
01- D3D_ZERO
02- D3D_ONE
03- D3D_SRCCOLOR
04- D3D_INVSRCCOLOR
05- D3D_SRCALPHA
06- D3D_INVSRCALPHA
07- D3D_DESTALPHA
08- D3D_INVDESTALPHA
09- D3D_DESTCOLOR
10- D3D_INVDESTCOLOR
11- D3D_SRCALPHASAT
12- D3D_BOTHSRCALPHA
13- D3D_BOTHINVSRCALPHA
14 - RESERVED
15- RESERVED
16 - RESERVED
17 - RESERVED
18- RESERVED
19- RESERVED
20- RESERVED
21- RESERVED
22- RESERVED
23- RESERVED
24- RESERVED
25- RESERVED
26- RESERVED
27- RESERVED
28- RESERVED
29- RESERVED
30- RESERVED
31- RESERVED
32-GL_ZERO
33-GL_ONE
34-GL_SRC_COLOR

© 2008 Advanced Micro Devices, Inc.
Proprietary

155

AMDA1

Revision 14

Octoberl3, 200

35- GL_ONE_MINUS_SRC_COLOR
36-GL_DST_COLOR
37-GL_ONE_MINUS_DST_COLOR
38-GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA
42- GL_SRC_ALPHA SATURATE
43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA
47 - RESERVED

48- RESERVED

49- RESERVED

50- RESERVED

51- RESERVED

52- RESERVED

53- RESERVED

54- RESERVED

55- RESERVED

56 - RESERVED

57 - RESERVED

58- RESERVED

59- RESERVED

60- RESERVED

61- RESERVED

62- RESERVED

63- RESERVED

DESTBLEND

29:24

none

Destination Blend Function , Alpha blending function

(DST).

POSSIBLE VALUES:
00- RESERVED
01- D3D_ZERO
02- D3D_ONE
03- D3D_SRCCOLOR
04- D3D_INVSRCCOLOR
05- D3D_SRCALPHA
06- D3D_INVSRCALPHA
07- D3D_DESTALPHA
08- D3D_INVDESTALPHA
09- D3D_DESTCOLOR
10- D3D_INVDESTCOLOR
11- RESERVED
12- RESERVED
13- RESERVED
14- RESERVED
15- RESERVED
16 - RESERVED
17 - RESERVED
18- RESERVED
19- RESERVED

© 2008 Advanced Micro Devices, Inc.
Proprietary

156

AMDA1

Revision 14 Octoberl3, 200

20- RESERVED
21- RESERVED

22 - RESERVED

23- RESERVED

24 - RESERVED

25- RESERVED

26- RESERVED

27- RESERVED

28- RESERVED

29- RESERED

30- RESERVED

31- RESERVED

32-GL_ZERO

33-GL_ONE
34-GL_SRC_COLOR

35- GL_ONE_MINUS_SRC_COLOR
36- GL_DST_COLOR

37- GL_ONE_MINUS_DST_COLOR
38- GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA
42 - RESERVED

43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA
47 - RESERVED

48- RESERVED

49- RESERVED

50- RESERVED

51- RESERVED

52- RESERVED

53- RESERVED

54- RESERVED

55- RESERVED

56- RESERVED

57- RESERVED

58- RESERVED

59- RESERVED

60- RESERVED

61- RESERVED

62- RESERVED

63- RESERVED

|CB:RB3D_BLENDCNTL - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4e04

|DESCRIPTION: Alpha Blend Control for Color Channels. Pipelined through the blender.

|Field Name

||Bits

||Defau|t

[ALPHA_BLEND_ENABLE

o

|loxo

|
|
||Description |
||Allow alpha blending with the destination. |

© 2008 Advanced Micro Devices, Inc.

Proprietary

157

AMDA1

Revision 14 Octoberl3, 200

POSSIBLE VALUES:
00 - Disable
01- Enable

SEPARATE_ALPHA_ENABLE

0x0

Enables use of RB3D_ABLENDCNTL

POSSIBLE VALUES:
00- Disabled (Use RB3D_BENDCNTL)
01- Enabled (Use RB3D_ABLENDCNTL)

READ_ENABLE

ox1

When blending is enabled, this enables memory rea
Memory reads will still occur when this is disabled if
they are for reasons not related to blending.

POSSIBLE VALUES:
00- Disable reads
01- Enable reads

DISCARD_SRC_PIXELS

5:3

0x0

Discard pixels when blending is enabled based on th
color.

POSSIBLE VALUES:
00 - Disable
01- Discard pixels if src alpha <=
RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
02 - Discard pixels if src color <=
RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
03- Discard pixels if src argb <=
RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD
04 - Discard pixels if src alpha >=
RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD
05- Discard pixes if src color >=
RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD
06 - Discard pixels if src argb >=
RB3D_DISCARD _SRC_PIXEL_GTE_THRESHOLD
07 - (reserved)

COMB_FCN

14:12

none

Combine Function , Allows modification of how the
SRCBLEND and DESTBLEND areombined.

POSSIBLE VALUES:

00- Add and Clamp

01- Add but no Clamp

02 - Subtract Dst from Src, and Clamp

03 - Subtract Dst from Src, and don’t Clamp

04 - Minimum of Src, Dst (the src and dst blend
functions are forced tD3D_ONE)

05 - Maximum of Src, Dst (the src and dst blend
functions are forced to D3D_ONE)

06 - Subtract Src from Dst, and Clamp

07 - Subtract Src from Dst, and don’t Clamp

SRCBLEND

[21:16

|none

||Source Blend Function , Alpha blendingnttion (SRC)|

© 2008 Advanced Micro Devices, Inc.
Proprietary

158

AMDA1

Revision 14 Octoberl3, 200

POSSIBLE VALUES:

00- RESERVED

01- D3D_ZERO

02- D3D_ONE
03-D3D_SRCCOLOR

04- D3D_INVSRCCOLOR

05- D3D_SRCALPHA

06- D3D_INVSRCALPHA

07- D3D_DESTALPHA

08- D3D_INVDESTALPHA

09- D3D_DESTCOLOR

10- D3D_INVDESTCOLOR

11- D3D_SRCALPHASAT

12- D3D_BOTHSRCALPHA

13- D3D_BOTHINVSRCALPHA

14 - RESERVED

15- RESERVED

16 - RESERVED

17 - RESERVED

18- RESERVED

19 - RESERVED

20- RESERVED

21- RESERVED

22- RESERVED

23- RESERVED

24- RESERVED

25- RESERVED

26- RESERVED

27- RESERVED

28- RESERVED

29- RESERVED

30- RESERVED

31- RESERVED

32-GL_ZERO

33-GL_ONE
34-GL_SRC_COLOR

35- GL_ONE_MINUS_SRC_COLOR
36- GL_DST_COLOR
37-GL_ONE_MINUS_DST_COLOR
38- GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA
40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA
42- GL_SRC_ALPHA_SATURATE
43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA
47 - RESERVED

48 - RESERVED

49 - RESERVED

50- RESERVED

© 2008 Advanced Micro Devices, Inc.
Proprietary

159

AMDA1

Revision 14

Octoberl3, 200

51- RESERVED
52- RESERVED
53- RESERVED
54 - RESERVED
55- RESERVED
56 - RESERVED
57- RESERVED
58 - RESERVED
59- RESERVED
60- RESERVED
61- RESERVED
62 - RESERVED
63- RESERVED

DESTBLEND

29:24

none

Destination Blend Function , Alpha blending function

(DST).

POSSIBLE VALUES:
00- RESERVED
01-D3D_ZERO
02-D3D_ONE
03-D3D_SRCCOLOR
04- D3D_INVSRCCOLOR
05- D3D_SRCALPHA
06- D3D_INVSRCALPHA
07- D3D_DESTALPHA
08- D3D_INVDESTALPHA
09- D3D_DESTCOLOR
10- D3D_INVDESTCOLOR
11- RESERVED
12- RESERVED
13- RESERVED
14 - RESERVED
15- RESERVED
16 - RESERVED
17 - RESERVED
18- RESERVED
19- RESERVED
20- RESERVED
21- RESERVED
22 - RESERVED
23- RESERVED
24 - RESERVED
25- RESERVED
26- RESERVED
27- RESERVED
28- RESERVED
29- RESERVED
30- RESERVED
31- RESERVED
32- GL_ZERO
33-GL_ONE
34- GL_SRC_COLOR
35- GL_ONE_MINUS_SRC_COLOR

© 2008 Advanced Micro Devices, Inc.
Proprietary

160

AMDA1

Revision 14 Octoberl3, 200

36-GL_DST_COLOR
37-GL_ONE_MINUS_DST_OLOR

38- GL_SRC_ALPHA

39- GL_ONE_MINUS_SRC_ALPHA

40- GL_DST_ALPHA

41- GL_ONE_MINUS_DST_ALPHA

42 - RESERVED

43- GL_CONSTANT_COLOR

44- GL_ONE_MINUS_CONSTANT_COLOR
45- GL_CONSTANT_ALPHA

46- GL_ONE_MINUS_CONSTANT_ALPHA
47 - RESERVED

48- RESERVED

49- RESERVED

50- RESERVED

51- RESERVED

52 - RESERVED

53- RESERVED

54- RESERVED

55- RESERVED

56 - RESERVED

57 - RESERVED

58- RESERVED

59- RESERVED

60- RESERVED

61- RESERVED

62- RESERVED

63- RESERVED

SRC_ALPHA_0_NO_READ

30

0x0

Enables source alpha zero performance optimization
skip reads.

POSSIBLE VALUES:

00- Disable source alpha zero performance
optimization to skip reads

01- Enable source alpha zero performance
optimization to skip reads

SRC_ALPHA_1_NO_READ

31

0x0

Enables source alpha one performance optimization
skip reads.

POSSIBLE VALUES:

00 - Disable source alpha one performance
optimization to skip reads

01 - Enable source alpha one performance
optimization to skip reads

MMReg:0x4ea4d

CB:RB3D_DISCARD_SRC_PIXEL_GTE_THRESHOLD - [R/W] - 32 bits - Access: 8/16/32-

|DESCRIPTION: Discard src pixels greater than or equal to threshold. |

[Field Name

|[Bits

| Default

||Description |

© 2008 Advanced Micro Devices, Inc.
Proprietary

161

AMDA\ Revision 14 Octoberl3, 200
[BLUE [7:0 |oxFF |[Blue |
|GREEN l15:8 |oxFF | |Green |
IRED [23:16 |oxFF ||Red |
IALPHA [31:24 |oxFF |Alpha |

MMReg:0x4ea0

CB:RB3D_DISCARD_SRC_PIXEL_LTE_THRESHOLD - [R/W]

- 32 bits - Access: 8/16/32

|DESCRIPTION: Discard src pixels less than or equal to threshold.

|Field Name |Bits |Default |[Description
[BLUE [7:0 lox0 |[Blue
|GREEN l15:8 Jox0 |Green
IRED [23:16 |lox0 |Red
IALPHA [31:24 Jjox0 |Alpha

|CB:RBSD_CCTL - [RIW] - 32 bits - Access: 8/16/32: MMReg:0x4e00 |

IDESCRIPTION: Unpipelined.

[Field Name

|Bits|| Defaul{|Description |

NUM_MULTIWRITES

6:5||0x0

A quad is replicated and written to this
many buffers.

POSSIBLE VALUES:

00- 1 buffer. This is the only mode
where the clprocesses the end of pack
command.

01- 2 buffers

02 - 3 buffers

03- 4 buffers

CLRCMP_FLIPE_ENABLE

7 ||0x0

Enables equivalent of rage128
CMP_EQ_FLIP color compare mode.
This is used to ensure 3D data does n(
get chromakeyed awaylthogic in the
backend.

POSSIBLE VALUES:
00 - Disable color compare.
01- Enable color compare.

AA_COMPRESSION_ENABLE

9 (lnone

Enables AA color compression. Cmask
must also be enabled when aa
compression is enabled. The cache m
be empty bfore this is changed.

POSSIBLE VALUES:
00 - Disable AA compression

01- Enable AA compression

© 2008 Advanced Micro Devices, Inc.
Proprietary

162

AMDH Revision 14 Octoberl3, 200

CMASK_ENABLE 10 [jnone ||[Enables use of the cmask ram. The ca
must be empty before this is changed.

POSSIBLE VALUES:
00 - Disable
01- Enable

IReserved |11 Jlox0 |setto 0 |
INDEPENDENT_COLOR_CHANNEL_MASK_ ENABLI|12 [|0x0 Enables indepedent color channel mas
for the MRTs. Disabling this feature wil

cause all the MRTs to use color chann
mask 0.

POSSIBLE VALUES:
00- Disable
01- Enable

WRITE_COMPRESSION_DISABLE 13 |lnone ||Disables write compression.

POSSIBLE VALUES:
00 - Enable write compression
01 - Disable write compression

INDEPENDENT_COLORFORMAT_ENABLE 14 ||0x0 Enables independent color format for t
MRTSs. Disabling this feature will cause
all the MRTs to use color format 0.

POSSIBLE VALUES:
00 - Disable
01- Enable

|CB:RBBD_CLRCMP_CLR - [R/IW] - 32 bits - Access: 8/16/32. MMReg:0x4e20 |
IDESCRIPTION: Color Compare Color. Stalls the &4 datapath until it is idle. |
[Field Name |Bits |Default |[Description |

CLRCMP_CLR 31.0 none Like RB2D_CLRCMP_CLR, but a separate register i
provided to keep 2D and 3D state separate.

|CB:RB3D_CLRCMP_FLIPE - [R/W] - 32 bits - Access: 8/16/32- MMReg: 0x4elc |
|DESCRIPTION: Color Compare Flip. Stalls the 2d/3d datapath until it is idle. |
[Field Name |Bits |Default |[Description |

CLRCMP_FLIPE 31:0 none Like RB2D_CLRCMP_FLIPE, but a separate registe
provided to keep 2D and 3D state separate.

|CB:RB3D_CLRCMP_MSK - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4e24 |
[IDESCRIPTION: Color Compare Mask. Stalls the 2d/3d datapath until it is idle. |
|Field Name ||Bits ||Defau|t ||Description |

© 2008 Advanced Micro Devices, Inc.
Proprietary 163

AMDH Revision 14 Octoberl3, 200

CLRCMP_MSK 31:0 none Like RB2D_CLRCMP_CLR, but separate registers
providedto keep 2D and 3D state separate.

|CB:RBSD_COLOROFFSET[O-3] - [R/IW] - 32 bits - Access: 8/16/32- MMReg:0x4e280x4e34 |
IDESCRIPTION: Color Buffer Address Offset of multibuffer 0. Unpipelined. |
|Field Name ||Bits “Default ||Description |

COLOROFFSET 31:5 none 256-bit aligned 3D destination offset address. The ca
must be empty before this is changed.

|CB:RB3D_COLORPITCH[O -3] - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4e380x4e44 |

DESCRIPTION: Color buffer format and tiling control for alhie multibuffers and the pitch of multibuffer 0.
Unpipelined. The cache must be empty before any of the registers are changed.

[Field Name |Bits |Default |[Description |

|COLORPITCH ||13:l ||n0ne ||3D destination pitch in multiples of{@ixels. |

COLORTILE 16 none Denoks whether the 3D destination is in macrotiled
format.

POSSIBLE VALUES:

00 - 3D destination is not macrotiled

01 - 3D destination is macrotiled
COLORMICROTILE 18:17 none Denotes whether the 3D destination is in microtiled
format.

POSSIBLEVALUES:

00- 3D destination is no microtiled

01 - 3D destination is microtiled

02 - 3D destination is square microtiled. Only
available in 1ébit

03 - (reserved)

COLORENDIAN 20:19 none Specifies endian control for the color farf

POSSIBLE VALUES:
00- No swap
01- Word swap (2 bytes in 1Bit)
02 - Dword swap (4 bytes in a d#t)
03 - Half-Dword swap (2 16it in a 32bit)

COLORFORMAT 24:21 0x6 3D destination color format.

POSSIBLE VALUES:
00- ARGB10101010
01- UV1010
02- CI8 (2D ONLY)
03- ARGB1555
04- RGB565
05- ARGB2101010
06- ARGB8888

© 2008 Advanced Micro Devices, Inc.
Proprietary 164

AMDA1

Revision 14 Octoberl3, 200

07 - ARGB32323232

08 - (Reserved)

09-18

10- ARGB16161616
11-YUV422 packed (VYUY)
12-YUV422 packed (YVYU)
13-Uvs8s8

14-110

15- ARGB4444

|CB:RB3D_COLOR_CHANNEL_MASK - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4e0c

|

DESCRIPTION: 3D Color Channel Mask. If all the channels usedhia current color format are disabled, then
the cb will discard all the incoming quads. Pipelined through the blender.

[Field Name

|Bits

|Default |[Description

BLUE_MASK

0

0ox1

mask bit for the blue channel

POSSIBLE VALUES:
00 - disable
01- enalle

GREEN_MASK

0ox1

mask bit for the green channel

POSSIBLE VALUES:
00 - disable
01- enable

RED_MASK

ox1

mask bit for the red channel

POSSIBLE VALUES:
00- disable
01- enable

ALPHA_MASK

Oox1

mask bit for the alpha chael

POSSIBLE VALUES:
00- disable
01- enable

BLUE_MASK1

ox1

mask bit for the blue channel of MRT 1

POSSIBLE VALUES:
00 - disable
01- enable

GREEN_MASK1

ox1

mask bit for the green channel of MRT 1

POSSIBLE VALUES:
00- disable
01- enable

RED_MASK1

Oox1

mask bit for the red channel of MRT 1

POSSIBLE VALUES:

© 2008 Advanced Micro Devices, Inc.
Proprietary

165

AMDH Revision 14 Octoberl3, 200

00 - disable
01- enable

ALPHA MASK1 7 0x1 mask bit for the alpha channel of MRT 1

POSSIBLE VALUES:
00 - disable
01- enable

BLUE_MASK2 8 0x1 mask bit for the blue channel of MRT 2

POSSIBLE VALUES:
00 - disable
01- enable

GREEN_MASK?2 9 0x1 mask bit for the green channel of MRT 2

POSSIBLE VALUES:
00 - disable
01- enable

RED_MASK2 10 Ox1 mask bit for the red channel of MRT 2

POSSIBLE VALUES:
00 - disable
01- enable

ALPHA MASK2 11 Ox1 mask bit for the alpha channel of MRT 2

POSSIBLE VALUES:
00- disable
01- enable

BLUE_MASK3 12 0x1 mask bit for the blue clmael of MRT 3

POSSIBLE VALUES:
00- disable
01- enable

GREEN_MASK3 13 Ox1 mask bit for the green channel of MRT 3

POSSIBLE VALUES:
00- disable
01- enable

RED_MASK3 14 0x1 mask bit for the red channel of MRT 3

POSSIBLE VALUES:
00- disable
01- enable

ALPHA_MASK3 15 0x1 mask bit for the alpha channel of MRT 3

POSSIBLE VALUES:
00 - disable
01- enable

© 2008 Advanced Micro Devices, Inc.
Proprietary 166

AMDH Revision 14 Octoberl3, 200

[CB:RB3D_COLOR_CLEAR_VALUE - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x4el4 |

DESCRIPTION: Clear color that is used when the color mask is set to 00. Unpipelined. Program this regis
a 32bit value in ARGB8888 or ARGB2101010 formats, ignoring the fields.

[Field Name |Bits |Default |[Description |
IBLUE |7:0 lnone |lblue clear color |
IGREEN [15:8 lnone |[green clear color |
IRED [23:16 |jnone |lred clear color |
IALPHA 31:24 |lnone |lalpha clear color |

[CB:RB3D_COLOR_CLEAR_VALUE_AR - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x46c0 |

DESCRIPTION: Alpha and red clear color values that are used whercther mask is set to 00 in FP16 per
component mode. Unpipelined.

[Field Name |Bits |Default |[Description |
IRED 150 |jnone |lred clear color |
IALPHA [31:16 |none |[alpha clear color |

|CB:RBSD_COLOR_CLEAR_VALUE_GB - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x46c4 |

DESCRIPTION: Green and blue clear color values that are used when the color mask is set to 00 in FP16
component mode. Unpipelined.

[Field Name |Bits |Default |[Description |
[BLUE [15:0 |jnone |[blue clear color |
IGREEN [31:26 |none ||green clear color |

|CB:R83D_CONSTANT_COLOR - [R/IW] - 32 bits - Access: 8/16/32: MMReg:0x4e10 |
|DESCRIPTION: Constant color used by the blender. Pipelined through the blender. |

|Field Name |Bits |Default |[Description |
BLUE 7:0 none blue constant color (For R520, this field is dged, use
RB3D_CONSTANT_COLOR_GB__BLUE instead)
GREEN 15:8 none green constant color (For R520, this field is ignored,
RB3D_CONSTANT_COLOR_GB__GREEN instead
RED 23:16 none red constant color (For R520, this field is ignored, us
RB3D_CONSTANT_COLORAR__RED instead)
ALPHA 31:24 none alpha constant color (For R520, this field is ignored,
RB3D_CONSTANT_COLOR_AR__ALPHA instead)

|CB:RBBD_CONSTANT_COLOR_AR - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4ef8
|DESCRIPTION: Constant color usedytthe blender. Pipelined through the blender.

|Field Name |Bits |Default |Description

IRED [15:0 lnone |[red constant color in 0.10 fixed or FP16 format

© 2008 Advanced Micro Devices, Inc.
Proprietary 167

AMDH Revision 14 Octoberl3, 200

HALPHA ||31:16 “none ||a|pha constant color in 0.10 fixed or FP16 format H

|CB:RBSD_CONSTANT_COLOR_GB - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4efc |
|DESCRIPTION: Constant color used by the blender. Pipelined through the blender. |
[Field Name |Bits |Default |[Description |

IBLUE [15:0 |Inone ||blue constant color in 0.10 fixed or FP16 format
IGREEN [31:126 |none ||green costant color in 0.10 fixed or FP16 format

|CB:RB3D_DITHER_CTL - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4e50 |
|DESCRIPTION: Dithering control register. Pipelined through the blender. |
[Field Name |Bits |Default |[Description |
DITHER_MODE 1:0 0x0 Dither mode

POSSIBLE VALUES:
00- Truncate
01- Round
02- LUT dither
03 - (reserved)

ALPHA DITHER_MODE 3:2 0x0 POSSIBLE VALUES:
00- Truncate

01- Round

02- LUT dither
03- (reserved)

CB:RB3D_DSTCACHE_CTLSTAT - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4e4c

DESCRIPTION: Destination Color Buffer Cache Control/Status. If the cb is in €2 mode, then a flush or freg
not occur upon a write to this register, but a sync will be immediatiyif one is requested. If both DC_FLUSH
and DC_FREE are zero but DC_FINISH is one, then a sync will be sent immedigbel\cb will not wait for all
the previous operations to complete before sending the sync. Unpipelined except when DC_FINISHRRED
are both set to zero.

[Field Name |[Bits |Default |[Description |

DC_FLUSH 1.0 0x0 Setting this bit flushes dirty data from the 3D Dst Ca
Unless the DC_FREE bits are also set, the tags in th
cache remain valid. A purge is achieved by setting b
DC_FLUSH and DC_FREE.

POSSIBLE VALUES:
00- No effect
01- No effect
02 - Flushes dirty 3D data
03 - Flushes dirty 3D data

DC_FREE 3:2 0x0 Setting this bit invalidates the 3D Dst Cache tags. Uy
the DC_FLUSH bit is also sehéd cache lines are not
written to memory. A purge is achieved by setting bo

© 2008 Advanced Micro Devices, Inc.
Proprietary 168

AMDH Revision 14 Octoberl3, 200

DC_FLUSH and DC_FREE.

POSSIBLE VALUES:
00- No effect
01- No effect
02- Free 3D tags
03- Free 3D tags

DC_FINISH 4 0x0 POSSIBLE VALUES:

00- do not send a finish signal to the CP

01- send a finish signal to the CP after the end o
operation

[CB:RB3D_FIFO_SIZE - [RIW] - 32 bits - Access: 8/16/32° MMReg:0x4ef4 |
[DESCRIPTION: Sets the fifo sizes |
[Field Name |Bits |Default |[Descrption |
OP_FIFO_SIZE 1:0 0x0 Determines the size of the op fifo

POSSIBLE VALUES:
00- Full size
01-1/2 size
02-1/4 size
03-1/8 size

|CB:RB3D_ROPCNTL - [R/W] - 32 hits - Access: 8/16/32. MMReg:0x4e18 |
[DESCRIPTION: 3D ROP Control. Stalls the 2d/3d datapath until it is idle. |
|Field Name |Bits |Default |[Description |

ROP_ENABLE 2 0x0 POSSIBLE VALUES:
00- Disable ROP. (Forces ROP2 to be 0xC).
01- Enabled

ROP 11:8 none ROP2 code for 3D fragments. This walis replicated
into 2 nibbles to form the equivalent ROP3 code to
control the ROP3 logic. These are the GDI ROP2 co

© 2008 Advanced Micro Devices, Inc.
Proprietary 169

AMDA1

Revision 14 Octoberl3, 200

11.3 Fog Registers

|FG:FG_ALPHA_FUNC - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4bd4 |

IDESCRIPTION: Alpha Function

[Field Nane

|Bits

||Defau|t “Description |

AF_VAL

7:0

0x0

Specifies the dit alpha compare value when
AF_EN_8BIT is enabled

AF_FUNC

10:8

0x0

Specifies the alpha compare function.

POSSIBLE VALUES:
00- AF_NEVER
01-AF_LESS
02- AF_EQUAL
03- AF_LE
04- AF_GREATER
05- AF_NOTEQUAL
06- AF_GE
07- AF_ALWAYS

AF_EN

11

0x0

Enables/Disables alpha compare function.

POSSIBLE VALUES:
00 - Disable alpha function.
01 - Enable alpha function.

AF_EN_8BIT

12

0ox0

Enable 8bit alpha compare function.

POSSIBLE VALUES:
00 - Default 10bit alpha compare.
01- Enable 8bit alpha compare.

AM_EN

16

0x0

Enables/Disables alpfta-mask function.

POSSIBLE VALUES:
00 - Disable alpha to mask function.
01- Enable alpha to mask function.

AM_CFG

17

0x0

Specfies number of sytixel samples for alphto-mask
function.

POSSIBLE VALUES:
00- 2/4 subpixel samples.
01 - 3/6 subpixel samples.

DITH_EN

20

0x0

Enables/Disables RGB Dithegr(Not supported in
R520)

POSSIBLE VALUES:
00 - Disable Dithering
01- Enable Dithering.

ALP_OFF_EN

24

[loxo

||Alpha offset enable/disable (Not supported in R520)|

© 2008 Advanced Micro Devices, Inc.
Proprietary

170

AMDH Revision 14 Octoberl3, 200

POSSIBLE VALUES:

00 - Disables alpha offset of 2 (default r300 & rv3
behavior)

01 - Enables offset of 2 on alpha coming in from
us

DISCARD_ZERO_MASK_QUAIL25 0x0 Enable/Disable discard zero mask coverage quad tg

POSSIBLE VALUES:
00- No discard of zero coverage mask quads
01- Discard zero coverageask quads

FP16 ENABLE 28 0x0 Enables/Disables FP16 alpha function

POSSIBLE VALUES:

00 - Default 16bit alpha compare and alp@mask
function

01- Enable FP16 alpha compare and alfrenask
function

|FG:FG_ALPHA_VALUE - [R/W] - 32 bits - Access: 8/16/32. MMReg:0x4be0 |
[DESCRIPTION: Alpha Compare Value |

[Field Name |Bits |Default |[Description |
AF_VAL 15:0 0x0 Specifies the alpha compare value, 0.10 fixed or FP
format

[FG:FG_DEPTH_SRC - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4bd8 |
[DESCRIPTION: Where does depth come from? |

[Field Name |[Bits |Default |[Description |
DEPTH_SRC 0 0x0 POSSIBLE VALUES:
00 - Depth comes from scan converter as plane
equation.
01 - Depth comes from shader as four discrete va

[FG:FG_FOG_BLEND - [R/W] - 32 bits - Access: 8/16/32- MMReg:0x4bc0 |
IDESCRIPTION: Fog Blending Enable |
|Field Name ||Bits ||Defau|t ||Description |
ENABLE 0 0x0 Enable for fog blending

POSSIBLE VALUES:
00 - Disables fog (output matches input color).
01- Enables fog.

FN ||2:1 ||0x0 ||Fog generation function |

© 2008 Advanced Micro Devices, Inc.
Proprietary 171

AMDH Revision 14 Octoberl3, 200

POSSIBLE VALUES:
00- Fog function is linear
01 - Fog function is exponential
02 - Fog function is exponential squared
03- Fog is derived from constant fog factor

|FG:FG_FOG_COLOR_B - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4bd0

|DESCRIPTION: Blue Component of Fog Color

[Field Name |Bits |Default |[Description

IBLUE |9:0 0x0 ||Blue component of fog color; (0.10) fixed format.

[FG:FG_FOG_COLOR_G - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4bcc

|DESCRIPTION: Green Component of Fog Color

[Field Name |Bits |Default |[Description

IGREEN [9:0 lox0 ||Green component of fog color; (0.10) fixed format.

[FG:FG_FOG_COLOR_R - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x4bc8

IDESCRIPTION: Red Component of Fog Color

[Field Name |Bits |Default |[Description

IRED [9:0 lox0 |Red component of fog color; (0.10) fixed format.

|FG:FG_FOG_FACTOR - [RIW] - 32 bits - Access: 8/16/32- MMReg:0x4bc4

|DESCRIPTION: Constant Factor for Fog Blending

|Field Name |Bits |Default |[Description

[FACTOR [|9:0 lox0 ||Constant fog factor; fixed (0.10) format.

© 2008 Advanced Micro Devices, Inc.
Proprietary

172

AMDA1

Revision 14

Octoberl3, 200

11.4 Geometry Assembly Registers

[GA:GA_COLOR_CONTROL - [R/W] - 32 bits - Access: 8/16/32 MMReg:0x4278

|DESCRIPTION: Specifis per RGB or Alpha shading method.

|[Field Name

|Bits

“Default

| Description

RGBO_SHADING

1:0

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

ALPHAO_SHADING

3:2

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

RGB1_SHADING

54

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

ALPHA1_SHADING

7.6

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00- Solid fill color
01 - Flat shading
02 - Gouraud shading

RGB2_SHADING

9:8

0x0

Specifies sol, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

ALPHA2_SHADING

11:10

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

RGB3_SHADING

13:12

0x0

Specifies solid, flat or Gouraud shading.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

© 2008 Advanced Micro Devices, Inc.
Proprietary

173

AMDA1

Revision 14 Octoberl3, 200

ALPHA3_SHADING

15:14

0x0

Specifies solid, flat oGouraud shading.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

PROVOKING_VERTEX

17:16

0x0

Specifies, for flat shaded polygons, which vertex hol
the polygon color.

POSSIBLE VALUES:
00 - Provokng is first vertex
01 - Provoking is second vertex
02 - Provoking is third vertex
03- Provoking is always last vertex

[GA:GA_COLOR_CONTROL_PS3 -

[R/W] - 32 hits - Access: 8/16/32- MMReg:0x4258 |

|DESCRIPTION: Specifies coloproperties and mappings of textures. |

[Field Name

|Bits

| Default

||Description |

TEXO_SHADING_PS3

1:0

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

TEX1_SHADING_PS3

3:2

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01 - Flat shading
02 - Gouraud shading

TEX2_SHADING_PS3

54

0x0

Spedfies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

TEX3_SHADING_PS3

7.6

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shadimy for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01- Flat shading
02 - Gouraud shading

TEX4_SHADING_PS3

9:8

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

© 2008 Advanced Micro Devices, Inc.
Proprietary

174

AMDA1

Revision 14 Octoberl3, 200

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX5_SHADING_PS3

11:10

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX6_SHADING_PS3

13:12

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX7_SHADING_PS3

15:14

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

TEX8_SHADING_PS3

17:16

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shadingfor each texture.

POSSIBLE VALUES:
00- Solid fill color
01 - Flat shading
02 - Gouraud shading

TEX9_SHADING_PS3

19:18

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for each texture.

POSSIBLE VALUES:
00 - Solid fill color
01 - Flat shading
02 - Gouraud shading

TEX10_SHADING_PS3

21:20

0x0

Specifies undefined(0), flat(1) and Gouraud(2/def)
shading for tex10 components.

POSSIBLE VALUES:
00- Solid fill color
01- Flat shading
02 - Gouraud shading

COLORO_TEX_OVERRIDE

25:22

0ox0

Specifies if each color should come from a texture a
which one.

© 2008 Advanced Micro Devices, Inc.
Proprietary

175

AMDA1

Revision 14

Octoberl3, 200

POSSIBLE VALUES:
00- No override
01 - Stuff texture 0
02 - Stuff texture 1
03 - Stuff texture 2
04 - Stuff texture 3
05 - Stuff texture 4
06 - Stuff texture 5
07 - Stuff texture 6
08 - Stuff texture 7
09 - Stuff texture 8/C2
10 - Stuff texture 9/C3

COLOR1_TEX_OVERRIDE

29:26

0x0

Specifies if each color should cerfrom a texture and
which one.

POSSIBLE VALUES:
00 - No override
01 - Stuff texture 0
02 - Stuff texture 1
03 - Stuff texture 2
04 - Stuff texture 3
05 - Stuff texture 4
06 - Stuff texture 5
07 - Stuf texture 6
08 - Stuff texture 7
09 - Stuff texture 8/C2
10 - Stuff texture 9/C3

[GA:GA_ENHANCE - [R/W] - 32 bits - Access: 8/16/32: MMReg:0x4274

IDESCRIPTION: GA Enhancement Register

[Field Name

|Bits

| Default

| Description |

DEADLOCK_CNTL

0

0x0

TCL/GA Deadlock control.

POSSIBLE VALUES:

00- No effect.

01- Prevents TCL interface from deadlocking on
side.

FASTSYNC_CNTL

ox1

Enables Fast register/primitive switching

POSSIBLE VALUES:

00- No effect.

01 - Enables higkperformance register/primitive
switching.

REG_READWRITE

0x0

R520+: When set, GA supports simultaneous registe
reads & writes

POSSIBLE VALUES:

© 2008 Advanced Micro Devices, Inc.

Proprietary

176

